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ABSTRACT. - We prove that discontinuous solutions of the Navier-
Stokes equations for isentropic or isothermal flow depend continuously
on their initial data in L~. This improves earlier results in which continuous
dependence was known only in a much stronger norm, a norm inappropri-
ately strong for the physical model. We also apply our continuous depend-
ence theory to obtain improved rates of convergence for certain finite
difference approximations.
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RESUME. - Nous prouvons que les solutions discontinues des equations
de Navier-Stokes, pour des flots isentropiques ou isothermaux, dependent
continuement des conditions initiales dans L2. Ceci ameliore les resultats
precedents dans lesquels la continuite de la dependance n’etait connue
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160 D. HOFF AND R. ZARNOWSKI

que pour une norme beaucoup plus forte, inappropriée pour le modele
physique. Nous appliquons aussi cette theorie de la dependance continue
pour obtenir une amelioration des taux de convergence pour certaines

approximations aux differences finies.

1. INTRODUCTION

We prove the continuous dependence on initial data of discontinuous
solutions of the Navier-Stokes equations for compressible, isentropic or
isothermal flow:

with initial data

and boundary conditions

Here v, u, and p represent the specific volume, velocity, and pressure in a
fluid, t is time, and x is the Lagrangean coordinate, so that the lines
x = Const. correspond to particle trajectories. E is a positive viscosity
constant, and the source terms F 1 and F2 depend upon x, t, y, v, and u,
where y is the Eulerian coordinate

We also apply our continuous dependence theory to obtain improved
rates of convergence for certain finite difference approximations to sol-
utions of ( 1.1 )-( 1. 4).

Previous results concerning continuous dependence on initial data for
discontinuous solutions are obtained in Zarnowski and Hoff [8], Theo-
rem 5.2, and its extension to the nonisentropic case, Hoff [5], Theo-
rem 1 .4. These results measure the difference between two solutions in
an exceptionally strong norm, one which dominates the local variation in
perturbations of the discontinuous variable v. Since 1/v is the fluid density,
which itself is a gradient, these results must therefore be regarded as
unsatisfactory from the physical point of view. In addition, the question
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161CONTINUOUS DEPENDENCE IN L2

of continuous dependence always plays a crucial role in the derivation of
error bounds for approximate solutions. In particular, error bounds for
certain finite difference approximations to solutions of { 1.1 )-{ 1 . 4) were
derived in [8]-[9]; these rates of convergence appear to be unrealistically
low, however, precisely because they are formulated in a norm which is
inappropriately strong.
The goal of the present paper is therefore to show that, under

assumptions consistent with the known existence theory, discontinuous
solutions depend continuously on their initial data in L2, which clearly is
a more suitable norm for the physical problem. This result is stated

precisely in Theorem 1.4 below, and is proved in section 2. (A nearly
identical result can be formulated for the corresponding Cauchy problem.)
The key idea is to replace a direct estimate for the difference between two
solutions with an adjoint-equation argument; the adjoint functions are
estimated in fractional Sobolev norms, and L2 information is extracted

by interpolation. A somewhat more detailed sketch of the main issues is
given below following the statement of Theorem 1.4. In section 3 we

apply our result in a reexamination of the difference approximations
studied in [8]-[9]. We show that, for fairly general discontinuous initial
data, the error bound can be improved from 4 {h 1 ~4 - s) to O {h 1 ~2); and
for H~ initial data, from 4 {h ~ ~2) to 0 (h). (Of course, the more favorable
convergence rates are measured in a weaker norm.) We also point out
that the D (h1~2) estimate for these discontinuous solutions is reminiscent
of error bounds in average-norm for approximations to discontinuous
solutions of other compressible flow models; see for example Kuznetsov [7]
and Hoff and Smoller [6], Theorem 5.1.
The general source terms F 1 and F2 in (1.1)-(1.2), and the general

boundary conditions (1.4) are included mostly for the sake of complete-
ness ; they play little role in the analysis because they essentially "subtract
out" for the equations satisfied by the difference between two solutions.
Physically, the most important case of { 1.1 )-( 1. 2) is that in which F =0
and the force F2 depends only on t and on the Eulerian coordinate y.
The boundary conditions (1.4) require that the leftmost fluid particle
moves with velocity ul, and the rightmost with velocity u~. In physical
space this means that the fluid is confined to the region between two
pistons, moving with respective velocities U, and UY. The problem of a fluid
moving in a fixed domain therefore corresponds to the case that U, = ur = 0.
We now give a precise formulation of our results. First we fix a positive

time T, and we assume that the functions appearing in { 1 .1 )-{ 1. 4) satisfy
the following conditions:
Al. p E C2 ([ v_, v ]), where [ v, zT] is a fixed interval in (0, oo ), and p‘ (v)  0

on [v, v];
A2. ul, ur E L °° ([0, T]);
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162 D. HOFF AND R. ZARNOWSKI

