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ABSTRACT. - Using the Harnack inequality and a scaling argument we
prove some positive Liouville theorems for a Fuchsian type linear elliptic
operator P on some domains in IRd with some prescribed boundary condi-
tions. We also study the asymptotic behavior of the quotients of two
positive solutions of linear and semilinear equations.
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RESUME. - Avec l’aide de l’inégalité de Harnack et d’un argument de
scaling nous demontrons des theoremes de type Liouville pour des
fonctions P-harmoniques positives d’un operateur lineaire elliptique P de
type fuchsien sur certaines regions de IRd avec conditions limites. Nous
etudions egalement le comportement asymptotique des quotients de deux
solutions positives des equations lineaires et semi-lineaires.
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1. INTRODUCTION

We begin with four classical theorems illustrating the circle of questions
to be discussed. They involve uniqueness theorems for positive harmonic
functions on the one hand and the asymptotic behavior of harmonic
functions on the other.

(a) The positive Liouville theorem. The set of all positive harmonic
functions in (~d is a one-dimensional cone.

(b) The Picard principle. The cone of all positive harmonic functions in
the punctured unit ball in d> 2, which vanish on the unit sphere Sd - ~ is

of one dimension.
(c) The Poisson principle. The cone ~~ of all positive

harmonic functions in the unit ball which vanish on Sd -1B~ ~ ~ is a one-

dimensional cone.

(d) The Riemann removable singularity theorem. If u is a bounded har-
monic function in a punctured neighborhood of the origin in d> 2, then
lim u (x) exists.

The first three theorems are uniqueness theorems while the Riemann
theorem is a theorem on the asymptotic behavior near an isolated singular
point. We shall show that these two types of theorems are closely related,
apply to more general linear (and also semilinear) elliptic equations and
can be treated using a unified approach.
Throughout the paper we deal with a triple (P, X, Q. Here P is a real

linear elliptic operator of second order which is defined on a

domain d>_ 2 and ç is a point on the (ideal) boundary of X. More
precisely, we consider the following two cases:

(i) The intersection of X with some exterior domain is an open con-
nected truncated cone with a Lipschitz boundary 

(ii) X is a domain (maybe nonsmooth and unbounded) such that the
origin 0 is either an isolated component of the boundary r = ax or 0
belongs to a Lipschitz portion of r. Here § = 0.
We assume that the operator P is of the form

From now on, unless otherwise stated, we shall assume that P is elliptic
on X and the coefficients bi and c are real and Holder continuous.
Furthermore, we assume that in some relative neighborhood X’ ~ X of §

~ ~ ~
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for any and

where A, A and M are some positive constants. We shall call such an
operator P a Fuchsian elliptic operator at ~ which is defined on X.
We consider the domain X as a subset of the one point compactification

of [Rd and denote by X and bX its relative closure and boundary. We are
concerned with the set ~~ _ ~~ (P, X) of all positive (classical) solutions of
the equation P u = 0 in X which has minimal growth at ~XB~ ~ ~. So, we
are concerned with classical positive solutions of the operator P in X which
satisfy a generalized Dirichlet boundary condition except at the point ç.
(But the same methods apply to the case of weak or strong positive
solutions as well, in this case one can impose weaker regularity assumptions
on the coefficients of P.) We shall also discuss briefly positive solutions
on X which satisfy the regular oblique derivative boundary condition.
Assume that P satisfies also the following hypothesis (H):

(H) the equation P u = 0 in X has at least one positive solution (X).
Under this assumption, it follows (see Lemma 5 . 3) that ~~ is a nonempty

convex cone in the real vector space C~° °‘ (X). We denote the dimension of
Wi by dim ~~. We prove that

where P* is the formal adjoint of the operator P. Moreover, if u and v
are two positive solutions of the equation P u = 0 in a relative

neighborhood X’ of the singular point ç which vanish on ~X)B~ ~ ~,
then

(but maybe infinite). The above asymptotic behavior holds true also in
the case where u is a positive solution of some semilinear equation of the
form P u + f (x, u)=O and v is a given positive solution of the linear

equation. These asymptotic results generalize of course, the Riemann
theorem and also the Fatou lemma.

Uniqueness properties and asymptotic behavior of positive solutions of
elliptic operators were studied extensively by many mathematicians. Let
us first mention some of the known results for the case 03B6 = ~. D. Gilbarg
and J. Serrin ([8], Section 4) proved a Liouville type theorem and the
existence of a limit at infinity for the case X = (~d under the additional
assumption c (x) - 0 (see [20] for a probabilistic proof). The proofs in [8]
and [20] rely in a very crucial way on the facts that in this case the
function u (x) E= 1 is a positive solution of the equation P u = 0 and that P
satisfies the maximum principle (see also [7], p. 103, Theorem 1.11).
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In [15], M. Murata proved that dim ~~ =1 for a general Fuchsian
operator in a cone X with 03B6 = ~ (see the Appendix in [15], see also [12]).
Our more general approach is quite similar to the proof of the uniqueness
result in [15]. Murata also discussed in [15] the imbedding of a boundary
part 03C9~X into the Martin boundary. This question is closely related to
some parts of our study of positive solutions near a singular boundary
point.

In a recent work, H. Berestycki and L. Nirenberg ([3], Theorem 2’)
proved that if u and v are two positive solutions of a Fuchsian operator
at ç = oo in an exterior domain d >__ 2, and if

then lim u (x)/v (x) = A. The proof of the stronger and more general

limit theorem given here (Theorem 7 . 1, part (i)) is a modification of the
proof of the above result in [3]. Berestycki and Nirenberg [3], used the
above result in the study of the asymptotic behavior of a solution of
semilinear equations. Under some assumptions, it was shown that solutions
of the semilinear equation behave at infinity like a solution of the linearized
problem.
Our results extends also some of the results in [14, 19, 29]. In [19] it

was assumed that d>__ 3 and P is a small perturbation of an
operator Po whose Green function is equivalent to the Green function of
the Laplacian in Roughly speaking, it was proven that if P is a

uniformly elliptic operator in divergence form such that

with some ~>0, and P admits a (positive) Green function then
(i) the Green function of P is equivalent to the Green function of

