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ABSTRACT. - We prove the existence of weak solutions for the initial-

boundary value problem of the quasilinear parabolic equation

Here A is a Leray-Lions type operator from ’~ = LP (0, T; WQ~ P ~SZ)) to its
dual space r*, g is a nonlinear term with critical growth with respect to
Du satisfying a sign condition and no growth condition with respect to u;
f is a given element in ‘~*.

Key words : Critical growth, lack of compactness.

Classification A.M.S. : 35 K 60, 47 H 05 . 
(*) The work of the first author was partly supported by SFB 256, Bonn, FRG, SFB 123

Heidelberg, FRG and the University of Oklahoma Research Council, Norman, OK, U.S.A.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. Il/94/02/$4.00/~CJ Gauthier-Villars

© 1994 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved 



136 R. LANDES AND V. MUSTONEN

RESUME. - Nous demontrons l’existence des solutions faibles du pro-
blème parabolique quasilinéaire

avec conditions aux limites et initiales. Ici A est un opérateur de type
Leray-Lions de l’espace T; Wo° p (~2)) a valeurs dans ~*, g est
un terme non lineaire a croissance critique en Du, qui satisfait une condi-
tion de signe et dont la croissance en u n’est pas limitee; f est un element
donne de ~Y~’ * .

1. INTRODUCTION

. On a cylinder QT = Q x ]0, T[, over the bounded smooth domain Q c IRN
we consider the parabolic initial-boundary value problem

N

where A(u)= -03A3 D;A; (x, t, u, Du) is a classical divergence opera-
i= 1

tor of Leray-Lions type with respect to the Sobolev space
~ = LP (0, T; Wo° P (S~)) for some p E ] l, oo [ and the perturbation g satisfies
the growth condition

for some continuous function h : (~ + --~ (I~ + . The growth is called critical
since it is restricted only by the integration exponent of the underlying
Sobolev space ~. In this situation we are lacking the compactness argu-
ments of bounded sequences used to show the existence of weak solutions

of(P) for general elements f in the dual space ~’*, cf: [Li].
Recently, in the case of the corresponding elliptic equations the existence

of weak solution was shown independently by Del Vecchio in [D] and by
the first author in [La3]; see also [BBM]. For the parabolic problem only
some partial results are obtained in the paper by Boccardo and Murat so
far. Note also that the classical theory using priori estimates needs
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137PARABOLIC PROBLEMS

more regularity properties of the data and inhomogenuity than those given
by our hypotheses.
We are facing the situation that it is rather easy to construct weakly

convergent sequences of approximating solutions with various methods,
yet, in general it seems to be impossible to verify that their weak limits
are indeed weak solutions. Only for one particular approximating sequence
un we are going to show the pointwise convergence and the weak compact-
ness of in L1 (QT), implying the strong convergence in r and hence
existence of weak solutions.

The estimates to verify these two properties rest on the monotonicity
of the leading differential operator. But the operator a/at is known to be
monotone only if the domain of definition is small enough, see for instance,
[Z, pp. 845]. In [LM] we dealt with unbounded operators of lower order
and we had been able to establish enough "monotonicity properties" in a
situation where partial integration still can be verified for test function,
which have not compact support in [0, T]. This requires some a priori
regularity of the solution which can be shown if the perturbation is

relatively weakly compact in L1 (QT). Boccardo and Murat pointed out
that the difficulties with partial integration can be avoided, if it is possible
to use cut-off functions with respect to time. Yet, their approach also
needs the relatively weak compactness in L~ (QT) which cannot be provided
by the approximation schemes, if the growth of the perturbation is critical
in the gradient cf : [BM].
With the help of certain mollification with respect to time and cut-off

functions as in [BM] we will show that there is enough "monotonicity" to
justify the estimates providing the pointwise convergence of this particular
sequence. However, we only get the equi-integrability locally in time. That
leads to a solution in a very weak sense, in particular, it seems to be

impossible to establish the energy equality. Therefore we consider an

"extended" problem with the same weak assumptions on [0, T] as before,
but with stronger condition on [T, ~‘ ], say. This allows us to show the

existence in the weak sense described above first, and verify the desired
regularity properties of the solution, a posteriori.

