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218 S. MULLER, T. QI AND B. S. YAN

has the identit ~{(gi ° u)(adj Du)ji} = (div g) ° det du in the sense of3’ )~ J )~~ ~ g) 
.

distributions. As an application, we obtain existence results in nonlinear
elasticity under weakened coercivity conditions. We also use the above
identity to generalize (cf. [Sv88]) regularity and invertibility

results, replacing his hypothesis by q > 
~u 

. Finally if q = 
’~

p-1 n-l n-1 I
and if det Du >__ 0 a.e., we show that det Du In (2 + det Du) is locally inte-
grab le.

Soit Q c f~~ un ouvert borne et soit u : S~ ~ f~~ une applica-

tion dans ~n) avec adj et p >_ n - I , q ? On
u-1

montre au sens de distri-){ J )ji} = ( g) ° u det du au sens de distri-

butions si g ~’~) avec gradient borne. Par consequence on obtient
des nouveaux résultats d’existence en élasticité non linéaire. On obtient
aussi une generalisation de résultats de 0160verák sur la régularité et l’inver-

tibilité en remplaçant l’hypothèse q >_ p par q >_ n . Finalement si

q = 
n n-1 

et det Du~0 p.p. on montre que det Du In (2 + det Du) est locale-

ment integrable.

1. INTRODUCTION

Let D be a bounded open set in In this paper we study the properties
of maps u : ~ -~ which belong to the Sobolev spaces Rn) for
"low" values of p and discuss applications to nonlinear elasticity. There
is a striking difference in the behaviour of such maps for different values
of p. If p > n, then u behaves, in many ways, like a Lipschitz or even Cl
map. Specifically, it has a continuous representative, maps null sets onto
null sets, the area formula holds (see Marcus and Mizel [MM73]), global
topological arguments apply (see Ball [Ba81] ] and Ciarlet and Necas

[CN87]) and the Jacobian det Du is weakly (sequentially) continuous as a
map from to LP/n (see Reshetnyak [Re67] and Ball [Ba77]).

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



219ELASTIC DEFORMATIONS

By contrast, many of these properties may fail if p _ n. Besicovitch

[Be50] constructed a continuous map from the closed unit disk D c IRz to
I~3 which is in !R3) and whose image has positive three-dimen-
sional Lebesgue measure. More recently Maly and Martio [MM92] have
resolved a long-standing question by giving an example of a continuous
map satisfying det Du = 0 a.e. for which u (Q) has positive
measure. Counterexamples to the weak continuity of the Jacobian were
given by Ball and Murat [BM84]. Muller, Spector and Tang [MST91]
gave another example that topological arguments may fail drastically by
constructing a map satisfying for all p  2 with 
such that u is injective on DBN (where N is a null set) and such that the
image of u contains sets of positive measure both in D and in 
Here care has to be taken with the definition of the image but the
pathology occurs with all reasonable definitions, see the paper quoted
above for details.
The study of maps in with p  n is of great interest in nonlinear

elasticity. First, for commonly used stored-energy density functions, there
exist deformations with finite energy which are not in Wi, n (cf the discus-
sion in [Ba77]). Secondly, Ball [Ba82] has shown that in these function
classes, discontinuous equilibrium solutions with a discontinuity corre-
sponding to the formation of a cavity can occur. The functions studied
there are of the following type [B (0, r) denotes the ball in (~n with center 0
and radius r]

with R ( t) > 0, R’ ( t) > 0, R (0) > 0 .

Vol. I I , n° 2-1994.



220 S. MULLER, T. QI AND B. S. YAN

An existence theorem in that class is still outstanding due to the failure
of weak continuity of the Jacobian. Therefore Ball’s methods do not apply
directly.

In the current work we do not attack that problem (see Muller and
Spector [MS92] for some progress in that direction) but rather extend
previous weak continuity and regularity results thus allowing for weaker
growth conditions in the existence theory. Following Ball [Ba77] and
Sverak [Sv88], we consider function classes which involve not only informa-
tion on the gradient Du but also on its adjugate matrix (the transpose of
the cofactor matrix) adj Du. Geometrically adj Du controls the deformation
of (codimension 1) surface elements while Du controls the deformation of
line elements. In the context of elasticity, certain commonly used stored-
energy densities (like those proposed by Ogden [Og72]) lead to, in their
simplest form, an energy density of the form

where a, ~i > 0 and where h is a non-negative and convex function. We
thus consider the function classes

the latter class being motivated by the fact that a deformation of an elastic
body should be orientation preserving. In his remarkable paper, 0160verák

