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ABSTRACT. - Let Q c f~n a bounded open set andf>O in Q satisfying

f(x) dx = meas o. We study existence and regularity of diffeomorphisms
u : SZ -~ Q such that
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RESUME. - Soit Q c ~n un ouvert borne et soit f > 0 dans SZ satisfaisant

On etudie 1’existence et la regularite de diffeomorphis-

mes u : Q tels que
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2 B. DACOROGNA AND J. MOSER

I. INTRODUCTION

Consider a bounded connected open set Q of fR" and two n-forms a, P

with f, g > 0. We shall prove that, under some regularity assumptions on
Q, f and g, there exists a diffeomorphism cp : S2 --~ Q, keeping the boundary
pointwise fixed and such that

where ~, _ ~i I a.
In analytical form, the above result is equivalent to

THEOREM 1. - Let be an integer, 0  a  1, S2 have a Ck + 3, «
boundary denoting the usual Holder spaces). Letf, g E Ck° « (SZ) with
f, g > 0 in SZ. Then there exists a diffeomorphism cp with

cp, cp -1 E Ck + 1, « (S~; and satisfying

where 03BB= g f.
Remarks. - (i) This scalar equation is clearly underdetermined and

uniqueness does not hold as the following trivial example shows. Let Q
be the unit disk of I~2, f = g =1, with N an

integer, and cp (x) = (r cos (9 + a (r2)), r sin (8 + a (r2))) where (r, 8) denote
the polar coordinates. It is clear that such a cp is a solution of ( 1.1 ).

(ii) For notational convenience we shall denote for k >_ 0 an integer,
and Q a bounded open set of the set of diffeomorphisms

(homeomorphisms if k = o) cp : S2 -~ SZ with (p, cp -1 E C’~° °‘ (SZ; f~n) by
(Q) [if a = 0 we j ust set Diffk (Q)].

This theorem is a stronger version of a known result. For two volume
forms on a smooth compact manifold without boundary it was established
in [M] (under stronger smoothness assumptions) and by Banyaga [B] for
manifolds with boundaries (in the C~ case). For the special case of the
ball in dimension 2 or 3, see [T], [D] respectively. Our purpose here is to
present a simple proof of this theorem, using standard properties of the
Laplacian for domains in !R". This allows us to avoid the use of differential
forms and the notion of manifolds. At the same time we obtain precise
regularity results. As one would expect the solution cp is one differentia-

bility class smoother than’ f and g if one works with Holder norms. In
our proof, given in Section 2, this point requires special attention. For
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3THE JACOBIAN DETERMINANT

manifolds without boundaries this gain in smoothness was established by
Zehnder [Z], under the additional assumptions that f, g are sufficiently
close in C°~ « norm and g is in C4. It goes without saying that our proof
can be carried over without difficulty to manifolds Q with boundaries.
As an application of Theorem 1 we can construct a volume preserving

diffeomorphism with given boundary data. In other words we claim
that if Q is as in Theorem 1 and ~° E Diffk+ 1 ~ « (S2), then there exists

03C8~Diffk+1,03B1(03A9) such that

Indeed if we use Theorem 1 with g= 1, then ~, =1 (since
is a diffeomorphism) and we can therefore find cp satisfying

( 1.1 ). We obtain a solution of the above problem by 
This type of problem plays a role in the construction of volume preserv-

ing mappings with prescribed periodic orbits and ergodic mappings, as
worked out by Alpern [A], Anosov-Katok [AK]. In [D] it was shown how
to apply the result to minimization problem in the calculus of variations
with further applications to nonlinear elasticity.

Finally it is interesting that the corresponding problem for non compact
manifolds leads to additional topological obstructions as shown by Greene-
Shiohama [GS].

In Section 3 we present an alternate proof under different regularity
assumptions. Here we avoid the use of elliptic partial differential equations
and work only with the implicit function theorem. For this reason we use
the Ck norm, an integer, instead of the Holder norms Ck~ °‘. This
approach allows even the treatment of continuous functions f and g in
which case cp turns out to be a homeomorphism and not a diffeomorphism
since this approach fails to give the expected derivative gain which we
have for Holder norms in Theorem 1. For this reason the differential

equation has to be interpreted in a weaker form, namely

for all open sets E c Q. It is clear that if cp is C 1, then ( 1. 2) is equivalent
to (1.1) with ~, =1.

