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ABSTRACT. - We study the initial-boundary value problem for general
compressible inviscid fluids. Let Uo, U’0~Hk and U, C (0, T; Hk)
denote initial data and corresponding solutions, respectively. From the
point of view of dynamical systems, a very basic problem is to prove that
U’ converges to U in C(0, T; H~) if Uo converges to Uo in Hk; this is

proved in theorem 1.2 below. It must be pointed out that convergence in
C (0, T; H~-£) and in T; Hk) weak-* (easy consequences of the a
priori estimates used to prove the existence theorem) have minor signifi-
cance as part of the mathematical theory. We also show (theorem 1.3)
that if p’ (p, S) approaches p (p, S) in Ck then U’ approaches U in the
norm C(0, T; Hk). In particular, small perturbations in the law of state
generate small perturbations in the trajectory of the solution, with respect
to the right metric.

Key words : Compressible Euler equations, sharp data dependence.

RESUME. - Nous etudions le probleme mixte pour des fluides non

visqueux, dans le cas general. Soient Uo, Uo E Hk et U, U’ E C (0, T; H~)
respectivement les donnees initiales et les solutions correspondantes. Du

Classification A.M.S. : 35 L 70, 35 B 30, 35 F 30.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 11 /94/03/$4.00/ © Gauthier-Villars

© 1994 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved 



298 H. BEIRAO DA VEIGA

point de vue des systèmes dynamiques, un probleme essentiel consiste a
demontrer que U’ converge vers U dans C (0, T; Hk) lorsque Uo converge
vers Uo dans Hk; on demontre ce resultat dans le théorème 1.2. En plus,
on demontre (theoreme 1.3) que si p’ (p, S) converge vers p (p, S) dans Ck
alors U’ converge vers U dans C (0, T; Hk).

1. INTRODUCTION

This paper follows previous work on the existence of regular local
solutions to the equations of compressible inviscid fluids and on the well-
posedness, in Hadamard’s classical sense (continuous data dependence
in the strong norm) of these equations. Here we show that our proof
of the well-posedness theorem [BV4, 5] for barotropic fluids [i. e., p = pep)]
can be extended to cover the non-barotropic case [i. e.,p = p (p, S)].
See theorem 1.2. Moreover, a structural-stability result holds. See theo-
rem 1. 3.

The existence of the solution to the mixed problem (for the Cauchy
problem see [KMa2]) for the barotropic case was first proved by Ebin
[El] under the assumption that the initial velocity is subsonic and the
initial density is nearly constant. The existence theorem without these
assumptions was proved by us [BV1], [BV2] and (in an independent paper)
by Agemi [A]. The existence of the solution [in spaces ~°° (0, T; H3)] for
the non-barotropic case was proved by Schochet [Scl] by using a different
approach which has, however, some ideas in common with the method
followed in [BV2]; see also [Sc2]. It is worth nothing that Schochet’s
approach can be easily adapted to cover the case ~ °° (0, T; Hk), k ~ 3 .
Below, we prove the existence of the solution to this last problem in spaces
~ (0, T; Hk), by following our approach. See theorem 1. 1.

Well-posedness for the mixed problem (barotropic case) was proved in
reference [BV4] and k = 3; and in reference [BV5] for arbitrarily
large k > 3 and bounded regular Q. The method followed in these references
(introduced in [BV3] for first order hyperbolic systems) applies to a large
class of problems; see [BV3, 4, 5, 6]. The lack of these basic results in the
general theory of hyperbolic equations was certaintly a main gap. The
method relies on proving the strong continuous dependence of the sol-
utions of hyperbolic linear systems on the coefficients of the differential
operators, an interesting result by itself.
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Below, we consider the system of equations that describes the motion
of a compressible, inviscid fluid, namely

