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ABSTRACT. - In this paper we prove the existence and the regularity of
a harmonic map from the disk of R2 into the Lorentz manifold S2 x f3 R,
with a given boundary condition. Since the energy functional is not

bounded from below, we search for its critical points which are not
minima.
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Dans cet article, on demontre l’existence et la régularité
d’une fonction harmonique du disque de R2 dans une variete de Lorentz
S2 R, dont la valeur est prescrite sur la frontiere du disque. Puisque la
fonctionnelle de 1’energie n’est pas bornee inferieurement, on cherche des
points critiques de cette fonctionnelle qui ne sont pas des minima.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

Let (M, g) be a m-dimensional riemannian manifold with boundary 9M,
and let (N, h) be a n-dimensional semiriemannian manifold. We are inter-
ested in the existence of harmonic maps w : M -~ N which satisfies a

boundary condition w|~M= y, where y : aM -+ N is a given smooth function.
Let Hy~ P (M, N) be the Sobolev space of functions w : M -~ N whose the
k-th derivatives belong to LP, and such that map
w E H;’ 2 (M, N) is harmonic if it is a critical point of the energy functional

where wi, i = 1, 2, ..., n are the local coordinates of w (x) in N.
In this paper we set M = SZ = ~ (xl, x2) E R2 ~ xi + x2  1 ~, and suppose

that is the Lorentzian warped product of
S2 = ~ (xl, x2, x3) E R31 xi + x2 + x3 =1 ~ times R (see [12]). In other words,
we consider S2 with the canonical metric tensor h induced from R3, and

with the tensor h whose components at the point
w = (u, t) E S2 X Rare hij (w) = hij (u) if i, j = 1 , 2; hi3 (w) = h3i (w) = 0 if
i = 1, 2, and h33 (w) _ - [3 (u), where p: S2 -+ ]0, + oo[ is given C1 function.
The main result of this paper is the following theorem.

THEOREM 1.1. - Let y = (v, i) E C2~ s (aSZ, S2 X R); then, if v is not con-
stant, there exists a harmonic map w E C°° (SZ, N) n C2~ s (S2, N) such that
~’~ 
The existence of harmonic maps between riemannian manifolds has

been extensively studied by many authors (see [1], [3], [4], [5], [13], [14]
and its references). More recently has been considered the case in which
the starting manifold (M, g) or the target manifold (N, h) is a Lorentzian
manifold (see [8], [15] or, respectively, [10]). In the latter case, which is

our case also, the energy functional is not bounded from below, so its
critical point are not minima.

In [10], because of suitable symmetry assumptions, the problem is

reduced to the existence of geodesics in a Lorentzian manifold, and the
methods of [2] are used.

In order to prove Theorem 1. 1, we consider, as in [13], a perturbed
functional E« (w) = E« (u, t) from H~ ~ 2 « X H~ ~ 2 to R, such that E 1 is the

energy functional. Because the fact that the target manifold is a Lorentzian

warped product, we have is convex, and it possesses a
minimum point tu. Moreover the functional tu) is bounded from
below, and there exists a minimum point so w~ == (uex, tua) is a critical

point of the functional E03B1, for every 1. (In particular, w1 is a critical
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point of the energy functional in H 1 ° 2 (SZ, N)). Finally, we show that Wcx
converges to a smooth harmonic map w e C°° (Q, N) n C2~ s (Q, N).

2. PROOF OF THE RESULT

The energy of a function w = (u, t) from 0 to the warped product
S2 x o R is given by

where h is the metric tensor on S2 induced from R3, and ui (x) (i =1, 2)
are the local coordinates of the point u (x) in S2.

Since S2 is isometrically imbedded on R3, we have

where

and ui (x) (i = 1, 2, 3) are the coordinates of the point u (x) E SZ in R3.
Let y = (v, r) E C2~ s S2 x R), and set, for p >_ 2:

For every a >_ 1, let E« : H~ ° 2 « x HT ~ 2 -~ R be the functional (in the follow-
ing we shall write u instead of M):

Clearly, the critical points of E1 are harmonic maps.
Remark 2 .1. - Let ~C1 (R3, ]o, + oo [) be such that |s2=03B2 and

~ (u) =1 for u ( > 2. It is easy to see that the critical points of Ea, 
are weakly solutions of the following nonlinear elliptic system:
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for every cp, ~r, so we get (2.1).