[Sv88] showed that if u E {~) with p >_ n - l, q >_ - and if the tracep-1
u ~~~ satisfies certain regularity and continuity conditions then the following

Annales de l’Institut Henri Poineare - Analyse non lineaire



221ELASTIC DEFORMATIONS

degree formula holds (see section 2 and [Sc69] for the definition of the
Brouwer degree)

provided that f is smooth and has its support in the connected component
of {as2) which contains yo . 0160verák observed that ( 1 . 2) rules out

cavitation. For the example x~x |x|R(|x|), R(0)>0, R’(t)>0, which is

a map with cavitation it suffices to choose f with support in B(0, R(0)).
For it allows one to define a set-valued image F (a, u) for
every Moreover, he deduces from (1 . 2) that functions in (S~)
are continuous (not just approximately or finely continuous) outside a set
of Hausdorff dimension n - p. Under additional conditions on the bound-

ary values, he shows the existence of an inverse function defined almost
everywhere and analyses its regularity (see also Tang Qi [TQ88]). The
condition on q at first glance appears to be natural in view of the identity

which by Holder’s inequality gives det Du~L1 if q >_ p .
p-1

In the current work we generalize the degree formula and all of its

consequences to the case q ? n . Note that one has, by taking determi-
M2014 1

nant in ( 1. 3),

so that still det Du~L1 in this case. The most important result of this
paper is the following divergence identity.

THEOREM A. - Let p >_ n - l, q >_- n , (Q), (~n; with
~2014 1 

’

C. Consider the distribution

Then

in the sense of distributions (and hence in Li).
For smooth functions, (1 . 5) follows from the fact that adj Du is diver-

gence-free, i. e.

Vol. 11, n° 2-1994.
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(see [Mo66], Lemma 4.4.6; here as in the following we employ the

summation convention) in connection with (1.3). If q >_ - , then (1. 5)
can be established by approximating u by smooth functions and adj Du

by divergence free b(v)). To obtain (1.5) for q >__ n we exploit the geo-

metric significance of adj Du and not just (1.6) and make, in particular,
use of a suitable version of the isoperimetric inequality (see Lemma 3.1,
Theorem 3.2 and their proofs).

In the critical case q = n one obtains det Du 1 ( ) S~ from ( 1 . 4 j and

by scaling arguments one would, in general, expect no better estimate. If
det Du>O, one has, however, the following higher integrability property
which generalizes the results in [Mu89] and [Mu90 b]. Other interesting
higher integrability results have recently been obtained by Iwaniec and
Sbordone [IS91], Brezis, Fusco and Sbordone [BFS92], Greco and Iwaniec
[GI92] and Iwaniec and Lutoborski [IL92].

THEOREM B. - Let and assume that det Du~0 a.e.

Then det Du ln (2 + det Du) ~ L1loc (03A9). More precisely f B (a, 2 r) c Q, we
have

where

Coifman, Lions, Meyers and Semmes [CLMS89] showed that if

then det Du lies in the Hardy space It would
be interesting to know if the same conclusion holds when 
While we have emphasized motivations from nonlinear elasticity, it

should be noted that the study of properties maps arises in many
other contexts and in particular in the analytic approach to quasiconformal
mappings. Of the vast literature, we only mention the survey article by
Bojarski and Iwaniec [BI83] and the books by Reshetnyak [Re85] and
Rickman [Ri93], where further references can be found.
The remainder of the paper is organised as follows. Section 2 summa-

rizes the notation (which follows [Sv88]) and gives some auxiliary results.
Section 3, which is the core of the paper, contains the proofs of
Theorems A and B. In section 4 these results are applied to nonlinear
elasticity. Focusing on the physically relevant case n = 3, we show, in

particular, that for a stored energy density of the form (1.1), minimizers

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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exist if p > 2, >__ 3 . This improves results of Ball and Murat [BM84],

Zhang [Zh90] and [Mu90 b] which all require q~p . Finally in sec-

p - I
tion 5 we deduce the degree formula ( 1. 2) from Theorem A. This allows

one to generalize verak’s results to the and we state some

of these explicity.

