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ABSTRACT. - We show that mountain-pass theorems can be used to
derive global homeomorphism theorems. Two new mountain-pass theo-
rems are proved, generalizing the "smooth" mountain-pass theorem, one
applying in locally compact topological spaces, using Hofer’s concept of
mountain-pass point, and another applying in complete metric spaces,
using a generalized notion of critical point similar to the one introduced by
Ioffe and Schwartzman. These are used to prove global homeomorphism
theorems for certain topological and metric spaces, generalizing known
global homeomorphism theorems for mappings between Banach spaces.
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RESUME. - On montre que des theoremes du col peuvent être utilises
pour deriver des theoremes d’homeomorphisme global. On prouve deux
nouveaux theoremes du col qui generalisent le theoreme du col « lisse »,
l’un s’appliquant a des espaces topologiques localement compacts, avec
emploi du concept du point de col de Hofer, et l’autre s’appliquant a des
espaces metriques complets, en utilisant un concept generalise de point
critique ressemblant a celui introduit par Ioffe et Schwartzman. Ils sont

Classification A.M.S. : 58 C 15, 58 E 05.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. I 1 /94/02/$4.00/ © Gauthier-Villars

© 1994 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved 



190 G. KATRIEL

utilises pour prouver des théorèmes d’homeomorphisme global pour cer-
tains espaces topologiques et metriques generalisant des theoremes d’homeo-
morphisme global connus concernant des applications entre espaces de
Banach.

1. INTRODUCTION

Mountain-pass theorems and global homeomorphism theorems are

among the important tools for dealing with nonlinear problems in analysis.
The main object of this work is to show that mountain-pass theorems can
be used to prove global homeomorphism theorems. The technique pre-
sented here can be used to prove new global homeomorphism theorems
as well as give elegant proofs of known theorems. The idea is extremely
simple and will be demonstrated presently. Let us first remind ourselves
of the simplest mountain-pass theorem for finite-dimensional spaces.

THEOREM 1. 1. - Let X be a finite-dimensional Euclidean space, f : X -~ R
be a C1 function with f(x) ~ oo ~ ~. If f has two strict local
minima xo and x1, then it has a third critical point x2 with

.f (x2) > max ~ .f (xo)~ 
We now use theorem 1 . 1 to prove the following global homeomorphism

theorem of Hadamard:

THEOREM 1.2. - Let X, Y be finite dimensional Euclidean spaces;

mapping satisfying:
(1) F’ (x) is invertible for all x E X.
(2) ~ ~ F (x) ! ~ ~ oo as ~ ~ x ~ ~  00.
Then F is a diffeomorphism of X onto Y.

Proof. - By (1) and the inverse function theorem, F is an open mapping
(takes open sets to open sets). Thus F (X) is open in Y. Condition (2)
easily implies that F (X) is closed in Y (here the finite-dimensionality is

used, that is the fact that closed bounded sets are compact). Hence since
Y is connected, F (X) = Y. In order to show that F is a diffeomorphism it
remains to show that F is one-to-one. Suppose by way of contradiction
that We define a function f:X ~ R by

f(x)=1 2~ F(x)-y~2. f is C 1 and: f’(x)=F’*(x)(F(x)-y). By (2),f(x) 
2 2 

] ] F (x) - y ) ] 2. f is C1 and: f’ (x) = F’ * (x) (F (x) - y) . By (2),

Clearly xo and Xl are (global) minima of , f, and
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since by the inverse function theorem F (x) 5~ F (x;) for x in a neighborhood
of x~ (i = 0, 1), we get that xo, x 1 are strict local minima. Therefore we

conclude from theorem 1 . 1 that there exists a third critical point x2 with
f (x~) > 0. So we so But since x2 is a
critical point of f we have: F’* (x2) (F (x~) - y) = ~. But this contradicts the
invertability (assumption 1)..
Our aim is to use the simple method of this proof in more general

settings. In section 3 we prove a global homeomorphism theorem valid in
certain topological spaces. For this we will need to prove a topological
mountain-pass theorem, which we do in section 2. This theorem is, I

believe, of interest in itself, since it shows that an "analytic" theorem
(theorem 1 .1 ), usually proved by "analytic" means (deformation along
gradient curves), is in fact, a consequence of a general-topological theorem.
In section 4 we compare the results of section 3 with known global homeo-
morphism theorems based on the monodromy argument. The global home-
omorphism theorem of section 3 does not, however, apply to spaces which
are not locally compact. The same thing happens in the smooth case,
where theorem 1.1 above is not true for infinite-dimensional spaces, and
we need an extra assumption, the Palais-Smale condition, for it to be true.
The Palais-Smale condition, however, is a metric condition, and makes
no sense in a topological space. Therefore in section 5 we define a new
concept of critical point on a metric space, formulate a Palais-Smale
condition for functions on metric spaces, and prove a mountain pass
theorem in metric spaces. This theorem is applied in section 6 to generalize
Banach space global homeomorphism theorems to certain metric spaces,
and also to nonsmooth mappings on Banach spaces. In Section 7 we use
a recent mountain pass theorem of Schechter to prove another type of

global homeomorphism theorem, proved first by Hadamard.