LEMMA 2.2. - Fix and then, the functional
E~ (u, . ) : H;’ 2 --~ R has a unique maximum point t,~.

Proof - Easy..
Remark 2 . 3. - Clearly, there exists c>0 such 

every a ?_ 1 and u E H1 ,2 03B103BD. In fact, if we set po = mins2 03B2, 03B2~ = maxs2 P, and
fix to ~ H~ ~ z~ we have Ea (u, to), so

For every a >_ l, we consider the functional H,~, s 2 « -~ R given by:
tu). We have the following lemma that we shall prove in

section 3.

LEMMA 2 . 4. - For every a > 1, and

2 °‘ is a critical point of Fa if and only if w = (u, tu) is a critieal

point Ea.

LEMMA 2 . 5. - Let a >_ 1. Then, the functional F03B1: H103BDY z °‘ ~ R is coerczve
and weakly lower semicontinuous, so there exists u03B1~ H1,03BD z °‘ such that

Fa Fa (u).
Proof. - The cQerciveness of F« follows from Remark 2.3. we fix now

t~ H1,03C4 2. The functional u ~ (1 + |~ u |2)03B1 dx is clearly weakly lower semi-
continuous; moreover, since H1, 2 03B1 (03A9) is compactly imbedded in Lq (03A9)

(q > 1) for s:ince u f--~ is

continuous from to R, ~c get that t~ is weakly
lower semicontinuous.
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Let (un) be a minimizing sequence such that weakly in H~ ° ~ °‘.
Then E« tu~ ~ Ea (Un’ = ~a (un~, so

and the lemma is proved.

Remark 2. 6. - Because Lemma 2 . 4 and Lemma 2. 5, there exists a
critical point w = (u, of the functional however, in
order to show that (Q) r~ (~2), we use an approximation proce-
dure developed later.

LEMMA 2.7. - Let then, there exists I such that, if

Proof, - Letw=(u t) E ~I~ ~ 2 °‘ X H~ ~ ~ be such that ~« (w) ~ Q, so that w
is a weakly solution of the nonlinear elliptic system (2.1). Let

a = ~ , ~, z = l, ... , 4, and we set

p ~ (pQ) with a = l, 2 and i= 1,2,3, ~, 3. Then, we can define
the following functions Af, B; : R4 x R~ -; R:

The system (2.1) became:

It is easy to check that the assumptions (1.10.8) of [11] are satisfied, so,
as in [13], Prop. 2.3, we get and then Since

(~), we have ~~ (~), so, because of [9],
Theorem 15 - 1, p. 187, applied to the fourth equation of the system (2.1),
we have t ~ ~~~ 2 a (Q), which implies t ~ ~~ Now, in order to get the
regularity of u up to the boundary, we prove first that V u e L,°° (~); the
proof is similar to the proof of Theorem 3.1 in [1].

Suppose It V u E~~ 
= -~= oo, and let (rk) ~ ~o, ~ ~ be such that r,~ ~ ~ as

k ~ ~. Let = V u (at) j, where (0, rk). Clearly
~,~ ~ + oo and d(ak, ~~,~) ~ o as We can assume 
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as k - oo . From the system (2 . 1 ) we have, in Q:

Then

in Q, where Aq and B are continuous and bounded from Q to R3. Now,
we distinguish two cases.

from the equation (2. 3) we get, in Qk:

Since |~uk|~1 in from standard estimates in PDE (see e. g. [6],
Sec. 11. 2), we have that, for every R > 0, there exists y=y(R)e]0, 1 [, such
that (Uk) is bounded in C 1 ° y (B (o, R)), so uk ~ v - u (a) in (R2). On
the other hand, V uk (0) = 8k 1 ~ V u = 1, so we get a contradiction.

