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ABSTRACT. - Using the method of generalized characteristics, the
authors investigate uniqueness and regularity of solutions of the Cauchy
problem for a special system of hyperbolic conservation laws, with coincid-
ing shock and rarefaction wave curves, arising in the theory of isotach-
ophoresis.
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RESUME. - En utilisant la methode des caracteristiques généralisées, on
montre l’unicité et la regularity des solutions du probleme de Cauchy pour
un système hyperbolique de lois de conservation provenant de la theorie
de Felectrophorese.
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232 C. M. DAFERMOS AND X. GENG

1. INTRODUCTION

The hyperbolic system of conservation laws

governs the process of separating three ionized chemical compounds by
the electrophoretic method of isotachophoresis. The fields U1, U2, U3 are
proportional to the concentrations of the three species and the positive
constants a~, a2, a3 are the respective electrophoretic mobilities. A deriva-
tion of ( 1.1 ) is given in the thesis of Geng [9], where the reader may also
find background information as well as references to the relevant chemical
literature. The study of this system is warranted not only due to the
intrinsic interest of the model but also because it provides an excellent
vehicle for testing the effectiveness of newly developed techniques based
on the theory of generalized characteristics [5].

Introducing new variables

( 1.1 ) takes the simpler form

We consider the Cauchy problem for (1.1) assuming, for simplicity, that
the initial data Ui(x, 0), i =1, 2, 3, render w (x, 0) =1, - oo  x  oo , in
which case (1.3) reduces to 

’

We shall study here (1.1 ) in its form (1. 4).
One may also rewrite ( 1 . 1 ) as an equivalent system of two conservation

laws by eliminating U3 with the help of Upon renormalizing the
remaining variables, Ui and U2, (1.1) thus reduces to the system
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which arises in chromatography and has been considered earlier by

Levesque and Temple [14] and by Serre [19].
As we shall see in Section 2, on the physically relevant range, (1.4)

has positive characteristic speeds, À (u, v) 
which are distinct,

~, ( u, v )  ~, (u, v), except at a single umbilic point. Both 
characteristic fields

are genuinely nonlinear. Suitably constructed Riemann invariants 
z and w

will provide a more convenient representation of the state 
vector than the

original coordinates u and v.
The pivotal feature of ( 1. 4) is that it belongs, together with ( 1.1 ) 

and

(1 . 5), to the class of systems, identified by Temple [20], 
in which shock

and rarefaction wave curves of each characteristic family coincide. As a
consequence of this special property, Riemann invariants associated 

with

each characteristic field do not jump across shocks of the opposite family.
Furthermore, the interaction of waves of the same family never generates
waves of the opposite family. In particular, centered rarefaction waves

may originate only at the initial line t = 0. In those respects, 
the behavior

of solutions of these systems resembles closely the behavior of solutions

of single, genuinely nonlinear conservation laws.
The coinciding of shock and rarefaction wave curves greatly facilitates

the construction of solutions to the Cauchy problem, in the class BV of

functions of bounded variation. In fact the effectiveness of a host of

methods, including the Glimm scheme, the Godunov scheme, the 
Lax-

Friedrichs scheme and the viscosity approach, has been documented in

the literature ([14], [19], [9]).
Our program here is to study the properties of BV solutions of ( 1. 4)

directly, i. e., without reference to any particular method of construction.
To this end we will employ techniques developed in [1], [2], [3], [5], based

on the theory of generalized characteristics.
A generalized characteristic associated with a BV solution of ( 1. 4) 

is a

trajectory of the standard characteristic ordinary differential equations,

interpreted as differential inclusions, in the sense of Filippov [8]. Thus

generalized characteristics are Lipschitz curves propagating with 
classical

characteristic speed or with shock speed. The relevant parts of the theory
are outlined in Section 3.

There are two families of generalized characteristics for our system.
From any point (x, t) of the upper half-plane generally emanates a funnel
of generalized backward characteristics of each family, confined between
a minimal and a maximal one. These extremal backward characteristics

always propagate with classical characteristic speed; moreover, the restric-

tion on them of Riemann invariants of the corresponding family is con-

stant. This last feature, which distinguishes (1 . 4) from the typical genuinely
nonlinear system of two conservation laws (compare with [5]), is a reflec-

tion of the fact that Riemann invariants do not jump across shocks of
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the opposite family. The above property will be established in Section 3
with the help of entropy inequalities.
One of the implications of the constancy of Riemann invariants along

the extremal backward characteristics is that, once detached from the
initial line t = o, the solution develops a one-sided Lipschitz condition.
This in turn implies that the forward characteristic of each family emanat-
ing from any point of the upper half-plane is unique. In particular, in our
system centered rarefaction waves may only originate from the initial line

In Section 4 we employ the theory of generalized characteristics to

describe the regularity properties of solutions of (1.4). We follow closely
the analysis in [1] for the single, genuinely nonlinear conservation law and
the results are very similar: The set of shocks is at most countable. Each
shock is a Lipschitz curve which is right-differentiable at every point and
fails to be differentiable only at (the at most countable set of) points of
interaction with other shocks or with centered compression waves of either
family. The solution is continuous on the complement ~ of the shock set
and is in fact Lipschitz continuous on the (possibly empty) interior of ~.
At any point where a shock is differentiable, classical one-sided limits of
the solution exist and they satisfy the standard Rankine-Hugoniot jump
conditions. The above are in agreement with DiPerna’s description [6] of
the structure of solutions of general genuinely nonlinear systems of two
conservation laws constructed by the random choice method of Glimm
[10].
Though no smoothness of solutions, beyond what was described above,

is to be generally expected, if the single conservation law provides a good
model for our system, it is conceivable that generically solutions with
smooth initial data are piecewise smooth ([18], [1], [2], [3]). Indeed, in

Section 5 we show that when the initial data are Ck smooth, then the
shock set is closed and the solution is Ck smooth on the complement of
it. In fact, generically, the number of shocks in any bounded region is

finite. The idea of the proof, borrowed from [1], [2], is to monitor the

onset of shocks and demonstrate that shock generation points cannot
accumulate, unless the initial data satisfy a nongeneric degeneracy condi-
tion.

