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ABSTRACT. - In this paper I describe and resolve affirmatively the
following question: For a function on the unit interval possessing an
absolutely continuous first derivative, does the joint distribution of the
function and its first derivative fully determine the distribution of the
second derivative? I also describe some consequences and extensions of
the result.
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RESUME. - Dans ce travail nous abordons et resolvons affirmativement
la question suivante : Soit une fonction reelle definie sur l’intervalle [0, 1] ]
et dotée d’une dérivée premiere absolument continue. Est-ce que la distri-
bution conjointe de la fonction et de sa dérivée premiere determine complè-
tement la distribution de la derivee seconde? Nous décrivons quelques
consequences et generalisations de ce resultat.

A recent investigation into the behavior under homogenization of second
order materials with negative capillarity [CMM] led to the formulation of
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certain questions concerning distribution functions of absolutely continu-
ous mappings on a real interval, none of which appears to have been
examined previously. The present article describes and resolves one of
these questions: For a function on the unit interval possessing an absolutely
continuous first derivative, does the joint distribution of the function and
its first derivative fully determine the distribution of the second derivative?

Given any measurable mapping w : S~ --> (Rm, with Q a bounded measura-
ble subset of (RN, the (mass) distribution f.! = ~.’~ denotes that Borel measure
on (Rm defined by

where LN denotes N-dimensional Lebesgue measure and B(Rm) denotes
the Borel a-algebra on IRm [N =1 for most of this paper]. For brevity, we
will also write for w a measurable LN equivalence class.

Given a function (0, 1), where W 2 ° 1 (0, 1) denotes the Sobolev
space of real functions on (0, 1) possessing two summable generalized
derivatives, there are several associated (mass) distributions to be consi-
dered : one for each of the functions u, u’, u" as well as for the mappings
f = (u, u’), g = (u, u’, u"), etc. We are here interested in the linkage between
certain of these distributions, in particular between the distribution J.l: 
and the distribution ~t : = is hereafter called a joint distribution for
emphasis. Our main result shows that y is characterized by x; in particular,
if u, v are such that ue = "’> then it necessarily follows that = 

Our arguments will utilize two results stated below (cf [S] Ch. IX; [F]
Theorem 2.10.10). In stating the first result we utilize terminology stem-
ming from the following definition of Bouligand ([S], p. 263; [F], p. 233;
[MM1], p. 304), see also [AE].

DEFINITION. - An element v E IRm is a bilateral unit tangent to the closed
set S of IRm at the point y~S provided that there exist sequences

~ Y~ ~ S converging to y and satisfying

The collection of all such v is denoted by Us (y), and the cone consisting
of all lines (~ v with v E Us ( y) is denoted by Ts ( y) and called the contingent
cone to S at y.
The result of interest for us is the fact that since (u, u’) = f : [0, 1] ~ (~2

is an absolutely continuous curve, the following conclusions apply
[MM 1], § 3 (in what follows H~ denotes one-dimensional Hausdorff
measure on 

LEMMA. - If S c is the track of an absolutely continuous curve f
then for H 1-a.e. y~S

(a) Us (y) consists of a single pair of opposing unit vectors,
(b) ( y) is a finite set,
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_ _ .. __ _ ~ _ _ , ~ , .. ~ , ~~ . )

Furthermore, f has the following property

The second result is a measure theoretic fact.

PROPOSITION. - Suppose X and Y are separable metric spaces, v is a
metric outer measure on Y, f maps X into Y, and f(A) is v-measurable
whenever A is a Borel subset of X. If

and 03C8 is the metric outer measure over X resulting from 03B6 by Caratheodory’s
construction on the family of all Borel subsets of X, then

where for any mapping g : Z -~ Y

It will be seen below that our proof that ~, is determined by x hinges
on utilizing the preceding results to express both measures in terms of
integration over the set S = f ([Q, 1 ]). We proceed to state and present the
proof of Theorem A.