This second approach is also used to study a question related to

Theorem 1, where we ask for regularity only in the interior, i. e.,
cp E Diffk (Q) n Diff0 (SZ), satisfying ( 1.1 ) (i. e. cp is a diffeomorphism of Q
and it extends as a homeomorphism of Q, keeping the boundary pointwise
fixed). For this purpose one needs much weaker regularity requirements
for we shall allow, for example, Lipschitz boundaries or isolated
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4 B. DACOROGNA AND J. MOSER

boundary points as in a punctured disk. These cases cannot be treated by
the potential theoretical methods used in Section 2.
The proof of Section 3 is related to an argument given in [M]. However

as A. Katok pointed out to one of us, this argument is incorrect (on
p. 291 it was not provided that v = w on the boundary, as was required).
Our purpose here is to rectify this argument and at the same time to take
care of domains with boundary. As before this approach applies to general
manifolds and not only to Q which are embedded in (~n.
We conclude the introduction with an open problem which we were not

able to resolve: le Q be a connected open set with smooth boundary, say

C~ smooth. Let f E C (SZ), f > 0 and fdx=measo. Does there exist a

diffeomorphism u : 0 -+ Q with u (x) = x on aSZ solving det V u = f in Q?

II. A DEFORMATION APPROACH

We now state the main result.

THEOREM I’. - Let integer and 0  a  1. Let Q c be a
bounded open set with Ck 

+ 3, °‘ boundary ~03A9. Let f E Ck° °‘ (SZ), f> 0 in SZ and

Then there exists u E Diff + 1, " (SZ) satisfying

Remark. - Note that Theorem 1 stated in the introduction follows at
once from Theorem 1’. Indeed we have the theorem by setting cp = v -1 ~ u
where u and v satisfy

We now describe roughly the idea of the proof

Annales de l’Institut Henri Poincaré - Analyse non linéaire



5THE JACOBIAN DETERMINANT

STEP 1 (Theorem 2). - We write u (x) = x + v (x). The linearized problem
is then

We solve the above problem by setting v = grad a + c, where c takes into
account the boundary condition and is divergence free. Using standard
existence theory and Schauder estimates for elliptic equations we obtain
the result. Although the solution of this problem is clearly not unique,
our construction provides a well defined solution.

STEP 2 (Lemma 3). - We then find a Ck~ °‘ solution by a deformation
argument, i. e. by solving the ordinary differential equations

where v is as in Step 1. Standard properties of ordinary differential

equations give that u (x) _ ~ 1 (x) is a solution of (2 . 2), but it is only in
« .
The two last steps are used to obtain the Ck + 1, « regularity.

STEP 3 (Lemma 4). - Using Step 1 and a smallness assumption on the
C° ~ ~ norm, 0  ~i  a  1, of f -1, we obtain a Ck + 1, « solution by linearizing
the equation around the identity.

STEP 4. - We remove the smallness assumption in Step 3 on norm

of f - l, by composing two deformations. The first one (using Step 3)
which allows to pass from f E Ck~ « to g E Ck + 1 ° « with f - g small in the

norm. The second one by applying Step 2 to g.
We start with Step 1 and give a theorem concerning the existence and

regularity of solutions of the linearized problem.

THEOREM 2. - Let Q c be a bounded open set with Ck + 3, « boundary,
k >_ 0 being an integer and 0  a  1. Let g E Ck~ « (SZ) with

Then there exists v E Ck + 1;.°‘ (SZ; satisfying

Furthermore there exists K = K (oc, k, SZ) > 0 such that

Vol. 7, n° 1-1990.



6 B. DACOROGNA AND J. MOSER

Remarks. - (i) We have denoted by ]) . the Ck~ °‘ norm.

(ii) In fact the proof of the theorem will show that if

then our construction will provide a bounded linear operator L : X - Y
which associates to every geX, a unique v = L g E Y satisfying (2 . 4).

Before proving Theorem 2 we introduce some notations

NOTATIONS. - Let ~" ~n -1 »2) with w = 1  i ;  n. For nota-
tional convenience we define wr~ for by letting We then
define

by

Remarks. - (i) If w~~ are the components of an (n - 2) form a over ~8n
then (curl* w)~ are the components of da.