A3. F 1 and F2 are sufficiently regular that, whenever
v, u E C ([0, T]; L2 [ -1, 1 ]) with v E [ v_, v ] a.e., then

A4. there is a constant CF such that

fo r all (x, t)E[ -1, 1 x [o, Tl and ( yt, v i, 2 v] x lv, v i =1, 2 .
We define weak solutions of the system { 1.1 j-( 1. 4) as follows:

DEFINITION 1 . l. - We say that the pair (v, u) is a weak solution of the
system ( 1.1 )-( 1 . 4j provided

where u is the function

(v, u) satisfies the equations ( 1. I )-( 1 . 2) in the sense that, for all ti  t2 in

[0, T] and all cp ~ C1 ([ -1, 1] X [tl, t2]),

and for all 11  t2 in [0, T] and all 0/ E C1 ([ -1, 1] ] X [t i, 12]) satisfying
~~~ ~~ ~)_~~

The existence of weak solutions of the Cauchy problem for (1 . 1)-(1 2),
but without source terms F 1 and F2, is proved in Hoff [2]-[3]. An extension
of these results to the initial-boundary value problem ( 1.1 )-( 1. 4) is
included in [8]-[9]. In both cases it is shown that, when uo, Vo E BV with
vo positive, global weak solutions exist and satisfy the following regularity
and smoothness conditions:
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163CONTINUOUS DEPENDENCE IN L2

there are positive constants r  1 and Co such that

and there is a positive constant Ci such that

(Here and throughout this paper ~~p denotes the usual LP norm on
[ -1, I], with the subscript omitted when p = 2.j Actually, a great deal
more technical information is obtained in [2] and [3] concerning the regu-
larity and qualitative properties of solutions. We mention here only that
discontinuities in v are shown to persist for all time, convecting along
particle paths and decaying exponentially in time, at a rate inversely
proportional to s. Analogous statements can be proved for the more
complicated system corresponding to nonisentropic flow; see Hoff ([4]-
[5]). These facts are of great importance in the general theory; they will
play no role in the present analysis, however. Here we deal with solutions
in the sense of Definition 1 . 1, and assume only that they satisfy the
regularity conditions (1.12)-(1.14).
Next we introduce the fractional-order Sobolev spaces, and we recall

several of their basic properties:

DEFINITION 1. 2. - Let { 1 be an orthonormal basis for L2 ([ - l, 1])
consisting of eigenfunctions in Ho of - d 2/dx2 . Thus

For w E HQ ([ -1, 1]) and cc E [ -1, I], we then define

wl~eYe ~ . , . ~ is the usual L2 inner product on [ - l , 1 ].
The following elementary facts are easily derived: for w, z E Ho,

Next we introduce the weak truncation error for approximate solutions
of the system ( 1. 1 )-( 1 . 4). The weak truncation error measures the extent
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164 D. HOFF AND R. ZARNOWSKI

to which an approximate solution fails to be an exact weak solution, in
the sense of Definition 1 . 2.

DEFINITION 1. 3 . - Let (v’~, uh) be an approximate solution of ( 1. 1 )-( l . 4)
for which v] a.e. Given in [0, T] we then define the

linear functionals ~ 1 (tl, t2, . ) and ~2 (t~, t~, . ) as follows: for
~, ([ - l, 1] X [tl, t2]) with ~r ( ~ l, 

and

Then given oc E [0, 1], we define the weak truncation error Qa associated to
by

where the sup is taken over s 1  s2 in [t 1, t2], and over ~p, ~ as described
above, and where .

In the following theorem we give bounds for the error

in terms of the weak truncation error Qa and the initial error:

THEOREM 1 . 4. - Assume that the functions and parameters in (1.1)-
{ 1 . 4) satisfy the hypotheses A1-A4, let T be a fixed positive time, and let
constants Co, C1, and r be given, as in (1 . 13) and (1.14), with 0  r  1.

(a) If F1 and F2 are independent of u, then given a E (0, 1], there is a

constant C = C (a), depending only on a, T, E, p ~~, CF, Co, C1, and r,
such that, if (v, u) is a solution of ( 1. 1 )-( 1 . 4) satisfying { 1. 6)-{ 1. 14), and
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if is an approximate solution, satisfying ( 1 . 6), (1 . 8), ( 1 . 9), and

{ I . l 2)-{ I .14), then for any i E [©, T],

(In general, the constant C (oc) may become unbounded as oc 1 0.) In addition,
for t > i >_ Q and a E (0, 1 ],

where ~ is the term in brackets in ( 1. 25).
(b) In the general case that the F3 do depend on u, there are positive

