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ABSTRACT. - This paper is devoted to a construction of the Leray-
Schauder degree for quasilinear elliptic operators in unbounded domains.
The main problem here is that such operators can not be reduced to
compact ones and the usual theory (see [1]) can not be applied. In [2, 3]
the Leray-Schauder degree was constructed in one dimensional case. To
do this certain lower estimates of the operators were obtained and the

approach of Skrypnik [4] was applied. In this paper we generalize these
results to the multidimensional case. When the degree is defined the Leray-
Schauder method can be used to prove the existence of solutions [3].
Key words : Elliptic operators, Leray-Schauder degree.

RESUME. - Cet article est consacre a la construction du degre de Leray-
Schauder pour les operateurs elliptiques dans les domaines non bornes.
Le probleme essentiel ici est que ces operateurs ne peuvent pas etre
reduits a des compacts. Par consequent, on ne peut pas utiliser la théorie
habituelle [1]. Dans [2, 3] le degre est construit pour les cas monodimen-
sionnel. Pour cette construction, certaines estimations des operateurs sont
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246 A. I. VOLPERT AND V. A. VOLPERT

obtenues, et l’approche de Skrypnik [4] est utilisée. Dans cet article, nous
generalisons ces resultats pour le cas multidimensionnel. Quand le degre
est determine, la méthode de Leray-Schauder peut etre appliquee pour
prouver l’existence de solutions [3].

1. INTRODUCTION

We consider the quasilinear elliptic system of equations

in the infinite cylinder with the boundary condition

and the conditions at the infinity

Here Q=D x RB D is a bounded domain in Rm -1 with a smooth bound-
ary, xi is a coordinate along the axis of the cylinder, x’ _ (x2, ..., xm),
w = (wl, ..., Wn), F = (F1, ..., Fn), a is a constant symmetric positive-
definite matrix, r (x’) is a scalar function, w + and w _ are constant vectors,
c is a constant which can be given or unknown. In the last case the value
of the parameter c for which ( I . I )-( 1. 3) has a solution is to be found. In
particular, it is the case for traveling wave solutions where c is a wave

velocity. There is a large number of works devoted to traveling waves in
onedimensional case (see the bibliography in [5]). In the multidimensional
case the problems of this type are studied in [6]-[8] (see also references
there).

It is well known (see, for example, [9]) that if ( 1 . 1 ) is considered in a
bounded domain then the corresponding vector field can be reduced to a
compact one. Indeed, let A be the operator corresponding to the left hand
side of (1.1), acting in the space C~ with the domain C2 + °‘. Due to the
compact imbedding of C2 +°‘ into C~ it can be represented in the form

A = L + B = L (I + L -1 B). (1.4)
where L has a compact inverse, and the equality L u = o implies that M = 0,
B is a bounded operator. Thus we can consider the completely continuous
vector field I + L-1 B and apply the usual definition of the Leray-Schauder
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degree. If we consider unbounded domains then there is no the compact
imbedding of into C°", and this approach can not be used. Neverthe-
less the reduction to compact vector fields can be fulfilled even for
unbounded domains. In [10] a weighted Sobolev space with strong weights,
for example is considered. Such weights lead to a compact
imbedding of into Hk, where Hm is a space of functions for which m
derivatives are integrable with a square. As above the representation (1.4),
where L -1 is compact, can be obtained. It is important to note that this
construction is possible only in the case when the weight function growth
is more fast than the exponential one. Hence, exponentially decreasing
functions do not belong to these spaces, and it is a strong restriction on
the application of this approach. In particular, it can not be used to the

study of the problem formulated above.
We also consider weighted Sobolev spaces but with weak weights [2, 3].

In this case exponentially decreasing functions belong to them but there
is no compact imbedding of the spaces which leads to (1. 4) with a compact
operator L -1. Hence we can not use the Leray-Schauder theory known
for the completely continuous vector fields, and the aim of this work is
to construct the degree for the operators corresponding to the left hand
side of ( 1 .1 ) . To do this we obtain certain lower estimates of the operators
which give a possibility to apply the method of Skrypnik of the degree
construction [4] (see also [13]). In this method the degree for the original
operator is defined as the degree for some finite-dimensional operators,
and it is possible due to the compactness of the set of zeros of the

operator. For the operators under consideration this compactness follows
from the estimates mentioned above.
The contents of the paper is the following. We introduce function spaces

and operators and formulate the main results in Section 2. Lower estimates
of linear operators are presented in Section 3. We study the nonlinear
operators in Section 4.