2. A TOPOLOGICAL MOUNTAIN-PASS THEOREM

In this section we will prove a mountain-pass theorem which is valid in
a large class of topological spaces. This may initially seem impossible,
since the standard mountain-pass theorems like theorem 1.1 contain the
concept of "critical point", and in order to formulate this concept we
need a differentiable structure. However, certain critical points can be
characterized topologically, like local minima and maxima, and also

mountain-pass points, a concept introduced by Hofer for functions on
Banach spaces, but which makes sense in any topological space.
DEFINITION 2 . 1. - Let X be a topological space, f: X -~-~ R a function.

x E X is called a global mountain-pass (MP) point of f if for every neighbor-
hood N of x the set {y|If (y) f(x)} n N is disconnected. x is called a

Vol. 1 I , n° 2-1994.



192 G. KATRIEL

local MP point of f if there is a neighborhood M of x such that x is a

global MP point for f ~M.
Hofer [5] proved in the Banach space case that the critical point ensured

by the mountain-pass theorem is in fact either a local minimum point or
a global MP point. Note that if x is a differentiable manifold and f is C~
then any local MP point is automatically a critical point of f. This follows
at once from the following "linearization lemma":

LEMMA 2. 1. - If X is a Banach space, U c X is open, f : U --~ R is C ~,
xe U and f’ (x) ~ 0, then there is an open ball B in X with center at 0, a
diffeomorphism H : B -~ H (B) ~ U with H (0) = x, and a linear functional l
on X such thatf(H(w))=I(w)+f(x) for w E B. Moreover, we may choose
l = f’ (x), and H so that H’ (0) = I.

Proof - Let l = f’ (x), and let Z be the subspace of X annihilated by l.
Choose v  Z, and let x be the projection of X onto Z defined by:
x (h) = h - [l (h)/l (v)] v. Define F : U -~ X by:

The derivative of F at x is given by: 
that is F’ (x) = I, so by the inverse function theorem F is invertible in a
neighborhood of 0 E X, that is, there is a diffeomorphism H from an open
ball B with center 0, with and F (H (w)) = w for weB, that is:

for WEB. Applying I to both sides we for w e B,
which is what we wanted..

This lemma shows that near a regular point (i. e. a non-critical point) a
smooth function looks topologically like a nontrivial linear functional,
and since a linear functional has no MP points, we get that a regular
point cannot be a MP point, so a MP point must be a critical point.
Now we will see that the concept of MP point not only allows us to

gain a better understanding of what the critical point ensured by the
mountain-pass theorem is like, as in the smooth case, but also to formulate
a mountain-pass theorem in a context where the notion of critical-point
is nonexistent. All topological spaces will be assumed to be regular.

DEFINITION 2.2. - A topological space X will be called compactly
connected i~’ for each pair xo, xl E X there is a compact connected set K E x
with xo, xi e K.

DEFINITION 2 . 3. - A function f : X -~ R will be said to be increasing at
infinity if for every x E X there is a compact set K c X such that fez) > f(x)
for every z ~ K.
We note here that a topological space admiting a continuous function f

which is increasing at infinity must be locally compact, since the sets
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~ x ~ f {x)  e ~ ( - oo  c  supX f ) form an open covering of the space by
pre-compact sets.

LEMMA 2.2. - Let X be compactly connected, locally connected and
locally compact and C an open and connected subset of X. Then C is

compactly connected.

Proof - Let Xo E C and let B be the union of all compact connected
sets contained in C and containing xo. We must show B = C. Since C is
connected it suffices to show that B is open and closed in C. For x E B,
let No be a compact neighborhood of x (X is locally compact). Let 0~ 1
and O2 be nonintersecting open sets containing x and C~ respectively (we
use here the regularity of X). Let Then N 1 is a compact
neighborhood of x contained in C. By local connectedness of X there is a
connected neighborhood N c N 1 of x, so N is a compact connected
neighborhood of x contained in C. Since x E B there is a compact connected
set K c C containing xo and x. Since K U N is compact, connected, and
contained in C, we see N m B, so B is open. To see that B is closed in C,
let x ~ B ~ C. As previously, let N be a compact connected neighborhood
of x contained in C. Since x E B, there is some y e B (~ N. Let K c C be a
compact connected set containing xo and y. Then K U N is a compact
connected set containing xo and x and contained in C, so x E B, hence B
is closed..