The one-sided Lipschitz bound on solutions will enable us to establish,
in Section 6, uniqueness for the Cauchy problem, via Holmgren’s method.
The successful application of this approach to the single conservation law
by Oleinik [16] is well-known. On the other hand, uniqueness theorems,
for general or special systems, recorded in the literature ([17], [ 11 ], [15],
[7]) impose at the outset restrictions of smoothness on solutions that have
not been translated into conditions on the initial data. Though free from
this shortcoming, our result here is not definitive, because it only covers
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initial data in which generation points of centered rarefaction waves of
the two families are strictly separated. It is not clear to us at this time
whether the question of uniqueness is intrinsically harder when centered
rarefaction waves of both families are generated at the same point or
whether our failure to treat the general case is just technical.
As is well-known, in solutions of strictly hyperbolic systems with initial

data of compact support the characteristic fields asymptotically decouple.
Serre [19] realized that in systems with coinciding shock and rarefaction
wave curves the two characteristic fields actually decouple completely in a
finite time. In the final Section 7 we demonstrate that the method of

generalized characteristics establishes that property, for our system ( 1. 4),
in a direct and simple manner.

It is expected that analogous results may be established, by the same
methodology, for general systems of two conservation laws with coinciding
shock and rarefaction wave curves [20] and even for systems of several
equations endowed with special symmetry, for instance (1.1) with

i = 1, ..., n.

2. RIEMANN INVARIANTS AND ENTROPIES

The Jacobian

of the flux in the system (1.4) has eigenvalues ~,, ~, and associated

eigenvectors

Recalling the definition (1.2) of u, and our normalizing assumption
it can be shown [9] that on the physically relevant range of (u, v),

induced by the natural restrictions i = l, 2, 3, U1 + U2 + U3 > o, ~,
and Jl are real and hence (1.4) is hyperbolic. In fact, assuming, for
definiteness, that al  a2  a3, (1. 4) is strictly hyperbolic, ~,  ~,, except at
the single umbilic point u = a2 2, where ~, _ ~, = a2.
We introduce the functions
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By account of

we deduce the identities

Using (2. 5) we easily compute the differential of z and w, with respect to
the variables (u, v):

In particular,

that is, z and w are properly normalized Riemann invariants of (1.4).
A simple calculation, using (2. 8) and (2.7), yields

This degeneracy reflects the special structure of our system. Its implications
will become clear shortly.

It will generally prove expedient to monitor the solution in the coordi-
nate system (z, w) rather than through the original state variables (u, v).
In order to avoid cumbersome notation, we shall be using the same symbol
to denote a particular field as a function of (u, v) or as a function of
(Z, W).
By virtue of (2. 6),

so that both characteristic fields are genuinely nonlinear.
As is well known, a function rl is an entropy for (1.4), associated with

entropy flux q, if

The entropy 11 will be convex in the variables (u, v) if

In [5], (2.13) are rewritten in an equivalent form, equations (3.13), (3.14),
that involves derivatives of 11 with respect to (z, w). By virtue of these
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equations and (2.10), (2.13) here reduce to

We now construct a family of entropies

of the type first considered by Lax [13]. Recalling (2.6), the integrability
condition

induced by (2.12), reduces to the ordinary differential equation

with solution

Therefore, combining (2.15), (2.18) and (2.12) we deduce

It follows from (2.19) that

and (2.14) hold for (z, w) away from the umbilic point z = w = a2 1, pro-
vided I k I be sufficiently large. Thus 11 is convex in (u, v) when either k or
- k is large. This property differentiates (1.4) from the typical genuinely
nonlinear system, in which the Lax entropy is convex as k grows only in
one direction. We shall see the implications of that in Section 3.
From (2.19) and (2 . 20) we infer

It is clear that we may also construct entropy-entropy flux pairs anal-
ogous to (2.19), (2 . 20) but with the roles of z and w interchanged.
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By virtue of (2 . 5), the Rankine-Hugoniot conditions for a shock joining
the states (z _ , w _ ) and (z +, w + ) read

There are two families of shocks: 1-shocks in which z _ ~ z +, w _ = w + and
the speed is given by

and 2-shocks in which z _ = z + , w _ ~ w + and the speed is given by

In particular, since the Riemann invariants of each family do not jump
across shocks of the opposite family, in our system (1.4) shock and
rarefaction wave curves coincide.