2. FORMULATION OF RESULTS

We introduce the function space and the operator which correspond to
the left hand side of (1.1).
We consider the weighted Sobolev space W2, ~ (Q) of the vector-valued

functions, defined in the cylinder Q, with the inner product

where u, v : Q -~ RP, = 0. The norm in this space is denoted by
!) - !L-
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The weight function  depends on x1 only, and it is supposed to satisfy
the following conditions:

1. ~ oo as |x1|~ oo,
2. Jl’ /Jl and are continuous functions which tend to zero as

00.

For example we can take + x i or + x i ) .
We emphasize again that this weight is weak in the sense that exponen-

tially decreasing at infinity functions belong to Contrary to the
weight spaces with a strong weight there is no a compact imbedding of
W2, ~ (~) into a space L2, ~ (SZ) of square-summable functions with the
weight u. 
We define the operator A (u) acting from (Q) into the conjugate

space (Q))* by the following formula: 

where u, v E (Q), the notation ( f; v~ means the action of the func-
on the element is a twice continuously differentiable

function of xl of the form

Here is a monotone sufficiently smooth function which is equal to
zero for 1 and to unity for xl _ - l.
We suppose that r (x’) is a bounded function, and the function F (w, x)

satisfies the following conditions:
1. 
For example, if the function F does not depend on x explicitly, and

then, obviously, this condition is satisfied.
2. The function F (w, x) and the matrices F’ (w, x) and Fi’ (w, x),

i = 1, ..., n are uniformly bounded for all and 
3. There exist uniform limits

where b + are constant matrices.
We note that for twice continuously differentiable functions u and com-

pactly supported functions v (2 . 1 ) can be rewritten in the form
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If we put then (1.1) has the form

and the connection between (2. 2) and (2.3) is clear.
Any solution u E W2, ~ (Q) of the equation

has continuous second derivatives and satisfies (2.3). Conversely, every
solution u of (2 . 3) having continuous second derivatives, satisfying condi-
tion (1. 2) and belonging to W2= ~ (SZ) is a solution of (2 . 4).
We should make some remarks about the case when the function F

does not depend on x explicitly. In this case some additional difficulties
appear. First of all, along with a solution w (x) of ( 1.1 ) there are also
solutions w (x + h), where h is an arbitrary number. It means that for each
solution u (x) of

there is one-parameter family of solutions

This nonisolatedness of solutions complicates further investigations. More-
over, we know from the investigations in the one-dimensional case [3] that
(2.5) can have solutions for isolated values of c. It means that a small

changing of the system (2. 5) can lead to the disappearance of the solution.
There is no a contradiction with the homotopy invariance of the degree
since the system linearized on the solution has zero eigenvalue, and the
index of the stationary point can be equal to zero. But the construction
of the degree does not have sense in this case.
Thus if the function F does not depend on x explicitly the constant c

should not be considered as given. We have the following formulation of
the problem: to find c for which (2.5) has a solution. So the constant c is
unknown along with the function u (x), and we have to consider the

operator defined on the space W2, u (Q) x R. To avoid this complication
and nonisolatedness of solutions we apply the method of a functionaliz-
ation of a parameter. It means that instead of unknown constant c we
consider a functional c (u). It is supposed to be given and to satisfy the
following conditions:

1. For each the function c (uh), where u~ is defined by (2 . 6),
is monotone in h,

2. -~ -E- oo as A 2014~ =L oo .
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In this case (2.5) is equivalent to the equation

in the following sense. Let the constant c = eo and the family 
- oo  h  + oo be a solution of (2. 5). We choose h = ho to satisfy the
equality C (Uh) = Co. It follows from the conditions 1 and 2 that such h
exists for any co, and it is unique. Obviously, the function u (x) = uho (x)
satisfies (2. 7). Conversely, let u (x) be a solution of (2. 7). Then the
constant c = c (u) and the family u~ (x), defined by (2. 6), satisfy (2. 5).
We now construct a functional c (u) which satisfies the conditions above.