where, for convenience, we set

J

Moreover, v . ~ = 03A3 vi~i and Here, v, P, S, p denote respectivelly
i=1

velocity, pressure, entropy, and density of the fluid. Clearly, v2, v3)
is a vector field and P, S, p are scalar fields. In equations ( 1. 1 ),
p (t, x) = p (P (t, x), S (t, x)) where p = p (P, S) is a real, positive function,
defined and of class Ck + 1, k >_ 3, on a domain A c f~2. By assumption,
~03C1/~P is positive over A. We assume that the initial data (03C6 (x), So (x))
takes values on a compact subset Ao c c A. Since solutions are continuous
on QT and results are local in time, there is no loss in generality in
assuming that Hence, in the sequel, A = f~2. The reader should
note that we use the same symbol p to denote the function p (P, S) of
two real variables and the function p (t, x) = p (P (t, x), S (t, x)), defined
on QT. This simplified notation will be used in other similar situations.

In the sequel Q denotes an open, bounded, connected subset of ~3,
locally situated on one side of its boundary r, a differentiable manifold
of class Ck+2. The integer k ? 3 is fixed once for all. We denote by v the
unitary outward normal to the boundary r and by ~v differentiation
in the v direction. Moreover, QT = [0, T] x Q, ~T = [0, T] x r. We set

g (P, s)~ gl (P~ S) g2 (P~ S) _ ~2 g (P~ 
and g3 (P, S)-8g(P, Note that gl>O. The equations (1.1) take
then the equivalent form

Our results will be stated in terms of this last system.
Before stating the main results we introduce some notations. We denote

by H~, I nonnegative integer, the space H~ (Q) endowed with the canonical
norm ~ ~ . 11 ~ defined where the summation is extended
over the multi-indices oc = (ocl, such that 0 __ ~ a ~ _ l = ( ~ . ~ ~o
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denotes the L2-norm in Q. Moreover

We also use, on r, Sobolev fractionary spaces Hl-1~2 (F) denoted here by
~~-1~2. The norm in this space is denoted by the symbol (( . ~~~_ ~~2~
Wet set

In the sequel we use the notation CT (X) = C’ ([0, T] ; X),
LT (X) = LP (0, T; X), and so on. We define

The norms in these functional spaces are the following:

where "sup" denotes the essential supremum.
The above notation will be used both for scalar and for vector fields.

This convention applies to all notation used in the sequel. In particular,
we use notations like v, gEX, even if v is a vector and g a scalar, and
also (v, g) e X instead of (v, g) e X x X.

Given an arbitrary function f (t, x) we denote by f (t), for each fixed t,
the function f (t, . ).
Obvious notation will be used without an explicit definition.
In the following, we often deal with positive "constants" that, in fact,

depend (increasingly) on the norms of the coefficients of the differential
operators used in the sequel. For convenience, we denote by
~, _ ~, ( - , ... , - ) generic real, nonegative functions which are increasing
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functions of each single (real, nonegative) variable. They will be called
X-functions. Since we are not particularly interested in their explicit form
we often denote distinct X-functions by the same symbol ~,.
Some classes of X-functions, particularly important in the sequel, will

be denoted by specific symbols such as the oc’s and the defined in

equation (2.4).
Now, we state our existence theorem for problem (1 . 2j. We give a quite

complete proof since many details will be used in proving the theorems 1. 2
and 1. 3 below.

THEOREM 1. 1. - Let k >_ 3 be a fixed integer, Q be as above, and
~) satisfy gl - ag/aP > o. Assume that Uo=(a, ~, 

that f E ~2 (Hk) and that these data satisfy the compatibility conditions
up to order k - l, for the system ( 1. 2). Then, there is a positive T such that
a (unique) solution U = {v, P, S) E  T (Hk) of problem ( 1 . 2) exists in QT.
Moreover,

The result is valid for any T satisfying

Here, 03BB2, A3 are suitable 03BB-functions that depend only on Uok and

on ~ ~ ~ f (o) ~ ~ ~~ _ I . The function A4 depends on these norms and T.