In Section 2 we give the precise setting of the problem and state the
main result. We gather properties of the associated truncated problem in
Section 3 and we generalize a Lemma by Frehse to the parabolic case in
Section 4 providing the pointwise convergence of the gradient. In Section 5
we show the strong convergence for the gradient. The final step of the
existence proof and the regularity properties are presented in Section 6.
In Section 7 we prove that the distribution u’ has enough regularity to
justify the estimates needed in Section 5.

Vol. lI, n° 2-1994.



138 R. LANDES AND W MUSTONEN

2. ASSUMPTIONS AND THE MAIN RESULT

For the coefficients A~, (i =1, 2, ..., N), of the operator A we introduce
the following hypotheses.

(A1) The functions Ai (x, t, ~, ç) from QT x R x to R are measurable
in (x, t) E Q.~ and continuous in (r~, ~) x 

(A2) For all (x, QT and (~, ~) E f~ x (I~~

With I  p  w , q  c1 > 0 and
N-p p - I

(A~) For all (x, q e R and § # §* in R’~

(A4) For all (x, t) E QT and IF~N

with 

Conditions (A1)-(A3) are the parabolic versions of the so called Leray-
Lions conditions providing the pseudomonotonicity of the quasilinear
operator in the elliptic case. We need the strict ellipticity (A4), the coerciv-
ness of the combined differential operator seems to be not sufficient.
The assumptions on the perturbation g as a function from QT x R x (~N

read as follows:

g (x, t, ~, ~) is measurable in (x, t) E QT and continuous in

{rI ~ ~) E ~ X ~ .
For all (x, t) E QT and (~N

with ~,1 and some continuous non-decreasing function
h : !r~ _) 2014~ 

with some nonnegative ~2 ELl (QT).
Even though (A4) and (G3) can be weakened by some obvious applica-

tions of the embedding theorems, the sign condition (G3) is needed to
obtain the existence of solutions for all elements f in the dual space. It

should be noted that there is no growth restriction on the "lower order
nonlinearity" of g as a function in u. Hence our work includes earlier
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139PARABOLIC PROBLEMS

results by Brezis and Browder and the authors, cf.: [BB, B, LM]. We
introduce now the notion of weak solution of the problem (P) used here.

DEFINITION. - Let ’Y~ = Lp (0, T; (~)). A function u in

~’ (~ L°° (0, T; LZ {SZ~) with g (.,., u, Du) (QT) is called a weak solution
of (P) if

for all 03C6 ~  ~ L~(QT) ~ C1 ([0, T]; L2 (SZ)) with 03C6 (t) = 0 in a neighborhood
of T . The inhomogenuity f is a prescribed element in ’Y~*, the dual space

We introduced a rather weak notion of solution and account for the

regularity properties of the solution in the statements of the theorem, since
this properties are additional informations furnished by the particular
approximation scheme.

THEOREM. - Suppose that the conditions (A 1)-(A4) and (G~)-(G3) are
satisfied. Then the problem (P) admits a weak solution for any given f E *.
Furthermore, the weak solution obtained by the approximating scheme below
has the properties:

(i) u E C ([o, Tli L~ (S~)),

for all T e (0, T] and for ~ ’Y~’ (1 L" (Q~) ([U, T]; L~ (Q)),
(iii ) (Energy equality) For all i E (0, T] we have

First we investigate the solutions of the related problem where the
perturbation is truncated at the levels ±n, say. One important advantage
of this approach is that for every approximation un it is possible to use
all of r as testspace and not only certain, in case of a Galerkin scheme,
even finite dimensional subspaces.

Vol. 11, n° 2-1994.
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3. THE TRUNCATED PROBLEM

For each n E N we define the truncated perturbation gn as a function

Then we consider the initial boundary value problem

For u, v E ’Y~ we define

and

The classical theory of pseudomonotone mappings can be used to show
the existence of weak solutions un if p~2 (see [Li], for example). In case
p  2 the existence can be shown, for instance, by time dependent Galerkin
approximations as in [LM]. Hence for all p > 1 there is a sequence {un}
in C ([o,T], L2 (Q)) such that

for all n~N and with u (o) = 0 in L2 (03A9). Note that u’n, v~ is
defined in the sense of distributions. Since ( F (u,~), . ~, ~ Gn (un), . ~ and
~ f, . ~ are in iT* we can extend ~ u;~, v ~ to all T],
L2 (Q)) with u (0) = 0 we have