THEOREM 2.1. - Let X be a locally connected, compactly connected
topological space, f: X ~ R continuous and increasing at infinity. Suppose
xo, xi e X, S ~ X separates xo and xl (that is, xo and xl lie in different
components of X - S), and:

Then there is a point x2 which is either a local minimum or a global MP
point of f, with: f (x2) > max ~ f {xo), , 
Proof - Let r be the set of all connected compact subsets of X

containing both xo and xl. Since X is compactly connected, r is nonempty.
We define 03A6 : 0393 ~ R by (AeF):

Let Since S separates xo and x 1, every AEr inter-
sects S, so c >__ p. We will now show that the infimum c is attained, that is,
there is B E r with C (B) = c. To do this, we choose a sequence {An} c r
such By the assumption
that f is increasing at infinity there is a compact set K such that

> ~ for K. It follows that An c K for all n. This implies that

Vol. 11, n° 2-1994.



194 G. KATRIEL

the sets B~ = are contained in K, and they are also connected
since each A~ is connected and Xo E An for all n. So Bk form a descending
sequence of closed connected subsets of a compact set, hence by an
elementary topological result (see [3], theorem 4. A. 8) k >__ 1 ~
is compact and connected, and contains xo and x i . So BE r and it is easy
to see that ~ (B) = c.
We will now show that f -1 (c) contains either a local minimum or a

global MP point of f : Suppose by way of contradiction that this is not
the case. Let C be the connected component (c) containing xo.
C is open because X is locally connected. We now show that:

Suppose x E C and x ~ f -1 (c). Then the set C ~,l ~ x ~ is connected (since it
lies between C and C) and contained in (c), but since C is maximal
among such sets we must have C ~ ~ x ~ = C so x E C. We shall show that
B c C, so that together with 2 we get: B c C (c). But this implies
that x1 ~ C (since is impossible by 1 and the fact that c>p).
However, since C is open and connected and X is compactly connected
and locally compact (since it admits a function increasing at infinity), C
is compactly connected by lemma 2. 2. So there is a compact connected
set K c C containing xo and and since f(x)c for x ~ C, we get:
~ (K)  c - in contradiction to the definition of c. So we only have to show
that B c C, or: B n C = B. Clearly B n C is relatively closed in B. Since B
is connected it suffices to show that C is relatively open in B. So let
xEB n C. We must construct a neighborhood N of x such that

c B Q C. If x e C, we can take N = C, because C is open. Otherwise,
by 2, x E , f - x (c). In this case we use the assumption tirat x is not a global
MP point to find a neighborhood N of x such that M = {y ~, f ( y)  c ~ (~ N
is connected. Since x E C, there exists Since u E C, , f ’(u)  e, so
u E M. So we see that the two connected sets C and M intersect, and since
C is a maximal connected set in ~ - f -1 (c):

Suppose now w (c) P) N. By assumption, w is not a local minimum
point, so: w E M. So:

Now using 3 and 4:

So N (~ B c B ~ C, which is what we wanted..
The following corollary is easier to apply:

COROLLARY 2 . .1. - Let X be a locally connected and compactly connected
topological space, f : ~ -~ R continuous and increasing at infinity. If xa and
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Xl are strict local minima of f then there exists x2 ~ X different from xo, xl
such that x2 is either a local minimum or a global MP point and

f(x) > 

Proof. - Without loss of generality we assume f(xo) >__ As remar-

ked before, X must be locally compact. Let N be a compact neighborhood
of xo such that f(x) > f(xo) for x E N - { x0} (xo is a strict local minimum).
aN is compact and does not contain xo. Let the minimum of _f’ on aN be
p. Then p >. f(xo), by the choice of N and the assumption that
f (xo) >_ f (xl). So taking S separates xo and xl, and we can apply
theorem 2.1 to conclude the existence of the desired point..
Note that corollary 2 . 1 together with the fact that a MP point of a

smooth function is a critical point, implies theorem 1 . 1, since a function
on R" satisfying f(x) ~ + oo as ~x~ ~ oo is increasing at infinity. I would
like to draw attention to the elementary general-topological nature of the
proof of theorem 2 . 1 in contrast with the "classical" proof of theorem 1 . 1
which uses deformation along gradient curves and thus requires in an
essential way a differentiable structure.

3. APPLICATION OF THE TOPOLOGICAL MOUNTAIN-PASS
THEOREM TO GLOBAL HOMEOMORPHISM THEOREMS

A mapping F : X - Y (X, Y topological spaces) is called a local homeo-
morphism at xo if there is a neighborhood U of xo such that F (U) is a
neighborhood of F (xo) and F : U -~ F (U) is a homeomorphism. It is called
a local homeomorphism if it is a local homeomorphism at each point
of X. A global homeomorphism is a homeomorphism of X onto Y. It is
important to know under what additional conditions a local homeomor-
phism is a global homeomorphism. F : X -~ Y is called proper if for every
compact set K c Y, (K) is compact.
The following lemma is not hard to prove:

LEMMA 3. l. - Let X, Y be topological spaces, Y connected and locally
compact. Let F : X ~ Y be a local homeomorphism and a proper mapping.
Then the cardinali ty of ( y) is finite and constant for each y E Y.
We are now ready to prove the main theorem of this section:

THEOREM 3.1. - Let X, Y be topological spaces, Y connected and X
locally connected and compactly connected. Then at least one of the following
holds:

(I) Every continuous f: Y~ ~ R which is increasing at infinity has either
an infinite number of local minima or a local MP point (or both).
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(II) Every proper local homeomorphism F : X -~ Y is a global horneo-
morphism.