2. PRELIMINARIES

Except for Lemma 2.3 and Propositions 2.4 and 2.5, this section is

essentially identical to section 2 of [Sv88] although we do not make use
of differential forms. We include it here to keep the present exposition
self-contained.
We begin by recalling some facts from multilinear algebra (cf Federer

[Fe69], Chapter 1 or Flanders [F163]). We denote by . the scalar product
of vectors in !Rn and by A their exterior product. For n >__ 2 we identify the
space E~~ of (n -1 ) vectors with ~n by means of the map

* : Ay~ _ 1 ~n -~ ~~.
The map

is characterized by the following conditions:
(i) It is multilinear and alternating.
(ii) If el’ .. , e,~ is the canonical basis of then

where, as usual, the symbol under ’is to be obmitted.
[R3 then ~ A 11 is the usual vector product.

For a linear map F : Il~n --~ the map F is defined by

and its norm is given by

If A is the matrix of F with respect to the canonical basis, given by
(we recall that the summation convention is in force), then the

matrix B of F is the cofactor matrix of A,

Vol. 1, n° 2-1994.
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The norm of a matrix A will be identified with that of the linear map
that the matrix represents in the canonical basis. Hence for F and A as
above, one has

If V is an (n -1 ~ dimensional subspace and F : V ~ is a linear map
then An - 1 F : An - is defined by

and its norm is now given by

Let v be a unit vector normal to V. Then the one dimensional space
may be identified [R}. Let be a linear

extension of F. If A is the matrix of F with respect to the canonical basis
and if one has 

..

In the following, Q will always denote a nonempty, bounded, open
subset of n ? 2. By LV (0) and W 1 ° p (03A9), we denote the spaces of p-
summable and Sobolev functions, respectively. A function is in (Q) if
f E LV (Q’) for all open sets Q’ compactly contained in Q. A vector - or
matrix - valued function is in Lp (resp. Wi, p) if all its components are;
we use the notation LV etc. By Cr (Q) we denote the space of r-
times continuously differentiable functions; and D (Q) = Co (Q) is the space
of smooth functions with compact support. Its dual (Q) is the space of
distributions.
Weak convergence is indicated by the half-narrow ~, weak-* conver-

gence by * . By 0 we denote composition of functions, by * the convolu-
tion.
We let

For we let ra = dist (a, The n-dimensional Lebesgue measure
is denoted by Ln, k-dimensional Hausdorff measure by Hk.
We will occasionally consider Sobolev spaces of functions defined on dS~.

We say that Q has Lipschitz boundary (see [Ne67], p. 14) if there exist
numbers oc > 0, P > 0 and coordinate systems

as well as Lipschitz continuous functions

Annales de l’Institut Henri Poincaré - Analyse non lineaire
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such that each point x E aSZ can be represented in at least one coordinate
system in the form x = ( yr, a ( yr)). Moreover, one requires that the points

yr) with ( yr i lie in Q if ( yr) + ~3 and that they lie
outside S2 if a (yr) - [i  yr  a (yr). Morrey ([Mo~6], Definition 3 . 4 .1) cal-
led such sets strongly Lipschitz.
A function u : I~ is in p [resp. Lq (~S~)] if all the functions

u~ ( y~) : = u (( yr, ar (yr)) (with yr and ar as above) are in W ~ P (~r) [resp.
We say that if

and (2 . 5)
We will use the fact that ° P functions have p traces on a.e. sphere.

More precisely we let p >_- o, and we

have

PROPOSITION 2 . I . - Let p >--1, ra = dist (a, aS2). Then
there exists an L1 null set Na such that for all r E (0, 

Moreover if u E (~) with p >_ l, q >_ l, then u E (S (a, r)) for L~ a.e.

Remark. - Here u ~s Ea, r~ is understood in the sense of trace (see e.g.
[Ne67], Chapters 2.4 and 2. 5).

Proof - To prove the first assertion, consider polar co-ordinates in

B a, r - 1 ‘B (a, 1 k) and use Fubini’s theorem to find L1 null sets Nk
such that the conclusion holds for r~(1 k, ra-1 k)BNk a. Then let

Na = The proof of the second assertion is similar (see also Morrey
1

[Mo66], Chapter 3 .1 or Necas [Ne67], Theorem 2. 2.2). D
We briefly recall some facts about the Brouwer degree (see e.g. Schwartz

[Sc69] for more details). Let Q c ~~‘ be bounded, open and let u : ~ ~ f~n
be a Coo map. If is such that for all
x E u -1 (yo), one defines

J

If f is a C °° function supported in the connected component of 
which contains yo, one can show that

Vol. 11, n° 2-1994.
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Using this formula and approximating by C~ functions, one can define
deg (u, Q, y) for any continuous function u : S2 -~ and any y E [R"BM 
Moreover the degree only depends on u ~.