(ii) For every WE C2 ([Rn; ~n ~n- l02) we have

which corresponds to the relation dda = o.

Proof of Theorem 2. - We decompose the proof into two steps. In
both steps we shall use standard results of elliptic operators with Neumann
boundary condition and we refer, for example, to Ladyzhenskaya-
Uraltseva [LU] (Section 3 of Chapter 3) for details.

STEP 1. - Let be the unique solution with of

the Neumann problem

where v is the outward unit normal. Furthermore there exists K > 0 with

We then let c E Ck + 1 ~ « [Rn) be defined by

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



7THE JACOBIAN DETERMINANT

Observe that

where (.;. ) denotes the scalar product in f~n.
Suppose (cf. Step 2) that we can find b E Ck + 2, °‘ ~n ~n -1 »2) and K > 0

such that

If we then set ~ 

.

we have indeed solved the problem (2 . 4) and (2.5), by combining (2) and
(5). (Note that to write v as in (6) is not unusual in magnetism or in
elasticity, cf. for example Abraham-Becker [AB] or Love [L].)

STEP 2. - We now consider for tR") the problem

with the additional assumption that c is tangential to i. e.,

Equation (4) is again underdetermined and we can assume that

on oQ so that gradbij has the direction of the normal.
More precisely, under the condition (3) we can assume this vector in the
form

Indeed if the above holds we have on ~Q, with the convention that

since (3) holds and v == 1.
We therefore have reduced the problem to finding satis-

fying

where stands here for 

Note that (7) is not a differential equation for bij but merely the
prescription of the normal derivative of bij on ~03A9. Since the gradient of
the distance function is - v whenever one obtains a

solution of our problem in the form

Vol. 7, n° 1-1990.



8 B. DACOROGNA AND J. MOSER

with ç (0) = 0, ç’ (0) = 1 and § E C~ with - 0 outside a small neighbourhood
of 0. However this solution lies only in Ck + 1 ° «.

In order to find a smoother solution in Ck + 2, « we solve the following

Neumann problem with 

i

Using the standard results (cf [LU]) we find and K > 0
with

We let x E be such that x’ (0) = 0, x (0) = 1 and x --_ 0 outside a small
neighbourhood of 0. We finally let

where Observe that since JQ is Ck + 3, «
and dj~ E C~ + 2, «, then b~~ E Ck + 2, «. From (8) it also follows that

obtaining therefore immediately (5). We then only need to show (7) [and
hence (4)] and this follows from the fact that if x E oQ (denoting by Sk~
the Kronecker symbol)

Note finally that if we fix the above function x we have constructed a
definite solution v of (2 . 4), thus defining a linear operator L : X -~ Y with
the properties given in Remark (ii) above..
The next step in proving Theorem 1, is to establish it with a weaker

regularity than stated.

LEMMA 3. - Let integer and 0  a  1. Let Q c (~" be a
bounded open set with Ck + 3 ° " boundary ~03A9. Let f E Ck,03B1 (SZ) with f> 0 in SZ

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

Then there exists u E (SZ) satisfying

Remark. - The following proof is based on a deformation argument
described in [M], which automatically ensures that the solution is a diffeo-
morphism.

Proof of Lemma 3. - We decompose the proof into two steps.
STEP 1. - Let for t~[0,1], zeQ

where v E Ck + 1, « (Q; !R") (but vt E Ck~ « (SZ; (l~n)) satisfies

(Such a v exists by Theorem 2.)
We then define ~t (x) : [0, 1] x SZ --~ I~" as the solution of

First note that E Ck~ « (SZ; for every t and that is uniquely defined
on [0, 1]. Observe also that for every ~e[0,1] we have

[This follows from the observation that if x E oQ, then x is a solution of
(3), since v=O on the uniqueness implies then that for every

We now show that u (x) --_ (x) is a solution of (2 . 2). The boundary
condition has already been verified so we need only to check that
det V (x) = f (x). To prove this we let

If we show (cf. Step 2) that

we shall have the result from the fact that h ( 1, x) = h (o, x) .