Proof - As we remarked before, the existence of a continuous function
on Y which is increasing at infinity implies that Y is locally compact, so
if Y is not locally compact (I) is satisfied in a trivial way. So we may
assume from now on that Y is locally compact. Let us assume that (II) is
not satisfied and prove (I) holds. Let f : Y -~ R be continuous and increas-
ing at infinity. f has at least one local minimum: a global minimum whose
existence is assured by the fact that f is increasing at infinity. Suppose it
has only a finite number of local minima. Let yo be a local minimum
point at which the value of f is maximal. Since there are only a finite
number of local minima, y~ is a strict local minimum. Since (II) is not
satisfied there exists a proper local homeomorphism F : X -~ Y which is
not a global homeomorphism. Since F is a local homeomorphism it is

open. If card ( y)) were equal to 1 for all y E Y, F would be a global
homeomorphism. Hence card ( y)) ~ 1 for some y E Y. By lemma 3 .1
card (F ’ ~ ( y)) = card (F " ~ (yo)) for every y e Y, so we see that
card {yo)) > 2. Let xo and x i be such that F (xo) = F {x 1 ) = yo 
Define g : X - R by g= fo F. Since f is increasing at infinity and F is

proper, g is increasing at infinity. Since F is a local homeomorphism and
yo is a strict local minimum off, xo and xi are strict local minima of g.
We can thus apply corollary 2 .1 to conclude that there is a point x e X
which is either a local minimum or a global MP point of g, with

So f(F (X)) > f(yo). But since F is a
local homeomorphism, yi = F (x) is a local minimum or a local MP point
of f (local MP points are invariant under local homeomorphisms, though
global MP points are not). But since yo was chosen to attain the maximal
value among local minima, yi must be a MP point. So we have

proved (I)..
Theorem 3 .1 can be applied in two ways. Suppose we are given spaces

X, Y satisfying the assumptions of the theorem, and suppose we can find
a continuous function f on Y which is increasing at infinity and has only
a finite number of local minima and no MP point. Then we know
that (II) holds, that is, every proper local homeomorphism is a global
homeomorphism. On the other hand, if we can find a single proper local
homeomorphism F : X -~ Y which is not a global homeomorphism, then
(I) holds. We begin with the first kind of application, and make the
following definition:

DEFINITION 3.1. - A continuous function f : Y -~ R which is increasing
at infinity and which has only a finite number of local minima and no local
MP point is called a simple function. A topological space Y which admits
at least one simple function is called a simple space.
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So we have:

THEOREM 3. 2. - If X is locally connected and compactly connected and
Y is simple and connected, then any proper local homeomorphism: F : ~ ~ Y
is a global homeomorphism.
Note that if f is a continuous function which is increasing at infinity,

and if f has no local minima or MP points except for the global minimum,
then f is a simple function. This allows us to give examples of simple
spaces:

component). For n =1 this does not work since in this case the maximum
point of f is also a local MP point.

Applying 3. 2 for X = Y = Rn we get that every proper local homeo-
morphism from Rn to itself is a global homeomorphism. This

generalizes 1. 2. Applying 3. 2 for (n > 1 ), we get that every
local homeomorphism from Sn to itself is a global homeomorphism
(properness is immediate since Sn is compact). Both of these results are
not new. Their usual proof depends, however, on a monodromy-type
argument and is based on the simple-connectedness of the spaces. In the
case of Sn, it is much easier to construct a simple function than to show
simple-connectedness. In the next section we shall make a comparison of
theorem 3 . 2 and the monodromy theorem.
We now turn to the second kind of application of theorem 3.1, which

is proving the existence of "critical" points.

THEOREM 3.3. - Let W be a compactly connected, locally connected
topological space. Let X= S1 X W. Then every continuous function on X
which is increasing at infinity has either an infinite number of local minima
or a MP point (or both).

Proof - X inherits the compact connectedness and local connectedness
of W. We want to prove (I) of theorem 3 . 1, so by that theorem it is
sufficient to display a proper local homeomorphism F : X -~ X which is
not a global homeomorphism. Representing points of S I by (cos (t), sin (t)),
such a mapping is given by:

F (cos (t), sin (t), w) = (cos (2 t), sin (2 t), w) ..

As an example we can take x S~ x ... x S 1 (n factors, n >__ 2).
Since theorem 3 . 3 applies and we conclude that every con-
tinuous function on Tn has either an infinite number of local minima or a
local MP point or both (since X is compact any function is increasing at
infinity).
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As another application we take X=S", Y = Pn (n-dimensional projective
space, and F : X -~ Y the standard projection identifying antipodal points.
F is a proper local homeomorphism but not a global homeomorphism.
We conclude from theorem 3 .1 that every continuous function on P ~‘ has

an infinite number of local minima or a local MP point.