Indeed if Q has Lipschitz boundary and if Rn), then the
degree can be expressed as a boundary integral as follows. First recall the
identity (see [Mo~f ], Lemma 4.4.6)

Let f be as above and let g : be Coo with div g =~’ then the above
identity in connection with ( 1 . 3) implies that

By the Gauss-Green formula (for Lipschitz sets) and (2 . 3)

and by (2.6)

Here v denotes the outward normal of 3Q (which exists a.e.) and
Du is viewed as a map from the tangent space of an to 

LEMMA 2.2 ([Sv88], Lemma 1). - Assume that Q has Lipschitz boundary
and Then (2 . 8) holds for every

Proof - It suffices to show that there exists a sequence 
with - u uniformly and in W 1 P ~a~). This is clear if S2 has smooth
boundary and well-known to experts if Q has Lipschitz boundary. We
include the details for the convenience of the reader.

By a partition of unity (see e.g. [Ne67], p. 27) and a change of coordi-
nates we may assume that there is a Lipschitz function a and constants
a, [3 > 0 such that

where

We may assume a (0) = 0 and, by possibly decreasing a, a ~ ~ ~i/4. Let

Annales d£ l’Institut Henri Analyse non linéaire
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By the definition of Moreover supp v ~ 0394 and
Hence there exist which converge to v in 

and uniformly. Let ~~C~0 (-03B2/2, 03B2/2) with 11=! on [-13/4, p/4] and let
Uk (~) = T1 (xn) Vk ~x‘) .

Clearly uk E and u~ (x’, a (x’)) = v~ (x’). Hence

by the definition of convergence in (see [~Te6?], p. 94). The
proof is finished. D

We need the following criterion for weak compactness in L ~ .

LEMMA 2 . 3 ([MS47], [Me66]). - Let E ci (Rn be measurable with finite
measure and let be a sequence in f,l (E). Then is relatively weakly
sequentially compact in L~ (E) f and only i~ there exists a function

with lim y (t)/t = oo such that

Moreover y may be chosen as an increasing function. An immediate
consequence of the lemma is

PROPOSITION 2. 4. - L 1 (E) ] then f ~‘’~ is

weakly compact in L~ (E).
We will use the following version of the chain rule. The result and its

proof are well-known to experts. We include the result for the convenience
of the reader.

PROPOSITION 2 . 5. - Let Q’, Q c f~n be open, let cp : ~2’ bi-

Lipschitz homeomorphism. If then and the
distributional derivatives satisfy

Warning. - The chain rule is meaningless if one has no control on

cp -1. Consider the following example (pointed out to us by F. Murat).
Let cp : ~2 ~ ~2, ~P (x, y) = (x, x), u : (~2 ~ (l~, u (x, Y) - ~ One

has if  2 but If 
, then

u ° t~ --- o but (2. 9) does not make sense as Du is nowhere defined on
~ ([RZ)..

Proof - See Morrey [Mo66], Theorem 3 .1 . 7. Use e.g. the area formula
to pass to the limit in his equation (~ . 1. ~). 0

Vol. II, n° 2-1994.
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3. THE DIVERGENCE IDENTITIES

In this section we prove the divergence identities as well as the higher
integrability of the Jacobian (Theorems A and B of the Introduction) and
deduce an "isoperimetric" inequality (Lemma 3 .4). We recall the notation

r~ = dist (a, 
The main tool is

.LEMMA 3 .1. - Let p > n -1, (f~n), a E SZ. Then there exists
an L1 null set Na such that for all r E (0, and for all g E C 1 ~")
with ( Dg _ C one has

The same estimate holds for p = n - I , provided that g is also bounded.

Remarks. - 1. At Du (x) is interpreted as a map from the
tangent space Tx S to (~n; see (2. 2) for the definition of Du and
recall from (2.3), (2.4) that for smooth u, one has

and I = 
2. If p == ~ 2014 1 and if g is not bounded, the estimate still holds if the

integral on the left hand side is replaced by the dual pairing between
wl, n-1 ~n) and its dual (see the remarks after the proof for the

details). If, in addition, for some then

(g ° u) (An -1 Du) v e L~ (S (a, r)) and (3 .1 ) holds in the form stated; see the
discussion after the proof of the lemma.

