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ABSTRACT. - Under a weak force type condition, we consider the
existence of time periodic solutions of singular Hamiltonian systems:

We assume V(q, t)O for all q, t and V {q, t), Vq(q, t) -+ 0 as 
Moreover we assume V (q, t) is of a form:

where 0  oc ~ ~ and L~ (q, C2 ((RNB~ 0 ~~ ~ R, R) is aT-periodic func-
tion in t such that 

For oc E ( l, 2], we prove the existence of a non-collision solution of (HS).
For 1], we prove that the generalized solution of(HS), which is
introduced in [BR], enters the singularity 0 at most one time in its period.
Our argument depends on a minimax argument due to [BR] and an
estimate of Morse index of corresponding functional, which will be obtai-
ned via re-scaling argument.
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216 K. TANAKA

RESUME. - Sous une hypothese de type force faible, nous etudions
l’existence de solutions périodiques de systemes hamiltoniens singuliers :

Nous supposons que V (q, t)  0 pour tout q, t et que V (q, t), V q (q, t) -+ 0
si I q -~ oo .
De plus nous supposons que V est de la forme :

ou 0  a  2 et U (q, R) est une fonction T-periodi-
que telle que q |03B1 U (q, t), | q Uq (q, t), | q Uqq (q, t), | q I« Ut (q, t ) -+ 0
as I q --> 0.
Pour oc E ] 1, 2], nous demontrons l’existence d’une solution non collision-

nelle de (HS).
Pour a E ]0,1 ], nous demontrons que la solution generalisee de (HS),

introduite dans [BR], passe par la singularite 0 au plus une fois dans la
periode. Notre demonstration utilise un argument de minimax du a [BR]
et une estimation de l’indice de Morse de la fonctionnelle correspondante,
obtenu par un argument de changement d’echelles.

0. INTRODUCTION

We study the existence of T-periodic solutions of the following Hamil-
tonian system:

where (N~3) and V (q, is

a T-periodic (in t ) function such that V (q, t), Vq (q, t) -+ 0 as |q1-+ oo and
V (q, t) -+ - oo as q -+ 0.

Classical solutions of (HS) can be characterized as critical points of
functional:
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217SINGULAR HAMILTONIAN SYSTEM

where

In case V (q, t) satisfies the strong force condition (SF) of Gordon [Go]:
(SF) there is a neighborhood Q of 0 in RN and a function

R) such that

the functional I (q) satisfies the Palais-Smale compactness condition and
we can apply minimax arguments to I (q). Especially under the assumptions
of (SF) and

Bahri and Rabinowitz [BR] introduced a minimax method and obtained
the existence of classical solutions (non-collision solutions) of (HS). See
also [Acl, Grl]. But in case (SF) does not hold, we cannot verify the
Palais-Smale compactness condition for I (q) and we cannot apply minimax
argument directly to I (q). However, using a suitable approximation argu-
ment, Bahri and Rabinowitz [BR] proved the existence of generalized T-
periodic solutions, that may enter the singularity 0 (i. e., collision) under
the conditions (Vl)-(V3) (without (SF)).
For the study of the existence of non-collision solutions in case of weak

forces (i. e., the case where (SF) does not hold), we refer to [AC3], [DGM],
[DG], [C], [ST]. In [AC3], [DGM], [DG], they found critical points of
I (q), whose critical values are less than

In [C], [ST], they studied (HS) through minimization problems. They
studied the behavior of solutions near collisions (especially [ST] studied
the Morse index) and they obtained the existence of non-collision solutions.

This work is largely motivated by the works [BR], [C], [ST] and we
study the existence of non-collision solutions under the weak force condi-
tion through minimax problem. We study the following class of weak force
potentials; for 0  a  2 we assume the potential V (q, t) is of a form:

where

Vol. 10, n° 2-1993.



218 K. TANAKA

We remark (VI) and (V3) follow from (Wl)-(W3). We also remark (SF)
holds if oc >_ 2.
Our main result is as follows:

THEOREM 0.1. - Assume N~3, (W 1 )-(W3), (V2) and 1  a  2. Then
(HS) has at least one T-periodic (non-collision) solution.