Vol. 7, n° 1-1990.
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STEP 2. - We therefore only need to show (5). Let A be an n x n
matrix, then it is a well known fact (cf Coddington-Levinson [CL], p. 28)
that if B)/ satisfies ~r’ (t) = A (t) B)/ (t) then

where tr (A) stands for the trace of A. We therefore get that

We now differentiate (4) to get

Using (3) and (6) we obtain

Using the definition of vt [cf. (1)] we deduce that

Combining the two identities we have

The definition of v [cf. (2)] gives immediately (5) and thus the lemma..
The third step in proving Theorem 1 is to establish the result with a

smallness assumption on the norm of f -1.

LEMMA 4. - Let Q, k, a and f E Ck~ " (S2) be as in Theorem 1 [in particular
(2 .1) is satisfied]. Let 0  [i _ a  1. Then there exists 
such that I f -1 ~ I °, ~ _- E, then there exists u E (SZ) such that

Remark. - (i) A similar result can be found in Zehnder [Z].
(ii) We shall use below some elementary properties of Holder continuous

functions and we refer for a proof of such facts to Hormander [H]. In
particular we shall use the fact that if f, °‘, then there exists a
constant C > 0 such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where ( I . I ~ o denotes the C° norm.
Proof of Lemma 4. - We start by defining two constants K1, K2 as

follows.

(i) Let

As seen in Theorem 2 we can then define a bounded linear operator
L : X - Y which associates to every bE X an a E Y such that

Furthermore there exists K~ > 0 such that

(ii) Let for §, any n x n matrix,

where I stands for the identity matrix and tr (~) for the trace of ~. Note
that Q is a sum of monomials of degree t, 2 _ t __ n. We therefore can find
KZ > 0, such that if w 1, w2 E Ck° °‘ with I ~w1 I ( o, ~w2~0~ 1, then

In order to solve (2 . 2) we set v (x) --_ u (x) - x and we rewrite (2 . 2) as

If we set

then (5) is satisfied for any v~Y with

Note first that the equation is well defined (i. e., N : Y --~ X), since if v = 0

on a~2 then Indeed from (3) it follows that

Vol. 7, n° 1-1990.
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since v=O on aSZ and f=meas 03A9, it follows immediately that the right

hand side of the above identity is 0.
We now solve (7) by the contraction principle. We first let for r > 0

We shall show that by choosing and r small enough then
is a contraction mapping (with respect to the Ck + 1 ~ °‘ norm).

The contraction principle will then immediately lead to a solution

Indeed if we let

and if v, w E Br we then have

..... ,_

The first inequality, which is also valid for k = 0 and a = ~i, follows from

To obtain (11) we observe that

and hence combining (10) for k=O and with the above inequality
we have immediately (11).

It now remains to show that u (x) = x + v (x) is a diffeomorphism, this is
an easy consequence of the fact that and u (x) = x on 0Q
(see for example Corollary 2, p. 79 in [MO])..
We may now conclude the proof of Theorem 1’.
Proof of Theorem 1’ (Step 4). - By density of C°° functions in 

with the norm (0  1) we can find gECoo (Q), g > 0 in Q such
that .

de 1’In,stitut Henri Poincaré - Analyse non linéaire



13THE JACOBIAN DETERMINANT

where E is as in Lemma 4.
We then define b E Diffk+ 1 ° °‘ (SZ) to be a solution [which exists by (1),

(2) and Lemma 4] of

We further let to be a solution of

Such a solution exists by Lemma 3 since and

Finally observe that the function has all the claimed

properties..

III. ANOTHER APPROACH

We now present a second approach for solving (1.1) which is more

elementary, in the sense that it does not require the existence theory and
Schauder estimates for elliptic partial differential equations. It will use, as
a main tool, the implicit function theorem.
We can now state the first theorem of this section.

THEOREM 5. - Let k >__ 0 be an integer, S2 be a bounded connected open
set oflRn with Ck n C1 boundary Letf, g > 0 in SZ with

Then there exists cp E Diffk (SZ) with cp (x) = x on aS2 and such that

for every open set E c S~.. 
Moreover if supp ( f - g) c Q, then supp ( cp - id } c Q where id stands for

the identity map.

Vol. 7, n° 1-1990.
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Remarks. - (i) Recall first that if cp E Diff ° (Q), then it is understood
that cp is a homeomorphism from Q onto Q.