Let be a monotone increasing function such as

1 as + oo,

We put

and

ASSERTION 2 . 1. - The functional c (u) defined on W2, ~ (Q) by (2 . 8),
(2. 9) satisfies Lipschitz condition on every bounded set of W2, ~ (Q), and
has the following properties: c is a monotone decreasing function of h,
c ~ ~ oo as h ~ ± ~. Here uh is defined by (2 . 6), u E W12, (Q).
The properties of the operator A which are formulated below are the

same for the cases when c is a constant and a functional, and when F
depends on x explicitly and does not depend. So, if the contrary is not
pointed out, we consider all these cases.

ASSERTION 2 . 2. - The operator A (u) satisfies Lipschitz condition on

every bounded set of W 2, ~ (Q).
CONDITION 2 .1. - All eigenvalues of the matrices b + - a ~2 are in the

left half-plane for all real 03BE.
We note that this condition is connected with the location of the

continuous spectrum of the linearized operator [11].

THEOREM 2. l. - Let Condition 2.1 be satisfied. Then there exists a
linear bounded symmetric positive definite operator S, acting in the space

W 2, ~ (~), such that the inequality

takes place for any u, u© E (Q). Here ~ (un, uo) -~ ~ as un -~ uo weakly.
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From Theorem 2 .1 it follows that a condition similar to Condition o~

of Skrypnik [4j is valid (compare with class (S)+ mappings in [13]):
if un is a sequence in W2, ~ (SZ) which converges weakly to an element

and f 
_ _

then un converges to uo strongly in (Q).
From this we conclude that the Leray-Schauder degree (the rotation of

a vector field) y (A, can be constructed similar to [4] for any bounded
set ~l in (Q). The degree does not depend on the arbitrariness in
the choice of the operator S satisfying the conditions of the Theorem 2.1.
The Leray-Schauder degree is proved to possess two usual properties:

the principle of nonzero rotation and the homotopy invariance. The
principle of nonzero rotation means that if y (A, then (2. 4) has a
solution in ~l.
We define now the homotopy of the operators under consideration. We

consider families of matrices functions FT (u, x), r~ (x’) and constants c~,
in case if they are considered as given, depending on the para-
meter i E [o, 1]. The following conditions are supposed to be satisfied:

1. The matrices az are symmetric positive definite and continuous in r,
2. The functions F~ (~r~, x) are continuous in i in the {~) norm,
3. The matrices F~ (w, x) and Fu’ ~ (w, x), i = l, ..., n are uniformly

bounded for all w~RP, x~03A9, Te[0, 1]. The matrix F’03C4(w, x) satisfies Lip-
schitz condition in w E Rp, i E [0, 1] uniformly in 

4. For each i E [©, 1] there exist uniform limits

All eigenvalues of the matrices

lie in the left half plane for all real ç.
5. The functions r2 (x’) are bounded and continuous in i uniformly in

x’eD. If C’t is a given constant then it is continuous in T.
Here w + {i) and ~v _ (i) are given vector-valued functions which are

supposed to be continuous,

In the case when F~ does not depend on x explicitly, and cT is a functional,
it is defined by the formulas
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The operator AT (u) : W 2 , ~ (S~) -~ cwt J1 (Q))* is defined by the equality

THEOREM 2 . 2. - Let ~ be a bounded domain in the space (Q) with
the boundary I~’, and A,~ (u) ~ 0 for u E h, i E [Q, 1]. If the conditions 1-5 are
satisfied then

Let u0~ W12, (Q) be an isolated stationary point of the operator A (u):

and A {u) ~ 0 for in some neighbourhood of the point uo. Then the
index of the stationary point uo is defined in the usual way: it is the
rotation of the vector field A (u) on a sphere with the center uo of suffi-
ciently small radius.
We linearize the operator A (u) at the stationary point uo. The linearized

operator A’ (uo) : W2, ~ {S~) -~ (Wi, ~ (H))* is defined by the equality

where

If c is a given constant then the term with c’ (u) in (2 . I 5) should be
omitted.