constants C and C1, depending only on T, E, p v~, CF, Co, and r, such
that, if(v, u) and uh) are as in (a), and if C1~C1, then for any i E [Q, T],

Thus in the case that (vh, uh) is an exact weak solution, Q~ = 0, and the
theorem asserts continuous dependence on initial data in L2. In the general
case (b), this initial data must be assumed to be small. When the F~ are
independent of u, however, this smallness assumption can be eliminated,
but at the expense of further weakening the topology of continuous
dependence, as in ( 1 . 25), or of introducing an initial layer, as in ( 1 . 26).
We now give a brief sketch of the key ideas in the proof of Theorem 1. 4;

complete details are presented in section 2. Thus let (Vj, u~), j =1, 2, be
exact solutions of ( 1.1 )-( 1. 4) as described above, and let and

Then formally, from ( 1 . 1 )-( 1 . 2),

The direct approach of ([8]-[9]) consists in simply multiplying these two
equations by Av and Au, respectively, and integrating over [-1, 1] x [0, t].
Applying the Cauchy-Schwartz inequality in an elementary way, one thus
obtains that

Now, a simple Gronwall argument takes care of the term f ~0394v2 on the
right-hand side here. But if we are attempting to obtain an estimate for
Eo, then we are constrained to bound the other ter~n in this double integral
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by

The first term here can be absorbed into the left side of ( 1. 28) when §
is small. The problem, however, is that the integral in the other term is in
general divergent. Indeed, solutions w of the heat equation with data in
L 2 n BV achieve the rate of but no
better. The approach taken in ([8]-[9]) was therefore to replace the estimate
{ 1 . 29) with the bound

This succeeds because the second integral here is small for small time,
by (1.14). This success occurs, however, at the expense of having to

measure the perturbation (Av, Au) in a norm which dominates ~0394v~~;
and this we regard as unsatisfactory.

In the present paper we apply a completely different approach to

circumvent this difficulty. Specifically, we subtract the weak forms (1 . 10)-
(1.11) satisfied by the two solutions, and choose the test functions cp
and 03C8 to satisfy appropriate adjoint equations, solved backward in time,
with "initial" data given at a positive time t. Omitting all but the key
terms, we obtain

The term on the right here clearly plays the same role in this approach as
the troublesome term on the right side of (1.28). Now, in order to obtain
information from ( 1. 30) about ] Ov (., t ) ~ ~ ] and I (., t ) ~ ~ by duality, we
should take (p(., t), ~ { . , t) E L 2. We therefore need to show that, for
such data, the solution (p, of our adjoint system satisfies

which again is sharp even for solutions of the heat equation with L2 data.
Assuming that (1.31) has been proved, we may then apply (1.14) to

bound the term on the right side of (1.30) by

Since the integral on the right here is a constant, this term may be
absorbed provided that C 1 is small. This gives part (b) of Theorem 1 . 4.
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Observe that we succeeded by this adjoint-equation device in splitting the
nonintegrable singularity 1/t occurring in {1 .29) into the integrable prod-
uct {t ~ S) - 3~4 S-1~4 of two singularities of the same total strength. (Actu-
ally, we have oversimplified here a bit. Since the discontinuous functions Vj
determine the coefficients of the adjoint system, B)/ will satisfy a parabolic
equation whose coefficients are not smooth. It is therefore necessary to

replace W by a lower-order perturbation of B(/ in the above argument.)
In the case that C1 is not small, we choose the initial data Bj/(., t) to

be somewhat for oc > 0. This results in a slightly
more favorable smoothing rate in (1.31), so that the integral in ( 1 . 29) is
replaced by one which is small when t is small. We can then obtain from
(1.30) a bound only t) ~ ~ + Du ( . , t) ~ _ a, which is the estimate
in (1.25). The L2 bound (1.26) is then recovered from this result and the
bound (1.14) by a simple interpolation argument.
Most of the work in the proof of Theorem 1.4 consists in obtaining