In case o  a _ 1, we cannot show the existence of non-collision solution.
However we can estimate the number of collisions of the generalized
T-periodic solutions due to Bahri and Rabinowitz [BR]. More precisely,
we get

THEOREM 0.2. - Assume N~3, (W 1 )-(W 3), (V2) and Q  oc ~ 1. Then
(HS) has a generalized T-periodic solution which has at most one collision,
i. e., which enters the singularity 0 at most one time in its period T.
The existence of a non-collision solution of (HS) will be obtained as

follows; first we consider modified functional:

and obtain critical points q~~ of Second, we try to pass to the
limit 8 -+ 0. Here we remark IE (q) satisfies the strong force condition (SF)
for each E E (0, 1 ] .
The proof of Theorem 0.1 will be given in the following sections; in

Section 1, we study the modified functional We apply the minimax
method of Bahri and Rabinowitz [BR] and get a critical point of

for E E (0, 1]. Moreover we obtain the following uniform bounds

for E E (0, 1], where m, M > 0 are independent of 8. Here we denote by
index I~’ (qE~, the Morse index of IE’ 
From (0.1) and (0.2), we can deduce the uniform H1-bound for

(q£ (t))E E ~o, 1~. Thus we may assume

for some sequence E~ -~ ©. However qrx> (t) may enter the singularity 0.
In Sections 2-4, we study the behavior of critical points 1 of

I£n (q) with properties (o .1), (0 . 2) and (0 . 4). We will establish the follow-
ing estimate of the Morse index

PROPOSITION o . 3. - Let (qn (t))~’ 1 c A be a sequence of critical points
o f I~n (q) satisfying

(1 ) En- -+ 0;
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219SINGULAR HAMILTONIAN SYSTEM

{ii j there are constants 0  m  M independent o~’ n such that

(iv) qn -+ q ~ (t) weakly in H 1 and strongly in L °° ;
and let v be the number of times q~ {t) enters the singularity 0; that is,

Then

where is an integer defined by

We remark that i (~cj =1 for ae(0, 1] and for 2). To prove
the above proposition, we use re-scaling argument, which is based on the
scale-invariance of the equation:

that is, (0. 8) is invariant by the scale changes:

In Section 5, we combine results obtained in Sections 1-4 and give
proofs of our theorems 0.1 and 0. 2.

1. MODIFIED FUNCTIONAL AND MINIMAX PROCEDURE

In this section, we study the following functional

Here we assume only (V2), (V3) and
(VF) V(q, ((RN~~ o ~) ~ R, R) is T-periodic in ~.

We need the following notations; let E === (R, RN) denote the space of
T-periodic functions on R with values in R~ under the norm:

Vol. 10, n° 2-1993.
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j 

lTwhere [q] = - q(t)dt. We remark that
T o

is open in E and IE (q) E C~ (A, R). We also use the notation:

There is a one-to-one correspondence between critical points of It (q) and
classical T-periodic solutions of the following equation:

We remark the potential V (q, t) - ~ |q|4 satisfies the strong force condition

First we state some properties of It (q).

LEMMA 1.1. - Assume (V1’), (V2) and (V3).
(i) For any M > o, there exist constants Ci (M) > 0 (i =1, 2) independent

of E E (0, 1] such that

for all q E A and E E (0, 1 ] wi th It (q)  M.
(ii) For any M > m > 0, there exists a constant C3 (m, M) > 0 independent

of E E (0, 1 ] such that

for all q E A and E E (0, 1] with It (q) E [m, M] and I) IE (q) ~ mI, J2 M.
(iii) For any E E (0, 1 ], It (q) satisfies the condition (PS + ) on A:
(PS +): for any s > 0, if (qn) c A, It -+ s and IE (qn) -+ 0, then qn pos-

sesses a subsequence converging to some q E A in E.