3. GENERALIZED CHARACTERISTICS

We consider a BV (weak) solution (u (x, t), v (x, t)) of ( 1. 4) on

( - oo, oo) x [0, oo ) that induces Riemann invariant fields (z (x, t), w (x, t))
taking values in a small neighborhood of a fixed state (z, w) in the

physically relevant range. The two characteristic fields are well separated,
in the sense that ~. (z, w) - ~, (z, w) is much larger than the oscillation of
the solution.
We assume that for each t >_ 0 the functions u (., t), v (., t), and thereby

also the functions z (., t), w (., t), have bounded variation on ( - oo, oo).
In particular, one-sided limits u (x:1: , t), v (x:1: , t), z (x :1: , t), w (x :1: , t) exist
for all (x, t) on the upper half-plane. The solution is then normalized by

The solution also satisfies the physically motivated condition

which states that the concentration of the positively charged electrolyte,
in which the three chemical compounds are immersed (c. f : [9]), may jump
upwards but not downwards. It turns out that this condition is equivalent
to the standard Lax [12] shock admissibility criterion
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or, equivalently, to

In turn, these conditions imply that if 11 is any entropy which is convex
in (u, v) and q is the associated entropy flux then

holds, in the sense of measures.
A generalized I-characteristic, associated with the given solution, on an

interval [tl, t2], is a trajectory of the classical 1-characteristic equation

in the sense of Filippov [8], i. e., a Lipschitz t2] --~ ( - oo, oo)
which satisfies the differential inclusion

Similarly, a generalized 2-characteristic on [tl, t2] is a trajectory of the
classical 2-characteristic equation

i. e., a Lipschitz arc § : [t1’ t2] - (- oo, 00) which satisfies

We state a few elementary properties of generalized characteristics. The
proofs may be found in [5]. Every generalized characteristic propagates
with either classical characteristic speed or with shock speed of the corre-
sponding family. From each point (x, t) of the upper half-plane emanates
a funnel of generalized i-characteristics (i = l, 2), confined between a mini-
mal and a maximal one (that may coincide). The extremal backward
generalized characteristics always propagate with classical characteristic
speed ; specifically,

LEMMA 3 . 1. - Let - 00  x  00, t > o. is the minimal or the maximal
backward I-characteristic emanating from (x, V, then
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If ~ is the minimal or the maximal backward 2-characteristic emanating
from (x, t), then

In this section our objective is to investigate the propagation of Riemann
invariants along the extremal backward characteristics.

LEMMA 3.2. - and ~ denote the minimal and maximal backward
I-characteristics emanating from any point (x, V of the upper half-plane.
Then z (~ (t) -, t) is a nonincreasing function on [o, t] while z (~ (t) +, t) is a

nondecreasing function on [o, Q. Similarly, and ~ are the minimal and
maximal backward 2-characteristics emanating from (x, t), then w (~ (t) -, t)
is a nonincreasing function on [o, t] while w (~ (t) +, t) is a nondecreasing
function on [o, t].

Proof. - We shall establish only the first part of the theorem, where §
and § are the extremal backward 1-characteristics emanating from (x, V,
because the proof of the second half is quite analogous. Our argument
will follow closely the proof of Theorem 4.1 in [5] and so we feel free to
be somewhat sketchy here, referring the reader to the above reference for
further details.
We fix E positive small and we let ~£ denote an integral curve, in the

sense of Filippov, of the differential equation

emanating from the point (x - ~, t). Then

~E (t) ~ ~, (z (çt (t) +, t), w (~E (t) +, t)) + E, a. e. on [0, t ], (3 .14)

~£ (t)  ~ (t), 0 ~ t _ t, (t) -~ ~ (t), as E ~ 0, uniformly on [0, ï).
We consider the inequality (3.4), where r; and q are given by (2. 19)

and (2 . 20) with - k very large, and we integrate it over the domain

~ (x, t) : s _ t _ i, ~E (t)  x _ ~ (t) ~ , for 0  s  i  t, thus obtaining
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On the right-hand side of (3.15), the first term is nonnegative by virtue
of (3.10) and (2.22) and the second term is also nonnegative by account
of (3.14) and (2. 23). Hence

We raise (3.16) to the power - - and we let k - - oo . Finally, we let
k

~ ~ 0. This yields z(03BE(03C4)-, 03C4)~z(03BE(s)-, s), i. e., z(03BE(t)-, t) is nonin-

creasing on [0, Q.
To show that z (~ (t) +, t) is nondecreasing on [0, t], we employ a parallel

argument: We consider an integral curve ~£ of the equation

emanating from the point (x + E, t) and integrate over the domain

{(x, t) : s _ t  i, ~ (t) -_ x __ ~E (t) ~ the inequality (3 . 4) where r) and q are
again given by (2.19) and (2 . 20) but now it is k (rather than - k) that is
selected large. We omit the details.
The above result immediately induces invariant regions for solutions of

(1.4):

COROLLARY 3. 1. - For any point (x, t) of the upper half plane

Lemma 3.2 also yields bounds on the variation of the Riemann inva-
riants along extremal characteristics of the opposite family. We will be
using the symbols NV, PV and TV to denote negative variation, positive
variation, and total variation, respectively.
LEMMA 3 . 3. - Let ~ denote the minimal backward I-characteristic and

