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ABSTRACT. - Let Q be a bounded domain in Rn with regular boundary.
In this paper, we study the equations of the type det (V u (x)) = f in Q and
u (x) = x on aS~ where f lies in some Sobolev spaces. We establish some
existence and non-existence results. A discussion of general cases is also
included.
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RESUME. - Soit Q un domaine borne regulier de Rn. Dans cet article,
nous allons etudier les equations du type det (V u (x)) = f dans Q et u (x) = x
sur an avec f appartenant a certains espaces de Sobolev. Nous établissons
quelques resultats d’existence et de non-existence. Une discussion pour des
cas generaux est aussi incluse.
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276 D. YE

Let Q be a bounded domain of Rn with regular boundary and f be a
smooth function on Q. In [I], motivated by his study of volume forms on
compact smooth manifolds, J. Moser has considered the following type
of equations:

_ _ 

,~__

where f (x) is a positive C°° function on SZ, u (x) is a C°° diffeomorphism
from SZ to itself and ~, is given by:

I B~&#x26;z L /

In particular, he proved that given any smooth positive function f (x) on
Q, there exists u (x) which solves the equation.

Later on, B. Dacorogna and J. Moser studied the corresponding problem
(see [2]) in the case where f E (S~), 0  a  1 and f E Ck (~). We restate
their main results as follows.

THEOREM [DM 1 ] . - Let an integer, 0  oc  I , Q have a 
boundary Let f E with f> 0 in 03A9. Then there exists a diffeo-
morphism cp with cp - ~ E Ck + 1 ° °‘ and

where X = vol (Q) I lf (x) dx .
THEOREM [DM2]. - Let k > 0 be an integer, Q have a Ck ~C1 boundary.

f, g > 0 in fi with

Then there exists tp E with cp (x) = x on ~03A9 such that

for every open set E of S2.
Moreover if supp ( f- g) is included in Q, then supp (tp - id) is also included

in Q where id stands for the identity map.
It is natural to ask whether there exists such a solution in the case

where f (x) is of C°, or in some Sobolev spaces. To our knowledge, these
questions are open. In this paper, we study the case where f would lie in
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277PRESCRIBING THE JACOBIAN DETERMINANT

Sobolev spaces. Certain difficult while interesting aspects would appear.
The main difficulties (which occurs also in [1] and [2]) are the strong non
uniqueness of the eventual solution and the strong non-linearity of the
Jacobian determinant.

In order to simplify our presentation, we will say that such a problem
is of the type {X, Y}, if we study the existence and/or non-existence of
u (x) E Y under the conditionsf(x)EX. We use also the following abrevi-
ated notation:
- p (Q) = (Q, R), Cm (0) = cm (Q, R),
- there exists c > 0 such that 
- Rn), where

p >__ max (1, n2/(1 + mn)) (see Lemma 10).
Actually, we will provide the existence or non-existence criteria only for

certain kinds of Sobolev spaces X and Y. The main existence result can

be stated as follows:

THEOREM 1. - Let an integer. Let S~ be a bounded domain in
Rn with a Cm+k+ 3 boundary, where k = ([n/p] + 2). Let p E (max (l, n/m), oo).
Then for each there exists u such that u, 

~m+ ~, p (~~ Rn) and

where 03BB=vol(03A9)/( f(x)dx).

We will prove this theorem by using some ideas in [2] as well as some
special properties for p > n/m, which are similar to the proper-
ties of the space Ck, ex (Q) (cf. § 5). The non-existence theorems and the
symmetric case will be treated in sections 6, 7 respectively and we will try
to figure out some expectations for the general cases in section 8.

2. PRELIMINARY

Let Q be a bounded open set of Rn. We recall here some well-known
results.

LEMMA 1 (trace theorem). - Let integer and p E (I, oo]. If
of class Cm+ 1, u E (S~), we define the trace as with j = 0,

1, ..., m - 1, where u denotes the unit normal vector on ~~.
Then, it extends to a continuous linear surjective mapping from p (S~)

into II~ 
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278 D. YE

LEMMA 2 (regularity of the Neumann problem). - Let mEN, p ~ (l, oo)
and Q have a boundary. For every 

such that f (x) dx = I g (x) dts, if u is the solution of

Then u E Wm + 2, ~ {SZ). There exists a constant C {~, m, p) such that

LEMMA 3 (the Sobolev imbedding theorem). - Let m be a non-negative
integer, pe [ 1, w) and aS2 is of class Cm, then there exist the following
imbeddings:

Case 1: mp  n .