-A; ,
(ii ) the cone l~ (P, is of one dimension;
(iii) any positive solution in ~ (P, [Rd) is bounded and admits a positive

limit at infinity.
We would like to stress here that properties (i ) and (iii) do not hold

for a general Fuchsian operator at infinity (see Section 9).
The Picard principle and Riemann theorem concerning the behavior of

positive solutions of linear and semilinear equations in a neighborhood of
an isolated singular point § = 0 was studied extensively in the last three
decades. The linear case was studied in [8, 10, 13, 16, 17, 24, 26] while
the semilinear case was treated in [4, 5, 22, 23, 27, 28] (see also the
references therein). Note that since positive solutions of Fuchsian type
linear elliptic operators may admit strong singularities near isolated points
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our results include also strong singular behaviors of solutions of semilinear
(actually sublinear) equations.
The case when ç belongs to a Lipschitz portion of the boundary of X

is closely related and actually extends the well known result that the

Martin boundary of a bounded Lipschitz domain Q is homeomorphic to
its Euclidean boundary aQ (see for example [6, 15, 25] and the references
therein).
The outline of this paper is as follows. In Section 2 we introduce some

basic notations, while in Section 3 we discuss positive solutions of minimal
growth at some parts of ~X. The proofs of our main results rely on the
generalized maximum principle and some versions of the Harnack inequal-
ity which will be described in Section 4.
We prove in Section 5 that the cone ~~ U ~ 0 ~ is a nontrivial closed

cone. This property holds true also for a general elliptic operator on X.
In Section 6 we prove some a priori estimates for positive solutions of a
weakly Fuchsian elliptic operator near the singular point ç. The main
point is that the estimates do not depend on the distance from the singular
point.
Our main theorem concerning the uniqueness and the asymptotic

behavior of positive solutions of linear Fuchsian operator is proved in
Section 7. Some applications for linear and semilinear equations are discus-
sed in Section 8. We conclude our paper in Section 9 with some examples
illustrating the strictness of our results.

2. BASIC NOTATION AND NOTIONS

Let ..., xd) E denote x ~ _ (~ x~ ) 1~2; ai = alaxi, ai 
P = (P1’ ..., f3d)’ (3i = integer > 0, with I _ ~ is a multi-index; define

We denote by BR (x) (respectively, BR) the open ball of radius R centered
at x (respectively, the origin 0) and by SR (x) (resp., SR) its boundary. Let
0  r  R, the annulus (respect., BRBBr) will be denoted

by Br, R (x) (respect., Br, R). The exterior will be
denoted by DR.
By a cone in [Rd we mean a domain K such that

for some Ro > 0 and some Lipschitz domain F % Si. Sometimes we shall
consider cones Q of the form

Vol. 11, n° 3-1994.
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where F is some Lipschitz domain F ~ S 1. In this case we shall say that S2
is a geometrical cone.

For a given function u on a set V such that V n ~ we denote

In the case V = SR we simply denote Mu (R) = Mu (R, S~, mu (R) = mu (R, 
The closure of a set B will be denoted by cl B. If B is a convex set in

some linear space, we denote by ex B the set of all its extreme points.
C = C (., ... , . ) denotes a constant depending on the quantities appear-

ing in parentheses. In a given context the same letter C may be used to
denote different constants depending on the same set of arguments.

Sometimes, we shall call a (positive) solution of the equation P u = 0 in
a domain Q a (positive) solution of the operator P in Q.

It turns out that for most of our results it is not needed that inequalities
(1.2) and (1.3) are satisfied in a neighborhood of ç but only on some
essential subset of it.

DEFINITION 2.1. - We say that the operator P is a Fuchsian operator
in the weak sense in X at ~ if there exit real numbers 0  a  1  b and a

sequence of positive numbers { with Rn ~ ~ such that inequalities (1. 2)
and (1 . 3) are satisfied for every x in the set d = U Am where

Such a set j~ is said to be an essential set in X with respect to the singular
point ~. If P is a weakly Fuchsian operator as above we simply say that
~ is an essential set for (P, X, ~).

3. POSITIVE SOLUTIONS OF MINIMAL GROWTH

Consider a domain ~ ~ f~d and let Q be the closure of Q with respect to
the one point compactification of f~a and its boundary. Let o
be a subset of 03B403A9. A set is called an 03A9-neighborhood of 03C9 if 03A9’ is

the intersection of Q with a relative neighborhood of co in Q.
Let 0) c 5Q be a closed set. A solution u of the operator P has minimal

growth at 03C9 if u is a positive solution of the operator P in some Q-
neighborhood of co and for any positive solution v of the operator P in
an ~-neighborhood of co there exists a positive constant C and a set Q’
which is an Q-neighborhood of co such that
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Let ~ E A solution u of the operator P has minimal growth at

~~B~ ~ ~ if there exists a neighborhood a of § in 5Q such that u is a

positive solution of the operator P of minimal growth at co for every set
o) of the form ~a = where [3~ ~ [i is a neighborhood of § in ~~2.
The term "a neighborhood of infinity in Q " will refer to 03A9-neighborhood

of ~~. Hence, a neighborhood of infinity in Q is any open set of the

form QBF, where F is a compact set in Q. If the operator P admits a
positive solution in a connected neighborhood Q’ of infinity in Q then P
admits a positive solution u in a neighborhood of infinity in Q of minimal
growth at 03B403A9 [1], we shall call such a solution a positive solution of minimal
growth in Q.

If P admits a positive (minimal) Green function in Q, then P is said to
be subcritical in Q. Note that in this case the Green function is a positive
solution in a neighborhood of infinity in Q of minimal growth in Q. On
the other hand, in the subcritical case, all the (global) positive solutions
of the operator P in Q (which do exist) are solutions which are not of
minimal growth in Q. Moreover, if P admits (only) a positive solution in
a neighborhood of infinity in Q then for some nonnegative function W
with a compact support in Q the operator P + W (x) is subcritical in Q.

So, the operators P + W (x) and (hence) P admit also a positive solution
in some neighborhood of infinity in Q which does not have minimal

growth in Q [18].
If P admits a positive solution in Q but P is not subcritical then P is

said to be a critical operator in Q. Moreover, in the critical case P admits
(up to a constant) a unique positive solution. This solution has minimal
growth in Q and is called a ground state [l, 18].

Recall that if the operator P admits a positive solution in Q then the
generalized maximum principle holds. That is, for any domain S2‘ if

in Q’ and lim then in Q’ and either u = 0 or u
x --~ 8S~’

is strictly positive in Q’ .
be an increasing sequence of smooth bounded domains such

that cl03A9n c 1 c Q and U Qn = Q. Let u be a positive solution of minimal
growth in Q. Without loss of generality we may assume that u is a
continuous positive solution in Q’ = ~B~ 1. Then we have (see also [ 1 ]).