Proof - (i) By (V2) and (V3), it follows from It (q)  M that

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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Thus we get (1.3). Next we deal with (1.4). We get for all s, t E [0, T]
that

By (V3), we can find a constant c (M) > 0 with the following property; for

any q E A with ( 1. 7) there is a to = to (q) E [0, T] such that

We set s = to in (1. 9), then we get for all T]

Thus

Hence we get (1.4).
(ii) By (1.6), it suffices to prove M). We have for q~

and that

Note that we have from (1.6)

Vol. 10, n 2-1993.
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Thus we get

where

We remark that

Now we assume M], then we have from (1 . 10) that

By ( 1.11 ), we can see there is a constant M) > o independent of
~ ~ (0, 1 ~ such that

i. e.,

Thus we get (1 . 5).
(iii) Assume c A satisfies I~ (qn) -~ s > © and Ifi (qn) --~ fl in E*. From

(1.4)-(1.6), we can extract a subsequence-we denote it still by such
that

Thus the form of I£ (q) shows qn -+ q strongly in E..
Next we apply minimax method, which is essentially due to Bahri and

Rabinowitz [BR], to for each E E (0, 1]. Consider the family of map-
pings C(SN-2, A). Identifying [0, T]/~ 0, we can associate each

A) with a by

We denote the Brouwer degree of y by deg y. We define

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We can see T’* ~ 0 as in [BR], Lemma 1. 2.
We define minimax values of If; (q) as follows:

Since I (q) ~ IE (q) ~ I 1 (q) for all q ~ A 1 ~, we have

We argue as in [BR], Proposition 1.4, we get

PROPOSITION 1. 2. - 

Thus we have

PROPOSITION 1. 3. - (0, 1], there is a critical point qE (t) ~ A of
IE (q) such that

where index I£’ is the Morse index of IE’ (q~).
Moreover there are constants M > m > 0 such that

Proof. - (1.19) follows from ( 1.15) and Proposition 1. 2. Since IE (q)
satisfies the strong force condition (SF) for E E (0, 1], we have the following
"Deformation Theorem":

PROPOSITION 1. 4. ([BR], Proposition 1.17]). - Suppose E E (0, 1] ] and
assume_s ~ 0 is not a critical value of IE (q). Then for each a ~ 0 there is an
a E (0, à) and ~~ C ([0, 1] x A, A) such that

By Proposition 1 . 2 and ( 1.15), we can see

Using the property 3. of Proposition 1.4 in a standard way (cf. [R]), we
can see b£ ~ o is a critical value of If. (q).
As to the property (1.18), we can obtain it in a similar way to the

proof of Theorem A of Tanaka [T]. In [T], we studied properties of Morse
indices of critical values related to the symmetric mountain pass theorem
and we got (1.16)-(1.18) for the symmetric mountain pass theorem. See
also [BL], [BenFo], [Sc], [V], [LS]..

Vol. 10, n° 2-1993.
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The above proposition ensures the existence of approximate solutions
qE (t) E A together with uniform estimates (1 . 17) and (1 . 18). We will get a
solution of the original problem (HS) as a limit of q~ (t) as E -+ 0.
To do so, we study the behavior of critical points of Ig (q) whose critical

values and Morse indices are uniformly bounded, that is, we study the
behavior of critical points qn (t) E A such that

The following proposition, which is due to Bahri and Rabinowitz [BR],
ensures the existence of convergent subsequence of (q" (t)) and it shows
the limit of the subsequence is a generalized solution of (HS).

PROPOSITION 1. 5 (cf [BR], Theorem 3 . 24). - Let 1 c (0, 1] be a
sequence such that ~" -+ 0. Suppose (qn 1 c A is a sequence of critical
points of I£n (q) such that

where 0  m  M are constants independent of n.
Then there is a subsequence - still denoted by n - and q~ (t) E E such that

(i ) qn (t) converges to q ~ (t) weakly in E and strongly in L °°;

(iii) q~ (t) vanishes on a set D, of measure 0;
(iv) i

(v) q~ (t) satisfies (HS) on RBD.
Remark 1 . 6. - (i) (q£ (t))£ E given in Proposition 1 . 3 satisfies the

assumptions of the above proposition.
(ii) q~ (t) is a generalized T-periodic solution of (HS) in the sense of

[BR].

Proof of Proposition 1 . 5. - By Lemma 1 . l, we get

where C6 > 0 is independent of n.
Thus we get (i). By (1.22) and Fatou’s lemma, we get (ii). We have (iii)

easily from (ii). Since qn (t) satisfies (1. 2) with and qn (t) -+ q~ (t) in
L°°, we can deduce (iv) and (v)..

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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If D = 0 in the above proposition, the limit function q~ (t) is a classical
solution (non-collision solution) of the original problem (HS). In the

following sections, we will show that for the sequence (q£ given
in Proposition 1.3.