Case 2: mp = n.

Case 3: mp > n . Set k = max (j,(m-j)p>n},

LEMMA 4. - Let v E Ci Rn), suppose that det (V v (x)) > 0 in ~ and
that v (x) = x on then v is a C 1 diffeomorphism from S~ into itsef

Sketch of proof. - We work on each connected component of SI, so
we can suppose that Q is connected. Since det (V v (x)) > 0 and by the
degree argument, we have and Set

card [v - 1 (v (x))] =1 ~,
one can prove that En is open and closed in Q and aS2 E Eg by contradic-
tion. Thus E~ = S~.

3. THE LINEARIZED PROBLEM

Denote by f ’ {x) dx = 0 ~ where Q is a

bounded domain of R". We consider the following linearized version of
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279PRESCRIBING THE JACOBIAN DETERMINANT

system (1.1):

We have :

THEOREM 2. - Let mEN, p E ( 1, oo ) and aS~ be of class Cm + 3 . Then
there exists a continuous linear mapping L from to

Rn) such that v = L ( f) satisfies:

Proof. - We proceed as in [2].

Step 1. - Consider first the problem

By Lemma 2, we have Denote c = - V g (x). Clearly
R’~) and div (c (x)) = f. But one has on aS~,

where u = (ui) is the unit normal vector on aS~.
In what follows, we will construct a family of functions b = { such

that and for any is an antisym-
metric matrix which satisfies:

where ( - ~)~ +; (c J ~~ _ c~ U;).
As in [2], we note rot*(b)j=03A3(-1)i+j(~bij/~xi). Then if x~~03A9,

On the other hand, one has:

‘~ J

Thus, v = - rot *(b) - ~ g will be a solution of the equation (3.1).

Vol. 11, n° 3-1994.
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Step 2. - Construction 
In order to get the desired regularity and continuity results, we will use

a refinement of an argument in [2].
As one has and one can assume that

cij|~03A9~Wm+1-1/p,p(~03A9) by the trace theorem. be the solutions

of

By Lemma 2, one has 

Set 03A8(x)=x-03C9d(x, ~03A9) V d (x, (d (x, where (R) is a
cut-off function satisfying x =1 in [ - I, 1], supp (x) _ [ - 2, 2] and are

positive constants. We now state a result which will be proved in Step 3.

LEMMA 5. - The constants 03C9 and ~ can be chosen so that 03A8 is a 

diffeomorphism from Rn into itself, 03A8 (x) = x if x~ aS2 and 03A8 (S2} = SZ.

Assuming this Lemma, set (x} _ (x) - x (d (x, (~’ (x}}~/c~.
Clearly, implies and we observe
that x (d (x, Thus 

Moroever, for any 

Hence we on aSZ.

Obviously, the above procedure is linear. By Lemma 1 and Lemma 2,
one obtains immediately that there is a positive number C (Q, m, p) such
that

Step 3. - We now prove Lemma 5. Since then there exists
E > 0 such that d (x, where d (x, 
We fix this E.
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281PRESCRIBING THE JACOBIAN DETERMINANT

has a

compact support, there exists a sufficiently small c~ = 0 such that

~ ~ t~ V C (x) j ~ ~  1 /2 n. Thus, T (x) = x - (o 4Y (x) verifies that det (x)) > 0.
Furthermore, we have ~’ (x) = x on a~. Proceeding similarly as in the

proof of Lemma 4, we set A = ~ y e Rn, card pF ’ ~ (~P (y))] =1 ~ . We observe
that A is open and closed and that (as supp (~ (x)) is compact),
from which we get A = Rn. So T is a diffeo-

morphism. The fact that follows from Lemma 4..