the required rates of smoothing for the adjoint solution (cp, Bj/), particularly
in the H~ norms. These results are achieved by applying standard energy
estimates, together with certain interpolation-theory arguments based on
the proof of the Riesz-Thorin Theorem.

2. PROOF OF THEOREM 1.4

We begin by deriving an estimate for in terms of when
and oc E [0, 1]. Thus the two cases of the theorem will be

combined for the present, and will be distinguished only at the end of the
argument. For the time being, C will denote a generic positive constant
depending only on

T, E, p w~ v], CF, Co and r. (2.1)
Thus fix times t 1  t 2 in (0, T) and a E [0, 1 ] . We subtract the definitions

( 1. 20) and ( 1 . 21 ) of the functionals and .22 from the corresponding
weak forms (1.10) and (1.11). Adding the resulting two equations, we
obtain
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Now, we can choose smooth approximations vs and v~s to v and
v~ which satisfy

and

as in (1.8) and ( ~ .13~, and such that

We then let as denote the divided difference

which is therefore a smooth function for (x, t) ~ [- l, 1] x [tl’ t2].
We now fix functions f and g in C~ (-1, 1), and we take cp = cps and

in (2. 2) to be the solutions of the following adjoint system:

It will suffice to consider "initial" data ( f, g) satisfying

Substituting the first two equations in (2. 7) into (2 . 2), we then obtain

Before estimating the various terms appearing in (2.9) above, we first
collect together various properties of the adjoint functions cps and ~s:

LEMMA 2. l. - There is a constant ~, depending only on the quantities
in (2. 1 ), but not on ~c, t2, ~, f, or g, such that the solution (tps, of

Annales de l’Institut Henri Poincaré - Analyse non linéaire



169CONTINUOUS DEPENDENCE IN L2

the system (2. 7)-(2. 8) satisfies

and

The proof of Lemma 2. 1 is somewhat lengthy, and will therefore be
deferred to the end of this section. 

’

We now show that the first two terms in the double integral on the
right-hand side of (2.9) approach zero as b -~ 0. We shall present the
argument only for the second of these, which is the more difficult. Triangu-
lating, we may bound this term by

The second term in (2. 12) is bounded by

by (2.10). The integrand here approaches zero a.e., and is bounded by
t2]), by (2 . 3) and (1. 8). This integral therefore

approaches zero as 5 - 0.
We apply (2 . 11 ) to bound the first term in (2.12) by

We apply Holder’s inequality with exponents 4 and 4/3, and then appeal
to (2 .10) to obtain the bound

Now, ---~ 0 a.e. in [ - 1, 1] x [tl’ t2]’ as 5 - 0, so that, by Fubini’s
theorem, there is a set A of measure zero for which

ux(x, (x, t) --~ 0 for almost all x when t ~ A. Since
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by ( 1 . 12), we thus obtain that

when t ~ A. This shows that the integrand of the time integral in (2 .13)
approaches zero as b -~ 0 for almost all t. This integrand is bounded by

by (1.14). (The precise exponents are not really crucial here, since t1 > o.)
This proves that the expression in (2.13) approaches zero as 5 - 0, and
completes the proof that the first two terms in the double integral in (2.9)
vanish in the limit as b -~ 0.
The third term in this double integral is bounded by

We apply (2 . 10) and (1.13) to bound the second of these terms by

Applying (2 . 11 ), (1 . 14), and (2.10), we can bound the first term in (2.14)
by
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because

is a constant independent of t2. (This is the point in the argument where
the specific exponent in ( 1 . 14) is crucial.) Combining these two estimates,
we then have that the third term in the double integral in (2. 9) is bounded
by

To bound the AF~ terms in (2.9) we use the fact that, by the
definition ( 1 . 5),

Therefore by A4 and (2 . 10), for case (b) of Theorem 1 . 4,

and similarly for the F 1 term in (2 . 9). The same estimate holds in case
(a) that the F. are independent of u, because I ~ ~s I ~ _ ~ ~s la for 

Finally, the single integral on the right-hand side of (2.9) is bounded
by and (2.10) and the definition ( 1. 22) show that

Combining all these estimates, we therefore obtain from (2. 9) that