Proof. - First assume that r); By (2. 7),

and by the change of variables formula (see e.g. [Sv88])

Now (see [Mu90 b], equations (3 . 1 ) to (3 . 4)) using the fact that the degree
is an integer as well as the Sobolev embedding theorem for BV functions

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and taking into account the first remark above, one finds

Combining (3 . 2) to (3.4), the lemma follows for u~C~ (Q; (with
Na - ~).
Now let ~n), Rra. By virtue of Proposition 2.1, there

exists an L 1 null set N and a sequence E (B (a, R); such that

for r E (0, R)BN, one has

It follows from (2. 2) that

In view of (2.4), one easily passes to the limit on the right hand side
of (3 .1). If p > n - 1, by the Sobolev embedding theorem, u~k} ~ u in

L°° (S {a, r); which allows one to pass to the limit on the left hand
side of (3 .1). Similarly if g is bounded, one has (for a subsequence)

Hn -1 a.e. and _ C1 so that one may pass to the limit
using Egoroff’s theorem and the equi-integrability of L~ functions.

Further remarks on p = n - I . - If g is unbounded then in general one
does not have vEL1(S(a, r)) so that the integral on the
left hand side of (3.1) does not make sense. It can, however, be reinterpre-
ted as a duality pairing by viewing Du) v as a distribution. We only
sketch the idea. Let Q = B (a, r) and consider the functional

Using the fact that ~ . (adj Du)(= 0 in ~’ (S~) [which follows from ( 1. 6)
ax’

by approximation], one shows that Ju only depends on the trace cp ia~.
Recall that there is a bounded extension operator

Indeed it suffices to apply the Sobolev embedding theorem

Vol. I 1, n° 2-1994.
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(use the fact that the norm is defined via local charts, [Ne67], p. 94
and [Ad75], Theorem 7.5.8(ii)) and then the inverse trace theorem (see
[Ne67], Theorem 2.5.7).
Using E one sees that ~’~))‘. Moreover for smooth u,

one easily verifies that Using the density of smooth
functions and the above extension operator, one deduces that u -~ Ju is a
continuous operator from ~) to its dual.
Thus with as in the proof of the lemma, one has

while by the chain rule for Sobolev functions (see [GT83], Lemma 7.5)

Hence (3.1) holds if the integral on the left is replaced by the duality
pairing (go u, (A~ _ ~ Du) v ~. Finally if {~1~ _ ~ Du) v e I,S for some s > I,
one has (go u). Du) v e L 1 and the duality pairing can be expres-
sed as integral. Indeed if suffices to approximate in

by smooth functions and to observe that by the Sobolev
embedding theorem for all c~  oo.

The main result of this section is

THEOREM 3.2 (divergence identities). - Let q > n ,
u E (Q), g Eel with Dg ~ _ C. Consider the distribution

Then h E (Q) and h = (div g) 0 u det Du a.e.

Remarks. - 1. For q >_ p , the result is well-known (see [Sv88]); it
~- 1

suffices to approximate u by smooth functions and (adj by divergence
free vector fields.

2. Note that in view of the inequality ( 1. 4) a posteriori, one has

.f n
3. The result is very close to being optimal. The standard counter

example is obtained by letting Q be the unit ball in u(x)= ’t~ ,
.x I

g(y)=1 y. Then Vpn, det Du=0. a.e. 
n

Annales de l’Irtstitux Henri Pairceare - Analyse non linéaire
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4. The improvement from q~p p-1 to q > 
n n-1 

uses the special struc-
p - I n - I

ture of adj Du, not just the fact that ~ (adj Du)/= 0. Indeed for every
lxJ

p e [n - I , n) there exist v~W1,p(03A9) and Rn), for all qp,
p - I

with div a = 0 in £D’ such that V v . « = 0 a.e. while div v « # 0 in £Q’ (see
[Mu9 1 b], Corollary 6 . 2) .