4. TECHNICAL LEMMAS

The subtleness of our problem arises not only from the non-linearity of
the Jacobian determinant, but also from the fact that the behaviour of
the functions in Sobolev spaces are not easy to handle. In particular, the
regularity properties after multiplication as well as composition might not
be preserved in general.
By trying to solve our problem, we need some properties for the

functions in with p>n/m. More precisely, we find that they
behave in great similarity with those of the functions in (S~). We state
these properties in the following lemmas. They will play an important role
in the proof of our main theorems. After we found the proofs of these
lemmas, we learned that some of them are known (see [7] and [12]). (Thus
we are not sure of the originality of these results.) The proofs are based
on the imbedding theorem of Sobolev spaces.

Let Q be. a bounded domain of Rn with regular boundary.

LEMMA 6. - Let m >_ 1, m E N, p E (n/m, oo ], then for any f (x) and g (x)
in P (Q), the product ( fg), lies in P (Q), i. e. P is an algebra.

LEMMA 7. - Let m >__ I , mEN, p E (n/m, ~o ] . 
R’~) and assume that g (x) Then we have that

LEMMA 8. - Let m be a positive integer, p E [1, oo], f (x) E Wm’ P (~). Let
R~) where q = oo i~ m =1; q >__ p, q E {n/Cm -1 ), oo], if

m > 1. Let g (x) _ .x on then we have f ~ P(Q).

Proof of Lemma 6. - We use the notation with h~Nn
k 

~~ ~

and h ~ 
k
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We consider oh(fg) where As it
k_h

is sufficient to prove that g) E LP (SZ). The case p = oo is immedi-
ate, then we consider for p  oo .

Case 1. - ).
In this case, one has ~kf E Lq (Q) for any q E Rand g E Lp’ (S2) with

p’ >_ p. Observe that E LP (S~) holds if p’ > p and the case p’ = p
occurs only for so and one gets 

as fe C° (~) by p > n /m .

h-k I ).
By changing the roles of g and f, the proof is then the same as in

Case 1.

Case 3. - Otherwise, one has ~kf~Lq1 (Q), where
Their product will lie

in Lq(Q) with 1 /q =1 /q 1 + 
As an immediate consequence, we have:

COROLLARY 1. - Rn) with m >__ 1, p E (n/m, oo], then we
have det (V (x)) E P (SZ).

Remarks. - 1. By the proof, n/m {S~) n L°° (~) is also an algebra.
2. n/m (~) is not an algebra in general, (if n = m = 2, W2~ 1 (S2) is !) but

we have that for any f, then d p E [1, nfm).

Proof of Lemma 7. - By Lemma 4, we have then there
is a constant c > 0 such that det(Vg(x))>c and Thus

if and only if By induction, one knows that: if

Oh (okf) 0 g { ~a, ~i ~k, a, ~i where the last sum occurs
k__h 

’ ’ 

j 

for , and ...,n~~k~. It is
j

sufficient to prove that where £ ) = m + 1,
j 

~ 

j

1. Obviously the case p = oo holds. Thus we consider p  oo .

Case 1. - ).
This means for any qE[l, oo ).
We denote J = ~ l, 2, and

card [ ] as the cardinal number of set. We have for
jEI 1 

any oo).
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283PRESCRIBING THE JACOBIAN DETERMINANT

IfJ=0, we get that Otherwise, 
J J=J J 

e Lq’ (Q) where q’ satisfies:

because that p >__ m, card [J] > 1 and L + 1.
jEJ J ..

If q’ > p, ° g fl E LP (Q) holds obviously. The case q‘ = p occurs
j 

if and only if card [J] =1 and 03A3|03B1j| = m + 1, that is card [I] =0, |k| =1.
jEJ J

Thus we can rewrite our terms as which is also in LP (Q),
by the fact that as 

Case 2. - p  m/(m + 1- ~ k ). We adopt the same notation for I and J.
g~J E Lq’ (Q) where q’ verifies:

jEJ

we have The case q’ > p is simple while the case q’ = p occurs
only when 1= m + 1. So in this case |03B1j| =1 for every 
Since g E C1 (Q), then we get

Proof of lemma 8. - One needs only to take a little care in the case
y~= 1. Otherwise, by changing 1 /p - (m + )/n into ( )/n,
the proof is almost the same as that of Lemma 7. Details are left to the
interested readers ..