LEMMA 3.1. - Let u be a positive solution of minimal growth in Q
which is defined and continuous in S~’. Then the solution u is given by
u (x) = lim Un (x), where u is the solution of the following Dirichlet problem

Vol. 11, n° 3-1994.
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Proof. - It is clear that {un} defined by (3 . 2) is an increasing sequence
of positive solutions and by the generalized maximum principle its limit
function v is less or equal u. Hence, the solution u-v has minimal growth
in Q’ where P is subcritical. Hence v = u..

Suppose now that U03A9 is an Q-neighborhood of 03C903B403A9 such that
U c Q’ and U (~ On is regular for every n >_ 1. Consider the solutions of the
following Dirichlet problems

Since clearly it follows that in U we have u (x) = lim vn (x) .

In particular, suppose that co is a relatively open Lipschitz portion of
aS~ and that the coefficients of P are Holder continuous up to the

boundary co. Let z~03C9 and consider the set U = Q n Br (z), with some r > 0
sufficiently small. Extend P in Br (z) as an elliptic operator P with Holder
continuous coefficients and let 3- be a positive bounded solution of the
operator P in Br (z) which is bounded away from zero. The existence of
such a solution 9 is guaranteed since r is small. By considering the

operator P~ = 9~ -1 instead of P we may assume that c (x), the zero
order term of P, satisfies c (x) >_ 0 in Br (z). Let w be the solution of the
following Dirichlet problem

.

Then by standard elliptic methods (see Theorem 6.13 in [9]) w vanishes
on r~ ~ cl U. Now, compare w with the solution vn of the Dirichlet

problem (3 . 3). Recall that vn (x) ~ u (x), therefore, by the generalized
maximum principle in Consequently, w >__ u in cl U.
In particular, we have

LEMMA 3.2. - Let u be a positive solution of minimal growth in a

domain Q. Let cc~ be a Lipschitz portion of Assume that either c (x) >_ 0
and P has bounded coefficients near ~ or that the coefficients of the
operator Pare Holder continuous up to ~. Then u vanishes continuously
on ~.

4. HARNACK INEQUALITIES AND COMPACTNESS PRINCIPLE

In this section we shall describe three types of the Harnack inequality:
(i ) the local Krylov-Safanov Harnack inequality,
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(ii) the local boundary Harnack principle for positive solutions which
vanish on the boundary,

(iii) the (up to the boundary) local Harnack inequality for positive
solutions which satisfy the oblique derivative boundary condition (due to
Berestycki, Caffarelli and Niremberg [2]).

(i) The local Krylov-Safanov Harnack inequality (see, for instance, [9]):
LetL~ /

be defined on a domain and assume that oc~~, ~3i and y are real and
measurable. Furthermore, assume that for any x E S~

where X, A and M are some positive constants. Then for any compact set
K c Q there exists a constant C > 0 such that

for every positive (strong) solution u of the equation L u = 0 in S2 and all
points x, y E K, where C = C (A/~,, M, K, S2).

(ii ) The local boundary Harnack principle (see [ 1 S, 6] and the references
therein) :

Let S~ ~ be a Lipschitz domain and z E Let L be an operator of the
form (4.1) which satisfies (4.2) and (4.3). Then there exist positive
constants ro and C depending only on X, A, M and the Lipschitz continuity
of aS~ near z such that for any r with 0  r  ro and any positive solutions u
and v of L u = 0 in (z) ~ S2 which vanish continuously on (z) (~ aSZ

Here zr is a point in Br (z) ~ 03A9 whose distance from z is uniformly propor-
tional to r.

(iii) The up to the boundary Harnack inequality (see [2], Theorem 2.1):
Let 03A9  Rd be a domain and let u be a positive solution of the operator L

in Q, where L is an operator of the form (4. 1 ) which satisfies (4. 2) and
(4 . 3). Assume that for an open connected and smooth subset ~ of u is

of class C on S~ U ~, and satisfies

here r~ and the vector ~ are smooth on ~, and ~. is nowhere tangential to ~.
Then for any compact subset K of 03A9 ~ 03A3 there is a positive constant C such

Vol. 1 ~ , n° 3-1994.
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that

for all points x, y E K. Here C depends only on A, X, M, K, ~, Q, and the
C2 norms on 03A3 of  and ~ (but not on u).
We endow the space /7 of the solutions of the operator P in X and all its

subsets with the compact open topology.
Let X = (~‘~ It follows from the local Harnack inequality and

standard Schauder estimates [9], that on ~’~ this topology coincides with the
topology of uniform convergence (on compact subsets in X) of functions
together with their partial derivatives of first and second order. We fix
some point xo E X and consider the set

of all normalized positive solutions.
Under hypothesis (H), the set Jf is nonempty. As a consequence of the

local Harnack inequality and the Schauder estimates, one obtains the
following compactness principle (CP):

(CP) the set 3i is compact with respect to the compact open topology.
The compactness principle holds true also when X is either a cone in

Rd and 03B6 = ~ or X is a domain and § = 0. Observe that in order to prove
the compactness principle it is clearly enough to prove that ~~ U ~ 0 ~ is a
closed cone. This will be proved in the next section (see Lemma 5. 3).

5. THE CONE ~~

Let P be an elliptic operator which is defined on X and let ç be a
singular point. Recall that we consider the following two cases:

(i ) The intersection of X with some exterior domain is an open con-
nected truncated geometrical cone with a Lipschitz boundary and ç = co.

(ii) X is a domain (maybe nonsmooth and unbounded) such that the
origin 0 is either an isolated component of its boundary r or 0 belongs
to a Lipschitz portion ofr. Here § = 0.
We always assume that in some X-neighborhood ~X of

either c (x) > 0 or the coefficients of P are Holder continuous up to ~B~ ~ ~.
Moreover, throughout this section we assume that P satisfies hypo-
thesis (H) :

(H) the equation P u = 0 in X has at least one positive solution
2l E C2’ x (X).
As in Section 3 be a sequence of smooth bounded domains in

X which exhausts X. Let sf = U An be an essential set in X with respect
n>0

to the singular point ç with the corresponding sequence ~ R,~ ~ . Let 
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be the X-neighborhood of the singular point ç such that

We denote, and 

DEFINITION 5. l. - Let P be an elliptic operator at § which is defined
on X. We denote by ~~ _ ~~ (P, X) the cone of all positive classical
solutions of the equation Pu=0 in X which has minimal growth at

SXB~ ~ ~ . That is, u has minimal growth at (On for all n ? 1.
In this section we shall discuss some (a priori) properties of the cone ~~.