4. COMPARISON WITH THE MONODROMY ARGUMENT

A map F : X -~ Y is called a covering map if each y E Y has an open
neighborhood U such that (U) is a disjoint union of open sets, each
one of which is mapped homeomorphically onto U by F.
The following theorem will be called the monodromy theorem (the proof

follows from [12], theorem 2.3.9):

THEOREM 4 . 1. - If X is path-connected, Y is connected and simply-
connected, and F is a covering map, then F is a global homeomorphism.

In order to apply theorem 4. 1 to our question of giving criteria for
local homeomorphisms to be global, we must give conditions under which
a local homeomorphism is a covering map. Various such conditions have
been given by Browder [2]. For example, he proved that if X is normal,
Y is connected and has a countable base of neighborhoods at every point,
then every proper local homeomorphism from X to Y is a covering map.
Together with the monodromy theorem we get, for example, that every
proper local homeomorphism from a Banach space X to a Banach space
Y is a global homeomorphism. This famous theorem of Banach and
Mazur cannot be derived from theorem 3 . 2 unless Y is finite dimensional,
since an infinite-dimensional Banach space is not simple because it is not
locally compact. Therefore we see that the monodromy argument works
in situations where our argument fails.
On the other hand, while the monodromy theorem requires the space

X to be path-connected, this assumption is not made in theorem 3 .2. In
fact there exist spaces which are compactly connected and locally con-
nected but not path connected (example: a countable set with the co-finite
topology: finite sets are closed), so that theorem 3.2 can be applied to
such spaces, but not any theorem which is based on the monodromy
theorem.

The major difference, however, between the monodromy theorem and
theorem 3 .2 is that Y is assumed to be simply-connected in the first and
simple in the second. The relation between these two properties is not
clear at present. It seems reasonable that at least for "nice" spaces (mani-
folds, for example) the two properties coincide. In fact I have not found
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any examples of simple spaces which are not simply-connected or vice
versa. We leave these as open problems.

5. CRITICAL POINTS IN METRIC SPACES

In this section we prove a mountain-pass theorem which generalizes the
Banach space mountain-pass theorem to continuous functions on metric
spaces. We will use a definition of "critical point" of a continuous function
on a metric space, which reduces to the regular definition in the smooth
case, and which is inspired by, but different from, a definition given by
Ioffe and Schwartzman [7] in the context of Banach spaces.

DEFINITION 5 . 1. - Let (X, d) be a metric space, x ~ X, and f a real
function defined in a neighborhood of x. Given b > 0, x is said to be a 03B4-

regular point of f i. f ’ there is a neighborhood U ofx, a constant oc > 0, and a
continuous mapping ~ : U X [0, oc] -~ X such that for all (u, t) E U X [o, oc]:

~ is called a ~-regularity mapping for f at x. x will be called a regular
point of f if it is ~-regular for some b > 0. Otherwise it is called a critical

point of’,f: We define the regularity constant of f at x to be:

If x is a critical point of f we set 6 ( f, x) = ©. We say that f sa tisfies the
generalized Palais-Smale condition Any sequence {xn} c X with

bounded and 03B4 ( f, xn) ~ 0 has a convergent subsequence. It is said
to satisfy the weaker condition (PS)c (where c E R) if the above is true under
the additional assumption that f(xn)  c.

LEMMA 5 . l. - If X is a Banach space and f : X -~ R is C1, then
b ( f f In particular, the generalized notion of critical point
coincides with the usual one in this case.

Proof. - First we show that f is 6-regular at x for every 0  ~  I I f’ .

Choose v~X with and f’ (x) (v)>03B4. Let 03C8(u, t) = u - tv.
Condition ( 1 ) in the definition of regularity mapping is obviously satisfied.
By strict differentiability of f at x we have:

So condition (2) also holds. So f is 5-regular at x. We now show that if
~ > ~ ~ , then f is not 8-regular at x. Suppose it were. Then we would
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have ~ : U X [0, oc] --~ X with:

Combining these two inequalities we get:

But differentiability of f implies that there is a neighborhood V of x
such that for u, v E V we have:

contradicting the previous inequality when (u, t) is close enough to

(x, 0)..

LEMMA 5 . 2. - ~ ( f, x) is lower-semicontinuous as a function of x. In
particular, if x,~ -> x and b ( f, xn) -~ 0 then x is a critical point off

Proo~ f : - We only have to note that a 6-regularity mapping for f at x
is a 6-regularity mapping for any point in a neighborhood of x..
We are now prepared to state and prove a mountain-pass theorem

based on this notion of critical point. The proof of the theorem is an

adaptation of the proof of the smooth mountain path theorem given in [8].