By using these properties, we can prove the following interesting result.

PROPOSITION 1. - Let Rn) with m e N, p > n/m
and assume that b (x) = x on then b -1 exists and b -1 E Wm + 1, p (~, Rn) .

Vol. 11, n° 3-1994.
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Proof. - Clearly, b E C1 (Q, Rn). By Lemma 4, b is a C1 diffeomorphism
from Q to itself. One has then V b -1 (x) = (V b {x)) -1 ° b -1 (x).

Since where denotes the adjoint
matrix of V b. By Lemma 6, we know (adj ~ b (x)), det (V b (x)) as well as
(V b (x)) -1 E p.

Set

By induction, one has V b -1 (x) E CkO (Q), so b -1 (x) E Cko + (Q),
Case 1. - 

We define pk by 1

and b -1 is a C~~ + ~ diffeomorphism from SZ to itself. We see that

~ b - i (x) ~ Wk~ + 1’ pko + 1, R").

We are now in the special situation of Lemma 8:

i.e. and
b -1 is a 

1 diffeomorphism. which
means Rn). Proceeding continuously, we arrive
at Rn).

Case. - 

Since we have b q E [ 1, a~ ).
By the same argument as above, we have b - ~ (x) q (S~, for

any q E R. Choosing q >_- n, we can continue to assume that (x)
by Lemma 8, because Now we can proceed in

the sameway as in Case 1 to get finally b -1 (x) E Wm + 1, P (Q, 

Remark. - In Lemma 7 and 8 we can also take some weaker conditions
for f and g. For example, we can change the condition f, 
by f, w 1 ~ ~ (Q) in Lemma 7.

5. PROOF OF THEOREM 1

We use some idea in [2]. First we prove a lemma for f near the constant
mapping of Q and then we will prove Theorem l.

LEMMA 9. - Let Q, m, p be as in Theorem 1 and (S~)

satisfying that (x) dx = vol (S2). Then there exist ~ _ ~ (S~, m, p) and

C (Q, m, p) such that for any f verifying ( f-1~m,p _ E, then there exist u,
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285PRESCRIBING THE JACOBIAN DETERMINANT

u-1 E wm + 1, P (Q, R n) such that u is a solution of the equation:

Proof. - By Theorem 2, we have a continuous linear mapping L from
wm,p(Q)/R to Rn) such that for any we have

div (L (f))=fin Q and L ( f ) = 0 on aQ.
If § be a (n x n) matrix, let tr (~) be the trace of ~. Define

Q (~) = det (I + ~) - 1 - tr (~) where I stands for the identity matrix.
By using the proof of Lemma 6, we see that for any f, g E (Q)

Then we obtain: for any w, Rn),

If u (x) is the solution of (5 . 1 ), we set v (x) = u (x) - x. Thus, the equation
(5.1) becomes:

Define N (v) = f -1- Q (V v). One will consider the following problem:
R~) such that LN (v) = v and 

Step 1. - We prove that LN (v) is well-defined.

Since dx = vol (~), we have :

Thus for R~) and v (x) = o on N (v) is in P (S2)/R.

Step 2. - Let Co be the constant in Theorem 2, i. e.

We (4 Co) - 2 (C2) -1 ), 
W m + 1, p (Q, Rn),  r and v (x) = 0 on 

Vol. lI, n° 3-1994.



286 D. YE

Then we have

On the other hand,

Using the fixed point theorem, we then obtain the existence of v E Br such
that LN (v) = v, so u (x) = v (x) + x is a solution of (5 .1 ). More precisely,
we have that and the fact

R~) follows from Proposition 1..