We prove two lemmas which are true for general elliptic operators on X
with singular point ~.

LEMMA 5.2. - Let P be an elliptic operator which is defined on a
domain X and has an essential set ~ = U An with respect to the singular

n>O

point ~. Assume that the operator P admits a positive solution in X. Then
{i) Any positive solution u of minimal growth in X is also a positive

solution of minimal growth at (ON for all N >__ 1.
(ii) If v is a positive solution in W N + 1 which has a minimal growth at

then v is given in WN-1 by v (x) = lim vn (x), where vn is a solution

of the following Dirichlet problem

Moreover, if the coefficients of P are Holder continuous up to some Lipschitz
portion c~’ of (ON - 1 then u vanishes on c~’.

Proof. - (i ) Let u be a positive solution of the operator P of minimal
growth in X. We can assume that u is a solution in XBB~ (z), where

and ~ > 0 is sufficiently small. Since by our assumption the set
n ? N is a Lipschitz portion of the boundary it follows from

Lemma 3. 2 that u vanishes on n > N.
Let w be a positive solution of the operator P in some X-neighborhood

Q of We may assume that aQ r~ X is smooth 
We have to prove that in Q’, where is some X-

neighborhood of and C is some positive number. Let w~ be the solution
of the problem

Then Wn is an increasing sequence which converges to a positive
solution w and we have Since i is a Lipschitz portion
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of the boundary we may use the same argument as in the proof of
Lemma 3 . 2 and we obtain that w vanishes on Let

and denote by WR the set such that 1

and SR = ~WR ~ X. Fix some point y on X n SR. By the Harnack boundary
principle and Harnack inequality we have

So

Now solve the Dirichlet problems (5 . 2) in WR n Qn once with u and once
with w (instead of v) and denote the corresponding solutions by un and wn
respectively. It follows from (5 . 5) that C1 un (x)  wn (x). By the generalized
maximum principle and (3. 3) we know that un ~ u. It is also clear that

thus wn ? w. Therefore, we have

and u is of minimal growth at 
-

(ii) By Lemma 3 . 2 and (3 . 3) any positive solution u of minimal growth
in X satisfies the properties of (ii ) and by part (i ) u has minimal growth
in On the other hand, any two positive solutions of minimal

growth at a boundary portion o are comparable on an appropriate -
neighborhood of co 5Q. Therefore, any positive solution of the operator P
of minimal growth in vanishes on Lipschitz portions of 
The set of solutions vn of the problems (5. 2) is a monotone sequence

of positive solutions which are bounded by v. Let v (x) = lim vn (x) and
n - o0

denote by v = v - ~, we have to prove that v = 0 in Suppose that
v > o. The operator P is subcritical in WN and let G (x) = G (x, yo) be the
Green function of the operator P in WN, where Then G
is a positive solution in (which is a neighborhood of infinity
in WN) and G has minimal growth in WN.
By our assumptions the functions v and (hence also) v have minimal

growth at ~N _ 1. Hence there exists a X-ncighborhood W’ of and a

positive constant such that in W’. Since J and G vanish on
it follows from the generalized maximum principle and

the behavior of G near yo that in WN. Thus J is a positive
solution in WN which has minimal growth in But this contradicts the

subcriticality of P in 

LEMMA 5.3. - Let P be an elliptic operator which is defined on a
domain X and has an essential set An with respect to the singular

n > o

point ~. Suppose that P admits a positive solution in X. Then ~~ 0 ~ is a
closed nontrivial cone.
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~’roof. - We shall first prove that the cone ~~ U ~ 0 ~ is closed.

and assume that Uk -+ U uniformly in any compact subsets
of X. We may assume that u > o. Let yn ~ Sn be fixed (Sn is defined by
(5.1)). Then  uk  where M~ are some positive numbers.
So, by the Harnack boundary principle and the Harnack inequality we
have

and by Lemma 5. 2 it follows that

Hence

and u is a positive solution of minimal growth at ffin for every n >_ 1.
Now we show that ~~ ~ ~ . If P is a critical operator in X then its

ground state has minimal growth in X. Lemma 5. 2 implies now that the
ground state belongs to ~~.
Suppose now that P is subcritical and let yn be any sequence in X which

tends to ç. Consider the Martin quotients

Let k E f~i be fixed. Then by Lemma 5 . 2 the solutions Kn (x) are normalized
positive solutions of minimal growth at Wk for all n sufficiently large.
Without loss of generality, we may assume that Kn  K. Observe that
K (xo) =1, thus K > 0. The same argument as in the proof of the closedness
of ~~ shows that K has minimal growth at cok. Since k is arbitrary large it
follows that K belongs to ~. N

6. A PRIORI ESTIMATES

In this section we shall prove some a priori estimates for weakly Fuchsian
type elliptic operators. Let P be a weakly Fuchsian elliptic operator at a
singular point ç which is defined on X and let d = U An be an essential

n>O

set for (P, X, 0. Here

and 0  a  1  b. Let a’ _ (3 a + 1 )/4, b’ _ (b + 1 )/2, we shall also denote by
An the inner "annulus"

DEFINITION 6.1. - We denote by and ~n the dilated annuli
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Remark 6. 2. - Note that in the case when X is either a cone and
~ _ ~ or X is a domain and §=0 is an isolated singular point of its
boundary the set ~n is a fixed domain. On the other hand, if § = 0 belongs
to a Lipschitz portion of the boundary then ~ ~~ ~ is a sequence of bounded
domains with boundaries such that their Lipschitz continuity constants
are uniformly bounded..

LEMMA 6. 3. - Let P be a weakly Fuchsian elliptic operator at ~ which
is defined on X and let ~ = U An be an essential set for (P, X, ~). Let Q

n>0

be a Lipschitz (geometrical) cone such that Q (~ X c cl (Q n o ~ c X’
where X’ is some X-neighborhood of ~. Then

{i) There exists a constant C = C (A/~,, M, X, Q, a, b) such that for any
n ? 1 and any positive solution u of the operator P in the "annulus" An the
following inequality holds

in particular, CMu (Rn, Q)  mu (Rn, Q).
(ii) If u and v are two positive solutions of the operator P in the

"annulus" An which vanish continuously on T n cl A~ then

and

where C is a positive constant which depends only on A, 03BB, M, X. a, b
and Q.

