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ABSTRACT. — Let g=g (2) (z=(zo, . ..,2z5)€R* be a Lorentz metric
(with signature +, —, —, —) on the space-time manifold R*. Suppose
that g is stationary, i.e. g does not depend on z,. Then we prove, under
some other mild assumptions on g, that for any two points a, be R* there
exists a geodesic, with respect to g, joining a and 5.
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ResuMmE. — Soit g=g(2) (z=(z,, . . .,z;) € R*) une métrique de Lorentz
(avec signature +, —, —, —) sur l’espace-temps R*. On suppose que g
soit stationnaire, c’est-a-dire indépendante de z,. Nous démontrons, sous
des autres convenable hypothéses sur g, I'existence d’arcs de géodésique
joignant deux points a, b arbitrairement donné dans R*,

Classification A.M.S. : 58 E10, 49B 40, 53 B30, 83C99.
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28 V. BENCI AND D. FORTUNATO

0. INTRODUCTION AND STATEMENT OF THE RESULTS

In General Relativity a gravitational field is described by a symmetric,
second order tensor

g=g@)[...1 z=(zy, . ..,23)€R*

on the space-time manifold R*. The tensor g is assumed to have the
signature +, —, —, —; namely for all ze R* the bilinear form g (z)[.,.]
possesses one positive and three negative eigenvalues. The “pseudometric”
induced by g is called Lorentz-metric.

In this paper we study the existence of geodesics, with respect to g,
connecting two points a, be R*.

To this end we consider the “action” functional related to g, i.e.

1 1 3
f(Z)=%J g(Z(S))[Z'(S),Z'(S)]dS=%J Y 8z (9)z;(s)ds (0.1

0 0 i,j=0

where g;;(i,j=0, . ..,3) denote the components of g and z=z(s) belongs
to the Sobolev space

H'=H' (0, 1), R)
of the curves z:(0,1) > R* which are square integrable with their first

derivative z= Z—Z If g is smooth, f defined.in (0. 1) is Fréchet differentiable
s

in H!. Let a, be R*, then a geodesic joining @ and b is a critical point of f
on the manifold

M={zeH'|z(0)=a,z(1)=h}. 0.2)

Due to the indefinitess of the metric g it is easy to see that the functional
(0.1) is unbounded both from below and from above even modulo sub-
manifolds of finite dimension or codimension. Then the Morse index of a
geodesic is + oo, in contrast with the situation for positive definite Rieman-
nian spaces. This fact causes difficulties in the research of a geodesic
connecting a and b and actually such a geodesic, in general, does not exist
(cf- [3], §5.2 or [5], remark 1.14).

However the above difficulties can be overcome if the events a, b are
causally related, namely if a, b can be joined by a smooth curve z=2z(s)
such that

g(z())[z(),z()]=0 for all s&(0,1). 0.3)
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GEODESICS FOR THE LORENTZ METRIC 29

Such a curve is called causal.
In this case, under mild assumptions on g, the existence of a causal
geodesic joining a, b can be achieved just maximizing the functional

= j JE@D ) Z(s), 2(9)]ds

over all the causal curves in M (¢f. [1], [8] or [3], chapt. 6).

Here we are interested to find sufficient conditions on the metric tensor
g which guarantee the existence of geodesics connecting any two given
points a, be R*.

We shall prove the following result.

THEOREM 0.1. — Let g;;(i,j=0,...,3) denote the components of the
metric tensor g. We assume that:

(81)8;€C' R% R) (1,j=0,...,3).

(g2) 800 (2)=Vv>0 for all ze R*.

(g3) There exists p>0 s.1t.

3
- Y &@&E;zp|E* forall ze R*

i, j=1
and all
E=(;.8,,8)eR’.
(g4) The functions g,;(i=0, . ..,3) are bounded.
g,
(g5) ZU(2)=0 for all zeR*.
0z,
Then for any two points a, be R* there exists a geodesic, with respect to
the metric g, joining a and b.

The assumptions (g,), . . ., (g,) are reasonably mild.

The most restrictive assumption is (gs) which means that the gravita-
tional field is stationary (cf. [4], § 88). The proof of theorem 0.1 is attained
by using some minimax arguments which have been recently developed in
the study of nonlinear differential equations having a variational structure
(cf. e.g.[7] for a review on these topics).

1. PROOF OF THEOREM 0.1

The manifold M in H? defined in (0.2) can be written as follows
M=z+H}
where

z=a+((b—a)s, s€(0,1)

Vol. 7, n° 1-1990.