(ii) As already observed in the introduction if k >_ 1, (3 . 2) is equivalent
to ( 1.1 ) by a change of variables

Since E is arbitrary, it follows that g (cp) det ~03C6=f in Q.
(iii) We can also rewrite (3 . 2) in the following equivalent form

for every 03BE~C~ (Q) with compact support. Approximating the characteris-
tic function xE by ç we obtain (3 .2). Therefore the above identity can be
viewed as the "weak form" of the equation g (cp (x)) det ~ cp (x) = f(x).

(iv) Aside from the weaker boundary smoothness requirement, the

above theorem is for weaker than Theorem 1, since it does not

provide any smoothness gain for cp. The main points of this theorem are
firstly that k = 0 is admitted and secondly that cp can be chosen so as to
be the identity near aSZ if f= g near These results cannot be obtained

by the method presented in Section 2. For the equivalence problem of
measures under homeomorphisms one has, of course, the stronger theorem
of Oxtoby and Ulam (see [A] for references).
We now turn to the second result where we search for

cp E Diffk (Q) ~ Diff0 (SZ) (k >_ 1) with cp (x) = x on ~03A9, i. e., cp is a diffeo-

morphism of Q which extends as a homeomorphism of Q keeping the
boundary pointwise fixed. This requires much weaker regularity
assumptions on For the following we shall require that Q c !R" has,
with respect to the volume form T = dx, the property (Hk) defined below.

DEFINITION. - Let Q c f~n be a bounded connected open set and k >_ 1
be an integer. Q is said to satisfy (Hk) if it can be covered by finitely
many open domains Q~ such that for every j (see the figure below),

(i) there exists a Ck diffeomorphism

where and where Qn = (o,1 )" is the unit cube of
f~n and if and q=0 if Moreover

det ~03C8j~Ck and there exists A >_-1 with

(ii) The map 03C8j is proper, i. e. if K c P" is compact so is (K) and
extends to a continuous map of Pn with (x) E D~ if x E q.

Annales de I ’Institut Henri Poincaré - Analyse non linéaire
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Remark. - The property (Hk) is of local character. In the appendix we

shall show that the following domains have this property:
(i) if aSZ is locally given as a graph of a Lipschitz function, e. g. any

~ 

open convex polyhedron (see Propositon A. 2);
(ii) domains with isolated boundary points (see Proposition A. 3), 

or a

combination of both.

Before stating our second result, we give a proposition which explains
why the above definition is required.

PROPOSITION 6. - With the above notations if Qn U q - Q" U q is

continuous with cp (x) = x for x E q, then

extends continuously to t~~ with cp (x) = x for x E ~~.

Proof. - We drop for simplicity the index j in and We let

be a sequence of points such that p‘’ ~ p* E ~. We have to show
that

so that cp (p*)=p*.
Since B)/ is a proper map we conclude that

i. e., we must have ri - 0 where r‘’ = (ri, ..., rn) otherwise for
a subsequence, still denoted r‘’, we would have rv - r* with ri > o. There-
fore K= { rB r* ~ would be compact in P and thus W-1 (K) _ ~ p~, ~ -1 (r*) ~
would be compact in 0 - 0), which contradicts the fact that p" ~ p* E ~.

Vol. 7, n° 1-1990.
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Since cp is continuous on q with cp (x) = x, it follows from the fact that

r i -> 0, that

and hence by the continuity of ~r -1 that

(3) implies then immediately (1). N
We now have the following
THEOREM 7. - Let k~0 and Q satisfy (Hk’) with k’=max{ 1,k}.