THEOREM A. - For each u in ~V2 ~ 1 (o, 1), the joint distribution
~_ u~~--- determines the distribution More precisely, for every
A in B ((~) one has the formula [with y = ( yo, yl) E 

where [0, 1 ] : u’ (x) = 0 ~, ~ o ~is the unit mass and

EA = {y~f([0, 1]BZ) : yl dy1/dy0~A}, with dy1/dy0 denoting the (Hi-a.e.
unique) slope of the lines in the cone Tf {Y)~

Likewise, ~ satisfies the relation 

where FB = f ([o, 1]) ~ B, and ~cs is supported on an Li 1 null set of R X ~ o ~
with ~cs ((~ X ~ 0 ~) = L1 (Z). Thus x determines the integrand in (1)
through (2), and consequently determines ~..
Remarks. - The line integrals in ( 1 ) and (2) are to be interpreted as

integrals with respect to arclength, i. e. with respect to H 1 (dyo is the
horizontal projection of 
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Since the symbol dy1/dy0 appearing in the definition of EA refers to the
slope of the (bilateral ) tangent line to the set f([0, 1]) at the point

1]) one has, formally, provided that y is a point
where the contingent cone to S=f([0, 1]) consists of a single line.

Note that whenever Y, Z are disjoint measurable subsets of
[0, 1] it follows from (0) that the distribution function is

simply the sum of and In particular this holds for
Y = [0, 1FBZ, with Z as in the statement of the theorem. Now set for each
E > o, 1]: u’ (x) ~ > ~ ~, and = Then it
follows from (0) and the Vitali-Hahn-Saks theorem that

in the sense that the total variation of the difference measure approaches
zero, var (~o - -~ 0, and similarly,

Now the behavior of fl restricted to B (~B[ - ~, ~]) for all positive E
determines ~. since fl (R) = 1. Thus it will suffice for our purposes to prove
that for each e > 0 ~,E is given by the line integral formula

with while 1tE determines the integrand
in (3) via

In (3) and (4) we have utilized the fact that, by the definition of YE,

so that

We have also denoted by y1 dy1/dy0 the product of y with the slope of
the tangent line to the set f([0, 1]) at the point y = ( yQ, [by the lemma
there is a unique tangent line at H 1 -a.e. 1])]. The existence of
the integrals in (3) and (4) as integrals with respect to H 1 [taking

where 03B8(y) denotes the angle with the horizontal made
by the tangent line to f([0, 1]) at y] follows by the Proposition with
X=[0, 1] ] and Namely, by the Lemma the absolute
continuity of f ensures that this mapping has the (N) property of Lusin [S]
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from which it easily follows that f(E) is HI-measurable for each L 1-
measurable subset E of [0, 1]. Thus on defining the set function n by

and letting f3 denote the metric (outer) measure generated by ([0, 1]),
it follows that

It follows from (6) that the line integral in (4) is also well defined, for
each ~ > o. The validity of (4) is now an easy consequence of the formal
relation dx=du/u’, since the equality is evident for B=f(J) on each
component J of the open sets

The validity of formula (3) utilizes the fact that the function u" can be
factored as where h : f [o, 1] ] ~ f~ is the measurable mapping defined
Hl-a.e. by More precisely, if C, D, E denote the subsets
of [0, 1] consisting, respectively, of points x where u" (x) is not defined as
a real number, of points x in Z at which Z doesn’t have unit density, and
of points x such that f([0, 1]) fails to have a unique (non vertical) tangent
line, then

(the validity of the last relation follows from the proof of the Lemma, cf
e. g. [S], Ch. IX, Lemma 3 .1 ). Hence by setting X = [0, 
one finds Moreover u" : x -~ ~ can be factored as

u" = h a f, where h : f (X) - R is given by h (y) = yl dy1/dy0. It follows from
this that (3) is valid for each set such that A c 0 ~. The
validity of (3) for all A follows immediately.

Remarks. - We observe that the arguments used in the proof of
Theorem A demonstrate that x also characterizes ~g, where g = (u, u’, u").
So 03C0 characterizes and hence if U E w3, (0, 1) it also characterizes

and so on.

Although Theorem A leads fairly straightforwardly (using [MM2]) to
the conclusion that for Q E and u E (Q), p > N, the joint distribution
~c = ~f where f = (u, grad u), characterizes each = 

x~ "~, i =1, ... , N, as
well as ~,* = one has to utilize the additional fact that 71: characterizes
the distributions = for all second directional derivatives (aa)~ to
obtain a multidimensional analogue of Theorem A involving nonsymme-
tric differential operators. Of course the use of rectifiable currents would
be more suitable for this multidimensional context ([F], ch. 4 or [M],
ch. 4). In any event Theorem A supplies a key result for the relaxation
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analysis of the second order model in [CMM], as will be shown in a
subsequent publication.
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