~ denote the maximal backward 2-characteristic emanating from a point
(x, V of the upper half plane. Then W (t) : = w (~ (t) -, t) is a function of
bounded variation on [o, g and ~o~, ~ w ( . , 0). Similarly,
z (t) : = z (~ (t) +, t) is a function of bounded variation on [o, g and

t~ z _ ( ~ ~ ~)-

Proof - To estimate the negative variation of w on [0, t), we pick a
mesh 0 _ sl  il  ...  sn  in  t such that i =1, ... , n.
By virtue of (3.9), it suffices to consider only meshes with

w(~(i~)+,i~)=w(~(i~)-,i~)=w(i~), ...,n.
For i = 1, ..., n, we let ~~ denote the minimal backward 2-characteristic

emanating from (~ (s~), si) and ~~ denote the maximal backward 2-charac-
teristic emanating from (~ (ii), ii). In particular, ~i + 1 (o) _ ~i (0),
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i = 1, ... , n -1. We claim that it is also ~i (o) _ ~~ (0), i = l, ..., n. Indeed, if
for some t E (0, Si) it were Si (t) _ ~i (t) = x, then, by account of Lemma 3 . 2,

in contradiction to (3. 3). Another appeal to Lemma 3 . 2 yields

whence we deduce the estimate NV[o, ï) w _ TV~~ ~o~, ~ w ( . , 0) .
The proof of the second part of the theorem is quite similar and will

be omitted.
The following proposition estimates the "widening" of extremal back-

ward characteristic of one family effected by the characteristic field of the
opposite family.

LEMMA 3 . 4. - t > 0. Consider the minimal back-
ward 1-characteristic ~ emanating from (x, V and the maximal backward
1-characteristic ~ emanating from ( y, t). Then

where K and L are positive constants depending on TV~ _ ~, ~~ w ( . , 0).
Similarly, is the minimal backward 2-characteristic emanating from
(x, V and ~ is the maximal backward 2-characteristic emanating from ( y, g,
then

where the positive constants K and L now depend on TV~ _ ~, ~~ z ( . , 0).
Proof - We need only discuss the case where § and ç are 1-characteris-

tics, since the proof for the other case is essentially identical.
By Lemma 3 . 1, for any t E [0, t],

Recalling (2.6) and Lemma 3 . 2, (3 . 23) yields
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We let s denote the minimum of the set of 1) with the property that
the minimal backward 2-characteristic emanating from the point (~ (s), s)
is intercepted by ç at t = g (s) > o, before it terminates on the x-axis (if this
set is empty, we shall not define s). We note that g is a nondecreasing,
right-continuous function on [~ t] with the properties g (s) __ s, 
and

Furthermore, by Lemma 3 .2,

For future reference we also define an "inverse" h of g by

We now fix t in [0, ~ and define ~ by if if

~(~)~~(~) and 
By account of (3.25) and the separation of the two characteristic speeds,

we have 0 ~- ~ c [~) - ~ (~)] and so

where 6 « 1 , because the oscillation of the solution is small. This estimate
also holds, with; = 1, when s is undefined.
We now use (2 . 6) and (3 . 26) to infer

where A denotes the positive variation function of À (z (x, t), w (ç ( . ) - , . )) :

We construct a sequence {n} of nondecreasing, absolutely continuous
functions which converges to A (s), pointwise on [0, t]. Then
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From (3.27), (3.25) and the separation of the two characteristic speeds
we infer that

and t - i __ [i [~ (i) - ~ (i)] Moreover, by the construction of
s it follows that g (s) _>_ t. Therefore (3.31) yields

Passing to the limit, n - oo, we obtain from (3 . 32),

Combining (3.24), (3.28), (3.29) and (3. 33) we deduce the Gronwall-
type inequality

We claim that this implies

Indeed, if (3 . 35) were false, we could find E > 0 and t* in (0, t) such that

and (3 . 36) holds as an equality at t= t*. However, if we apply (3 . 34) for
t = t* and majorize its right-hand side by use of (3 . 36), we obtain, after a
short calculation,

which contradicts our assertion that (3.36) holds as an equality when
t = t*.

It is now clear that (3.35) yields the desired estimate (3.21) with
constants K and L that depend on A (t). Thus K, L may be estimated in
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terms of the negative variation of w (~ (s) -, s) over [0, tJ and thereby,
on account of Lemma 3. 3, in terms of TV~ _ ~, ~~ w ( . , o). The proof is
complete.
An immediate corollary of Lemma 3 . 4 is the following

LEMMA 3. 5. - If (x, t) is any point of the upper half-plane with

z (x -, ,_t)_= z (x + , t), then a unique backward 1-characteristic 03BE emanates
from (x, t) and

Similarly, if w (x - , t) = w (x + , g, then a unique backward 2-characteristic
~ emanates from (x, g and

Proof - When z (x - , t) = z (x + , t), (3 . 21 ) implies that the minimal
and maximal (and thereby all other) backward 1-characteristics emanating
from (x, t) collapse into a unique curve ç. If t is any point in (0, t),
Lemma 3 . 2 implies z (~ (t) - , t) >_ z (x - , t), z (~ (t) + , t) _ z (x + , t). How-
ever, by the admissibility condition (3 . 3), z (~ (t) - , t) _ z (~ (t) + , t). Thus
(3 . 38) must hold.
The proof for the case w (x - , ~) == w (x + , t) is quite similar and may

thus be omitted.