Proof of Theorem l. - We need only prove for f satisfying

(x) dx = vol (SZ) and f >_ c > o. By density of C°° (SZ) in p (S2), we can

choose such that g 1 >_ c 1 > 0 
where E is the constant in Lemma 9. We can also assume that:

V SG

We then define u1 (x) the solution of

By Lemma 9, such a solution exists and satisfies

If in what follows, we would have a solution u2 of the following equation

u = u2 ~ u 1 would be a desired solution of (5.1).
But actually we do not know the existence of u2 for (5.4). on the other

hand, we observe that det (V (x)) = {g 1 /f ) ~ thus
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by Lemma 7. By the same reason we can and we will take g2 E C °° (S2)

such that g2 >__ c2 > o, ~ fi/g2 -1 c E (S2, m + 1 s p) and f1/g2 dx = vol (SZ).

Then we have a solution u2 (x) of:

i

Similarly, it is now sufficient to solve the equation:

Proceeding inductively, we get some u~, (Q Rn) satisfying

and we arrive at step k where we consider the following equation:

with p > n/(k -1). Thus, for some a in (0, 1). By Theorem
DMl stated in section 1, we have a solution uk (x) E C’n+ 1, « 

Set ° uk -1 ° uk - 2 - - . ° u2 ° We see that V j:

and is a C1-diffeomorphism from Q to itself and u~,

u-1 E Wm+ u p~ * (~~ Rn).
By Lemma 7, we have then u (x) = x on 8Q and

det(Vu(x))=fholds by construction. Finally, Rn) is a

direct consequence of Proposition 1..

Remark. - This theorem is independent on that in [2]. For example, if
where Q is in R2 and m>l, we o  a  1.

So by their result, we have only a solution in (~, 

COROLLARY 2. - Let m, p, Q be as in Theorem l, , f (x), g (x) E Wm’ p~ 
+ (SZ)

and assume that

Vol. 11, n° 3-1994.



288 D.YE

Then there exists u, u- ~ ~n) such that

Proof. - First we can suppose that g (x) dx=vol (03A9).

Then we solve ul (x) = x on aS2 and 
on aS~ by Theorem 1, then is the desired solution. N

COROLLARY 3. - Let 03A9 be as in Theorem l. If m is a positive integer,

.~ (x.) E ~m ~’ I (~) = W~’ °° (~)~ and Then

we have uq, R~) such that 
and det (x)) _~ f ’ in Q. 

COROLLARY 4. - Let Q be as in Theorem 1. Let m > n, mEN,f(x) be a

positive function in 1 ~ + (~) and f (x) dx= vol (S~). Then there exists
u, Rn) such that det (V u (x)) = f in Q and u a~ 

= x.

Remark. - These are the immediate consequences of Theorem 1 and
these are the limit cases for p E (max ( 1, n/m), oo ).

6. NON-EXISTENCE THEOREMS

Let Q be a bounded domain of Rn with regular boundary (n >_ 2). In
section 5, we prove that the problem of the 
well-posed when m ~ 1 and p E (max (1, n/m), oo ).
For the problem det (V u (x)) = f with or without some boundary condi-

tions, it is natural to ask if the question of the VV’~ + 1 ° np ~ is

well-posed. We say that the problem {X, Y ~ is not well-posed if there
exists some f E X such that such a solution u E Y does not exist.

In [8], R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes proved
that if R"), then det (V u (x)) will be in ~ 1 the Hardy space.
This shows that the is not well-posed, because

I ~ Q~ . In fact, we see that the answer is always negative for m >_ 1
and p E [l, oo).

THEOREM 4. - The problem of the 
is not well-posed if m is a positive integer and p E [l, oo).

Corollary 1, Rn) implies
det (V u (x)) If p =1 and m =1, then by the Remark after
Lemma 6, Rn) implies n) N

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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More precisely, let m >__ 1, oo ), p‘ > p and
Then the equation of the is not well-

posed.
In general, we have:

LEMMA 10. - positive integer, n2~(~ -~- mn)) and
Then there exists a unique continuous map T frotn Rn)

to D’ (~) such that V u e C°° {SZ, T (u) = det (V u (jc)). 
’

proof. - Let Rn) and 

we have
t

One has then )) (adjV C by the imbedding theo-

rem. Define ( T (u), (p ) = - u103A3 [~j cp u)1, J dx, V u e (03A9, Rn).
S2 .l

The continuity and uniqueness of T are clear..