~>0,/+ -, ~+ - bounded and satisfying
/ ~

Then there exists cp E Diffk (Q) n Diffo (SZ) with cp (x) = x on aS2 such that

for every open set E c Q.
Moreover if supp {f- g} c Q, then supp {(p - id } c Q.
Remark. - With the help of Theorem 7 it is easy to construct a volume

preserving mapping of a convex polyhedron Q in (~n which permutes
finitely many of its points, say Pl, ..., PN, in a prescribed manner and
keeps the boundary pointwise fixed (see Alpern [A]). To do so one first
constructs any diffeomorphism 03C8 of Q permuting the Pj in the desired
manner. This diffeomorphism takes then the volume form i = dx 1... dxn

. N

into We then apply the above theorem to Q- U Pj and
j=i

find a diffeomorphism cp with (p* r = (det V (p) T = fT where f = det V ~r -1,
which keeps the boundary fixed. The desired volume preserving mapping
is then B)/.
We next turn to the proof of Theorems 5 and 7. It can be reduced to

the case of a cube, using a covering of Q by sets Q~ as described in the
above definition. Using Lemma 1 of [M] one can construct a sequence of
functions f~ > 0 such and f~ + 1- f~ has support in Q~ or in

and satisfying 03A9fj+1 dx. Thus using the
mapping with if 
and q= 0 if we can f~ + 1 into 

1 corresponding to the volume forms f * dx,
defined in Pn. Therefore it will suffice to construct 

Annales de l’In.rtitut Henri Poincaré - Analyse non linéaire
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with c Pn such that

for every open set E in Qn. Applying this argument to 5~~, j =1, 2, . ~ . , N
we obtain Theorems 5 and 7; Proposition 6 ensuring that cp~ ~ ~~
keeps the boundary ~~ pointwise fixed.
Without further elaboration of this patching argument we formulate,

for the case of the cube, the precise conditions and statements needed for
the proof of Theorems 5 and 7. We have to distinguish between two cases
depending on whether SZ~ meets the boundary aSZ or not. This corresponds
to the cases or q = Q~ respectively. We also denote by

if q~~ and q=0 We also

drop for simplicity the index n in Pn.

PROPOSITION 8. - Let with either q= 0 or
= 0 ~ . Assume that

(i) Of, g, bounded in P.

(111~ supp t.~ g ~ c ys U q. _

Then there exists cp E Diffk (P) which extends as a homeomorphism of Qn
with cp (x) = x for x E q with supp ( cp - id ~ c Qn U q and

for every open set E c Qn.
If, in addition, f, then the above conclusions hold and

(p E Diffk (Qn).
Remark. - The additional statement is appropriate for the proof of
Theorem 5, where cp is Ck up to the boundary, while the first statement
fits the proof of Theorem 7.

IV. AN ELEMENTARY PROOF OF PROPOSITION 8

In this section we proceed with the proof of Proposition 8, thus com-
pleeting the proof of Theorems 5 and 7. The argument can be considered
as an analogue of the separation of variables for the differential equation
det V u = f where at each stage an ordinary differential equation has to be
solved. Moreover this differential equation admits an integral and can be
solved via the implicit function theorem. For this reason even the case of

Vol. 7, n° 1-1990.



18 B. DACOROGNA AND J. MOSER

continuous f and g can be handled. In this sense the argument is quite
elementary though a bit tricky.
To give an idea of the proof of Proposition 8, we first try to find cp as

a mapping preserving the line segments xi = a, i. e. we take cp of the form

with a function v monotone increasing in xl. The relation (3.3), when
n

applied to E = [o, a] X fl leads for b j - a j -~ 0 to the equivalent
j=2

requirement

for every x’ = (X2, ... , xn) E Qn -1. Since g > 0 this equation defines v (x)
uniquely with v monotone in for x 1= 0 and for x’ near

~Qn-1 (since f-g=O for x’ near However in order to achieve
for xl = 1 we need the condition

for every x’ E We note that v ~ 
av 

E Ck (P), but no such assertion
axl

holds for the other derivatives. Observe also that ( 
av ~ are~x1(~x1)

bounded, since f ’, , f ‘ 1, g, g-l are bounded.
We have therefore proved.

PROPOSITION 9. - If f and g satisfies the hypotheses of Proposition 8 as
well as (4 .1 ), then there exists cp satisfying all the assertions of Proposition 8.
Moreover cp preserves all line segments parallel to the xl-axis in Qn.

In order to conclude the proof of Proposition 8, it therefore suffices to
transform g by an appropriate diffeomorphism 03C8 such that the condition
(4 . .1 ) is realized. This will be achieved in the following.

PROPOSITION 10. - If 0  f, g E Ck (Qn) with supp ~, f ’- g ~ c Qn U q and

then there exists 03C8 E Diffk (Q") with supp { ’" - id} c Q", and gl E Ck (P)
such that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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for every open set E c Q" and

’ ~

Remarks. - (i) near aQn, it follows from (4 . 3) that
near aQ".