for all f and g satisfying (2. 8). Taking the sup over such f and g, we may
then replace the left-hand side in (2 . 15) by E _ a (t2). Recall that the
constant C in (2 . 15) depends only on the quantities in (2 . 1 ). In case (a),
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a is positive, and we can therefore assert that there is a positive number
At, depending only on the quantities in (2.1) and on a and Ci, such that

when o  t2 - tl  t1 t. In case (b), a is zero, and (2 .15) shows instead that
there are positive constants At and Ci, depending only on the quantities
in (2.1), such that

provided and 0  t2 - tl _ tlt. A standard Gronwall argument then
shows that (2.16) and (2 .17) hold for all t 1  t 2 in (0, T), and therefore
for all t1  t2 in [0, T], by ( 1 . f ). This proves ( 1. 25) and ( 1. 27). To prove
( 1. 26) we observe that, by (1 . 14), 

’

for all t. ( 1 . 26) then follows from this and (1.25) via the interpolation
result (1.19). This completes the proof of Theorem 1. 4. D 

’ 
,

Proof of Lemma 2 . ~ . - We let C denote a generic positive constant
depending only on the quantities listed in (2 .1 ), and we surpress the
dependence on 03B4 of the solution (cp, of the adjoint system (2. 7)-(2. 8).
To derive an L2 bound for (cp, we multiply the first equation in

(2. 7) by - and the second by B)/ and integrate. Applying the boundary
condition, we obtain that, for t~ __ s~ ~ s2  t~,

Rearranging and using the fact that C -1  - as - C (see Al and (2 . 6)),
we get that

However, (2 . 4) shows that
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Applying a standard Gronwall argument in (2.18), we may then conclude
that

Next, we derive simultaneously two different H~ bounds for corre-

sponding to different norms of the initial function g. To do this, we let cy
denote either of the functions ? (t) = t2 - t, or o (t) == 1. We multiply the
second equation in (2. 7) by t) and integrate and apply the
boundary condition ~~ ( ~ l, t) = 0 to obtain that, for 

Rearranging and applying the Cauchy-Schwartz inequality to the single
integral on the right, and applying {2. 19) in an elementary way, we then
obtain that

We have that

by (2. 4), and
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by (2.7) and (2.19). Thus

A standard Gronwall argument then shows that

where either 6 (t) = t2 - t, or a (t) _--_ 1.
Observe that (2 .19) and (2. 20) prove (2 .10) in the special case that

a = o. For other values of a we shall have to appeal to some standard
results of interpolation theory; these are stated in the following lemma.

LEMMA 2 . 2. - 1]).
(a) Suppose that B : H X H -~ ~ is bilinear, and that there are indices

CXj’ (3~ E [ -1, 1] and constants M 1 and M 2 such that

for all g, g* E H. Then for any 0 E [0, 1], and for all g, g* E H,

where

(b) Let S : H ~ L2 ([ -1, 1] x [tl, t2]) be a linear operator, and suppose
that there are constants Mo and MI such that

and

Then for any a E.[0, 1 j and for all g E .Ho,
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(a) and (b) are special cases of standard results in the general theory of
interpolation of Banach spaces. For the reader’s benefit, we sketch simple,
self-contained proofs at the end of this section. (These proofs are little
more than appropriate adaptations of the proof of the Riesz-Thorin
theorem.)
We now apply part (a) of Lemma 2. 2 to derive a bound for the term

appearing in (2.10). Fixing t E [tl, t2), we define a linear mapping
S : L2 x Ho -~ L2 by S ( f, g) _ ~rx (., t), where ~) is the solution of the
system (2.7) with data ( f, g). We then define a bilinear form B on

H6 x Ho by

(Recall that (., .) is the usual inner product in L2 ([ - l, 1]).) The two
cases of (2. 20) then show that

and

by the Poincare inequality. Lemma 2. 2 therefore implies that

for all g*, so that

We also have from the 6 = 1 case of (2 . 20) that

so that, by the linearity of S,

A similar argument shows that

To bound the last term on the right-hand side of (2.10), we now define
S where (cp, W) is the solution of (2. 7) with data ( f, g). The
mapping g) from Ho into L2 ([ -1, 1] x [t1’ t2]) is then linear, and
the two cases of (2. 20) show that

Vol. 11, n° 2-1994.