Annales de 1’Institut Henri Poincaré - Analyse non linéaire



141PARABOLIC PROBLEMS

Furthermore, using similar arguments as in [LM] (cf. Section 7, too) we
can show for all n that there is at least one solution un satisfying

for all T E (0, T] and ~ E C1 ([0, L2 (0)) n LP (0, i; (Q)), and

For T = T we get

which yields by (A4) that { is bounded in Y. Hence also ( ( F (un), 
and ( ( Gn (u,~), u,~ ~ ~ are bounded sequences. With

we get by and (G3)

implying that ( ) gn (.,., Un, remains bounded in L1 
Denoting we observe that is

bounded in ~* and wn = - G is bounded in L1 (QT). Thus we can
invoke a result of [B, p. 162] to conclude is strongly relatively
compact in LP (QT). Collecting the results we get

PROPOSITION 1. - c ’~ be the sequence of solutions of the
truncated problem (TP). Then there are constants K1, K~ and K3 such that

I  all 
Moreover, for a subsequence we have u" ~ u in ~Y~’, un ~ u in 
un (x, t) ~ u(x, t) a.e. in QT, Diun  diu in Lp (QT) for each i = 1, 2, ..., N
and F --~ A in ~’*.

Vol. ll, n° 2-1994.
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4. A PARABOLIC VERSION OF A LEMMA BY FREHSE

Testing the equation (3 . 1) with Q U L°° we have

Hence

holds for all n E The following parabolic generalization of a lemma by
Frehse [F] provides the a.e. convergence of the gradients {c_ f : also [La3]).

LEMMA 1. - Assume is a bounded sequence in ’Y~, un ~ u in
in ’~. Assume further that the inequality (4 . 2) holds for

all n E N and 03C8~ ~ L~ {QT). Then there exists a subsequence of {un}
such that Dun (x, t) --~ Du (x, t) a.e. in QT.

Before proving the Lemma we introduce some notations. For each v E ~
we define

where v is the zero extension of v and v > o. Throughout the paper the
index v always indicates this mollification with respect to time. We have

v -~ v in ’~ as v ~ oa if v o = p (see [La2]). We also~ )
denote

and

for each 03B8>0. Let (j) be a function in (QT) such that )) 03C6~L~ (QT) = 1 and

~ >_ o. In the sequel we shall use T~ [un - as a test function ~ in
(4.2) with E > 0, v > o and n, We begin with the following

PROPOSITION 2.

where the Landau symbols o (p) and o’ ( p) are real numbers such that, if
p -~ ~ also o ~ p) --~ 0, respectively o’ ( p) -~ 0 for any fixed ~.

Proof - As in we obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Since Sg is a convex function we have

and hence the assertion follows from the continuity of S£ (t) and its linear
growth as z >__ E.

PROPOSITION 3.

Proof - By the definition of we have

The first integral is non-negative, the second integral is of the form

ov(1 n) and the third integral of the form ov,n(1 k ). Also the last integral

is of the form ov(1 k), since in as k ~ oo and

~~ T~ ~u~ -- (uk),,~ c~ ~~~,~ tQ~.~ __ ~£ where C~ is a constant independent on n, k
and v. Hence the assertion follows.

P~oof Lemma 1. - Testing the inequality (4.2) with
and using the Propositions 2 and 3 we obtain for each

Vo!. i I , n° 2-1994.
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E > 0 the estimate

Since (Uk)Y ~ uy in we can keep n and v fixed and let k - oo to get

~QT Ai (x, t, un, D; { T~ [un - uv]03C6} dx dt
QT i - 1 

, ,

We have Uv --~ u in r and un - u in LP (QT). Hence we are able to choose
a of subsets of QT and a subsequence 1 of

with the following properties:

Note that (iv) follows from (4 . 3) since in LP (QT).