THEOREM 2.3. - Let Condition 2.1 be satisfied. Then there exists a
linear symmetric positive definite bounded operator S acting in the space

W2, ~ (Q) such that for any u E W2? ~ (Q)’ 

..__ _ _ . " "" _._

where 8 (u) is a functional defined on (Q) and satisfying the condition:
8 (un) ~ 0 as uri --~ weakly in W2, ~ (Q).
From this theorem it follows, in particular, that the operators are

Fredholm (see Theorem 3 . 4).
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We introduce an operator J : W 2, ~ (S2) -~ (W 2, ~ (S~)) * by the equality

THEOREM 2 . 4. - Let Condition 2 .1 be satisfied. Then for all ~, >_ o the

operator is Fredholm. For all except perhaps a finite
number, it has a bounded inverse defined on the whole (W 2 ~ ~ (S~)) * .
We use this theorem to investigate the isolatedness of a stationary point

and to calculate its index.

THEOREM 2 . 5. - Let ua be a stationary point of the operator A (u), and
suppose that the equation

has no solutions except zero. Then the stationary point uo is isolated, and
the absolute value of its index is equal to 1.
We show that the sign of the index is connected with the multiplicity

of eigenvalues similarly to completely continuous vector fields (see, for
example, [1]). To do this we map (W 2, ~ (S2)) into (W 2, ~ (SZ)) * by means of
the operator J, and denote (W2, ~, (~))o = J (W2s ~ {~)). We consider
the operator acting in (W2, ~ {SZ))* with the domain

{W2, ~ (SZ))o . It follows from Theorem 4 .1 that the operator A* has no
more than a finite number of negative eigenvalues, and all other negative
numbers are its regular points. We note that the real eigenvalues X of the
operator A~ satisfy the equality

for some u ~ 0, u E W12,  (Q) and for all v E W12,  (03A9). Here J u is an eigen-
function of the operator A* which corresponds to the eigenvalue 03BB. In

fact, we are speaking about the usual definition of eigenvalues and eigen-
functions for differential operators in the class of generalized solutions in

Wb, , .
THEOREM 2. 6. - Under the conditions of Theorem S .1 the index of a

stationary point uo is equal to ( - where v is the sum of the multiplicities
of the negative eigenvalues of the operator A*.

3. LOWER ESTIMATES OF LINEAR OPERATORS

3 . l. In this section we consider a linear operator
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of the form

Here W~ (Q) is the Sobolev space of vector-valued functions defined in Q
and satisfying the boundary condition

with the inner product

the triangular brackets ( f, v) mean the action of the functional

f E (WZ (Q))* on the element v E W2 {~), (W2 (S2))* is a conjugate space; a
is a constant symmetric positive definite matrix, b is a constant matrix.
We suppose that the following condition is satisfied.

CONDITION 3 . 1. - All eigenvalues of the matrix b - a ~2 are in the left
haf plane for all real ~.

THEOREM 3. l. - Let D be a bounded domain with a smooth boundary.
Then there exists a symmetric bounded positive definite linear operator T,
acting in the space W2 (Q), such that for any u E W2 (Q)

~Lu, u~I2, (3.3)

where I . I ~ is the norm in W2 (Q).
Remark. - The assumption that the boundary is smooth is done for

simplicity. It is clear that the results are valid for more general domains.
We believe even that domains with a finite perimeter can be considered
(see [12]).
We present first some auxiliary results.
We consider the eigenvalue problem in the domain D

Here A’ is the Laplace operator in the section of the cylinder

It is known (see, for example, [9]) that the problem (3.4) has a sequence
of eigenvalues ~,i,
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and a corresponding sequence of eigenvalues gi which satisfy the condition

These eigenfunctions form a complete orthogonal sequence in It

means that each function square-integrable on D can be represented as
Fourier series with respect to these eigenfunctions, converging in L2 (D).
As known, if u E W2 (~) then for every xl fixed uEL2(D) (changed if

necessary on a set of measure zero). So any function can be
in the form

where vi are the coefficients of the expansion for each xi fixed. Assuming
that

we have from (3 . 6)