(i ) If V (q, t) satisfies (Wl)-(W3) with ae (1, 2) in addition to (VI)-
(V3), then D = QS;

(ii ) if V(q, t) satisfies (Wl)-(W3) with ae(0, 1] ] in addition to (Vl)-
(V3), then D n (0, T] consists of at most one point, that is, q~ (t) enters
the singularity 0 at most one time in period T.
To get the above properties (i )-(ii ), the uniform estimate of Morse

indices ( 1 . 18) plays an important role. We remark that in Proposition 1. 5,
we used only the uniform bound of critical values.

Lastly in this section, we assume (Wl)-(W3) in addition to (Vl)-(V3)
and get some a priori estimate, which will be used in the following sections.

PROPOSITION 1.7. - Assume (W 1 )-(W3) and (V2). For any OmM,
there are constants C~ (m, M), C8 (m, M) > 0 independent of E E (0, 1] such
that for all q E A and E E (0, 1] with It (q) E [m, M] and IE (q) = 0

for all t E R.

Proof. - We can get the assertion (i ) from (Wl)-(W3) and (i ), (ii ) of
Lemma 1.1. To obtain (ii ), we set

By (i ), we get

Since is a solution of (1 . 2),

Thus by (W3)

Vol. 10, n° 2- l 993.
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Combining (1.24) and (1. 25), we get

Therefore we obtain 

2. ASYMPTOTIC BEHAVIOR OF NEAR COLLISION

In what follows, we assume (V2) and (~ 1 )-(~V3j. Suppose (qn (t)) c A
be a sequence of critical points of ~En (q) satisfying

where 0  m ~ 1VI are constants independent of n. By Proposition 1 . 5, a
suitable subsequence of critical points {t))~ ~ ~o, 1 ~ 

~ 1~, which is obtained
in Proposition 1. 3, satisfies the conditions (2 . 1)-(2 . 4).
The main purpose of the following 3 sections is to prove

Proposition 0.3, that is, to estimate the Morse index of I£n (qn) from below
by the number of collisions v:

We can obtain Theorems 0 . 1 and 0.2 from Proposition 0.3 and (1 . 18).
First we study the asymptotic behavior of qn (t) near collisions. Suppose
too E (0, T] satisfies

We may assume t~ E (0, T) without loss of generality. Extracting a subse-
quence - still denoted by n -, we can choose tn e (0, T] such that

In fact, by (iii) of Proposition 1. 5, we can find a sequence an, bn~ (0, T)
such that

Thus we can find a sequence of integers m ( 1 )  m (2)  ... such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Suppose I qm (n) (tm (n)j ~ - bn] I qm (n) ~t~ ~ I for tm (n) ~ By (2 . 9j~
tm (n) ~ (an, Thus |qm (n) (t) takes its local minimum at t = tm (n). Moreover

we have tm (n) -+ too by (2.8) and (n) (tm (n))|~|qm (n) (t~)| ~ o. Therefore
we get (2 . 5)-(2 . 7) for the subsequence m (n).
By Proposition 1. 7, qn (t) satisfies

We set

and define R -+ RN’B~ ~ ~ by

We consider the asymptotic behavior of xn (s) as n -+ ~. From the defini-
tion of xn (s) and (2 . 5)-(2 . 7), (2 .1 U)-{2 .13), we can easily see

LEMMA 2 .1. - xn (s) and sn > 0 satisfies

The following lemma gives us an estimate of the coefficient of the
equation (2.17).

LEMMA 2.2.

Proof - Since ( xn (s) ~ 2 takes its local minimum at s = 0, we have

Vol. 10, n° 2-1993.
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Using (2.16)-(2.18), we get

By the assumption (W3), we can see

By Lemma 2. 2, we can extract a subsequence - we still denote it by
n - such that

Then we can deduce the following from (2.18).