Remark 6 . 4. - Note that if X is an exterior domain and § = o0 or § = 0
is an isolated boundary point of a domain X the cone Q can be chosen
as the whole space [Rd and Inequality (6.4) holds true in An. That is,

Proof of Lemma 6 . 3. - (i) For any n > 1 define the dilated operator Pn
on the dilated annulus  n = An

Then ~ _ ~ h >_ I ~ is a family of uniformly elliptic operators with
bounded coefficients on the Lipschitz domains and the bounds of the
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coefficients and the Lipschitz continuity constant of the boundaries do
not depend on n. That is, for any and any n > 1

Let u be some positive solution u of the operator P in the annulus An and
define on ~n the function w(x)=u(Rnx). Then w (x) is a positive solution
of the operator P~ on Therefore, by the local Harnack inequality on
the dilated set there exists a constant

M, x Q, a, b) > 0 such that

for all points Let and denote x = x/Rn, y = y/Rn,
then x, y E Qn and x=Rnx, It follows from the definition of w
and (6 .11 ) that

and the first part of the lemma is proved.
(ii) Let u and v be two positive solutions as is assumed in (ii). On the set

~n consider the dilated operator P~ (see (6. 8)) and the positive solutions
un (x) = u (Rn x), By Inequality (6.11) we have

Let xe and let y = y (x) be a point such that ~n and
= dist (x, Qn). Applying the boundary Harnack principle with x and

y and using (6.12) and (6.13) we obtain

Now, Inequalities (6 . 12)-(6 .14) imply the second part of the Lemma..
The following growth lemma for positive solutions of Fuchsian type

operators is a direct consequence of Lemma 6 . 3.

LEMMA 6. 5. - Consider one of the following two cases:
(i) The operator P is a Fuchsian elliptic operator at ~ = oo and

d >_- 2 .
(ii) P is a Fuchsian type elliptic operator at ~ = 0 and X is a punctured

ball.
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There exist a, 03B2 ~ R such that any positive solution in a X-neighhor-
hood of ~ satisfies the following growth property

where C = C (u) is a positive constant and is a X-neighborhood of ~.
Proof - We consider first the case 03B6 = ~ and X = We can assume

that u is a positive solution of the equation P u = 0 in DR for some R > 1.
Let Rn = 2n R, n >_ 1, a =1 /3 and b = 3 and consider the corresponding
annuli An and An (see (6.1) and (6 . 2)). It follows from (6 . 7) that

Now set Co = Mu (R). Using (6 . 7) n-times we obtain

Let x E A~ then

So,

and (6 . 7) (6.17) and (6.18) imply that for x E An

where 1 is a positive constant and .

log 2
The proof for the second case is obtained by obvious modifications of

the above proof..

Remark 6 . 6. - (i) Suppose that P is either a Fuchsian operator on a
Lipschitz cone X and 03B6 = ~ or a Fuchsian operator on a domain X and
~ = 0 belongs to a Lipschitz portion of aX. Let Q be a cone as in

Lemma 6.3. Using the same technique as in Lemma 6.5 we obtain
that any positive solution u in a X-neighborhood D of ç satisfies Ine-

quality (6.15) in where D’eD is a X-neighborhood of ç. The
exponents (x and f3 depend also on Q.

(ii) Since the annulus is a connected set in [Rd if and only if d >_ 2 the
proof of Lemma 6. 3 does not apply in the one-dimensional case. In fact,
Lemma 6 . 3 and the positive Liouville theorem are false for d=1 since in
this case the dimension of the cone ~~ (P, [R) equals two if and only if P
is subcritical in R (see for example [14]).

(iii) Suppose that P is a Fuchsian at infinity elliptic operator on ~‘~.
One cannot obtain a uniform estimate of the form (6. 7) for balls instead
of annuli since the coefficients of the dilated operators are not uniformly
bounded in a neighborhood of the origin, and as was noted above
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Lemma 6. 3 and the positive Liouville theorem do not hold true for d=1
(see the incorrect proof of Theorem 1 in [ 11 ]). 1

7. THE MAIN THEOREM

In this section we prove our main result concerning the uniqueness
theorem for the cone ~~ and the limit theorem.

THEOREM 7. 1. - Let P be a weakly Fuchsian operator at ~ which is

defined on X. Suppose that P admits a positive solution in X. Consider the
cone ~~ _ ~~ (P, X) of all positive solutions of the operator P in Q which
has minimal growth at ~XB~ ~ ~ .

(i ) Any quotient of two positive solutions u and v of the equation P u = 0
in some X-neighborhood B of the singular point 03B6 which vanish continuously
on (~X n c1 ~)B~ ~ ~ admits a nontangential limit lim u (x)/v (x). This limit

x -~ ~
x ~ X

maybe infinite.
(ii ) The cone ~~ U ~ 0 ~ is closed and dim   =1. Moreover, in the subcriti-

cal case ~~ contains of exactly one Martin function while in the critical case
it consists of scalar multiples of the ground state.

(iii) Suppose that P is subcritical and the coefficients of the formal adjoint
operator P* satisfy the same local regularity assumptions as the coefficients
of P. Then the set of all Martin functions for the operator P* corresponding
to Martin fundamental sequences which converge in cl X to ~ is a one point
set.

Proof - {i ) Let ~ be an essential set for (P, X, ~) and let Rn,
Sn = X (~ SRn and 1 be the corresponding radii "spheres"
and "annuli" respectively (see Section 5). Now set

Consider the "annulus" Cn and let

Since the solutions wn = u - r:1n v and z~ = f3n v - u are nonnegative on 
it follows from the generalized maximum principle that an > bn  (3n.
Hence, there exists N E N such that the 
are monotone. Let a = lim an, b = lim bn. Since in C~,

noo 

it is enough to prove that a = b. We may assume that a  oo . Assume that
an B a (the proof for the other case is similar). So, wn = u - an + 1 v ? 0 in
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Cn. By lemma 6.3 (Inequality (6 . 6)) we have

for all x, Y E X n S~. By the definition of an and bn there exist sequences
of nonnegative numbers En and bn tending to zero and sequences of points
xn, such that

and

Combining (7 . 4), (7 . 5) and (7.6) we obtain

Now, let n - oo in (7 . 7), we obtain a = b.
(ii) By lemma 5 . 3 the cone ~~ U { 0 ~ is a nontrivial closed cone which

in the subcritical case contains at least one Martin function. By the
Harnack inequality and Schauder estimates it follows that

is a nonempty compact convex set (see also (4. 8) and (CP)).
Suppose that the dimension of ~~ is greater than one. The set Jf is a

base of the cone ~~, therefore, by our assumption and the Krein-Milman
theorem, ex Jf contains at least two different extreme points u and v.

