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ABSTRACT. - Let g = g (z) (z = (zo, ..., z3) E f~4) be a Lorentz metric
(with signature + , - , - , - ) on the space-time manifold 1R4. Suppose
that g is stationary, i. e. g does not depend on zo. Then we prove, under
some other mild assumptions on g, that for any two points a, b E 1R4 there
exists a geodesic, with respect to g, joining a and b.
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RESUME. - Soit g = g (z) (z = (zo, ... , z3) E R4) une métrique de Lorentz
(avec signature + , - , - , - ) sur l’espace-temps [R4. On suppose que g
soit stationnaire, c’est-a-dire independante de zo. Nous demontrons, sous
des autres convenable hypotheses sur g, l’existence d’arcs de geodesique
joignant deux points a, b arbitrairement donne dans 1R4.
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0. INTRODUCTION AND STATEMENT OF THE RESULTS

In General Relativity a gravitational field is described by a symmetric,
second order tensor

on the space-time manifold ~4. The tensor g is assumed to have the

signature +, -, -, - ; namely for all Z E [R4 the bilinear form g (z) [ . , . ]
possesses one positive and three negative eigenvalues. The "pseudometric"
induced by g is called Lorentz-metric.

In this paper we study the existence of geodesics, with respect to g,
connecting two points a, b E 1R4.
To this end we consider the "action" functional related to g, i. e.

where ... , 3) denote the components of g and z = z (s) belongs
to the Sobolev space

of the curves z:(0,l)-~~ which are square integrable with their first

derivative z= If g is smooth, f defined in (0.1) is Fréchet differentiable
ds

in HI. Let a, b e then a geodesic joining a and b is a critical point of f
on the manifold

Due to the indefinitess of the metric g it is easy to see that the functional
(0.1) is unbounded both from below and from above even modulo sub-
manifolds of finite dimension or codimension. Then the Morse index of a

geodesic is + oo, in contrast with the situation for positive definite Rieman-
nian spaces. This fact causes difficulties in the research of a geodesic
connecting a and b and actually such a geodesic, in general, does not exist
(cf. [3], § 5 . 2 or [5], remark 1. 14).
However the above difficulties can be overcome if the events a, b are

causally related, namely if a, b can be joined by a smooth curve z = z (s)
such that
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Such a curve is called causal.
In this case, under mild assumptions on g, the existence of a causal

geodesic joining a, b can be achieved just maximizing the functional

over all the causal curves in M (cf. [1], [8] or [3], chapt. 6).
Here we are interested to find sufficient conditions on the metric tensor

g which guarantee the existence of geodesics connecting any two given
points a, b E f~4.
We shall prove the following result.

THEOREM 0 .1. - Let gi~ (i, j = 0, ..., 3) denote the components of the
metric tensor g. We assume that:

(f~4, f~) ... , 3).
(g2) all 

(g3) There exists ~, > 0 s. t.

and all

(g4) The functions go i (i = 0, ..., 3) are bounded.
ag‘’ 

z = 0 or all z E (R4.( gs ) ~gij ~z0(z) = 0 for all z e R4.(g5)~gij ~z0 ( ) .f

Then for any two points a, b E ~4 there exists a geodesic, with respect to
the metric g, joining a and b.

The assumptions (gl), ..., (g4) are reasonably mild.
The most restrictive assumption is (g 5) which means that the gravita-

tional field is stationary (cf [4], § 88). The proof of theorem 0 .1 is attained
by using some minimax arguments which have been recently developed in
the study of nonlinear differential equations .having a variational structure
(cf e. g. [7] for a review on these topics).

1. PROOF OF THEOREM 0.1

The manifold M in H 1 defined in (0 . 2) can be written as follows

where
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and

In order to prove theorem 0 .1 we shall first carry out a finite dimensional
approximation.

Let n E f~ and set

where

cp~ (j = o, ... , 3) being the canonical base in [R4.
Moreover we set

where

and denotes the standard norm in the Sobolev space H1. Finally we
set

where f denotes the functional defined in (0 . .1). First we prove the existence
of a critical point of fn, that is to say of a point z~ E Mn such that

where f’ is the Fréchet-differential of f and ( . , . ) denotes the pairing
between. H and its dual. More precisely the following theorem holds.