The functions vi belong to L2 (R). Indeed,

Similarly,

Consequently, vi E WZ (R).
We introduce linear operators T~, acting in W~ (Q) by the formula

Here - denotes the Fourier transformation, Ri (ç,) is a symmetric positive
definite matrix which satisfies the equality

for any vector p. If the condition 3 .1 is satisfied and ~,i >_ 0 then such
matrix exists, and the operator T~ is bounded symmetric and positive
definite [3]. We note that the problem (3.4) does not have negative eigen-
values. So the operators (3 . 8) are defined for all its eigenvalues.
We define now the operator T which appears in Theorem 3.1 :

where u is given by (3. 6).
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LEMMA 3 . l. - The operator T is a linear bounded symmetric and positive
definite operator in W2 (S~).
Proof - The linearity of T is obvious. We show now its boundedness.
From ~3 . 5~ we have

where ~k =1 for i = k, and ~k = o for 

From these equation and the estimation

(see f 31~ we obtain

Thus

We show now that the operator T is symmetric. Let w E W2 (Q) and

We have
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Since the matrices Ri are symmetric and real, the operators Ti are symme-
tric, we obtain

It means that the operator T is symmetric in W~ (Q).
To prove that the operator T is positive definite we note that there is

such positive number  that all eigenvalues of the matrices Ri (ç) for all i

and § satisfy the inequality It means that

We have

Thus

The lemma is proved.
Remark. - We note that the operator T is bounded symmetric and

positive definite in L2 (Q) also.

Proof of Theorem 3. l. - To prove the theorem we should show only
that (3 . 3) is valid. We have

The theorem is proved.
3 . 2. - In this section we consider the operator L

Vol. l l, n° 3-1994.
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defined by the equality

where a is a constant symmetric positive definite matrix, b (x) is a conti-
nuous matrix. We suppose that there exist limits

uniformly with respect to x’, and the constant matrices bl and b2 satisfy
the condition 3 . l.

THEOREM 3 . 2. - There exists linear, bounded, symmetric, positive definite
operator So acting in W2 (Q) such that the inequality

takes place. Here 9 (u) is a functional defined on W2 (Q) which satisfies the
condition: 8 ~ 0 as un ~ 0 weakly.

Proof - We consider first the case when

where

are smooth functions, 0 _ ~i (xl) _ 1,

We denote by the operator which is defined for the matrix bi as it
was done in Theorem 3 . 1, and

We have
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The second summand in the right hand side of (3 .11 ) tends to zero as
u ~ 0 weakly (see lemma 3 . 2 below). We have further

Here e (u) denotes all functionals which satisfy the condition in the formul-
ation of the theorem. Thus

From Theorem 3 . 1 it follows that

Let now b (x) be an arbitrary matrix satisfying the conditions above. Then
from Lemma 3 . 2 it follows that

To complete the proof of the theorem we should show that

where S~°~ is a symmetric positive definite operator, K is a compact
operator in W~ (Q).
We note first that the operator Ti defined by (3 . 8) satisfies the equality

and, consequently, the similar equality is valid for the operator T
(see (3.6), (3.10)) and for the operators Since the operators T~‘~ are
symmetric in L2 we have

Vol. 11, n° 3-1994.
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It is easy to verify now that

Denote the right hand side of this equality by 03A6 (u, v). This is a bilinear
bounded functional in W~ (Q), so

where K° is linear bounded operator. We claim that K° is compact. Let

vn - 0 weakly in W~ (Q). Denote yn = K° vn. Then

From Lemma 3.2 below it follows Vn) --~ 0 since vn, 0

weakly in and ~yn/~x1 are uniformly bounded in L2 (S2).
It proves the compactness of the operators K°. Thus it is proved that

is a compact operator.
We have further

where

Since and ~2 are bounded bilinear functionals in wi (Q) then
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where So and B are bounded linear operators. The operator So is symme-
tric and positive definite since the functional 03A61 (u, v) is symmetric and

As above, from Lemma 3 . 2 it follows that the operator B is compact.
The equality (3 . 13) with K = (B - K°)/2 follows now from (3 .14) and

the equality

The theorem is proved.
We used the following lemma.