Another implication of Lemma 3.4 is that the solution necessarily
satisfies one-sided Lipschitz conditions:

THEOREM 3 .1. - There are positive constants A and B, depending on
TV( - 00, ~~ w ( . , 0) and z (., 0), respectively, such that

Proof. - It suffices to establish (3.40) under the assumptions
z ( y - , t) = z ( y + , ï), z (x -, t) = z (x + , i), z (x, t) > z ( y, t). By Lemma 3. 5,
there is a unique backward 1-characteristic ~ emanating from (x, t) and a
unique backward 1-characteristic ~ emanating from ( y, t). We apply (3 . 21 )
with t = 0 and since § (0) - ~ (0) >_ 0 we arrive immediately at (3 . 40).
The proof of (3.41) is essentially identical and will thus be omitted.
The concluding proposition of this section collects and completes the

properties of characteristics established above.

THEOREM 3. 2. - Let (x, t) be any point of the upper half-plane, with
t > 0. A unique forward I-characteristic emanates from (x, V. Furthermore,
if ~ _ and ~ + are the minimal and maximal backward I-characteristics
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emanating from (x, t), then

When z (x - , t) = z (x + , t), ~ _ and ~ + coincide. Similarly, a unique forward
2-characteristic emanates from (x, g. Moreover, are the
minimal and maximal backward 2-characteristics emanating from {x, g, then

When w(x-, t)=w(x+, t), 03B6- and 03B6+ coincide.

From (2.6), (3.40) and (3.41) we infer

It then follows from Filippov’s theory [8] that the initial value problem
for (3. 5) and (3. 7) with data t), t > o, has a unique solution in the
forward direction, i. e., unique forward 1- and 2-characteristics emanate
from (x, t).
We now demonstrate (3.42). By Lemmas 3.1, 3 . 2 and 3 . 5, we already

know that Z (~ _ (O) ~ , O)  Z (~ _ (t) ~ , t) = Z (~ _ (t) - , t)  Z (~ _ (O) - , o),
0  t  t. It remains to show

We consider any increasing sequence { such that z (xn - , t) = z (xn +, ï),
n =1, 2, ..., and x, as n - 00. Let 03BEn denote the unique backward
1-charactecristic emanating from (xn, t). By Lemma 3 . 5, it is

Z(~n(t) ~ t)-Z(~n(t)+~ t)~ 
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At the same time, as noo, t) --~ z (x_ - , t), ~n (t) --~ ~ _ (t), 
and so z (~n (t) db, t) - z (~ _ (t) -, t), 0  t -_ t. This establishes (3 . 48).
The proofs of (3.43), (3.44), (3.45) are quite similar and will thus be

omitted.

4. STRUCTURE OF SOLUTIONS

The geometric structure of solutions of genuinely nonlinear, strictly
hyperbolic systems of two conservation laws, constructed by the random
choice method of Glimm [10], has been discussed by DiPerna [6]. Here we
study the regularity of the solution of ( 1. 4), considered in Section 3, by
employing the properties of generalized characteristics. We follow closely
the analysis in [1] for the single, genuinely nonlinear hyperbolic conserva-
tion law and the results are very similar.

THEOREM 4.1. - Let (x, t) be any point on the upper half-plane with
t > 0. Consider the (unique) forward I-characteristic x and the (not necess-
arily distinct) minimal and maximal backward 1-characteristics ~ _ and ~ +
emanating from (x,t). Define the sets

and

Then the restriction of z (x -, t) to S _ and the restriction of z (x +, t) to

S + are continuous at (x, g. In particular, z is continuous at (x, g if and
only f z (x - , V = z (x + , t). Similarly, if x is the forward 2-characteristic
and ~ _ and ~ + the minimal and maximal backward 2-characteristics emanat-
ing from (x, V, then the restriction of w (x -, t) to the set

and the restriction of w (x +, t) to the set

are continuous at (x, t). In particular, w is continuous at (x, V if and only
ifw(x-, t) = w (x + , t) .
Proof. - Take any sequence {(xn, tn)} in S _ that converges to (x, g,

as n - ~, and consider the minimal backward I -characteristic 03BEn emanat-
ing from (xn, tn). Then 03BEn (t) __ 03BE- (t), 03BEn (t) ~ 03BE- (t), as n - ~. By
Theorem 3. 2,

and z (~n (t) - , t) = z (xn - , tn), 0  t _ tn. Therefore, z (xn - , tn) -~ z (x - , t),
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as n - 00. We have thus shown that the restriction of z (x -, t) to S _ is
continuous at (x, t).
The proof of the remaining assertions of the theorem is similar and will

be omitted.
The next proposition states that once a discontinuity develops it has to

propagate all the way to infinity, as a shock.

THEOREM 4 . 2. - If ~ is the (unique) forward I-characteristic emanating
from a point (x, t) of the upper half-plane with z{x - , t)  z {x + , t) then

z (x (t) - , t)  z(~(t)+, t), for t  t  oo . Similarly, if 03C8 is the forward
2-characteristic emanating from (x, t) where w (x - , t)  w (x +, t), then

w (~ (t) - , t)  w (~ (t) + , t), for 

Proof - If for some t> t it were z (x (t) - , t) = z {x {t) + , t), then, by
Theorem 3 . 2, x would be the unique backward 1-characteristic emanating
from (x (t), t) and z (x (t} +, t) __ z (x (t) - , t}, in contradiction to our

hypothesis.
A similar argument rules out the possibility w (~r (t} - , t) = w ((t) +, t)

and completes the proof of the theorem.
A point (x, 1) of the upper half-plane will be called a 1-shock generation

point if a forward 1-characteristic x emanating from (x, t) satisfies

z(~(t)-, t)  z (x (t) + , t), for while none of the backward 1-

characteristics emanating from (x, 1) contains any point of discontinuity
of z. Similarly, (x, t) will be called a 2-shock generation point if a forward
2-characteristic 03C8 emanating from (x, t) satisfies