2) Case: 8k d (ak, as k ~ oo; then, we can assume

a = ( -1, 0) and 0) for every k E N. Let U = ] 1 /2, + oo [ x R ( c R2),
and let T : (1, 0) ~ -~ U be such that

Let u : IJ -~ R3 be such that u (x) = u (rk T -1 (x)), so u (x) = u (T (r; 1 x)) for
x E Ak. Since
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from (2. 3) we get, in U:

where and Th are the components of T. It is easy to check
that

Then, from (2. 4), we get

where and F are continuous and bounded (independently of A:)
in U. Let 1 and yk ~ 0 as k ~ oo, and let k: U ~ R3

be such that k(,)=u(1 2+03B8-1k(-1 2), 03B8-1k+yk). Clearly, since

9~-~ +00, in C~(U). Using (2.5) we show that

k ~ v in C1loc (U). In fact, from (2.5) we have

where and F are continuous and bounded (independently of k)

(, .y) = 03B8-1k V 2 + k 2 ), since

where x~U and x=rkT-1(x)EAk, we have
I V uk I _ 4 in U. Then, for every R > 0, from (2. 6) and [6], Sec. 11 . 2, there
exists y = y (R) E ]o, 1[, such that is bounded in where

UR = U n B (0, R). So, modulo subsequences, uk -~ v = u (a) in (IJ).

Vol. 10, n° 2-1993.



246 C. GRECO

On the other hand, let ~ = - + 8~ ( ~ 2014 - ) [we recall that ~) are

the coordinates of ~=T(~r~)], and consider the sequence 0).
Since

from our assumptions we have that (ak) is bounded.
. Moreover and this is

impossible since V uk --~ Dv = 0 in (U).
Then, we have proved that In particular, As

in [13], Proposition 2 . 3, we consider the linear operator

Since for a 2014 1 small enough A~ is close to A: H2° 4 (SZ) --~ L~ (Q), from (2. 3)
we get u E H2° 4 (SZ) and then, by Sobolev, u ~C1 (S2), Finally, the fact that
w = (u, t) E C2° s (Q) follows, for instance, from [11], Theorem 1.11.3. M

Let a > 1, be such that For we have
let t«) and ] for 

Then, we have the following lemma.

LEMMA 2 . 8. - Suppose D «) and bounded independently
to a. Then, for every EG]0, 1 [ there exist 03B11 E] 1, (1.0]’ a, b > 0 such that

every a E ] 1, a 1 [.
Proof. - We shall write w = (u, t), e instead of 8«. The

fourth equation of the system (2.1) became:

From our assumptions, (~’ (u) ( «) is bounded, so, from [9],
Theorem 17.1, p. 207 and p. 209, we get (II t 2) bounded independently
to a. Now, we fix E E ]0, 1[; let be such that E =1- 2/(2 + c~), and

Since is bounded, we have, by Sobolev,
that bounded. Let to = t - i, so t0~ H2, 23 (SZ) and satisfies the
equation:

Let p = 2 + 6/2, al =1 + 6/2; we claim that there exist ul, bl > 0 such that
~f~Lp ~ a 1 03B8~ + b 1 for every a E ] 1, a 1 [. Then, from (2. 7) and standard

estimates (see e. g. [9], Ch. III, Sec. 11 ), we p  c (~ + ( ~ t 
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where c does not depend on a. Since H~(Q) c~ the Lemma is

proved. In order to prove the claim, we must show that

-~ II at: for every ae]l, aj (f= 1, 2,7= 1 , 2, 3). In fact,
3~ ~x~ L~

where k = 2 a/(2 + a) (Notice that k  1 if a  al =1 + a/2). By Young
inequality (see e. g. [9], p. 37), we have

where r = ((2 + a)/p)’, so that pr = q. Then

and the claim is proved..
We close this section with the proof of Theorem 1.1. For let

u« E H~ ~ 2 « be such that F, (u«) = min { Fa. (u) H,~, ~ 2 « ~ (see Lemma 2. 5).
If we set w« _ (u«, we have Ea (w«) = 0 because of Lemma 2 . 4. From
Remark 2. 3, we have moreover it is easy to check that