DEFINITION. - We define in p (S~, Rn) where
n2/( I + mn)) and T is determined in Lemma 10.

Remark. - In [14], S. Muller proved that if with
and T (u) lies in L 1 (S~), then 

the classical Jacobian determinant.

PROPOSITION 3. - Let mEN, p‘ > p >__ l, p‘ >_ n2/(1 + mn). Then there is
no hope to find an estimate for the problem {Wm, p (SZ), Wm+1, p’ (Q, Rn)}.
More precisely, there are no positive numbers E and C such that:

For any f E p (S~) with ~~ E, we have u E W~‘+ 1~ p’ (~, Rn)
such that det (V u (x)) = f and I ( u - id 1, ~.  C ( , f ’-1 ~ ~m, p.

Proof. - Remark first that the condition p’ >-_ n 2 f ( 1 + mn) comes from
Lemma 10, just for well define det (V u (x)). Suppose that the assertion of
Theorem is not true, then V f E p {S2), define f~ =1 + (, f’-1)/k. Then for
k sufficiently large, we have 1, fk -1 ( ~m, p  ~, thus there is some uk such
that det (V uk (x)) =fk and I ~ id I m + 1, p’  C I 1 ~ I m~ p - ~ 

Define Then ~~-id~~+i~~C~)/-l ~p. In choosing
a subsequence denoted also by vk, we have that vk converges to v (x)

Vol. 11, n° 3-1994.
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weakly in ° p~ (Q, Hence, uk = id + (v + where w~ converges
to 0 weakly in R"). Then 
where k Rk converges to 0 in D’(Q). So when k tends to oo, we obtain
that div(v(x))=f-l, which This contradicts with

~>~. N

7. SYMMETRIC CASE

Let Q=Bn be the unit ball in Rn,f=f(r) where We consider

the axially symmetric solutions of (5 . 1 ). Set

(Q) = {g E Wm’ p (Q), g = g (r) is symmetric },
p° + (03A9)={g E (Q), there exists c > 0, Inf03A9 g {x) >- c},
(Q, R~‘) _ ~ v ~ (Q, Rn), v = h (r) x/r is equivariant ~ .

First, if Rn) and u = g (r) x = h (r) x/r where h (r) = rg (r), by
simple calculation, det (V u (x)) = gn (r) + (r) g’ (r) _ (hn (r))’/(nrn -1).
On the other hand,

and u (x) ~ requires l~ ( 1 ) = g ( 1 ) =1. As det (V u (x)) = f and u {x) = x
on aQ, one gets:

THEOREM 5. - Let m, p be as in Theorem 1 and f E p~ + (S2) then there
exists a unique solution u E Sm+ 1, p (Q, R n) such that:

Sketch of proof. - We modify the operator L ( f ) in Theorem 2 by
considering:

Then the uniqueness of g implies that g E Sm + 2, p (~), so v = V g (x) satisfies
that v E S’~ + 1 ~ p (~, Rn), div (v (x)) = f (r) . And ( v, v ~ = 0 on a~ is equiva-
lent to say v (x) = 0 on Define L ( f ) = v, on the other hand, we see
that N {v) defined in Lemma 9 will lie in Thus, Theorem 2 and
Lemma 9 work for the (Q), Sm + 1, p (~, Rn) ~ .

Annales de l’Institut Henri Poincaré - Analyse non linéaire



291PRESCRIBING THE JACOBIAN DETERMINANT

Moreover, since the smooth symmetric functions are dense in p (Q)
and the constructions in Theorem DM1 can be chosen to be symmetric,
then the proof of Theorem 1 is valid..