Proof - Note that g ° u ~ W1, p (03A9; Rn) and that

Hence by the Sobolev embedding theorem (gt ~ u) (adj (Q) and h
is well-defined as a distribution. Moreover by [Mu90 a], it suffices to show

To this end, consider a radial mollifier

fix We will show that h E Lll (SZ’). The

distribution pE * h is defined by

For sufficiently small ~, one has h E (~2’). In fact pE * hE ~°° (~‘).
Moreover pE * h --~ h in ~’ (S~‘). It thus sufficies to show that the conver-

gence occurs weakly in L1 C S~‘ )~ Let and Then

Vol. 2-1994.
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Thus by Lemma 3 .1 and Holder’s inequality

Note that B (a, E) c ~ since ~  ~ dist(Q’, Let we
2

may assume without loss of generality that

and deduce

Choose Ev -~ 0. As p2 L1 (Q’), Proposition 2. 4 implies that
h is weakly compact in L (Q’) and hence pEV * h ~ h in L 1 (Q’), since

convergence in ~’ (S2) is already known. In particular, h E L 1 (~’) and the
proof is finished. D

In the critical case q = ~ it follows from the inequality
n-1

that det Du ~ L1 (Q). From scaling arguments one would think that this is
optimal. Under the assumption det Du~0, however, one has the following
higher integrability result which generalises the results in [Mu89], [Mu90 b]
(see also Iwaniec and Sbordone [IS91], Brezis, Fusco and Sbordone

[BFS92], Greco and Iwaniec [GI92] and Iwaniec and Lutoborski [IL92])

THEOREM 3 . 3 . - Let and assume that det Du >_ 0 a.e.,
then More precisely, f B (a, 2 r) then

where

Coifman, Lions, Meyer and Semmes [CLMS89] showed that if
then det Du lies in the Hardy space ~ 1 (f~n). Since a non

negative f is (locally) in ~ ~ if and only if f log (2 + f) is in it seems
natural to ask whether implies that det Du~H1
We do not know whether this is true or not.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof. - The result follows from Theorem 6.2 in [Mu90 b] since
Theorem 3 . 2 above implies condition (6.1) of that paper. For the conve-
nience of reader we sketch the proof. We recall that for a function
f E Ll (tR") the maximal function M f is defined by

If f is supported in B = B (a, R) and M f is integrable over B (a, r), then
by a result of E. Stein [St.69]

Now consider a ball B = B (a, R) such that B (a, 2 R) c Q and let

f= xB (a, R) det Du.

We need to estimate M f. Fix x E B (a, R), let p  R/2. By the isoperimetric
inequality (see Lemma 3 . 4 below) and the positivity of det Du we have
for a.e. r E (p, 2 p)

Integrate from p to 2 p and divide by to get

Let

It follows that

Now by assumption (~") and hence (see e.g. [St70]),

Taking into account of ( 1 . 4), we deduce

In view of (3. 6) the proof is finished. D

Vol. 11, n° 2-1994.



234 S. MILLER, T. QI AND B. S. YAN

LEMMA 3.4. - Let p~n-1, q~ n n-1, Let for L1

a,e. r e (0, ra) one has

Proof - This follows from Lemma 6 .1 in and Theorem 3 . 2
above. To keep the current exposition self-contained, we sketch the proof.
Fix We first claim that Theorem 3 . 2 implies that for all

IRn) and a.e. r~)

Indeed by Theorem 3.2, one has for all 03C8 E C~0 (Q)

and choosing test functions which approximate
xB ~~, r~, one easily shows (3 . 7) (see [Mu9© b], p. 30 for the details).

Secondly, we claim that there exists an integer-valued function d such
that for every continuous g : (~, one has

To see this, observe that u is approximately differentiable on QBE, with
Ln (E) = 0 (see [Mo66], Lemma 3 . 1 .1 and [Fe69], 3 .1. 4) and hence by
the area formula (see [Fe69], 3 .25, 3. 2. 20 or [Sv88], Theorem 2) one has
for every measurable set A c ~~E

where N (u, A, y~ denotes the number of elements in the set
Let

and

Application of (3 . 9) to A + and A ~ yields (3 . ~).
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Now let r be such that (3.7) holds. Combining this with (3.8), we
deduce that for all v E C~ IRn)

Hence d is of bounded variation and the Sobolev embedding (see e.g.

[Gi84], Theorem 1. 2. 3) yields

- 

,-, . , f

Finally, apply (3 . 8) with g m I and use the fact that d is integer valued to
deduce

4. APPLICATIONS TO NONLINEAR ELASTICITY

In this section, we establish existence of minimizers in nonlinear elasticity
under weakened coercivity conditions on the integrand. We begin with
the following weak continuity result.

(Q) satisfying 
’ ’ ’

- ~ i~ w l , p (q. , ~gn) ,
adj bounded in Lq (Q; n).