For E = - and v >_ vo (m) we can write
m

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Denoting

we have by (A4) and by the facts that D;u in LP (QT) and
Di Tg [un - u"] = 0 on QTBQm the following estimate

Since A~ (x, t, converges strongly in LP’ (QT) we have

Now we are in the position to employ Lemma 6 of [Lal] yielding
t)Diu(x, t) a.e. in for each i=l, 2, ..., N and for

all suitable ~ E C~ (Q); hence the proof is complete.

5. STRONG CONVERGENCE OF THE GRADIENTS IN LP (QT)

In order to establish the strong convergence it is enough to show
that the sequence { Dun ~p ~ is equi-integrable since we already have the
convergence a.e. from the previous section. First of all we remark, however,
that the sequence of solutions {un} of (TP) can be obtained on the
extended cylinder Q~, with !T = T +1, say, where we assume in addition
to (A I)-{A4) and (G1)-(G3) on Q.r that g has a more restrictive growth in
Qg-  QT- For instance the assumption

~ g {x~ t~ ~1~ ç) c c3 {~ ~ ( p 1 + ~ ~1 i~ ~ + ~,3 (x, t)) for all (x, t) 
with some constant and 
is sufficient for our purpose.. Obviously all the facts of the previous section
are true for problem (P) on also. We therefore have a sequence of

Vol. 11, n° 2-1994.
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solutions { u,~ ~ c ~ = Lp (0, ~ ; (Q)) of the truncated problem satis-
fying

for all v E ’~. The following results will be proved in section 7.

LEMMA 2. - Let (Q x [0, ~ ]) in Qx [0, T] and

t~ (x, ~ ) _ 0 in S~. Then
,_, ,_, ,

for all 8 > Q. always in this note, the index v indicates the smoothing
with respect to time as defined above.)

LEMMA 3. - Let ~ be as in Lemma 2. Then for all a > 0 we have

The next propositions provide the equi-integrability of { Dun ~p ~ . Since
our problem is defined in Q~ now we always can assume that ())=! in

Q~. For each 8 ~ o and n e N we define

With this notation we have

PROPOSITION 4. - If 8 > o satisfies the condition 8 h(03B8)  1 c , then the
sequence |Dun Cp ~C P03B8n ~[0, T] is equi-integrable.

It will be dearly sufficient to show that

with (D==G)(cy, v, n)=o(2014 )+o03C3(1 v)+o03C3, 03BD(1 n) for some parameter v. By
(A4) we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Choosing 03C6~C1 (Q x [0, 5]) as in Lemma 2 we have

Using Lemma 2 and then the equation (5. 1) we obtain

In the latter integral we can use the polynomial growth restriction (G4)
and hence include it to the above remainder terms. Thus we are left only
with the former integral. For each we have

sign (un) T~ (un) >_ sign (Mj (Te (uk))". Hence by (G 3)

On C the sequence gn (x, t, un, Du") is equi-integrable yielding

Vol. 2-1994.
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Finally by (G2) we get

Therefore we conclude

Choosing now 0>0 small enough to make 8/!(8)2014~ the assertion
4

follows if we let k - oo.

PROPOSITION 5. - I DUn equi-integrable for any given p > o.

Proof. - Let p > 0 be given. We can choose 03B8>0 and such that

K0= p and 8  c2 . Hence 8 meets the condition of Proposition 4. We
4 h (p)

argue by induction to show that

is equi-integrable for each K =1, 2, ..., K. For K =1 the claim is true by
Proposition 4. Assume now that is equi-integrable.
Using similar estimates as in the proof of Proposition 4 and the assump-
tion of induction we get

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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by (~2). Taking the assumption 8 h ( p)  ~2 into account we can conclude
4

n

Hence the step of induction is established and the proof is complete.

PROPOSITION 6. - ~ ~ Dun is equi-integrable.

Proof. - In view of Proposition 5 it will be sufficient to show

with 03C9= (J) (p, v, n = 0 1 +op(1 v)+Op, 03BD(1 n) for some parameter v.

Since un ~ u, Du, Uy - u and Duv ~ Du a.e. in Qg- we can choose
a sequence of subsets {m} of Q, such that Qm c 

00

U Qm = 0 are uniformly con-
m=l i

vergent on each Qm. Therefore

and

Using the fact that ! = ? ( - ) and similar arguments as in the
proof of Proposition 4 we estimate

Vol. It, n° 2-1994.
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Now Lemma 3 yields

providing the desired estimate as k - oo .