while none of the backward 2-characteristics emanating from (x, t) con-
tains any point of discontinuity of w. By virtue of Theorem 4. 2, it is

easily seen that if (x, t) is a point of discontinuity of z (or w) then at least
one backward 1-characteristic (or 2-characteristic) emanating from (x, 0
must pass through a 1-shock (or a 2-shock) generation point.
When (x, t) is a 1-shock generation point, either z (x - , 0 = z (x + , t) or

z (x - , t)  z (x + , 0. In the latter case (x, 0 is the focus of a I-compression
wave. Similarly, 2-shock generation points (x, t) may be either points of
continuity of w, w {x - , 0 = w (x +, t), or focuses of 2-compression waves,
when w (x - , t)  w {x + , 0.
The following proposition describes the structure of shocks.

THEOREM 4. 3. - Let x be a I-shock generated at the point (x (V, t).
Consider the four functions z+ (t) : = z (x {t) ~ , t), w+ ( t) : = w (x (t) ~ , t),
defined on [t, oo ). Then 

_

(i ) z+ are right-continuous functions of bounded variation. For t > t,

When z _ (t - ) = z _ (t + ), (x (t), t) is a point of continuity of the restriction
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of z to the set ~ (x, i) : i > t, x  x (i) ~; otherwise, (x (t), t) is a point of
interaction of x with another I-shock or it is the focus of a I-compression
wave impinging from the left. When z+ (t - ) = z+ (t + ), (x (t), t) is a point
of continuity of the restriction of z to the set ~ (x, i) : i > t, x > x (i) ~;
otherwise, (x (t), t) is a point of interaction of x with another I-shock or it

is the focus of a I-compression wave impinging from the right;
(ii) w+ are functions of bounded variation; w_ is right-continuous while

w + is left-continuous. For t > t, w _ (t - ) >__ w _ (t + ), w + (t - ) >_ w + (t + ),
w _ (t - ) = w + (t - ), w _ (t + ) = w + (t + ). t is a point of discontinuity of w +
if (x (t), t) is a point of interaction of x with a 2-shock;

(iii) x is right-differentiable at every t >_ t and

(iv) If t is a point of continuity of z+ and w+ then x is differentiable
at t.

A similar statement holds for 2-shocks ~r with the roles of z and w
appropriately interchanged.

Proof. - To show that z_ has bounded variation, take any mesh
t = tl  t2  ...  tn  oo and consider the minimal backward 1-charac-

teristic 03BEi emanating from (x (ti), i =1, ..., n. By Theorem 3 . 2,
~ i (~) ~ ~2 (0) % ... >__ ~n (0) and Z (~i (0) + ~ 4) c z _ (ti) _ Z (~~ (~) - ~ ~)~
i =1, ..., n. It follows easily that the total variation of z_ over [t, oo) is
majorized by the total variation of z ( . , 0) over ( - oo, oo). The proof that
z+, w_ and w+ also have bounded variation is similar.

That z + are right-continuous on [t, oo), follows from Theorem 4 .1. Let
us fix t> t and let ç denote the minimal backward 1-characteristic emanat-
ing from (x (t), t). Take any increasing sequence {tn} in [t, t), such that

as n - oo, and let ~n be the minimal backward I-characteristic

emanating from (x (tn), tn). As n - oo, ~n --~ ~o, uniformly on [0, t), where
~o is a 1-characteristic emanating from (x (t), t). On the one hand, it is

ç (i)  ~o (t), 0 ~ T  t. Also, by Theorem 3 . 2 it is

and so z (~o (i) ~ , i) = z _ (t - ), 0  i  t. If z _ (t - ) _ z _ (t + ), then, by
Lemma 3 . 4, ço=ç whence z _ (t - ) = z _ (t + ). We have thus verified that
Z_ (t-)~Z_ (t+).

Let us assume first z _ (t - ) = z _ (t + ), in which case, as shown above,
~o - ç. If { (xi, ii) } is any sequence, with t, xi  x (rj, which converges
to (x (t), t), as i -~ oo, and if ~i is the minimal backward characteristic

emanating from (xi, it), then, necessarily, ~i --~ ~, as i -~ oo, uniformly on
[0, T). In particular, z (xi, ii) - z (x (t), t),i --~ oo, which shows that (x (t), t)
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is a point of continuity of the restriction of z to the set

~ {x, i) : i > t, x  x ( t) ~ .
Assume now that z _ (t - ) > z _ (t + ), in which case ~o (t) > ~ (t), 0  1  t.

The "funnel" between § and ~o is filled with 1-characteristics emanating
from (x (t), t). If the collection of these characteristics includes no shocks,
then (x (t), t) is the focus of a I-compression wave. Otherwise, (x (t), t) is
a point of interaction of 1-shocks.
The analogous properties of z + stated in the theorem are established

by similar arguments.
We now turn to the functions w + . By standard properties of BV

solutions and the Rankine-Hugoniot conditions we have w _ (t) = w + (t)
for almost all t in [oo) and so w _ (t - ) = w + (t - ), w _ (t + ) = w + (t + )
for all t in (t, oo). By virtue of Theorem 4.1, we deduce w _ (t + ) = w _ (t)
and w + {t - ) = w + (t) for all t in (t, oo ). Since w _ (t) _ w + (t), it follows

that w + (t + ) = w _ (t + ) _ w + (t - ) = w _ (t - ). When t is a point of disconti-
nuity of w +, then w (x (t) - , t)  w (x (t) + , t) and so, by Theorem 4 . 2, the
forward 2-characteristic emanating from (x (t), t) is a 2-shock.
As stated in Section 3, x propagates almost everywhere with 1-shock

speed, given by (2.25). Considering the continuity properties of the

functions z + and w + established above, it follows that x is right-differenti-
able at every t >_ t and (4 .1 ) holds. In particular, if t is a point of continuity
of z + and w + then x is differentiable at t.