THEOREM 5. I . - Let f be a continuous function on a path-connected
complete metric space X. Suppose xo, xl EX, F is the set of continuous
curves y : [0, 1 ] ~ X with y (0) = xo and y ( 1 ) = x 1 and the function ~’ : I-’ ~ R
is defined by:

Let c = inf (03A5 (y) |03B3~ 0393} and c1 = max{f(x0), f(x1)}. If c > c 1 and f satisfies
(PS)c then there is a critical point x2 of f with = c.

Proof. - We make r into a metric space by defining:

It is well-known that this makes r a complete metric space, and the
function T continuous. We shall construct, for every E > o, a point 
such that and 8(/, By the (PS)~ condition and
lemma 5 . 2, this will imply the existence of a critical point w with f (w) = c,
which is what we want.
We may assume 0  E  c - Choose Yo E r with T (yo) _ c + 8. According

to Ekeland’s variational principle [4], there is y 1 E r such that

for any y E h, We shall show that for some s ~ [0, 1] ] we have:
c-~ _ f (y 1 (s)) and 03B4 ( f, y 1 (s))  ~1/2. If not, then for each
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s E S = ~ t E [0, 1] there exists r (s) > 0, oc (s) > 0 and a regu-
larity map ~S : B (yi [~, a (s)] -~ X with:

By continuity, for each s E S there is an interval I (s), relatively open in
[0, 1], containing s such that c r (s)/2). Since S is com-

pact, we may choose a finite subcovering I (si), I (s2), ... , of S. We
define for 1  i _ k :

0 otherwise.

Let ((): [0, 1] ] ~ [0, 1] be a continuous function such that:

~ (t) =1 when c .f (yi (t))
~ (t) = 0 when 

Let:

We now define y~ : [o, 1] ] -~ X, 1 _ i _ k + 1, by: y 1. For 1 __ i __ k:

We show, by induction, that each yi is defined, and that:

This is certainly true for i =1. Assuming it is true for i, suppose t E [0, 1]
is such Then t~I (si), so yl (t) E B (yl (si), r (sL)/2). From
this and from equation 6 we get that for each t E [0, 1]:

so:

also:

and these last two inequalities show that is well-defined. Continuity
of yi+1 is easy to verify. By property (1) of regularity mappings:

implying:

Vol. ll, n° 2-1994.



202 G. KATRIEL

k

we use here the fact that i (t) _ 1 so 6 is true for i + 1. By the

assumption E  ~ - cl we have:

So 03C6(0)=03C6(1)= 0. Thus yi (o) = xo, yi ( 1 ) = x 1 for each 1 _ i  k + I , so

We now set y2 =yk+ ~ ~ By property (2) of the regularity mappings,
for I _ i _ k:

adding these inequalities, we get, for all 1]:

If to is such that (to)) _ ~ ~YZ) we get f (Y1 (to)) ~to)) ? c, so

)) (~o) = 1. Therefore (to)) -.f (Y 1 (to)) c - ~ 1 ~~ ri, so :

In particular 03B31 ~ 03B32. From equation 7:

From this and 8:

which contradicts the choice of yl (equation 5)..

6. GLOBAL HOMEOMORPHISM THEOREMS
IN METRIC SPACES

We now apply the mountain-pass theorem of the previous section to
prove criteria for global homeomorphism theorems in metric spaces, using
the same idea as before of associating a function to the mapping. We are
able to do this in a nonsmooth context, using the surjection constant
introduced by Ioffe [6]. Given a mapping F : x -~ Y (metric spaces) we set
for t>O:

Sur (F, r) c P(B(x, t)) ~
sur (F, Sur (F, x) (t)

t - 0+

sur (F, x) is called the surjection constant of F at x.
If X, Y are Banach spaces and F is a local diffeomorphism at x, we

have, by Ljusternik’s theorem:
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LEMMA 6. 1. - If F : X - Y is a local homeomorphism, g : ~ --~ ~,
xeX and sur (F, in a neighborhood of x. Then:

S (f; x) > ~ (g, F (x)) c.

Proof. - Let B be a ball around x in which F is invertible and such
that sur (F, x’) >__ c for x’ E B, and let G : F (B) -~ B be the inverse of 
Let 0  b  ~ (g, F (x)), and let ~’ : B’ x [0, a] -~ Y be a 5-regularity mapping
for g at F (x), where B’ around F(x) and C’l>O are chosen so small

that T (B’ x [0, C’l]) c F (B). We define G (B’) x [0, a~c] --~ X by:
~’1 (u, ct)). We have:

and:

These last two inequalities show that 1 is a be regularity mapping for f
at x..

DEFINITION 6. I. - A metric space Y will be called nice if it admits, for
each y E Y, a continuous PS function gy : Y ~ R, satisfying:

(A) y is a unique global minimum of gy
(B) The only critical points that gy has are y and (possibly) global

maximum points, and these are isolated.
(C) There is a such that b (gy,_ u) > ~3 for u ~ y in a neighborhood

ofy.

LEMMA 6. 2. - A Banach space is a nice space.