It follows from part (i) that lim u (x)/v (x) exists and without loss of

generality we may assume that

Let f!lJn be the X-neighborhood of the singular point ç such that

S~ = X. There exists N > 0 such that

Denote by b = (a + 1 ) - I . Recall that u and v has minimal growth at (ON’
thus, part (ii) of Lemma 5. 2 and the generalized maximum principle imply
that

Consider the solution w (x) = v (x) - b u (x), then in X. Define

T = w(0)= 1 - b. So, 0  i  1 and the function Conse-

auentlv. we obtain
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Since v ~ ex K, Equation (7 . 11 ) implies that u = v which contradicts our
assumption. So, part (ii) is proved.

(iii) Let G (x, y) be the Green function of P in X. It is well known that
the Green function G* (x, y) of P* is given by G* (x, y) = G (y, x).
For every XEX the functions u ( y) = G ( y, x) and v ( y) = G ( y, xo) are

positive solutions (of the operator P) of minimal growth in X. Thus, by
Lemma 5. 2 the solutions u and v have minimal growth at ffin and vanish
on (~ aX)B~ ~ ~ for every n large enough. It follows now from the
first part of our theorem that

is a well defined (maybe extended value) function.
Consider the family of functions

The family ~~ consists of the Martin quotients of the operator P* and we
have to look for limits of sequences of functions

Note that ~~ is a family of positive normalized solutions of the operator P*
and therefore, the limit function w (x) is a positive (finite) normalized
solution of the operator P*. Moreover, by (7.12) any sequence {wk(x)}
tend to w (x) as Yk ---) ç. Consequently, there is exactly one limit function
as Yk ---) ç. Hence, there is only one fundamental sequence in the Martin
boundary of X with respect to P* corresponding to all sequences in X

which converge to ç in cl X..

Remark 7. 2. - (i) The operator P* is critical (subcritical) in X if and
only if P is critical (respectively, subcritical) in X. Recall also, that in the
critical case the cone of positive solutions of a critical operator P in a
domain Q (and therefore, also of the operator P*) is always one dimen-
sional.

(ii) The relationships between the Martin boundary at infinity of P*
and the limits at infinity of quotients of two positive solutions of minimal
growth at infinity of the operator P are stressed in [21]..
The following corollary is the extension of the Liouville positive theo-

rem, the Picard principle and the Poisson principle for the case of smooth
boundary.

COROLLARY 7.3. - (i) Assume that P is a weakly Fuchsian operator at
infinity in a Lipschitz cone X and assume that P admits a positive solution
in X. Suppose that the coefficients of P and P* are Lipschitz continuous up
to the boundary ~X. Then the cones of positive solutions of the operators P
and P* that vanish on aX are of one dimension.

Vol. 11, n° 3-1994.



332 Y. PINCHOVER

(ii) Assume that P is a weakly Fuchsian operator at the isolated singular
point ~ = 0 in a Lipschitz bounded domain X and assume that P admits a
positive solution in 0 ~. Suppose that the coefficients of P and P* are
Lipschitz continuous in cl XB~ 4 ~. Then the cones of positive solutions of
the operators P and P* in XB~ o ~ that vanish on aX are of one dimension.

(iii) Assume that P is a weakly Fuchsian operator at the boundary point
~ = 0 in a Lipschitz bounded domain X. Suppose that the coefficients of P
and P* are Lipschitz continuous up to 0 ~. Then the cones of positive
solutions of the operators P and P* that vanish on o ~ are of one
dimension.

8. APPLICATIONS

In this section we present some applications of Theorem 7 .1 to the theory
of positive solutions of linear and also semilinear equations. We first deal
with the behavior of solutions which do not have a constant sign.

COROLLARY 8. l. - Let P be a Fuchsian type operator at infinity which
is defined on X = d> 2. Assume that P admits a positive solution u in
X. Let v be a solution of the equation P u = 0 in f~d which changes its sign
in Rd. Then

Proof - Assume that u and v satisfy the assumptions above and
assume that (8.1) does not hold true. Therefore, there exists c > 0 and a
sequence {Rn}, Rn ~ 00, such that Mu(Rn)/M|v| (Rn) > E. Without loss of
generality, we may assume that

By Lemma 6.3 (i) and (8 .2) we have

Hence, the generalized maximum principle implies that E -1 C u (x) > v (x)
for all and all n >_ 1. So, the function w (x) : = E -1 C u (x) - v (x) is a
global positive solution of the operator P. It follows from Corollary 7.3 (i)
that for some positive number a. So, and v does
not change its sign in ~d which contradicts our assumption on v..

Remark 8. 2. - {i ) Suppose that u in Corollary 8. 1 is a positive solution
of the operator P only in a neighborhood of infinity.

If the operator P is a subcritical Fuchsian (at infinity) elliptic operator
then assertion (8 . 1 ) holds even for such a solution u. We do not know if
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in the critical case assertion (8.1) is true for a positive solution near
infinity which does not have minimal growth at infinity.

(ii) If the operator P admits a positive solution in a neighborhood of
infinity (but not a global positive solution) it may happen that (8.1) does
not hold true for a positive solution near infinity u and a global solution v
(which changes its sign) as the following example shows:

Consider the function u (x) = log I in the exterior domain p~2
and extend it as a smooth function v (x) in the whole space 1R2 such that
v is negative in Let P = - A + W (x), where W (x) = Av (x)/v (x). So, v
is a smooth global solution of the operator P which changes its sign in
(~~ and u (x) is a positive solution of the operator P in a neighborhood of
infinity. On the other hand, lim Mu (R) =1. Note, that in this

example P does not admit positive solutions in 1R2, since v does not satisfy
the generalized maximum principle in B1..