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and

Part (b) of Lemma 2. 2 therefore implies that

We also have from 1 case of (2 . 20) that

Therefore by the linearity of S,

Combining (2. 19), (2.20), and (2.23)-(2.25), we therefore obtain that

which proves (2.10).
Finally, to prove (2.11), we fix t  t2 and let

Assuming that the normalization (2.8) is in effect, we then obtain from
(2.10) and the second equation in (2. 7) that

as required. D

Proof of Lemma 2 . 2. - To prove (a) it suffices to establish the estimate
(2.21) when g and g* are the finite sums

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where the { are as in Definition 1. 2. Fixing such g and g*, we then
define for z e C the function

where a~, a, and [i are as in the statement of the lemma. It follows
easily from the bilinearity of B and the positivity of the Àk that w is an
entire function of z, and that w (z) is bounded in the strip 0 Re (z) __ 1.
It therefore follows from Lindelofs theorem (see Donaghue [1], p. 18, for
a short, self-contained proof) that the function

is log convex on [0, 1]; that is, that

We estimate G(0) and G(l) as follows. From the hypothesis (2.21) for
~’==1, we have that

so that

We obtain in a similar way from the j = 2 case of (2.21) that

Applying these two estimates in (2. 27), we then conclude that

which proves (a).
To prove (b) we first fix a time t2), a trigonometric polynomial g

as in (2 . 26), and a function ~ ~ L2 ([- 1, 1] x t]). We then define

A simple difference quotient argument shows that w is entire, and w is
clearly bounded on the strip 1. The function

is therefore log convex:

Vol. 1 I, n° 2-1994.
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The first hypothesis in (b) shows that

so that

The second hypothesis of (b) shows in a similar way that

Applying (2. 28), we thus obtain that

so that

We then let t~t2 and extend to g E Ho to complete the proof. D

3. APPLICATION TO FINITE DIFFERENCE APPROXIMATIONS

We now apply Theorem 1 . 4 to obtain specific rates of convergence for
certain finite difference approximations to solutions of (1. 1) - (1 .-4). We
consider only the special case in which F1= F2 = 0. Our approximations
are generated by the same difference scheme used in [9], but our application
of Theorem 1 . 4 here yields convergence rates in H°" norm which are twice
the order of the L~ rates previously obtained.
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We define

~ ~ v

and u~e assume that there are constants CZ, ... , C6, and M 1, M2 such
that

"’ v U

By transforming to Eulerian coordinates, it may be seen that this last
condition simply prevents the pistons from either colliding or becoming
arbitrarily far apart in finite time.

In addition, we assume that one of the following cases holds:

Case I. - and for i= 0, 1, ..., J,
and there exists a constant C7 such that

where )) . )) denotes the piecewise L2 norm

We also assume in this case that C2, ..., C7 are sufficiently small, depend-
ing on v and v.

Case II. - This is the same as Case I except that no smallness assump-
tion is imposed, but
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Case III. - v0, u0 ~ H1 ( -1, 1), and there exists a constant C7 such
that

We also assume in this case that

Approximate solutions uh) to ( 1.1 )-( 1. 4) are constructed by the
procedure described in ([8]-[9]), which we now summarize.

Let Ax and At be fixed increments in x and t and set for
k = 0, =b 1, ... , ~ K, where K 1; for

and for n = o, 1, ... We denote by vj and uk approximations to
v tn) and u and we form initial sequences {v0j} and {u0k} by
pointwise evaluation of vo and by integral averages of uo over intervals of
length Ax. We set and We also let x~ be the value

of xk nearest to Yi for i= 1, ..., J with and For

n = 1, 2, ..., { and { are then computed from the scheme

Here 5 is the difference operator (wl + 1~2 - for l = j or k,
and ~, J + 1 ~ 2 is the divided difference

~ J

It was established in [9] that, under appropriate constraints on Ot and
~x, this scheme can be solved up to any fixed time T > Q. In particular,
we assume the existence of a constant C such that
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Thus, given sequences { and { satisfying (3 . 7)-(3 . 9), we construct