LEMMA 3. 2. - Let a sequence of vector-valued functions be uniformly
bounded in L2 (Q) and a sequence gn converges weakly to zero in W2 (S~).
Let, further, ~ (x) be a bounded smooth function which tends to zero as
xl -~ ~ oo uniformly with respect to x’. Then .

Proof. - We have

and it is sufficient to show that the second integral in the right hand side
of this inequality tends to zero. We represent it in the form

For any given E > U we can choose R such that the first integral in the
right hand side of (3 .15) is less than e/2 since For R

fixed the second integral tends to zero as n - oo since weak convergence
of gn in w2 (Q) implies strong convergence of § gn in L2 (Q) for any finitary
smooth ()) and hence strong convergence of gn in L~(Q~). Here

 R ~ . Thus there is an integer number N such that

~~ ~r gn ~ ~L2 ~~~ __ ~ for n >_ N. The lemma is proved.
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3 . 3. - We consider now the weighted space (Q) with the inner
product 

- _ ~.. _ .

The weight function ~, is supposed to satisfy the conditions formulated in
Section 2. We consider the operator L : ~) * given by

where u, v E (Q), a and b are the same as in Section 3 . 2.

THEOREM 3 . 3. - Let the matrices bl and b2 satisfy Condition 3 . l. Then
there exists a symmetric, bounded, linear, positive definite operator S acting
in (Q) such that for any u E (Q),

where ( is the norm in W2, ~ (S~), 8~ (u) is a functional defined in

W 2, ~ (Q) and satisfying the condition 8~ (un) -~ 0 as un -~ 0 weakly.
Proof. - We put

where co= and TO is defined in the previous section. Introducing the
notation w = c~ u, we obtain

where

It is easy to verify that the operator of multiplication by co is a bounded
operator from (Q) into W2 (S~), and the operator of multiplication
by is a bounded operator from W2 (S~) into (S~).
Hence w E W2 (Q), and from (3 . 12) we have 

-

where c = N - 2/2, N is the norm of the multiplication operator 
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From Lemma 3 . 2 it follows that I -~ 0 as w -~ 0 weakly in W2 (Q). Thus
we have shown that

We use the notation 8~ here for all functionals which satisfy the condition
of the theorem.

For the complete proof of the theorem it is sufficient to show that

where S is a symmetric positive definite operator, K is a compact operator
in (Q). For this we construct the operators in (Q) from operators
defined in Wà (Q) in the following way. To each linear bounded

operator A, acting in W2 (Q), we assign a corresponding linear operator A~
in (Q) by means of

where, as above, [ . , . ]~ and [ . , . ] are the inner products in (SZ) and
WZ (S~), respectively. Going over in (3 13) to operators in W2, ~ (~) by
this rule, we obtain =1 + K . From Lemma 3. 3 below it follows

2

that is a bounded, symmetric, positive definite operators, K~ is a

compact operator. By the same lemma and equation T = c~ -1 T~°~ ~ we
have = T + B, where B is a compact operator in (Q). Hence we

obtain 3 1 6), where S = 1 S{°~, K = K - B. The theorem is proved.{ ) 
2c c 

~ ~ p

LEMMA 3. 3. - Let an operator A~ acting in (S~) be defined accord-
ing to the operator A in W2 (SZ) by the equality (3 .17). Then:

1. A~ is a bounded linear operator in (S~) if A is bounded and linear,
2. A~ is a compact operator in W2, ~ (S~) if A is compact in W2 (S~),
3. A~ is a symmetric positive definite operator in {S~) if A is symme-

tric positive definite in W2 (Q).
4. A~ = t~-1 A t~ + B, where B is a linear compact operator (Q).

Proof - Assertions 1-3 can be verified directly. We shall prove
assertion 4. Denote A = ~-1 A r~. This is a bounded operator in (Q).
We have for u, v E (Q)

Denote y u, Then we obtain
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where

~ (y, z) is a bilinear bounded functional in W~ (Q), so

where K is a linear bounded operator in W1 (Q). From Lemma 3 . 2 it

follows, as above, that K is compact. Therefore (see assertion 2) K~ is
compact in W2, ~ (Q). We have further

It means that A = A~ + I~~. The lemma is proved.