Proof. - Let Y be Banach space. For each y~Y, take 
(A) is obvious. To prove (B) and (C) it suffices to show that S (gy, x) > 1
for each Without loss of generality we take y = o. Fix To

show that gQ is I-regular at x, we construct a regularity map:
‘~ (u, t ) = u - We have:

(the last equality is true for t~i u Which shows that 03A8 is a I -regularity
mapping for 

LEMMA 6 . 3. - If X is the unit sphere in a Hilbert space H then X is a
nice space.

Proof - Fix y~X and let M be the tangent hyperplane to X at y. We
define the Riemann projection F from ~- ~ -y ~ to H by taking, for each
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F (x) to be the point at which the line through - y and x
intersects M. It is not hard to prove that F is a homeomorphism and

for every Defining h : X - ~ - y ~ -~ R by
h {x) _ ~ ~ F (x) - y ~ ~, we see by lemma 6 .1 that b (h, x) >_ 1 for x 5~j~. Defining
gy (x) =1- e-h ~x~ for x ~ - y and gy ( - y) =1, we get that gy is continuous.
We have 03B4(gy, x)~e-h(x), which easily implies that gy is PS and also (B)
and (C) of the definition of nice space. (A) is obviously satisfied..

It should also be possible to prove that spheres in more general Banach
spaces are nice spaces, though there are some technical difficulties.

LEMMA 6 . 4. - is continuous and bounded from below, then
there is a sequence {xn} c X with f(xn) ~ infx f and 03B4 (. f ~ 0.

Proof - Given ~>0, there exists, by Ekeland’s variational principle, a
point v E X with ~(v) __ s + infx f and

for all u ~ v. This implies that f is not E-regular at v. For if ~P were a
regularity mapping at v, we would have, combining (1) and (2) in the
definition of regularity map:

contradicting 9 (take u = ~ (v, t )) ..
The following lemma appears in [1] for smooth functions:

LEMMA 6. 5. - If f is continuous, (PS), and bounded from below, xo E X,
then:

Proof - Assume on the contrary d (xn, xo) ~ oo while
for all n. Then using the strong form of Ekeland’s

Variational Principle, we can find for each n Un such that:

and for all u ~ un:

From 10 we get that un ~ ~. From 11, we get, as in the proof of the
previous lemma, that: c~ (~, un) -~ 0. These two facts together contradict
the assumption that f is (PS)..
A set S in a topological space will be called discrete if each point x~S

has a neighborhood N such that S ~1 N = ~ x ~ .
THEOREM 6. I. - Let X, Y be complete path-connected complete metric

spaces, such that X remains path-connected after the removal of any discrete
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set, and Y is nice. Then if F: ~ -~ Y is a local homeomorphism satisfying,
for some (hence any) yo E y:

for all k > o, then F is a global homeomorphism.

Proof - Let F : X -~ Y be a local homeomorphism satisfying the

assumption. Fixing we shall show that ( y) consists of precisely
one point. Let gy be a function satisfying (A)-(C). Let f= gy 0 F. By
Lemma 6 . 4, there exists a sequence {xn} c X with

Since by lemma 6 . 5 g~, (w) - oo as w - we have by 12 that F (xn) is

bounded, so suppose d (F (xn), yo)  k for all n. By our assumption there
is some d>O such that sur(F, x) > d if F(x)EB(yo, k). By lemma 6.1
this implies 8(/, xn) >_ ~ (gy, for each n, so by 13 we get:
b (gy, F (xn)) - 0, which implies, since gy is (PS) that { F (x,~) ~ has a conver-
gent subsequence. Without loss of generality, we assume 
itself converges to a point zeY. By lemma 5 . 2, z is a critical point of gy.
By property (B), either z = y or z is a strict local maximum of gy. If the
second possibility were the case, then we would have, for n large enough:

but on the other hand f(xn) --+ m, that is gy (F (xn)) ~ m, so gy (z)= m-
contradiction. Therefore z = y, so by (C) either F (xn) = y for n sufficiently
large, or 03B4 (gy, F (xn)) > 0 for all n large enough, contradicting the fact
that § (gy, F (xn)) --~ 0. Thus we have F = y for n large enough, showing
that (y) is nonempty.
To show that (y) contains no more than one point, we assume by

way of contradiction F (xo) = F (xi) = y We let c, c1 be as in
theorem 5.1. Since y is a unique global minimum of gy and F is a local
homeomorphism, xo and x 1 are strict local minima of f, which implies