approximate solutions to ( 1. 1 ) by interpolating the sequence {unk} to a
function uh (x, t) which is bilinear on rectangles of the form

and by interpolating {vnj} to a function which is bilinear on rectangles of
the form

with appropriate extensions near the lines of discontinuity in Cases I
and II. Approximate functions ph (x, t) and t) are constructed in a
similar way from the The
construction is such that v~, ph, and An are continuous on

[0, tN], i = 0, ..., J, but are discontinuous along lines x = xki,
i=1, ...,J.
The following regularity properties were established in ([8]-[9]), for

1
r> - :

4

In addition, we’ll need the following properties of the sequence {unk},
which were also derived in [8]-[9]:
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The following theorem gives the actual error bound which is obtained
by applying Theorem 1 .4 to the finite difference approximations con-
structed as above.

THEOREM 3 . 1. - Assume that Vo (x), Uo (x), ul (t), and satisfy (3 . 1)-
(3. 6), and assume that the hypotheses of one of Cases I, II, or III are in
force. Assume also that 0394t and Ox are chosen so that the scheme (3.7)-
(3 . 9) can be solved up to time tN _ T and let un) be the functions

constructed as above, satisfying ( 3 . 11 ) ( 3 . 19 ) with 1 4  r  2 1 . Let E _ a (t) be
as in (1 . 24). Then for any a E (0, 1],

(a) Sup E - a ( t) ~ C (a) LE - a (0) + ~ (~x 1 ~ z )] ~
o-r_T

in Cases I and II;
b sup E - a ( t) ~ C (a) CE - a (~) + ~ (Ox ,

0_t_T

in Case III.

where C (oc) may become unbounded as oc ,~ 0.

Proof. - By Theorem 1. 4 (a), we need only prove the following:

LEMMA 3.2. - Let ~1 and ~2 be as in (1.20) and (1.21) and let
0 _- tm  tN _ T. Then under the hypotheses of Theorem 3 . 1,

and

Proof of Lemma 3 . 2. - We prove only (3 . 21) for Cases I and II, since
the proofs of the other results are much simpler. From (1.21)

Now consider the expression

Here, denotes w (xk + 0) - w (x~ - Q~.
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Addihg (3 . 23) to (3. 22), we obtain

From the definitions of uh, ph, and Ah, we find that on rectangles S~,
.

with similar expressions holding on rectangles Ski and along the boundaries.
Using this in the first double integral of (3.24) and integrating by parts,
we can bound this term by

where we have also used the assumption that

For the second term in (3.24) we again use the form of A~ and

triangulate to obtain .
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By using the definition of ~,~ + 1 ~2 and the form of vh, the first term on
the right-hand side of (3 . 27) can be bounded by

(by ( 1 . 23), (3.13), (3.15))
By a Sobolev inequality, this is bounded by

where we have used (3. 14), (3.16), and (3.26). The second term on the
right-hand side of (3 . 27) is

But by (1.23) and (3 . 26)

Thus, the second term in (3 . 27) is bounded by
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Next, we use (3.11) and the form of uf to bound the third term in
(3 . 27) by

But it follows from the construction of uh that

The third term in (3 . 27) is therefore bounded by

where we have also used (3.10). From (3.28), (3.30), and (3.31), the
second term in (3 . 24) is therefore also bounded by

Next, the third term in (3 . 24) is bounded by

which by ( 1. 23) and the bilinear form of Vh and ph, is bounded by

Finally, we consider the fourth term in (3.24) which, after a lengthy
but straightforward argument based on (3 .7), (3.8), and the definitions
of A~ and ph, can be bounded by 

.
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where-

But by a simple Sobolev inequality,

So- from (3.34) and the last inequality in (3.37), the fourth term in

(3 . 24) is bounded by

We now use (3 . 36) to bound B as follows:
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Using this in (3.38) and combining this with (3.25), (3.28), (3.32), and
(3. 33), we obtain

I ~2 (©? in Cases I and II..

In Case III, the fourth term in (3 . 24) is 0, so that

|L2(0, tN, 03C8)|~C|||03C6, 03C8 |||03B1, [0,tN] ax.
This establishes (3.21), and the proof of (3.20) is similar.
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