(ii) In this proposition no restriction about the boundary behaviour
of f and g near q are required (such restrictions are only needed in

Proposition 9).
(iii) The combination of Propositions 9 and 10 give immediately Propo-

sition 8.

Proof of Proposition 10. - We shall construct ~ as

and define g n = g and for s = 2, 3, ..., n

if k >_ 1, or equivalently

for every open set E c Qn. (The latter definition holds also for k = 0.)
We shall construct cpn, ... , cps + 1 inductively in such a way that

where ..., xs) and x’ _ (xs + 1, ... , i. e. such that integrals over
s-dimensional cubes for j > s match. For s = n this corresponds
exactly to (4. 2) and for s =1 this is our desired assertion (4 . 4).
We proceed by induction and assume that cpn, ..., are already

constructed so that (1) and (2) hold and that they agree with the identity
near the boundary. We therefore have

To complete the induction we construct cps as follows

with

where the functions u and § will be defined below. Observe that cps
preserves all line segments Xj = Cj (j ~ s) parallel to the xs-axis.
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We now define ç as a cut-off with compact
support and satisfying

where E > 0 is chosen so that

We next construct u. To derive the condition u has to satisfy, we first
set u (0, x’) = o. We then would like (2) to be satisfied for (s -1 ) in place
of s, i. e.

where gs _ 1 satisfies ( 1’). Integrating (7) over 0  xs  a and denoting by
Qa = ~ xs E QS : 0  xs  a } we have

Using (3), (4) and the fact that u (0, x’) = 0, we have

with 

Combining (8) and ( 1’) we have

(From now on we drop, for convenience, the dependence on x’, since x’
appears only as a parameter.)

We can rewrite (9) in the following form. Letting bE Ia * [-a 1+~,1 -a 1+~],
Rsab = ( xs e Qs: 0  xs  a + § (xs-1) b ) and defining 

l + E I + E 

R:b={rEQs:Oxsa+Ç(r-1)b} and defining

Annales de l’Institut Henri Poincaré - Analyse non linéaire



21THE JACOBIAN DETERMINANT

we have then that (9) is equivalent to the equation

[Note that since gs > 0 it follows from (10) that u(0) = 0 is the unique
solution of (10) for 
We now claim that (10) has a unique solution u~Ixs with u and

Moreover, we have
n

If we can achieve this, we shall have with the help of (3) and (4) constructed
cps with the appropriate conditions. Indeed the only thing which remains
to be checked is that for every x near aQ". For near 

this is ensured by the cut-off function ç. For xj near 0 or this
follows from the assumption that f = g for x~ near 0 or 1 so that
by the uniqueness of u we have u = 0 if x~ is near 0 or 1. Thus cps has all
the desired properties and the induction is completed. The proposition
therefore is proved.

It remains to show that we can find u solving (10) with the claimed
properties. To see that (10) has at most one solution it is sufficient
to observe that G is monotone in b, indeed

The existence follows from the fact that for a E (o,1 ), the function
b - G (a, b) - F (a) has opposite signs at the end points of Ia. At the left
end point we have

where we have used (5) and (6). Similarly one shows that

Indeed, using the induction hypothesis (2) we have
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and therefore (15) is equivalent to

which is straightforward [as in (14)], therefore (15) is established.
Collecting (13), (14) and (15) we have indeed shown the existence of a

unique u satisfying (10). Moreover u (o) = 0 and u(l)=O by construction
and from (2) respectively. Thus the 
takes the interval [0, 1] into itself.