Then

If q = 
n 

and if det Du(v) >_ o a.e., then instead of (4 . 2), one has
n-1

det ~ det Du in L~ (K),

for all compact sets K c ~.

I’roo, f : - Since p >_ n -1 one (see Ball [Ba77], Dacorogna [Da89],
Chapter 4j Theorem 2 . 6)

---~ a~~ Du in D’ ~~).

~~ ~- ~ ~~~
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By hypothesis adj is also bounded in Lq, q> 1. Hence the convergence
is weakly in L~. To prove (4. 2), consider the distribution

Since - + 1 q ~ 1 n+1 + n-1 n  1 + -, Det is well-defined by the Sobo-
p q n n

lev embedding theorem and using the compactness of the embedding
and (4.1) one sees that

Now apply Theorem 3 . 2 with g (y) _ ~ y to deduce that
n

det = Det Du(v) and Det Du = det Du.

If q > n , , then det Du is bounded in LS(Q) (s > 1) by (1.4) ; asser-

tion (4. 2) follows. If q = n and det > 0 a.e., the assertion follows

by applying Theorem 3 . 3 in connection with Lemma 2 . 3. D

Consider now an elastic body which occupies an open, bounded set
Q c f~ 3 (with Lipschitz boundary) in a reference configuration. Let 
be a subset of ao with positive two-dimensional measure. We assume that
the deformation u : S ~ R3 is prescribed on while ~03A92 = is
traction free. We seek to minimize the elastic energy

in the function class

We allow W to take the value + oo to incorporate the constraint det Du>0
which corresponds to the fact that the deformation is (locally) orientation
preserving.

THEOREM 4. 2. - Assume that

(i) (polyconvexity)
W (x, u, F) = g (x, u, F, adj F, det F),

where g (x, u, . ) is convex;
(it) (continuity) g (x, . , . ) is continuous (as a function with values in

(~ _ (~ ~ ~ + oo ~), g (., u, F, adj F, det F) is measurable;
(iii ) W (x, u, F) = + oo if and only if det F  0;
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(iv) (coercivity)

where a>0, p~2, g >__ 3 . Assume furthermore that QS. Then I attains

its minimum on A.

Proof - Applying Lemma 4 . 1 to a minimizing sequence, this is by
now standard (see [Ba77] or [Mu90 b], Theorem 6. 2). D

The theorem improves results of Ball and Murat [BM84], Zhang [Zh90]

and [Mu90 b] which all require q >_ p . Non-zero dead load traction
conditions and other modification can be incorporated in the standard
way (see [Ba77]).

5. REGULARITY AND INVERTIBILITY PROPERTIES

We use the divergence identities in Theorem 3.2 to generalise Sverak’s

degree formula to the class Ap, q (Q), p > n - 1, q >_- n . Once this is done’ 

his results and proofs apply verbatim to our larger class. Here we only
spell out some of these explicitly and refer the reader to [Sv88] for the
details. Recall the definition of Ap, q (aQ) from (2 . 5).

THEOREM 5 . 1 (degree formula). - Let Q c Rn be a bounded, open set

with Lipschitz boundary, let p>n-l, q >_ n . . Assume that 

and that its trace belongs to Ap, q and has a continuous representative
u. Let yo E and let f be a bounded and smooth function supported
in the component of which contains yo. Then

Remarks. - 1. If p > n - 1 then the trace has a continuous representative
by the Sobolev embedding theorem.

2. For the results discussed below it suffices to have the degree formula
(5.1) for smooth domains. We stated the more general version with future
applications in mind.
We postpone the proof of the theorem until the end of this section and

first discuss some of its consequences. From now on, we assume that

Vol. 1 I , n° 2-1994.
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p > ~ -1, q >_ ~ . Sverak observed that if one considers functions in
~2014 1

then one can define a set-valued image F (a, u) for every point 
Indeed by Proposition 2 .1 there is an L 1 null set N~ such that for all

ra)BNa [where ra = dist (a, aS2)] one has r)). Let u be
the continuous representative of the trace (recall p > h -1 ) and let

E (u, B (a, r)) _ ~ y E {aB (a, r)) : deg (u, aB (a, r), y) >_ 1 ~ U u (aB (a, r)).
Using (5 . 1 ), one verifies that

, 

E (u, B (a, r)) c E (u, B (a, s))

if r, ra)BNa, r  s (see [Sv88], Lemma 3) and one defines

One has the following regularity results which are proved exactly as in
[Sv88]. Similar results have recently been obtained by Manfredi [Ma92]
using a different techniques. For p = n, the result was already proved by
Vodopyanov and Goldstein [VG77].