30 V. BENCI AND D. FORTUNATO

and
Hy={zeH! |z(0)=z(1)=0}.
In order to prove theorem 0.1 we shall first carry out a finite dimensional
approximation.
Let neN and set
M,=z+H, (1.1
where
H,=span{o;sinnls:j=0,...,3;/=1,...,n}
9;(j=0, .. .,3) being the canonical base in R*.
Moreover we set
V,=span{ggsinnis;/=1,...,n}
W,=span{¢;sinnis:j=1,2,3;/=1,...,n} (1.2)
S,=z+V, '
Q,(R)=z+W, N By

where

Be={zeH}|||z||SR}, R>0
and ||.|| denotes the standard norm in the Sobolev space H!. Finally we
set

So=hiwm, (1.3)

where f denotes the functional defined in (0. 1). First we prove the existence
of a critical point of f, that is to say of a point z,e M, such that

{f'(z,).0>=0 forall{eH,

where f* is the Fréchet-differential of f and (.,.) denotes the pairing
between H' and its dual. More precisely the following theorem holds.

THEOREM 1.1. — Suppose that g satisfies the assumptions of theorem
0.1. Then there exists a critical point z,e M,, of f, such that
CEf(z)Ec” (1.4)

where ¢’ and ¢’ are two constants independent on n.
The proof of theorem 1.1 is based on a variant of the “saddle point

theorem” of P. H. Rabinowitz [¢f. [6] or propositions 2.1 and 2.2 in [2]).
We need some lemmas.

LemMma 1.2. — Fix neN and R>0. Then S, and the boundary 9Q, (R)
of Q. (R) link, namely for any continuous map
h:M,->M s.t.h(z)=z for all ze0Q,(R), we have

hQ,(R)NS,#J
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GEODESICS FOR THE LORENTZ METRIC 31

Proof. — Let h:M, > M; s.t. h(z)=z for all ze0Q, (R) and define
h:H,-H, s.t. VyeH,: h(y=h(y+2)—-z
It is easy to see that .

Fp=y.  VredBeNW,)

Then by using the Brower degree (cf. [2], prop. 2.1 or [6]) it can be shown
that there exists yeh(W,NBx NV, and therefore
z+veh(Q,(R)NS,. O

We denote by |y, the Frechet differential of f on the manifold M, and
by ||.|| the standard norm in H'. Moreover we set

t=z, and x=(z,2,,23)

Now we prove that f|_satisfies the Palais-Smale condition. More precisely
the following lemma holds.

Lemma 1.3. — Let g satisfy the assumptions of Theorem 0.1. Let {z,}
be a sequence in M,, such that

fim,z) =0 ask— oo (1.5
and
{f(z)} is bounded (1.6)
Then {z, } is bounded in the H' norm and consequently it is precompact.
Proof. — Since z,e M,, we can set
z=(tx) =2+ (1, &)

with 1, eV, and £, e W, [¢f. (1.1), (1.2)}.
By (1.5) we deduce that

@), 6)=¢]¢]|| foralleH, (1.7

where g, - 0 as kK — 0.
Then for all {=(1,&), with teV, and £=(§,,&,,&;)e W,, we have

1 103 3
jg(xk)[ék’C]d5+% _ (Ziij(xk)'él(z.k)i'(z'k)de‘:Sk”CH- (1.3)

0 0 i j=01I=1

And, if we take {=(1,,0)=r1,, we get

j £ (5 G Bl ds=5, || 1.9)

0
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32 V. BENCI AND D. FORTUNATO

Now set

/+1 0

T= (1.10)

Then
1 — ~
%= E[Zk_Z+T(Zk—Z)]

and from (1.9) we get

1{? ..z 1 (! . .o
EJ (Xk)[Zk:Zk—Z]ds—skHTkllz _EJ\ g(x) [z, T(z—2)lds. (1.11)
0 0
By (1.6) there exists ¢, >0 such that for all ke N
1]t .o
lf(zk)‘=5 j g(x) [z, zi]ds | Zc;.
, 0