COROLLARY 8. 3. - Let P be a Fuchsian type operator at infinity which
is defined on X = d> 2 and satisfies hypothesis (H) in There exists a
real number a which depends on P such that f v is a solution of the operator
P in IRd such that v (xo) > 0 at some point xo E Rd and

for some positive number C and x ( large enough, then v is the unique (up
to a constant) positive solution of the operator P in 

In particular, if the number a which satisfies the property above is

nonnegative then P satisfies the following Liouville property: If v is a solution
as above and v is bounded (below) then v is the unique (up to a constant)
positive solution of the operator P in X . Moreover, if c (x) >_ 0 then a >_- o.

Proof - Let u be a positive solution of the operator P in It follows
from Lemma 6 . 5 (i ) that there exists a e R such that u (x) > C ~ x lex. So, if
v is a global solution which satisfies Inequality (8.4) with the above
number a then

for all Ixllarge enough. (8 . 5)

Therefore, by the generalized maximum principle the function w = v + u is
a positive global solution of the operator P. Corollary 7. 3 implies that
there exists a positive number p such that w=UM. Consequently,

and v is of a constant sign. By our assumption 
hence, v is the unique (up to a constant) positive solution of the operator P
in IRd.

Suppose now that c (x) > 0 and let u be the unique positive solution
in Jf. If then it follows from Lemma 6.3 that

lim u (x) = 0 which contradicts the maximum principle. Therefore, u >_ C
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for some C > 0 and hence a. >0. It is clear now that the assertion of the
lemma with a >_ 0 implies that P satisfies the above Liouville property..
The following lemma is a representation theorem for positive solutions

of a Fuchsian operator near an isolated point.

LEMMA 8 . 4. - Assume that P is a weakly Fuchsian operator at the
isolated singular point ~ = 0 in a Lipschitz bounded domain X with coeffici-
ents which are Lipschitz continuous in cl 0 ~. Furthermore, assume that
P admits a positive solution in 0 ~. Let u be a positive solution of the
operator P in 0 ~ which is continuous in cl 0 ~. Then

where uo (P, 0 ~ and ul is a nonnegative solution which equals u
on aX. Moreover, the representation (8 . 6) is unique.

If in addition, c (x) >_ 0 then ul is bounded. Furthermore, if uo ~ 0, P is

Fuchsian at the origin and

then there exist negative numbers oc and ~3 such that x _ uo (x) _ I x ~~ for
small 

Proof. - Let w" be the solution of the problem

Then wn ~ M, { is an increasing sequence which converges to a nonnega-
tive solution U1 and we have Note that u1 = 0 if and only if u = Q
on ax. Let Suppose that u0 ~ 0 then uo is a positive solution
of the operator P in ~B~ 0 ~. Moreover, since the boundary ax is

Lipschitz uo vanishes on ax. Therefore, Corollary 7. 3 (ii) implies that

u0 ~ B0 and that uo is uniquely determined by its value at some

point xo E XB~ 0 ~ .
If c (x) > 0 then v 1 is a positive supersolution. Using the maximum

principle we obtain that w~  Mu (~X). Thus, ul is bounded.
Suppose that P is Fuchsian at the origin and (8.7) is satisfied. We

find on computation that for some negative number a, the function "
is a positive supersolution of the operator P in X. Suppose that
lim inf uo (.x)/~ x I°‘ = 0 then Lemma 6 . 3 implies that lim uo (x)/~ x let = 0.
I x I -+ 0 

Consider the supersolution vM (x) _ ~ x °"" M uo (x), the maximum principle
implies that vM is positive in XB{ 0 ~ for every M > 0 which contradicts
our assumption that uo is positive. Therefore, for some E > 0, ~°‘ _ uo (x)
near the origin. The inequality uo (x) - ~ x ~ ~ follows from Lemma 6 . 5..
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We formulate now an analog representation theorem for a Fuchsian
elliptic operator at infinity on a Lipschitz cone. The proof is left to the
reader.

LEMMA 8. 5. - Assume that P is a weakly Fuchsian operator at ~ = o0
on a Lipschitz cone X with coefficients which are Lipschitz continuous up
to ~X. Furthermore, assume that P satisfies hypothesis (H). Let u be a
positive solution of the operator P in X which is continuous in cl X. Then

u=uo+ul (8 . 9)
where uo (P, X) U ~ 0 ~ and u~ is a nonnegative solution which equals u
on aX. Moreover, the representation (8.9) is unique.
As in [3], we are now ready to use our results on the asymptotic

behavior of positive solutions of the linear operator P in the study of the
asymptotic behavior of a positive solution of a semilinear equation. We
show that the solution behaves like a solution of the linearized problem.
First we deal with a semilinear equation on a cone (see [3], for the analog
results and proofs for the case where X = or a strip).

THEOREM 8.6. - Let P be a Fuchsian elliptic operator at infinity which
is defined on a cone X and assume in addition that

Suppose that f (x, u) is a given function which satisfies, for some b > 0,

Let u and v be positive solutions of the respective equations

in a neighborhood E of infinity in X which vanish continuously on r n aE.
Assume also that u tends to zero at infinity. Then

where A > 0 if and only if v is a positive solution of minimal growth at
infinity.

Proof - If v and w are positive solutions of the operator P in E which
vanish on r and v has minimal growth at infinity while w does not
then by Theorem 6 . 3 (ii) lim v (x)/w (x) = 0. Therefore, it is enough to

prove the theorem for a positive solution v of minimal growth at infinity.
Using our assumption (8.10), we find on computation that for some

negative number a, the function x let is a positive supersolution of the
operator P in some exterior domain in Thus, lim v (x) = 0.
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Now, the proof of the theorem follows from Theorem 7 .1 (i ) in exactly
the same way that Theorem 3 in [3] follows from Theorem 2 therein (see
also the proof of Theorem 8. 7)..

- The next theorem concerns the asymptotic behavior of positive solutions
of semilinear equations near an isolated singular point.