4. ESTIMATIONS OF NONLINEAR OPERATORS

Proof of Assertion 2 . 1. - For any (Q) we have

We obtain now the lower estimation of the functional p (u). For any N > 1
we have

Let u lie in the ball II u f ~ _ R. Choosing N to satisfy the condition

we obtain

From this and (4 . 1 ) it follows that the functional c (u) satisfies Lipschitz
condition on every bounded set.
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It is easy to verify that p is monotone in h (see [3]) and p (u~ --~ 0
as h - +00, and +00 Hence the functional c(u)
satisfies the conditions of the Assertion. The Assertion is proved.
We consider now the operator A (u) defined by (2 . 1). First of all we

show that the integral in the right hand side of {2 . 1 ) exists. Obviously,
we should verify only the existence of the integral

We have

where

So

The first integral in the right hand side of this equality exists since F’ (w, x)
is bounded for all and and the second integral exists since

Proof of Assertion 2 . 2. - Let ui, u2 E (~), ~ I  R, i = 1 , 2 where
R is a positive number. We have for v E (Q).

We estimate each summand in the right hand side of this equality in the
usual way. Since ’ / and r are bounded functions we obtain

The Assertion is proved.

Proof of Theorem 2. l. - For the operator S in the formulation of the
theorem we take the operator constructed in Theorem 3 . 3. Let u,~ -~ uo

weakly. Denote We have
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where v = We consider the first term in the right hand side of (4 . 4):

where

Since c~ E (W2, ~ (Q))*, c~ (vn) -~ 0 as We consider now the second

summand in the right hand_side of (4 . 4). Since weakly in
W12 (Q), functions ~un/~x1.  are uniformly bounded in L2 (Q), and the
function v is bounded, continuous, and tends to zero as xl -~ ~ oo, it

follows from Lemma 3 . 2 that this integral tends to zero.
Further, we have, obviously

We show now that

Denoting by ()) all terms which tend to zero as n - oo, we have

Here

The seconds integral in (4. 6) tends to zero by Lemma 3 . 2. The first

integral can be represented in the form
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The second summand here tends to zero also by Lemma 3.2. We show
that the first term in the right hand side of the last equality is equal to
zero. Indeed, since the operator is symmetric in L 2 (Q) and

we have

It remains to consider the last term in the right hand side of (4.4). We
show that

x). We note that

where y is a vector,

Thus

The first and the third integral in the right hand side of (4.9) tend to
zero as since they are bounded linear functionals on 
We consider the last term. It follows from (4.7) and (4.8) that

Iy(x) ~ K3| un (x) |2 where K1, K2, K3 do not
depend on un (x). Hence
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Denote SVn=wno We have

where ~ _ Ai. We choose a:

For m = 2 the proof is similar. Since un ~ uo weakly in W12, (03A9), then
o un -~ (D uo weakly in W2 (Q) and the functions cn un are uniformly bounded
in From Lemma 4 .1 below it follows that they are uniformly
bounded in L2(1+03B1). Similarly, 03C9wn~0 weakly in W2 (SZ). From
Lemma 3 . 2 it follows that the last integral in the right hand side of (4.11)
tends to zero.
Thus we have proved the following equality

where ~,~ -~ 0. Since there exist uniform limits

and Condition 2.1 is satisfied, we have by Theorem 3 . 3

From this and the following convergence

it follows the validity of the theorem. The theorem is proved.
Remark. - In the proofs of Assertion 2.2 and Theorem 2.1, we consi-

dered the case when c is a functional. The case when c is a constant is
similar and even more simple.

( We remind that m is the dimension of the space, 03A9~ Rm.)

Proof - If we consider a bounded domain then (4.13) follows from
imbedding theorems (see, for example, [9]). We show that the same estima-
tion is valid in the case of the infinite cylinder also.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



269CONSTRUCTION OF THE DEGREE

We represent Q as the union of finite cylinders

Then we have

The constant K obviously does not depend on i. Hence

The lemma is proved.