From (1.11) we get

1

! J ¢ (0 o T2 ds
2Jo

§c1+1fg(xk)[z'k,é“]ds+1fg<xk)[z'k,Té’]ds+sk||rkn
2, 2,

3

1 .
=C1+J (800 (xi) ik+ Z 8oi (xi) (xk);) t. ds+8k”'ka (1.12)

where (7, x)=z.
Since g, ;(i=0, 1,2, 3) are bounded, from (1.12) we easily get
1
j g(x) [z Tz ldsS2¢i + oy || ze ||+ 28 T |l (1.13)
0

where c, is a positive constant depending on 7 and g, ;(i=0, . . ., 3).
Now it can be easily verified that

g(xy) [Z.k’ T Zk] =go0 (X t)f - z 8ij (x0) ()ék)i . (‘Xk)] (1.14)

From (1.13) and (1. 14) and by using (g,), (g;) we get
csllzilP<2e+ e |zl + 28] %) (1.15)

where ¢, is a positive constant.
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GEODESICS FOR THE LORENTZ METRIC 33

From (1.15) we deduce that

{z,} is bounded in H'. [
Proof of Theorem 1.1. — Set

W=3) W, V=3V,

neN neN

(the closures are taken in the Hj-norm)
S=z+V, Q=QR)=z+W N B;.
It is easy to see that

f(@)> —o as |z] - o, zez+W

and
inff(S)> — 0.
Then if R is large enough we get
sup f(0Q (R)) <inf f(S).
Let ne N and set
¢,= inf supf(h(Q,) (1.16)
he o,

where
#,={h:M, >M,, hcontinuousands.t. h(u)=u,VuedQ,}

and Q, is defined in (1.2).
By Lemma 1.2 ¢, is well defined and

¢=inff(S)<c,<supf(Q)=c".

Moreover by lemma 1.3 fy, satisfies the Palais-Smale condition; then,
by the saddle point theorem (cf. [6] or Theorem 2.3 in [2]), ¢, defined by
(1.16) is a critical value of fy,. O

We are now ready to prove Theorem 0. 1.

Proof of Theorem 0.1. — Consider the sequence {z,} of the critical
points of f|y, found in Theorem 1.1.

The same arguments used in proving lemma 1.3 show that {z,} is
bounded in H!, then there exists a subsequence, which we continue to call
{z,} such that

z,— z* weaklyinH*. (1.17)
We shall prove that
z,— z* stronglyin H!. (1.18)
We set
z,=2+8, =15
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34 V. BENCI AND D. FORTUNATO

D=L, (F=(%EY)
and (17, &) ={r=P,C*
P, being the projection on H,.
Since z, are critical points of f, we have

@) TE-8))= f g (x) [z, T, — LN ds

1(? 3 3 ag.. . .
——J XX ) GG (2,);(2,);d5=0 (1.19)
2Jo i,j=01=1 Bx,
where T is defined in (1. 10) and (¢, x,,) = z,,.

H! is compactly embedded into L=, then by (1.17), £, —» &* in L* and
{z,} is bounded in L*®. Therefore

083 _Ex in L®
aXI (xn) (&n &n )l g 0 m L (1 . 20)

(,j=0,...,3and I=1,2,3)
Then from (1.19), (1.20), (1.17) we deduce that
1
J g () [z, T = N1 ds=0 (D). (1.21)
0

In (1.21) and in the sequel O (1) denotes a sequence converging to zero.
Since z,=z+{, we have

j g (i) [5TC,~ R ds+ J g(x) [ TGN ds=0 (1)

0 0

Then, since

TE¢,—{*—0 weaklyinL? (1.22)

and g;; (x,) (z); converges (strongly) in L®, we get

J g )G, TE=EN]ds=0(1) (1.23)

0

which can also be written as

J g ) [ =CN. TE LN dS+J g TE,~tNlds=0(1)

by (1.22) and since g;;(x,) ((¥); converges in L2, we get

j ¢ (e (=89, T (o~ EN] ds= 0 (1), (1.24)
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GEODESICS FOR THE LORENTZ METRIC 35
On the other hand,

J g )G —Eh, TG, — LNl ds=const. ||, = {¥ ||F=. (1.25)

0
From (1.24) and (1.125) and since {, - {* in H} we get

z,—z* inH. (1.26)
Let us finally show that z* is a critical point of f,. By (1.26) we have

VEeH;, (f'(z).5)—>{f'(z%).0) asn— . (1.27)
On the other hand

@), 8= @), 5 )+ @), 58D (1.28)
where {,=P,(.
Since z, is a critical point of f|y, and {—{,— 0 as n— oo, from (1.28)
we deduce that

(' @)8>=0(). (1.29)
Finally from (1.27) and (1.29) we deduce that

V{eH;, (f'(z%).5)=0

and therefore z* is a critical point of f|. O
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