We now show that f satisfies (PS)~. Suppose ,f (x~) -~ c and
S ( f, xn) - 0. As before, this implies 8 (gy, F (xn)) -~ 0, so F (xn) -~ w. We
have gy (w) = c. So w ~y. By lemma 5 . 2 w is a critical point so by (B) it is
a global maximum point, so c = maxy gy. Therefore the set g; 1 (c) consists
of global maxima, so by the second part of (B), it is discrete, so

f -1 (c) = F - I (g~ ~ (c)) is discrete since F is a local homeomorphism. So
by our assumption on X, X - f - I (c) is path-connected. So there exists a
path y : [0, 1 ] -~ X - f -1 {c) with ~y (Q) = xo, ~y ( 1 ) = x 1. Since f(xo)  c 1  c

we must have f (y (t))  c for all t e [0, 1], so (in the notation of theorem 5 .1)
T (y)  c, contradicting the definition of c. Therefore we have shown there
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can exist no sequence xn as above, so (PS)c is satisfied in a trivial way.
Thus we see that f satisfies the conditions of theorem 5 . 1, which implies
the existence of a critical point x of f with f(x) = c. By lemma 6 . 1 and
the fact that sur (F, x) > 0, we get that u = F (x) is a critical point of gy
with gy (u) = c. But this, as we have shown in the argument above, is

impossible, and we have arrived at the desired contradiction. Therefore
F-l (y) consists of exactly one point for each y E Y, and F is open since it
is a local homeomorphism, so F is a global homeomorphism..
As an immediate consequence we get the following theorem, which

generalizes a theorem of Plastock ([9], theorem 2. 1), both in the sense of
applying not only in Banach spaces, and in the sense that it applies to
non-smooth mappings in the Banach space case:

THEOREM 6.2. - Let X be a path-connected metric-space and such that
it is not path-disconnected when a discrete set is removed. Let Y be a nice
metric space. Let F be a local homeomorphism satisfying:

(a) x --~ oo, that is, for some (hence any) 
yo) -~ + oo as d (x, xo) - + oo .

(b) For any ball B c X : inf ~ sur (F, x) I x E B ~ > 0
then F is a global homeomorphism.

Proof - We show that (a), (b) imply the assumption of theorem 6 . 1.
Given k > o, there exists, by assumption (a), some r > 0 such that

d (F (x), yo) > k for d(x, xo) >__ r. We have, using (b):

which is what we wanted..
As another consequence, we get a generalization of [ 11 ], theorem 1. 22:

THEOREM 6 . 3. - X is a path-connected metric space which is not path-
disconnected by the removal of a discrete set, and Y a nice metric space.
Let F : X -~ Y be a local homeomorphism satisfying:

Then F is a global homeomorphism.

Immediate..

7. SCHECHTER’S MOUNTAIN PASS THEOREM

AND HADAMARD’S GLOBAL HOMEOMORPHISM THEOREM

We now move to another type of global homeomorphism theorem
proved by Plastock ([9], theorem 3.2), which he attributes to Hadamard,
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in which the assumption is that an integral involving the derivative of the
mapping diverges.

THEOREM 7 . 1. - Let X, Y be Banach spaces, F : X ~ Y a C1 mapping
with F’ (x) invertible for all x ~ X. 

then F is a diffeomorphism of X onto ~.
Happily, a new mountain pass theorem proved by Schechter ([10],

theorem 2 .1 ), together with our technique and a theorem of Ioffe, implies
this theorem immediately. Actually, we need a non-smooth generalization
of Schechter’s theorem using Clarke’s subgradient, but to obtain this

generalization all we have to change in Schechter’s proof is the construction
of a Lipschitz pseudo-gradient field for a non-smooth function, as shown
by Zaslavskii ([13], lemma 1).

THEOREM 7. 2. - Let X be a Banach space, f : X ~ R a locally Lipschitz
function. For each x E X we define:

Where af(x) denotes Clarke’s subgradient. Let e E X be an element such
that 0, r > 0, pER, and suppose that:

Then for every positive non-increasing function ~ (t) in (0, oo) such that:

there is a sequence ~ c X such that:

The following was proved by Ioffe [6]:

THEOREM 7. 3. - Let F X ~ Y be continuous, m a positive lower-

semicontinuous function on [o, oo) such that, for all x ~ X :

Then, for every r > 0:
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Proof of theorem 7 . 1. - Defining:

We have that m (t) is continuous since F is C l, and sur (F, 
so the divergence of the integral of m (t) and theorem 7 . 3 imply that F is
surjective.
To show F is one-to-one, we assume Define:

x ) 1 2 ~ ~ F ( x) - .Y’ ~ 2. f is clearly locally Lipschitz, and:

We have: f (xo) =,f (xl) = o, and since F is a local homeomorphism there is
some r>O such for x satisfying Thus from
theorem 7 . 2, there is a sequence {uk} with f(uk) ~ b~ p and:

Since we have: = I for x* E a ( ~ . I ~ (x), 0, we get, for x such that

This contradicts 14 for k large enough, since for k large
enough..
We should mention that Ioffe ([6], theorem 2) extended theorem 7.1 to

nonsmooth mappings using Plastock’s method. This, and an extension of
theorem 7.1 to some metric spaces, could be achieved by our method,
provided Schechter’s theorem can be generalized to metric spaces using
the generalized notion of critical point. We shall not pursue this here.
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