Let us describe the main problems studied in the sequel:
(i ) Assume that a sequence of data (U, fn) is given, each pair satisfying

the properties required in theorem 1. 1. Assume that U~ -~ Uo in Hk as
n --~ oo . Are the solutions Un convergent to U, in the strong norm ~T (Hk)?

(ii) Assume that a family of laws of state p~ ( ~ , ~ ) is given, and that
pn -~ p as n - oo, in a suitable norm. Are the solutions Un convergent to
U in the strong norm?

In the sequel we prove that the answer to the above questions (put
together) is affirmative. See theorem 1 . 2 and 1. 3.
For convenience, in the following we replace the above parameter n by

a "prime". We also remark that in theorems 1. 2 and 1.3 below To may
be larger than the T guaranteed by theorem 1. 1.

THEOREM 1. 2. - Let the data Uo = (a, ~, So) and f be as in theorem 1. 1,
and assume that there is, for some To> 0, a solution U E T0 (Hk) of problem

(~) Assume, without loss of generality, that f is defined for oo[.

Vol. n° 3-1994.
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(I 2). Consider the system

where, for brevety, we set g’ -g (P’, S’) and S’). There is a

neighbourhood of f) in Hk x (Hk) such that to each pair f’)
in this neighbourhood that satisfies the compatibility conditions up to order
k - 1 for (1 . 2’) it corresponds a solution U’ = (v’, P’, S’) (Hk) of the
system (1 . 2’) in Moreover, f one considers a sequence of problems
( 1. 2’) and if

then

In particular, if [0, i’[ is the maximal interval of existence of the solution
U’, and f [0, i[ is that of U, one has lim inf 03C4’ > i.

In this statement the equation of state g ( . , . ) = log p { ~ , ~ ) is invariant.
In fact, g’ = g (P’, S’) is distinct from g = g (P, S) merely because

(P’, S’) ~ (P, S). However, the following sharp structural-stability theorem
holds.

THEOREM 1. 3. - Let p’ (P, S) be real positive functions defined and of
class on A, and such that a p’/aP > 0 on A. Assume that

lim p’ (P, S) = p (P, S) ( 1. 7)

in Ck (A1), for each compact subset Ai c c A. Then, the theorem 1. 2 still
holds f, in equation (1 . 2’), g’ denotes log p’ (P’, S’) instead of denoting
log p (P’, S’).
The proof of theorem 1. 3 is a straightforward extension of that of

theorem 1 .2; the details are left to the reader (see [BV3] and especially
[BV6] for similar details). Finally, an application of our method to the
incompressible limit problem for the compressible Euler equations ([E2,3],
[KMal,2], [Ma], [ScI, 2]) is given in [BV7].

In the sequel, in order to avoid unnecessary repetitions, we will partially
apply to results proved in reference [BV5]. Hence, the reader is assumed
to be well acquainted with that paper.
We denote by ro, ..., rm the connected components of r. The T~’ s,

are inside ro and outside of one another. Just for convenience,
we will assume that Q is simply-connected. If not, we argue as done in
reference [BV2]. For a brief discussion on this point see the remark 1 in
the introduction of reference [BV5].
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In the sequel we replace the system ( 1. 2) by the equivalent system

where h, H, F, G are defined by the equations

where, the indices run from 1 to 3. Note that h is a positive function.
The system ( 1 . 8) is more adeguate to our purposes than ( 1 . 2) by

reasons similar to that described in the introduction of [BV5]. Let us prove
the equivalence between these systems. The equivalence between the initial
conditions follows trivially by using the equations. Next, note that the
assumptions (1. 2)2, (1 . 2)3, and = 0 are common to both systems.
Hence, it is sufficient to show that under these assumptions the equation
( 1. 2) 1 is equivalent to the equations ( 1. 8) 1, ( 1 . 8)2, and a~ PI ~T = G. The
proof is based on the fact that a vector field V vanishes in Q if and only
if it satisfies the linear system (2) V X V = 0 and V . V = 0 in Q, V - v = 0
onF. Set By well known formulae in vector
calculus one gets

where ç = V x v, and also

By using ( 1 . 2) 2 and ( 1 . 2) 3 on gets

Hence

(~) If Q is not simply-connected one has to take into account that this linear system
admits a finite number of linearly independent solutions.