THEOREM 6 . - Let p ? (n -1 ), then the problem ~ ° p~ + (S2), S I ~ p (Q, R") ~
is well posed. On the other hand, Bif p’ > p, the problem
~ ° p~ + (Q), S 1 ~ p~ (Q, Rn) ~ is not well-posed.
Proof. - First, if u E P (Q, and u = g (r) x, then

where ~(~)=~(f). It is sufficient to prove that h’ (r) and 
with :

/ ’x+A: B

Define the maximal function lx 
+ 

~ f ~ as in [16]./
Set w (s) = f ’ (s) s~n -1 »p then 1 ) . Thus,

If p> 1, then 1) implies that 1 ) and we have that

If p = 1,

By h (r) >_ r Infgf (x), we have also

Let p’ > p, we see that when r ?_ 1 /2. We choose f with a
singularity on ( 1 /2, 1 ) such that f ~ LP’ (Q) . Then ( ( ~ u (x) i ~ ~ Lp~ (~), as we
have that ] V u (x) ~ ~ >_ h’ (r) >__ C f..
Remark. - 1. In the symmetric case, we have always the uniqueness

of the solution.
2. In Theorem 6, the condition p >_ (n -1 ) is weaker than the condition

p >_ n2/(n + 1) in Lemma 10 for defining det(Vu(x)), because here we

have a priori (Q). More generally, we can consider Theorem 6
for because we can set where
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3. In general, the S~‘ + 1 ~ p~ (S~, is always not
well-posed if p’ > p for any m E N.

8. GENERAL SITUATIONS AND OPEN PROBLEMS

In this framework of research, there are a lot of interesting questions
which are not solved. We collect here a list of open problems and some
general discussions for the interested readers.

Let Q be a connected open set in Rn with smooth boundary, m e N and
oo). We consider the following equation:

QUESTION 1 (appeared in [2]). - Let

Does there exist a solution u of (8 . 1 ) such that u is a diffeomorphism
from Q to itself?

QUESTION 2. - Let f E °°° + (Q) and m > 1. Does there exist a solution
u E Wm + I ~ °° (Q, Rn) for the equation (8 . 1 )?

If the answer is negative, can we have a solution in (~ 1 ~ ~ ~

Remark. - These two questions are the limit cases of Theorem DM1 1
with (x== 0 and a =1.

QUESTION 3. - Is the equation of the W 1 
well-posed for p > I ?

QUESTION 4. - The same problem for the ~Tm + 1 ° p ~ or
for the with pn/m and m> 1.

Remark. - We conjecture that the Wm+ 1, ~~ ~ is not
well-posed if p’ > p. The reason is that the problem of type
{ sm, p, + sm+ 1, p’ ~ are not true, and the symmetric case gives higher regula-
rities in general.

In section 6, we proved that the problem {Wm, p° +, Wm+1, p’} with p’ > p
is not well-posed in the sense of estimates (clearly in Proposition 3 we
can replace wm, P by Wm° p~ +) and we ask if an estimate is always possible
when p’ = p. More precisely:

QUESTION 5. - If the problem of the Wm + 1, p ~ is well-

posed, does there exist some continuous functions h, from [0, oo) x (0, oo)
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to (0, oo) such that for any f in p~ + (Q), there exists a solution u (x) of
(8.1) verifying that I I u - Id ~ ~ m + 1, p __ h ( ~ ~ f -1 ~ ~ m, p, Info f)?
Remark. - It seems impossible to answer this question from our proof,

and the similar problem can be posed for the case.

Up to now, we have considered the equation always under the hypo-
thesis Info f’> o. What will happen if f admits some zeros or Info f  o ?
We state here an example to indicate the complexity of such situations.
Let Q=B2 be the unit ball in R2 where Then we

have One finds that the symmetric solution is

us (z) = rz, thus us is not in C2 !
But does there exist a Coo solution of (8 . 1) ? Yes. We construct

y) _ (x, 2 x2 y + 2 y3/3). We observe that ui is a Coo homeomorphism
from B2 into ui (B2) with a single singularity at the origin, so ui (B2) is
also diffeomorphic to B2 and vol (B2) = vol(u1 (B2)). Let v (x) be a C°°
diffeomorphism from ui (B2) into B2 such that:

The existence of such a v is clear (see the discussion for Question 7 and 8).
Thus will be the desired solution. This means that it is very
difficult to work with general functions.

QUESTION 6. - Can we obtain some general results for (8.1) only under
the condition 

n

Now we will consider the volume preserving diffeomorphisms with given
boundary data. This problem is important in the study of incompressible
fluid and in the study of incompressible material in elasticity (cf . [15]
and [12], for example). We consider the following equation for u E 

where y is a diffeomorphism preserving the orientation from aSZ into itself.
As indicated in [2], the system (8. 3) admits a solution if and only if

where When is D~ non empty?
We give here a sufficient condition.