W e extract a subsequence again - still denoted by n - and by (2 .16) we
may assume

where el, e2, ..., eN are an orthonormal basis of RN.
By the continuous dependence of solutions on initial data and equation,

we have

PROPOSITION 2 . 3. - For any l > 0, xn (s) converges to a function y«, a (s)
in C2 ([ - I, l], where y«, a (s) is a solution of

Proof. - By (W3), we have for any R > 1

in as On the other hand,
(2 . 22)-(2 . 24) has a global solution ya, d (s) satisfying

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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for 003B12 and d~ [0, 2-03B1 2]. [The proof of (2 . 25) will be given in

Lemma 4. 2] Therefore we can see

for any 1>0..
Using Proposition 2 . 3, we will estimate the Morse index of I£n (qn) for

large n in the following sections. 
n

3. MORSE INDEX OF IE’ (q) AND THE LIMIT PROBLEM

For arbitrary given l > 0, we define linear operator

for n E N and ( - I, I; R). Remark that Tn is well-defined for large n.

Extending (Tn cp) (t) periodically, we regard it as a T-periodic function
on R.
We have for j = 3, ..., N

By (W3) and Proposition 2. 3, we have

Vol. 10, n° 2-1993.
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Here we used the fact:

We set

for ae(0, 2), (2 - a)/2] and l > o. Then we can see

for all R).
We define

Clearly
N (a, d, I) = the number of negative eigenvalues of the following eigenvalue
problem:

We remark that N (a, d, I) is a non-decreasing function of l for each a
and d. Let I; R) (i =1, 2, ..., N (a, d, I)) be eigenfunctions
of the problem (3 . 5) with negative eigenvalues, in particular, we have

We consider the set of functions:

By (3 . 3) and (3 . 6), we can see for sufficiently large n that

We remark

Finally we set

Choosing />0 sufficiently large, we may assume

In Section 4, we will give a representation (0 . 7) of i (a).

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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PROPOSITION 3 .1. - Assume (V 2) and (Wl)-(W3) and suppose

CtJ)n 1 ~ A satisfies (2 . 1)-(2 . 4). Let v be the number of times q~ (t)
enters the singularity 0:

Then we have

Proof. - Suppose v  00 and

For any given subsequence nm -+ oo, we can extract a subsequence - we
still denote it by nm - such that Proposition 2. 3 holds for each for

suitable orthonormal basis ... and E 0 2 a Thus we
can construct subspaces nm) c E for each t~, k (k=1, 2, ..., v) as
in (3 . 7). From the construction, we have

For any 8 > 0, we find a constant mo (8) e N such that

for all nm) and m >_ mo (~). Thus we get

for sufficiently large m. Set

Choosing sufficiently large />0, we obtain from (3 . 8) and (3.10) that

for sufficiently large m.
Therefore we get (3 .11). In case v = oo, for any k E N we can see in a

similar way that

Thus we conclude

Vol. 10, n° 2-1993.
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4. REPRESENTATION OF THE NUMBER i (a) AN D PROOF OF
PROPOSITION 0.3

The aim of this section is to give a representation (0. 7) of the number
i (a), that is, to prove

PROPOSITION 4. 1. - Let i (a) E N be the number defined in (3 . 4)-(3 . 9).
Then for any a E (0, 2) the number i (a) can be represented as

We remark

First, we consider the solution ya, d (s) of (2 . 22)-(2 . 24).

LEMMA 4. 2. - For an y 0  a  2, d~[ 0 > 2 2 a , the equation ( 2 . 22)-

(2 . 24) has a global solution ya, d (s). Moreover, ya, d (s) satisfies

Proof - First we remark that (s) satisfies

We fix here ae(0, 2) and set 12. Using (2 . 22) and (4 . 5),
we get 

We can easily see from (4.6)-(4.8) that R(2-03B1)/2 (s)~1 and for

[0,2 2
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

Thus we get for dE C0, 2 2 a J 1

Next we fix d~ ( 0, 20142014 ) and prove Ro M for all s. Since

d(0)=2(2-03B1)-4d2(2-03B1)=0(0) for 20142014 ), we have
R~ (~)  Ro (~) for sufficiently small ~ > 0.

Suppose there is an such that Then there is an
0 such that

Since Rd (s) satisfies (4. 6)-(4. 8), we have

Thus we get

By (4. 9), we get Rd (so)  Ro (so). But this contradicts with (4 10). There-
fore we have

Similarly we get Rd (s)  Ro (s) for s  0.

i. e.,

Proof. - By (4. 4), we have

Vol. 10, n° 2-1993.
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Thus we get the desired result from the definition d, I) and

By (4. I I ), from now on, we deal with only the case d= 0. The following
lemma is a consequence of Sturm Comparison Theorem.