Vol. 11, n° 3-1994.
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Finally, one has

on since [(~ - V) ~] - v == - X see, for instance, [BV2] foot-
note (4). We assume the normal v extended to a neighbourhood of r, as
a Ck + 1 vector field.
The desired equivalence follows now from (1 . 10), (1.11), (1.12), since

V = 0 if and only if the right hand sides of these equations vanish.
We remark that the regularity needed to justify the above manipulations

is largely exceeded by the solution of the system (1.8) constructed in the
sequel.

Finally we recall the following basic inequality (used here in the particu-
lar cases or I, m = I):

m m

where r > n~2; oc 1, ..., ocm, r]; and (3 + ~ By
i = 1

definition

This inequality is useful in order to estimate norms of products of
functions. Since this technique is standard, we leave all that kind of

manipulations to the reader.

2. PROOF OF THEOREM 1.1

We start by recalling a result concerning the linear equation

where, v, h, F, G, ~, B~ are given functions of (t, x) and, by assumption,

In the sequel, the symbols oc and (3 denote  functions of type

respectivelly.
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Let I, 1 ~ l _ k, be a fixed integer. The compatibility conditions up to
order 1 - 2 for the svstem (2 .1 ) can be written in the form

forj=0,1, ..., l - 2, denotes the expression (in terms of
~, and F) formally obtained by solving the equations (2.1) for a{ P (0).
These expressions involve data and coefficients, but not eventual solutions.
One has the following result ([BVS], theorem 1.1).

THEOREM 2.1. - Assume that

and that the hypotheses (2. 2), (2. 3), (2. 5) are satisfied. Let 1 ~ l _ k -1.
Then, there is a solution of problem (2 .1 ). Moreover, for suitable
a and j3 having the form (2. 4), one has

for each T]. If l=k, the solution P exists, belongs, to CT (Hk) and
satisfies (2.7) provided that we replace the left hand side of this equation
bY ~ ~ ( P + [P]k, t; alternativelly, P belongs to ~T (Hk) and (2 . 7) holds
without modification f v (Hk -1 ) and f oc can depend on the full norm

For the proof of the above result see [BVS], § 2. In this last

reference the term ~ - (h replaces the term h OP, in equation (2 . 1).
However the proof applies as well to the case under consideration
here. Alternativelly, by setting it follows that
LP = LP - Vh. V P, if L is the operator considered in reference [BVS]. The
equation (2. 3) in this last reference shows that

if for suitables a, ~3, and p. By using inequalities (1.13) one shows
and that

Moreover (2.1). 1 shows that

Hence, the terms containing V h . V P can be eliminated from the right
hand side of (2.8), by eventually increasing a and p. Now, we prove (2.7)
by arguing as in [BV5] in order to get (1.7) from (2. 3). 0

Proof of theorem 1. 1. - The proof follows that of the theorem 1. 3 in
[BV5] section 5, to which the reader is refered. However, to the reader’s
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convenience, we give below an overview of the main points. Details will
be given only in connection to the proof of equations (2.18) below, since
this is the sole point that requires some additional manipulation.