The proof of the corresponding properties of 2-shocks B)/ is essentially
identical and will thus be omitted.

Theorem 3.1 exhibits how genuine nonlinearity of our system induces
one-sided Lipschitz bounds on the solution through spreading of waves
in the forward time direction. The next proposition demonstrates the
reverse action, i. e., Lipschitz bounds on the opposite side induced by
spreading of waves in the backward time direction.

THEOREM 4 . 4. - Suppose that the set of points of continuity of z contains
an open set Then the restriction of z to t~ is Lipschitz continuous.

Similarly, when the set of points of continuity of w contains an open set 
the restriction of w to is Lipschitz continuous.

Proof - We fix (x, and consider the forward 1-characteristic ~
emanating from (x, t). There is ~ > 0 such that (~ (t), t) E C~ for t _ t _ t + b.
We take any y > x, so close to x that if ç is the forward 1-characteristic
emanating from (y, 7) then (~ (t), t -_ t _ t + b. By the results of

Section 3, ~ (t)  ~ (t), and
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From (2. 6) and (4. 2) we deduce, for almost all t in [t, t + b]

where a and 03B2 are positive constants. By virtue of Theorem 3.1, (4.3)
yields

Integrating the differential inequality (4 . 4) over the interval [t, t + S] and
after a short computation, using ~ (t) - ~ (t) = y - x, ~ (t + b) - ~ (t + S) > o,
we deduce

Since z is constant along 1-characteristics, by combining (3 . 40) with (4. 5)
we conclude that z is Lipschitz continuous at (x, t).
The proof that w is Lipschitz continuous at every point of * is similar

and will thus be omitted.
The last proposition of this section should be compared with

Theorem 3 .1.

THEOREM 4 . 5. - Assume that, for some 

Then

where K is the constant in (3 . 21). Similarly, if for some b > 0

then

where K is the constant in (3 . 22).

Proof. - It suffices to establish (4.7) under the assumption
z (x - , 1)=z(x+, 1), z ( y - , t) = z ( y + , t), z(y, t) _ o. Let ~ and §
denote the backward 1-characteristics emanating from (x, 1) and ( y, t),

Vol. 8, n° 3/4-1991.



252 C. M. DAFERMOS AND X. GENG

respectively. Combining (3 . 42) with (3.21), we obtain

The proof of (4. 9) is, of course, similar.

5. GENERIC SMOOTHNESS OF SOLUTIONS

In this section we assume that the initial data (uo (x), vo (x)) are Ck
smooth, k >_ 1, and show that the solution (u (x, t), v (x, t)) is Ck in the
complement of the shock set. We also prove that when k >_ 4 shock
generation points cannot accumulate, unless the initial data satisfy a
nongeneric degeneracy condition and therefore generically solutions are
piecewise C~ smooth. As in earlier sections, it will be more convenient to
minitor the initial data and the solution through the induced Riemann
invariant fields (zo (x), wo (x)) and (z (x, t), w (x, t)).

For each y in ( - oo , oo ), we let x ( y, . ) and Bf1 (y, .) denote the (unique)
forward 1-characteristic and 2-characteristic emanating from the point
( y, 0). In general, as shown in Section 4, x ( y, . ) passes through points of
continuity of z (x, t) on some maximal time interval [0, t) and then follows
a 1-shock over (t, oo). This shock may have already been formed by the
time t x impinges on it or it may be generated at the point (x (y, 0, 0
itself. In the latter case, (x ( y, t), t) is either a point of continuity of z (x, t)
or the focus of a 1-compression wave. Of course Bf1 (y, .) has completely
analogous properties. Our objective is to characterize the generation of
shocks in terms of properties of the functions x ( y, t), B)/ ( y, t) that may in
turn be translated into conditions on the initial data.

It is clear that x ( y, t) and B)/ ( y, t) are well-defined on ( - oo , ~) x (0, oo),
are Lipschitz in t, for fixed y, and are nondecreasing in y, for fixed t. In

order to describe regularity properties of these functions with respect to
y, we need the following preliminary

LEMMA 5 . 1. - Let - oo  y 1  y2  oo . Suppose that t > 0 is such that

x (yl - ) through points of continuity of z (x, t) throughout
the interval [0, t). Setting xl = x (Y1, t), x2 - x (Y2, t), we have

Similarly, if t > 0 is such that ~r ( y 1, . ) through points of
continuity of w (x, t) throughout the interval [0, t) and upon setting
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Proof. - By virtue of (2. 5), (2. 3) and (2. 6), we obtain

We integrate equation ( 1. 4) 1 over the domain

and use (2 . 5), Theorem 3.1 and (5 . 3) to arrive at (5.1).
The proof of (5 . 2) is, of course, similar.
Let (x, f) be any point of the upper half-plane. Throughout this section,