THEOREM 7. - {fDiff+ is connected, then ~03B3~Diff+ (~03A9), D03B3~ ~.

Sketch of proof . - Since a~2 is a compact smooth manifold without
boundary, then we have a tubular neighbourhood of More precisely
there exists a diffeomorphism § from V£ into [ - E, e] where

Vol. 11, n° 3-1994.



294 D. YE

R", d (x, dS~) _ ~ ~ and § (VE n Q) = aS2 x [0, E]. On the other hand,
since Diff + is connected, we can construct a COO function F (~, t)
from ~03A9 [0, ~] into itself such that F(03B4, t) E Diff + (~03A9), ‘d t E [o, ~],
F (03B4, 0) = y (b) and F (03B4, t) = id~03A9 for any t~ [~/2, E]. Then we define

u (x) = c~ -1 ~ (F (~, t), on and u (x) = x on 

Remark. - If Q lies in R2, then Diff+ (aQ) is connected.
Then we ask when Diff + (aQ) is connected? This becomes a very difficult

topological problem. For example, we do not know a general result
for the unit sphere of Rn + 1 (Kervaire and Milnor have

proved that card [~o (Diff+ (Sn))] is always finite). One can find the
values of card (Diff + (Sn))] for 5 _ n -_ 17 and some more discussions
in [13].
We state here a simple counter-example: Let T2 rv S 1 X S be the standard

torus in bounded domain defined by T2. We take

y (8, 9). Clearly, this defines a diffeomorphism from TZ into
itself. Then, we have:

LEMMA 11. - Diff(T2) is not connected and DY is empty.

Sketch of proof. - y induces a mapping on the first homology group
of T2 which exchanges the two generators, while IdT2 induces the identity
mapping. By using topological argument, we see that y and IdT2 are not
homotopic.

Furthermore, if by considering the image of a circle with

degree = 1, we will obtain a contradiction.

QUESTION 7 (appeared in [15]). - Let

Diffi 1 (SZ) _ ~ u (x) E Diff(Q), u (x) = x on aS~ and det (V u (x)) = 1 in S~ ~ .
When is Diffi (Q) connected?

Remark. - In the general case of manifolds, it is not true for dim > 2.
Consider the torus T2 ̂-_’ S I x S 1 associated with the scalar product 
We see that yeDiffi (T2) is not homotopic to IdT2.

If we have a solution u of (8 .1 ), then we have infinite solutions, so we
would like to find a "best" solution in certain sense. Suppose that there
is a solution u E W1, 2. Naturally, we think about

First, if S~ is in R2, the minimum is achieved [4] or Lemma 10

in § 6).
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QUESTION 8. - Does the minimiser of (8 . 4) possess some higher regular-
ity properties ? 

’

Some a priori estimations for dimension two and the volume preserving
mappings are considered in [6]. We state here a result of F. Hélein:

THEOREM (appeared in [lo]). - Let Q be a bounded domain in Rn with
regular boundary and f E W1, P (Q) satisfy InfQ f> 0 such that a P mini-

mizer u (x) of (8 . 4) exists where p > n. Then there exists Q E W1, P (SZ) such
that u is a critical point of.~

Sketch of proof. - We consider v (x) a smooth function with compact
support in Q. cp = Id + À v. Then we have that

and

where:

Thus div ( fv) = 0 implies div (Si j), v~ dx = 03A9  div (Si. dx = 0.

Then there exists such that Since u is a

diffeomorphism from Q to itself, we define Q = G ° u-1, so we have:
which is equivalent to that u is a critical point

of (8 . 5) .
QUESTION 9 (F. Helein). - Let Q and f be symmetric, does the symmetric

solution of (8.1) be the minimiser of (8.4)?

QUESTION 10. - Consider the Jacobian problem without boundary data,
can we obtain some higher regularity results in general?

Remark. - Even in this case, we do not know if the problem of type
P (Q), Wm + 1, P (S~, Rn) ~ is well-posed.
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