is bounded (if a is bounded). Then, if we fix E ~ ]o, 1[ and set
a2 = (see Lemmas 2. 7 and 2.8), we have

and for every a E ] l, 

where max |~ ua |, and a, b does not depend on a.
n

Let c ] 1, be such that 03B1k ~ 1. We shall write wk, uk, tk, 8k instead
of wak, uak, Since (uk), are bounded in 2, we can assume

weakly in H 1 ~ 2 .
Proof of Theorem 1.1. - Since wk E (Q) (1 C2 ~ °‘ (SZ), uk satisfies the

equation (2.2), with a and t replaced by ak and tk. If the sequence is

bounded, we have (~V tk|C0 (03A9)) is bounded because of (2. 8). Then, as
in [I], we get and tk -+ t in C 1 (SZ), and w = (u, t) satisfies the

system (2 .1 ) with (x==l. The fact that follows from [11],
Theorem 1 . 11 . 3, so Theorem 1. 1 is proved in this case.
We prove now that the case (8k) unbounded does not occur. In fact,

arguing by contradiction, suppose 8k -~ +00, and let (ak) c Q be such that
We can assume as k --~ oo .
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for Then (vk, rk) satisfies, on Qb the equations:

Because of (2 . 8), ~ O rk (x) ~ = 8k 1 ~ O tk (8k 1 x + ak) ~ _ 8k 1 (a 8k + b) -~ 0.
Then, as in [I], we have in C o~ (R2). Set since

6k Pk -~ + oo, we can assume pk > 0 for every k E N. Set pk).

Fix £ > o; then there exists r > 0 such that ~ where

I ~ x - a I  r ~ . Clearly Ak c D for k large enough. Let

It is easy to check that, for every R>0, there exists ko such that

B(0, R) c rk for k >_ ko. Then

so, oo we get

On the other hand,
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so

For E -~ 0, we get

We recall now that 03B1k ~ 1 and 03B2 (uk)| O 2 dx _ 03A9 03B2(uk) ( ~ tu ( 2 dx, so

it is easy to check that

Since we have and then, for k ~ oo,

so 

On the other hand, lim lim 
k - ao k -~ 00

and we have a contradiction.

2) Case: lim 

Then ak - a E ao, and we can assume a = ( -1, 0). Let U and T as in
the proof of Lemma 2. 7, and let

Then uk and 4 are well-defined on U. From (2.1) we have

where are bounded and continuous functions from Q to R3. If we
set T (x) = x, from (2. 9) we get

Vol. 10, n° 2-1993.



250 C.GRECO

where C k and Dk are bounded and continuous.
Let ak = (xk, yk); then we define

from (2 . 10) we get

As in [I], we have that uk converges to some and moreover,
by (2.8), 03B8-2k| ~k|2 ~ 0, so 5 satisfies the equation -0394=|~|2 in U.
At this point, we get a contradiction arguing as in [1]..

3. PROOF OF LEMMA 2.4

Let as in Remark 2 .1, and let
~a : (Q, R3) --~ R be the functional

so E~ (u, t) = E~ (u, t)for every u such that I u _ ~ . Then we set

and

in order to prove Lemma 2. 4, it is enough to show that
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for every (Q, R~) and R3). The proof of (3.1)
is similar to the proof of Lemma 2.2 in [7]. We sketch it for the reader
convenience.

Step 1. - is continuous. In fact,

Step 2. - The map is continuous from Hv ~ 2 " {S~, R~) to

Hz ° 2 {~, R~). For if not, there exist u E Hv ~ 2 « (Q, R~),
Hy ° 2 °‘ (S~, R~) and E > 0 such that u~ --~ u t~ 

- > E. Since

t ~ verifies the Palais-Smale condition, there exists ~ > 0

such that

so we get ~/2 _ Ea (un, r,~) - ~a (u, rn). It is easy to check that the right-hand
side of the last inequality tends to zero as n --~ oo, so we have a contradic-
tion, and the claim follows.

From step 2 we get:

and we get (3.1).
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