Concerning notations, we remark that the roles played in [BV5] by g
and q are played here by P and Q, and the roles played in [BV5] by the
X-functions P and Q are now played by a and P, respectivelly.
The proof of theorem 1 . 1 consists on showing the existence of a solution

of problem (1 .8). This is done as follows, by a fixed point argument.
Consider the following set up [recall definitions (1.9)]:

Let now 3, ç, Q be given functions defined on QT (~ is a vector field, 3
and Q are scalars) that satisfy suitable conditions, specified later on. By
solving the elliptic system (2.9) we get v. Then, the transport equation
(2.10) gives S. At this stage, we can define g, gl, g2, and g3, by using
(2.11). Next, we solve the hyperbolic mixed problem (2.13), which gives P.
Finally (2.14) gives ~. The above procedure defines a map ~, by setting
~ (3, ~, Q) = (~, ~, P). Solving the system ( 1 . 8) is equivalent to proving
the existence of a fixed point for ~ in a suitable set K. The set (I~ is
defined by

where

and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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for each T]. The are defined (in
Q) in terms of a, ~, So, f, by solving formally the equations (1 . 8) for

and respectivelly. Note that from (2.17) it follows that the
solution v (t) of problem (2 . 9) satisfies the equation ar v (o) _ ~ at v (o) ~,
for j = o, ... , k - 2, independently of the particular element

(~, ~, Q) E (l~ (A, T). Similar relations hold for the solutions S (t), P (t) of
problems (2.10), (2.13).

Suitable estimates for the solutions v, ç, P, and b of the above systems
(2.10), (2. 12), (2.13), (2.14) are obtained as in section 5 of reference
[BV5]. In particular, the solution P of problem (2.13) is estimated by
using equation (2.7). Here, the positive lower bound condition (2. 3) for
h becames h (Q, S) --- [gl (Q, S) exp g (Q, S)] -1 > m on QT. It readily follows
that m -1 is a X-function that depends only 
Furthermore, if l = k -1 or if l = k, the norms of h (Q, S) and
h -1 (Q, S) are bounded from above by ~,-functions that depend only on
the norms of Q and S. In particular, the a’s and the [3’s [see (2.4)]
are now X-functions depending only on the norms of the
functions v, Q, and S. For more details, see [BV5]. Estimates for S follow
easily from equations (2.10) by arguing as in [BV5] section 4. One gets,
for and for l=k,

Denote by d generic X-functions of the form

Arguing as in we show that if A >_ d, for a suitable d, the set fl~ (A, T)
is not empty. Moreover, for suitable values A = A (d) and T = T (d, f ), the
functions 5, ç, and P satisfy the assumptions (2. 16), (2. 17) (in those ones
3, ç, Q should be replaced by b, ç, P), moreover /7 is a contraction of K
into K with respect to the H° x H° X H~ 

1 
norm. In order to end the proof

of theorem 1.1, by proving the existence on K of a fixed point for ~, it
remains to be shown that b and ç satisfy (2.18). However, § satisfies

(2. 18) but 5 does not (in general); this fact will require an apropriate
device. Let us show that ç satisfies (2.18). The well known identity

shows that (2 . 12) 1 can be
written in the form

(2.20)
Since V - (a x b) = b - (V x a) - a - (V x b) it follows, by applying the diver-
gence operator to both sides of (2. 20), that

D (v) (D ’ ~) + (D ’ v) (D ’ ~) = 0 in QT.
Since (D - ~) (0) = D - (D x a) = 0, one proves that D - ~ = 0 on QT. On the
other hand, the equation together with (2. 20)
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shows that atç is a curl in Q, for each fixed t. Consequently, for each

i =1, ..., m, the derivative with respect to t of the integral 

vanishes on [0, T]. Since these integrals vanishes for t = o, they vanishes
on [0, T].

Next, we introduce a suitable device in order to overcome the possibility
that the mean value of 6 (t) does not vanish. We start by proving the
following auxiliar result.