THEOREM 1. l. - Suppose that g satisfies the assumptions of theorem
0 .1. Then there exists a critical point zn E Mn of fn such that

where c’ and c" are two constants independent on n.
The proof of theorem 1.1 is based on a variant of the "saddle point

theorem" of P. H. Rabinowitz [c, f : [6] or propositions 2 . 1 and 2 . 2 in [2J).
We need some lemmas.

LEMMA 1. 2. - Fix n E N and R > o. Then Sn and the boundary aQn (R)
of Qn (R) link, namely for any continuous map
h : Mn s. t. h (z) = z for all z E aQn (R), we have
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Proof - Let h : Mn -+ Mn s. t. h (z) = z for all z E oQn (R) and define

It is easy to see that

Then by using the Brower degree (cf. [2], prop. 2.1 or [6]) it can be shown
that there exists and therefore

z + y E h (Qn (R)) ~1 Sn. D

We denote by f’|Mn the Frechet differential off on the manifold Mn and
by ( ~ . I ~ the standard norm in H 1. Moreover we set

Now we prove that f| Mn satisfies the Palais-Smale condition. More precisely
the following lemma holds.

LEMMA 1. 3. - Let g satisfy the assumptions of Theorem 0 . 1. 
be a sequence in Mn such that

and

Then {zk} is bounded in the H1 norm and consequently it is precompact.
Proof. - Since zk E Mn, we can set

with and [cf. ( 1.1 ), ( 1. 2)] .
By ( 1. 5) we deduce that

where Ek - 0 as k - oo .
Then for all ~ _ (i, ~), with and ~ _ (~1, ~2, ~3) E wn, we have

And, if we take ç = (ik, 0) = ik, we get
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Now set

Then

and from ( 1. 9) we get

By (1. 6) there exists cl > 0 such that for all 

From ( 1.11 ) we get

where (t, x) = z.
Since go ; (i = o,1, 2, 3) are bounded, from (1.12) we easily get

where c2 is a positive constant depending on t and go i (i = 0, ... , 3).
Now it can be easily verified that

From ( 1.13) and (1.14) and by using (g2), (g3) we get

where c3 is a positive constant.
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From ( 1.15) we deduce that

Proof of Theorem 1 . l. - Set

(the closures are taken in the 

It is easy to see that

and

Then if R is large enough we get

Let n E ~l and set

wnere

~n = ~ h : Mn -+ Mn, h continuous and s. t. h (u) = u, V u e 
and Qn is defined in ( 1. 2).
By Lemma 1. 2 cn is well defined and

Moreover by lemma 1. 3 /j Mn satisfies the Palais-Smale condition; then,
by the saddle point theorem (cf. [6] or Theorem 2. 3 in [2]), cn defined by
( 1.16) is a critical value of f Mn.
We are now ready to prove Theorem 0. l.

Proof of Theorem 0 .1. - Consider the sequence of the critical

points of f Mn found in Theorem 1.1.
The same arguments used in proving lemma 1. 3 show that {zn} is

bounded in then there exists a subsequence, which we continue to call
{ zn} such that

We shall prove that

We set
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Pn being the projection on Hn.
Since zn are critical points of f|Mn we have

where T is defined in ( 1.10) and (tn, xn) = Zn.
H~ is compactly embedded into L~, then by ( 1.17), ~n --~ ~ * in L~ and

~ z" ~ is bounded in L 00. Therefore

Then from ( 1.19), ( 1. 20), ( 1.17) we deduce that

In (1.21) and in the sequel O ( 1 ) denotes a sequence converging to zero.
Since zn = z + ~" we have

Then, since

and (xn) (Z)i converges (strongly) in L~°, we get

which can also be written as

by (1. 22) and since (xn) (~n )i converges in L2, we get
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On the other hand,

From ( 1. 24) and ( 1. 125) and since 03B6n ~ 03B6* in Ho we get

Let us finally show that z* is a critical point of fi M. By ( 1. 26) we have

On the other hand

where 
Since zn is a critical point of f Mn and § - 03B6n ~ 0 as n ~ ~, from ( 1. 28)

we deduce that

Finally from ( 1. 27) and ( 1. 29) we deduce that

and therefore z* is a critical point of fl M.
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