THEOREM 5. 2 (ef. [Sv88], Theorem 4). - If u E (Q) with p > n - l,

>_ n , , then u has a representative u which is continuous outside a
n-1

set S of Hausdorff dimension n - p. Moreover, for the set

~ x E S~, lim sup o sc (u, B (x, r))  ~ ~ is open.
r -. o +

THEOREM 5 , ~ (cf [Sv88], Theorem ~). - Let u E (S~) with p > n - l ,

q > 
n 

and let F be the set function defined above. Then
n-1

(i ) (F (a)) = 0 for each a E Q.
(ii) For each measurable set A c Q, the set F (A) is measurable and

In particular L"(F(S))==0 where S is the singular set in Theorem 5.2.
Similarly 0160verák’s results on the existence and regularity of an inverse

function can be generalized to the case ~__ instead of ~__ ).
For detailed statements we refer the reader to section 5 of [Sv88], and in
particular to Theorems 7 and 8. Also in the results of Tang Qi [TQ88] on
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almost everywhere injectivity (which generalize earlier work of Ciarlet and

Necas [CN87]) one may now replace the condition q ? p by q >__ .
p-1 1 n-1 1

Proof of Theorem 5 . 1. - We follow essentially Sverak’s proof but
use Theorem 3.2 to weaken the hypothesis on q. Assume first that

((I~n). This is no restriction of generality as long as deg (u, Q, yo) ~ 0.
Indeed contains only one unbounded component [since 
is compact] and the degree vanishes on that component (see [Sc69]). There
exists ~n) satisfying

take e.g. g’i = Ki take e.g. g; = K; *£ K; (z) Z
Bv Lemma 2. 2 we have

We claim that for all B)/ E C~ (IRn),

Taking into account of Lemma 2. 2, the theorem follows by applying
(5 . 2) to with = 1. By a partition of unity it suffices to consider
two cases. Either B)/ is supported in a neighbourhood of the boundary
represented by a Lipschitz chart (cf the definition of sets with Lipschitz
boundary in section 2) The latter case is the content of
Theorem 3.2. To deal with the former, we follow Sverak’s idea to extend
u outside Q. To obtain the result for Lipschitz boundaries, we first have
to "flatten" the boundary.

After changing coordinates it suffices to consider the following situation.
Let x = (x’, x~), ~ _ ( - oc, a)n -1, let a : A - (F~ be Lipschitz and consider

Assume that and that belongs to Let

(A x We have to show that

Vol. 11, n° 2-1994.
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To transform the problem to a region with a flat boundary, consider

Note that 03A6 is a bi-Lipschitz map of A x R to itself. Let

Using the chain rule (here we use the fact that ~ has a Lipschitz inverse,
see Proposition 2. 5) and the identity adj (AB) = (adj B) (adj A), one easily
verifies that

Moreover,

and

Hence by the area formula (see [Fe69], Theorem 3 .2.5; [Si83], 8.4 or
[EG91], Section 3. 3), the right-hand side of (5 . 3) is equal to

Let v be the outer unit normal of r’. Taking into account that

and observing that (I + I Da I 2) 1 ~2 is the area element of r’, one finds, by
another application of the area formula,

It only remains to show that the right-hand side of (5 . 5) equals (5.4).
To this end extend v to A x R by letting

Clearly v E (0 x (~j since v ~ W1° P (A). Moreover using (2 . 3) one has
for yno,
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Hence v E Ap, q (A x Application of Theorem 3 . 2 gives

for all By approximation, the same holds for

rl E wo° °° (A x Now let

Taking into account (5. 6) one deduces that the right-hand side of (5. 5)
is equal to (5 . 4). This finishes the proof if f~ Co 
Now assume that f E Coo (W) n L°° (fR") and that fdoes not have compact

support. Then yo lies in the unbounded component of and
hence deg (u, yo, = 0. It remains to show that the left-hand side of

(5.1) vanishes.
Consider cut-off functions C~ such that (x) = 1 if I x and

As f~ E (I~n) by the result above 

Thus

Since q >_- ~ , we have det Du ELI (Q) by (1. 4). Moreover, because
~- 1

as claimed. D
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