LEMMA 2. 2. - Set P = Q in equations (2 . 9)-(2. 14). Then

Proof. - By using the divergence theorem, the equation (2 . 13)2, the
identitv

and the equation on LT’ one shows that

On the other hand, (2.14) and (2 .13) yield

By integrating both sides of this last equation in Q, and by using (2.22)
and (2.23), it readily follows (2.21). 0

We end the proof of the theorem 1.1 as follows. Define the linear

operator

and set i. e. ~ (3, ~, Q) = (~tb, ~, P), where

(~, ~, P) = ~ (3, ~, Q). One easily shows that ~ (~) Hence, by the
contraction map principle, ~ has a fixed point in (l~ (see [BV5], for

details). Let be (~, ~, Q) _ (~S, ~, P). Obviously, (~, Q) _ (~, P). It remains
to show that 03B8=03B4. Since 03B8=03C003B4, one has 03B4-03B8=y(t), where

(~ - ~) dx. It follows from (2 . 21 ) that y’ (t) = g {t) y (t), for
a suitable (regular) function g (t). Since y (o) = o, y (t) must vanishes on
[0, T]. Hence 6 = 3. 0
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3. PROOF OF THEOREM 1.2.

Fix a constant co such that the norms and

[~ f ’]~? To are bounded by co -1 and let ~,2, ~.3, and ~,4 (see theorem I .1 )
denote the values of these X-functions for all the arguments equal to co.
Fix T > 0 such that ~,2 T _ l, and such that ?~3 [.f’]~, 1/2 for every
to E [0, T[ (if to + T > To, replace to + T by To). Note that T and that the
norms (of the data and of the solutions) used below depend only on co.
These quantities, as well as other quantities that depend only on that
ones, will be denoted by c or, if necessary, by cl, c2, ... One easily shows
that the thesis, stated in theorem 1 . 2 for the whole interval [0, To], follows
easily from the corresponding result in the interval [0, T].

Instead of studying directly the systems ( 1 . 2) and ( 1 . 2’), we consider
the equivalent systems (1.8) and (1.8’). We use the following convention:

CONVENTION. - We denote by (1.8’) the equation obtained by replacing
everywhere in equation (1.8) the elements v, P, S, ç, f, G, a, ~, So, by v’,
P’, S’, ~‘, ,~, G’, a’, ~‘, So respectively. This convention applies as well to
any other equation.
The theorem 1. 2 in reference [BVS] applies to the difference P - P’,

where P and P’ are the solutions of problems ( 1 . 8) 3, (1.8)6, { 1 . 8} ~
and (1.8’)3, ( 1 . 8’)6, ( 1. 8’)~ respectively. Straightforward calculations [see
[BV5], equation (6 . I)] show that to each ~ > 0 it corresponds a positive
real number A(e), that depends only on ~ and on the solution U, such
that

On the other hand, by applying the theorem 4 .1 in reference [BV5] to
the difference between the solution § of ( 1. 8) 1 and the solution of
(1. 8’)1, one easily shows that

where A (E) is as above. In order to prove a suitable estimate for S - S’,
we argue as follows: we differentiate both sides of equations (1 .8)2 and
(I . 8‘)2 with respect to each variable x~, f=l,2,3, and we apply the
theorem 4.1 in reference (replace in this theorem § by ai S, H

a by So, and similarly for the variables with primes). This
procedure yields the estimate for (S - S’) (t) ~ ~ f ~2. Then, we use the

equation D(v)(S-S’)=(v’-v).VS’ in order to obtain the estimate for the
full norm. These calculations show that, given a positive 8, there is a A (s),

Vol. I 1, n° 3-1994.



310 H. BEIRAO DA VEIGA

that depends only on E,S, and v, such that

Elliptic regularisation shows that

Moreover, arguing as for proving the estimate (6.4) in reference [BVS]
one shows that

These two last estimates together with (3 . 1) and (3.2) yield

where A (E) depends only on E and on the particular solution U (but not
on U’); note that

by equations ( 1 . 2) 1 and ( 1 . 2’) ~ .
Finally, from equations (3.1), (3 . 3), and (3 . 6), it follows that

where the equations ( 1 . 2) and ( 1 . 2’) have been used to express the
derivatives a~ (v, S)(0) and at (v’, S’) (0) in terms of Uo and at , f (o), and
of Uo and (0), respectively.

Finally, we end the proof of the theorem 1 . 2 by arguing as in the proof
of the theorem 1.4 in the section 6 of reference [BV5]. D
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