COROLLARY. - There exists a subsequence such that Di u~ -~ D~ u
in LP (QT) for each i =1, 2, ..., N.

6. PROOF OF THE THEOREM

In order to prove our main theorem of Section 2 we have first

PROPOSITION 7. - gn (x, t, un, Dun) is equi-integrable in QT.

Proof - Let s>0 be given. In view of Proposition 1 we can choose
such that

Since is equi-integrable in QT by Proposition 6, there exists 03B4>0
such that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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whenever Q c QT and Q j  ~. By (G~) we have

and hence the assertion follows.

By the previous results we now conclude that

From (5.1) with smooth testfunction 03C8 supported in QT and letting n ~ oo
we get the equation

Therefore (2.1) follows by approximation.
To verify the continuity properties we remark that gn (x, t, u~, Dun)

converges in L~ (QT)’ With this additional information we consider (3.3)
again. Testing with § (t, x) = t~ (x) E C~ (Q) for indices n and k we get for

E ]0, T[:

Vol. 11, n" 2-1994.
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Also ~un (t) (n)  C by (3.4). Hence un (t) is weakly convergent for all t.

Further -

providing the weak continuity of u (t) in L2 (Q).
To prove the continuity with respect to the strong topology of L2 (H)

we observe

for all re]0, T[. Hence for every e we may choose v~ large enough such
that

On the other hand we have

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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providing

where o(1 03BD03B8) does not depend on T.
Now we consider the sequence (Te (u)),,8 e C ([0, T], L2 (Q)). For r E (0, T]

we have 
° 

Hence (To {u)),,8 is a Cauchy sequence in C ([0, T]; L2 (S~)) converging to u
and consequently u E C ([©, T], L~ (SZ)).
The energy equality now follows easily. Indeed, as above we get

since (T$ (u)),,g (i) converges to u (~) in the strong topology so does 
and hence by (6. 2)

Vol. lI, n° 2-1994.
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Consequently by Fatou’s Lemma and (6.1)

which proves that we can go to the limit in each of the terms in (3.4).

7. PROOFS OF LEMMATA 2 AND 3

In order to prove Lemma 2 and Lemma 3 of Section 5 we need some

properties of derivatives of distributions which are not valid in general
but can be verified in our situation.

PROPOSITION 8. - Let L2 (~)) and gE1/* such that 
and v’ = g in the sense of distributions on Q,, and let ~ E C1 (0, ~l ; (~) such
that t~ (~ ) = o. Then

Proof - Let E>O be given and (0, (~~ be such that B)/= 1
on on Let a and p indicate
Friedrich’s mollification with respect to t with mollifiers supported in

2014 2014, 2014 , say. Then using trivial extensions and the properties of~ 16 16 
" "

mollification we get

Annales de l’Institut Henri Poincaré - Analyse non linéaire



155PARABOLIC PROBLEMS

Choosing 03C8=03C8~ such that = 1 on [E, J - s] and letting E ~ 0 we get

On the other hand,

which converges to zero as E - oo because of our assumptions that
v E C ([0, ~% ]; L2 (0)), V (o) - o, ~ ~~% ) _ 0.

PROPOSITION 9. - In addition to the assumptions of Proposition 8 we
assume that ~ >__ © and ~‘ _ o. Then

Proof - As in the previous proof we obtain for smooth §, that

converges to zero as E ~ 0. On the other hand,

Vol. l!,n" 2-1994.
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Using the same arguments as in the proof of Proposition 8 we obtain

With § = the Friedrichs’ mollification of the assertion follows
as 5 - 0, since then § >_ 0 and ~’ ~ 0.
Proof of Lemma 2. - We have to show that

Indeed, by Proposition 8 we have

On the other hand

Hence

But as in the proof of Proposition 3 we get

and the result follows, because the last integral is nonnegative as we shall
show in the appendix.

Proof of Lemma 3. - We have to show that

By the same arguments as above we can write

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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the assertion follows from the fact that the last integral is nonnegative.

APPENDIX

We owe the short proof of the following fact to the referee. Our original
proof was much more complicated.

LEMMA. - Let some D c ~k and 8 > o. Then

Proof - For weS we have
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