LEMMA 4 . 4. --- The number i (oc) + 1 is equal to the maximal number of
zeros of nontrivial solutions u (s) of

That is, 
...

i + 1= R; u (s) ~- ~ ~; u (s) is a nontrivial solution of (4 . ~ ~~ ~ .
Suppose and let 1>0 be sufficiently large so that

~ 0, l) = k. Then k-th eigenvalue ~,~ of (3 . 5) is negative, that is, there
is an eigenfunction uk (s) of

which has exactly (k + ~ ) zeros in [ -- l, l~. Consider initial value

problem (4.12) with initial data u ( -- l.) = 0 and u ( - l ) = ~ , then by Sturm
Comparison Theorem, u (s) has at least (k + 1) zeros in -~ l, l~.

Conversely, suppose (4 .12) has a nontrivial solution with (k + 1) zeros
t = t~ ~ t2 ~ ... ~ tk ~. ~ and consider the eigenvalue problem:

Then we can see that the k-th eigenvalue Àk equals to 0. Choosing I > ©
such that ~t~, t~+ ~~ c ( - I, I), we have N (a, 0, I) > k.

Therefore we will consider the number of zeros of nontrivial solutions

u (s) of (4 .1 ~~. We write (s) = a (s), et) : R -+ R ~i = 1, 2). Then

y~ ~ ~ are linearly independent solutions of ~4 .12). Thus any solution
u ~~) of ~4 12) can be represented by their linear combinations. That is,
we can write

up to multiplicative constants. Using polar coordinate we write

where r~ ~~) ~ o and with 8~ (o) -~ ©. Then any solution u (s) of
(4.12) can be written (up to multiplicative constants) as

From ~4 . ~ ~~~ we can easily see

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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LEMMA 4. 5. - The maximal number of zeros of nontrivial solutions of
(4 .1 ~) is equal to the number

Here 8a is defined by

REMARK 4.6. - The number (4 . ~ 5~ describes twice of the number of
times the point (s~, (s~) turns around the singularity 0 white

if and only if 8a (~) + ~3 ~ m rt for some meZ.

Thus we can see the maximal number of zeros of nontrivial solutions
of (4 . ~ ~) is equal to the number ~4 j ~ ~)~ that is,

~~~0~ 2~~~
r r~+ 

Proff of Proposition 4 .1. - Since

satisfies (~ . ~~~-(~ . ~4~ with d~ 0, we have

(conservation of the angular momentum). Thus we can make a change of

independent variables ~6~. We set p~=p~e)===20142014. Then 

satisfies

and 8~ can be characterized as

6~ = ~ sup {9 > 0; p~ (t) exists and is positive for all T e [0, 8).} (4.20)

By (4.16)~(4.19), we have

Since (p~~~e (g)  0 for all g > 0 (it follows from (4. 9~), we have

Vol. 3©; n° 2-ig9~.
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Integrating over [0, 8], we get

By (4. 20), we can see

Thus by Lemmas 4 . 4, 4 . 5 and (4 . 21 ), we obtain Proposition 4.1..

Proof. of Proposition 0. 3. - We can easily deduce Proposition 0. 3
from Proposition 3 . 1 and 4 . 1 ..

5. PROOFS OF THEOREMS 0.1 AND 0.2

Now we can deduce Theorems 0.1 and 0. 2 from Propositions 1. 3, 0 . 3
and (4 .1 )-(4 . 2).

Proof of Theorem 0 . 1. - Let (qE (t))E E ~o,1~ be a sequence of critical
points given in Proposition 1.3. By Proposition 1.5, we can extract a
subsequence En --> 0 such that q" (t) satisfies the assumptions of
Proposition 0 . 3. Since i (a) >_ 2 for a E (l, 2), we have from Proposition 0 . 3

Comparing with (1.18), we can see

That is, q~ (t) does not enter the singularity 0 and q~ (t) is a non-collision
T-periodic solution of (HS)..

Proof of Theorem 0. 2. - Proof of Theorem 0. 2 can be done in a
similar way to the proof of Theorem 0 . 1. However, by (4 . 1 ), i (a) =1 for
ae(0, 1 ] . Thus

Comparing with ( 1 . 18), we get

This is the desired result.
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