We now show (12) and that E Ck. Indee ~u exists as is seen by
xs axs

differentiation of the relation (10), i. e.

where 2014 is given by (13) and
~~

Thus u and 
au 

E Ck. To conclude the proof it remains therefore to show
axs

( 12). By ( 16) it suffices to prove that

For this purpose we need (5). From (13) and (17) we obtain

and if ç E [0, 1] we obviously have

03B6Fa+(1-03B6)Ga~min{Fa,Ga}~min{min f , min gs} >Emaxgs.
The combination of the two inequalities proves (18) if ~ E [0,1 ] . If

~ E ( 1,1 + E] we obtain

where we have used (6) in the last inequality. Therefore (18) is established
and this concludes the proof of Proposition 1 0..
We conclude with some comments. The diffeomorphism 03C8 of Proposi-

tion 10 is given in the form t~ = cpn ° ° ... ° cp2. The diffeomorphism cp
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of Proposition 9, which we rename (pi, is constructed by the same process
as cps for s >_ 2. The diffeomorphism of Proposition 8 is then

In the above exposition we prefered to separate 03C61 from B)/ 
near the boundary and the boundary behaviour of cp is controlled by (pi
alone, which was obtained by integration along the lines parallel to the

Incidentally, if we replace § by § * 1, the above construction of agrees
with that of [M], but then the condition near aQn cannot be
ensured.

Finally we point out that the Theorems 5 and 7 are, of course, valid
for arbitrary compact Ck’-manifolds, k’ = max (1, k) with boundaries satis-
fying the condition (Hk,).

APPENDIX

Here we want to verify the remarks about Condition (Hk) stated in
Section 3. We first start with

PROPOSITION A .1. - Let Q be a domain with Ck boundary, k >_ 1. Then
Q can be covered by open domains S2~ such that there exists a diffeomorphism

E Diffk Qn) with det V E Ck 

Proof. - It suffices to consider the neighbourhood point, which we
may take as the origin in Without loss of generality we may assume
that the boundary aS2 near y = 0 is locally given as the graph y 1 = b (y’),
y’ _ (y2, ..., yn) of a Ck function b with b (o) = o. Let E, b > o, we let SZ~ be

Denoting the Lipschitz constant of b by L, we have I b (y’) ~ _ L E and we
choose E so small that 0  4 E L  ~, hence

We then define the mapping 03C8-1j: Qn -+ 03A9j by

is a cut-off function satisfying § (t) =1 for t __ o, ~ (t) = 0
for and ~’ ~ _ 2. It is clear that and maps Qn onto SZ~.
Moreover

which is Ck (Qn) and is positive since |b ç’  2 EL  03B4/2.
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PROPOSITION A. 2. - Let Q be a domain with Lipschitz boundary, then
Q satisfies (Hk) for every k >_ 1.

Proof. - We adopt the same notations as the above proposition. Again
we can assume that the boundary is locally near the boundary point 0
represented by b (o) = 0 and SZ~ is given by (A. I), but b is now
a Lipschitz function defined for For convenience we extend b
as a Lipschitz function of ~n -1 ~ ~, with the same Lipschitz constant L.
To define 03C8-1j we have to modify (A. 2) since b is not Ck.

Therefore we replace b by a mollified function (where

> 0 with c 0 ’ = b ’ and 
ac 

- L. The constructionR) = {y e y1 > 0}) with c (0, y’) = b (y’) and |~c ~y1|~ L. (The construction
of such a c is standard and is done below.) We then define

By construction this is a C~-diffeomorphism from onto 

with the property that
« , «

Thus Q satisfies (Hk) for every k.
It therefore remains to construct c. Let with compact

so that C E ( I~ ~ ), c (o, v‘) = b (v’) and

Hence for > 0 we have I a~ _ L. .ay ~

PROPOSITION A. 3. - A domain obtained by removing a finite number of
isolated points from a domain satisfying (Hk) satisfies also (Hk).

Proof. - Since the question is a local one it suffices to consider a

punctured disk in Q, i. e.,

°
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25THE JACOBIAN DETERMINANT

Instead of verifying (Hk) directly it is more convenient to use a "blow
up" map with the property that Q~ is mapped smoothly into a domain
with smooth boundary and by a mapping whose Jacobian is bounded

away from 0 and oo . This is obviously sufficient for the Property (Hk) to
hold near y = 0. Let p > 0, the mapping in question is defined by

with

This mapping has a Jacobian 1, since the volume form

(with ] and dro the area on the (n - 1 )-dimensional sphere Sn -1 ) is

mapped into with ( since the mapping is radial
n

with I z and hence 

Remark. - Clearly, the class of domains Q satisfying (Hk) is much

larger than indicated by these cases. We can also admit for example lower
dimensional boundaries as well as cusps.
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