LEMMA 4 . 2. - If 2m > p and un ~ 0 weakl .Y in W12(03A9) then
m-2

where is a bounded continuous function which tends to zero as

Proof. - We have

For any ~>0 the first integral in the right hand side of this equality is
less then E/2 for all n if R is sufficiently large since i[r -~ 0 as 
The second integral tends to zero as n - oo due to the compact imbedding
of W~ into LP in bounded domains. Hence it is less than s/2 for n
sufficiently large. The lemma is proved.

Proof of Theorem 2.2. - It can be verified directly that if conditions
1-5 are satisfied then the following inequality holds:

for any where R is an arbitrary given
positive number. Here i2) is a function of variables i2 E [o, 1]
bounded and satisfying the condition:

It follows from Theorem 2 . 1 that for any T E [0, 1] there is a bounded

symmetric positive definite operator ST in the space E such that
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where un is an arbitrary sequence in E which converges weakly to uo,

~03C4n o .
Let be an arbitrary number from the interval [0, 1]. We show that in

some neighbourhood A of the point To the following estimate takes place:

where ET ~ 0 as n - oo uniformly in L E A. We denote

We have

For A sufficiently small we have now from (4.14) and (4.15):

We show that c~~ (un) -~ 0 uniformly in T as un -~ uo weakly. Indeed, let
us assume that it is not so. Then there exist a positive s, subsequence.
{ and sequence ik, which we can consider as converging to some T*,
such that

We have

From the inequality (4.14) it follows that the first term tends to zero as
k -+ oo . The convergence of the other terms to zero can be easily verified
directly. Thus (unk) --~ 0 which contradicts (4 . 17).
We show that y (A~, D) is independent of r for T E A. Since y (Az, D)

does not depend on the arbitrariness in the choice of the operator S2 which
is supposed to satisfy the conditions of Theorem 2.1, then as such operator
the operator 2 S’to can be taken. For the operator condi-
tion a’) [4] on the interval A is satisfied. This means that for any sequence
Tn -+ T* and for any sequence un which converges weakly to uo from the
inequality

n --> co

follows the strong convergence un -+ uo. This follows directly from (4.16)
and the uniform convergence (un) to zero.

It can be verified directly that the operator A~ (u) is jointly continuous
in T E [0, 1], u e E. Thus the operator 2 S:o AT (u) realizes the homotopy and,
consequently, y (A~, D) does not depend on T on the interval A.
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Considering the corresponding interval A as a neighbourhood of

each point Toe[0, 1] and taking a finite covering, we obtain

y(Ao, D) = y (A1, D). The theorem is proved.
We prove now Theorem 2. 3. Together with Theorem 2.1 they deter-

mine the properties of the operators, and Theorems 2.4-2.6 follow from
them. The proofs of these theorems are similar to those in [3] since the
concrete form of the operators is not essential here, and we do not give
the proofs in this paper.

Proof of Theorem 2 . 3 . - We denote b (x) = F’ (~, x) . Let L be the

operator, acting from W2, ~ (S~) into (W2, ~ {SZ))*, constructed in
Theorem 3 . 3. Then

where K is determined by the equality

If c is a given constant then the term with c’ (u) in (4.19) should be
omitted. We show that

as u - 0 weakly in w2, ~ (Q). Consider the first summand in the right hand
side of (4.19): 

’

From Lemma 3 .2 it follows that the integrals in the right hand side of
this inequality tend to zero.
We have, further

since c’ (u) is a bounded functional, and S u - 0 weakly. The convergence
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was proved in the proof of Theorem 2.1. It remains to consider the last
integral in the right hand side of (4.19). Denote

Then for the norm of the matrix we have

where Ko and K1 are constants wich do not depend on uo. It follows
from (4. 20) that

for any where K = max (Ko, K1). Now we have

where

We choose

Then

and it remains to use Lemmas 4 .1 and 4.2. Thus we proved the equality

where e (u) -~ 0 as u --~ 0 weakly. To complete the proof of the theorem it
remains to apply Theorem 3 . 3. The theorem is proved.
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