THEOREM 8.7. - Let P be a Fuchsian elliptic operator at the origin which
is defined in some punctured neighborhood of the origin. Assume in addition
that

Suppose that f (x, u) is a given function which satisfies, for some 0  ~  1 ,

Let u and v be positive solutions of the respective equations

in some punctured neighborhood of the origin. Assume also that u and v
tend to infinity as I tends to zero. Then there exists positive number A
such that

Proof. - Consider the elliptic operator P = P + p (x), where

p (x) = f(x, u)/u. Then by (8 . 15) P is Fuchsian operator at the origin
and u is a positive solution of the equation P u = 0 in some punctured
neighborhood of the origin. Recall that if uo and U1 are positive supersolu-
tions of an elliptic operator L then for any 0  y  1 the
function (uo)’‘ (u 1 ) 1- Y is also a supersolution of the operator L. Moreover,
by (8.14) the function 1 {x) --_ 1 is a positive supersolution of the

operator P. Therefore, it is natural to consider the
functions w + (x) = v {x) ~ v (x)Y as a super- (respectively, sub-) solution of
the operator P, where 0  y  1 will be determined later on. Indeed, we
find on computation that

It follows from Lemma 8 . 4 that there exist negative numbers a and 03B2
such that x ~°‘  u (x) and v (x)  x ~~ near the origin. Hence

near the origin. Now, by choosing y close enough to one we obtain that

Similarly,
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Let N be a large enough natural number. For n >_ N let Wn be the solution
of the following Dirichlet problem in the annulus 

By the maximum principle w _  w,~  w + and therefore, w~ is a decreasing
sequence which converges to a positive solution w of the operator P in

Since

we obtain

Decompose and in according to

Theorem 8 . 4. So, uo, bfo e wo (P, B1/N) and u 1 and W1 are bounded. Since
dim B0 = 1 we have wo = C ua for some C>O. Therefore,

Combining (8.23) and (8.24) we see that the theorem is proved with
A= 1/C. N
We conclude this section with some remarks on possible extensions of

our results to another type of boundary conditions (oblique derivative
boundary conditions) and to another type of unbounded domains (strips).
Remark 8.8. - (i) Consider a Fuchsian at infinity elliptic operator P

on a cone X with a smooth boundary r and let ~~ (P, X, B) be the cone
of all positive solutions of the operator P in X which are of class Cl near
the boundary r and satisfy the oblique derivative boundary condition

Bu=~,(x).~u+~y(x)u=0 on r. (8.25)

Here the function y and the unit vector p are smooth on the boundary r
and J.l is nowhere tangential to r. We would like to obtain a positive
Liouville theorem and asymptotic behavior results also in this case.
To this end, we need to use the up to the boundary Harnack inequality

for the dilated operator Pn (for the definition of Pn, see (6.8)) and then
we may apply the same techniques as in Section 7. Therefore, we need to
assume that the boundary operator B is of Fuchsian type. That us, we
assume that

and

here M and E are positive constants and v (x) is the unit outward normal
vector to r at the point x.
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But since the constant in this Harnack inequality depends also on the
C2 norms of p and y, we do have to add appropriate decay assumptions
on the first and the second derivatives of these functions. Namely, in

addition to (8.27) we assume that for every multi-index a, 0 __ ~ a  2
(1+~x~)~°‘~+1~D°‘y(x)I+(1+Ixl)~a~~D°‘~.(x)I_M, for all X E r. (8.28)

Now, it is clear from the arguments used throughout our paper that under
the assumptions (8.26)-(8.28) the Dirichlet boundary condition can be
replaced by the oblique derivative boundary condition (8.25). In particu-
lar, the dimension of the cone of all positive solutions of the operator P
in the cone X which satisfy (8 . 25) is at most one. Moreover, the quotient
of two positive solutions of the operator P at a neighborhood of infinity
in X satisfying (8.25) admits a limit at infinity.

(ii) The results of Section 7 are valid also in the case where X is a
semi-infinite strip in In this case it is assumed that X==[0, oo) X S2,
where Q is a bounded smooth domain in f~a -1, P is a uniformly elliptic
operator with bounded coefficients in X, and positive solutions of the
operator P are assumed to satisfy the Dirichlet boundary condition on
r = ax (or even the regular oblique derivative boundary condition (8 . 25),
provided that (8 . 26) is satisfied and the C2 norms of ~. and y are bounded
on r). The case of the Neumann condition on a semi-infinite strip was
studied intensively in [3] ..

9. EXAMPLES

In this section we shall present some examples which will demonstrate
the sharpness of our result.
The first three examples show that unlike the case of a Fuchsian type

elliptic operator with c (x) - 0 or the case of a small perturbation of - A,
the operator P may admit a positive solution in f~a which is not bounded
or with no limit at infinity. Moreover, in our case the Green function of
P (if it exists) may not behave at infinity like the Green function of the
Laplacian.

EXAMPLE 9.1. - Let u (x) = 2 + sin (log I x ), and define V (x) = Au/u.
Clearly, jc )~ and by Corollary 7 . 3, u is the
unique (up to a constant) positive solution of the Fuchsian at infinity
equation

But lim u (x) does not exist.
x - 00
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Note that in Example 9 . 1 positive solutions behave like a radial function
near infinity. The following example shows a behavior of a different type
for positive solutions at infinity.

EXAMPLE 9 . 2. - Let f : Sd-1 ~ [- l, 1] be a real nonconstant smooth
function. For x e ~ x ~ >__ 1 let u (x) = 2 + f ), and extend the
function u as a smooth positive function on (~d. Let V (x) = Then

V(x) _ M/{1 + ( x ~ )~ and u (x) is a bounded positive function which is
bounded away from zero. Moreover, u (x) is the unique (up to a constant)
positive solution of the Fuchsian at infinity equation

but lim u (x) does not exist.

EXAMPLE 9 . 3. - Let c (x) ? 0 be a smooth function which equals 1
outside the unit disk and zero in a neighborhood of the origin and let t
be a real number. Consider the Fuchsian at infinity operator

If b = ((2 - d)2 + 4 t) > 0, then P admits positive solutions in a neighborhood
of infinity which behave like ( x (~ ±, where i + _ (2 - d ~ ~ 1 ~2)~2. The

functions x ~~± describe the behavior of positive solutions which do not
have minimal growth at infinity and of positive solutions of minimal

growth at infinity respectively.
The next example shows that the results are sharp in the sense of the

exponents which appear in (1. 3).

EXAMPLE 9 . 4. - Consider the operator where

c {x) ~ 0 is a smooth function which equals 1 outside the unit disk and
zero in some neighborhood of the origin, 0 _ ~,  2 and t > 0. Then ~~ is
an infinite dimensional cone (see [14]).

QUESTION 9. 5. - Suppose that P is a Fuchsian operator at infinity on
IRd and c (x) >_ 0. Then the maximum principle and Lemma 6. 3 imply that
the normalized positive solution of the operator P in IRd is bounded away
from zero (see also Corollary 8 . 3) and a positive solution in a neighbor-
hood of infinity of minimal growth at infinity is bounded. Is it true that

any positive solution of the operator P in an exterior domain D admits a
limit at infinity?
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