~ _ (. ; jc, f) and §+ (. ; x, f) will denote the minimal and maximal back-
ward 1-characteristics emanating from (x, ~’); also §_ (. ; x, 1) and

~ + (. ; x, f) will denote the minimal and maximal backward 2-characteris-
tics emanating from (x, f). Note that x= x (y, f) if and only if

t~ if and only if §_ (0 ; x, t) _ y _ ~ + (0 ; x, t).
We now introduce the functions

defined for -ooyoo, - oo  x  oo , and state

LEMMA 5.2. - For any t >- 0, the functions x (., ~), ~ (., t) are left
and right-differentiable at every y in ( - oo, Specifically, upon setting
x = x ( y, fi, it is

Similarly, setting x = t~ ( y, t~, it is
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Proof. - To show (5.7), it suffices to notice that for any§ _ (0 ; £, I)  y  j it is x ( y, I) = £ = x ( j, I) . The proof of (5 . 9), (5 . I I ) and(5 . 13) is, of course, similar.
We now assume j=§_ (0; £, 1), we fix )j and set M=x(£ I),y - ~ l - (0 1 Si, 0, y + ~ l + (0 1 Si, 0. W~ th~t

Applying (5 . 1 ), we get

- = - , /

Dividing (5 . 1 5) by j - y + and letting )f J we arrive at (5 . 6).A similar argument yields (5 . 8), (5 . 10) and (5 . 1 2).
LEMMA 5.3. - Assume (£, I) is a point of continuity of z (x, t) and letj = § + (0 ; £, 1). If l/ x (J, 1) > 0 then z ( . , I) is left and right-differentiable~ ~ g ~~ d

, 
- 

-/

Similarly assume (£, I) is a point of continuity of w (x, t) and letj = (dO; £, 1). If l/ © ( j, 1) > 0 then w ( . , ) is left and right-dfferentiable~~ g ~~d

, - - . /

Proof - Assuming I/ x (j, I) >0, take any increasing sequence {xn},xn f £ as n - ~, and set yn = § _ (0 ; xn, ).
By virtue of Theorem 3.2,

Since yn f j, n - ~, and x I), letting n - aJ in (5 . 1 8) we arrive at(5 . 1 6), with the ( - ) sign.
The proof of the remaining assertions of the lemma is quite similar andneed not be recorded here.
We have now laid the preparation for characterizing shock generationpoints:

LEMMA 5 . 4. - A point (3i, I) of continuity of z (x, t) , with  = § + + (0 ; 3i, )is a I-shock generation point f and only f I/ x ( J, 1) = 0, I. e. ,
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Proof. - Combining Theorem 4.1 with (5.4) and (2. 6) we deduce that
if (x ( y, t), t) is a point of continuity of z (x, t) then

Therefore, if (5.19) holds [in particular follows that

Z ( y, x ( y, t), t) > 0 for t - 1 positive small in which case (x ( y, t), t) is not
a point of continuity of z (x, t) and so (x, t) is a 1-shock generation point.

Conversely, assume (jc, t) is a 1-shock generation point. We fix and

set x = x ( y_, t). We note that z (x - , t)  z (x + , t).- We define

p _ _ ~ - (t ~ x~ t)~ p + _ ~ + (t ~ x, t). Applying (3 . 21 ) with y=x, we

deduce

Since z (p _ , t~ = z (x - , t) and z (p +, t) = z (x + , t), (5.22) implies _

On the other hand

. 
If (5.19) were false, i. x ( y, 0 > 0, then Lemma 5.3 and (5 . 24) would
contradict (5 .23).
The proof of the remaining assertions of the lemma is quite similar.

LEMMA 5.5. - Assume (x, f) is the focus of a I-compression wave and

let y _ _ ~ _ (0 ; x, t), y + _ ~ + (~ ; x, t). Then

Similarly, assume (~, f) is the focus of a 2-compression wave and let

~_=~(0;~,f),~+=~(0;x,f). Then

Proof. - Fix y _ and apply (5 . 1 ), noting that
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This yields

Dividing (5. 27) and letting y ~  we obtain (5. 25).
The proof of (5. 26) is essentially identical.
The I-shock set (or 2-shock set) is the union of the set of points of

discontinuity of z (x, t) [or w(x, t)] and the set of 1-shock (or 2-shock)
generation points. The union of the 1-shock set and the 2-shock set forms
the shock set.

LEMMA 5.6. - The I-shock set and the 2-shock set are closed.

Proof - Assume (x, 7) is the limit of a sequence {(xn, tn)} of points of
the 1-shock set. As stated in Section 4, from each point (x,~, tn) emanates
at least one backward I -characteristic, say ~n ( . ), which passes through a
I-shock generation point, i. e., (~n (in), in) is a I-shock generation point
for some in in (0, tn]. In particular, by Lemmas 5.4 and 5.5 it is

We may assume (x, 1) is a point of continuity of z (x, t) since otherwise
(x, t) obviously lies on the 1-shock set. converges to the

(unique) backward 1-characteristic ~ ± ( . ) emanating from (x, t), uniformly
on [0, In in) ~, or a subsequence thereof, converges
to a point (~ ± (t), ~), fe(0, t]. Upon setting x = ~ ± (t), y = ~ ± (0), (5.28)
implies that Z ( y, X, f) == 0, in which case, by Lemma 5.4, (x, 1) is a

1-shock generation point. It follows that l = t, x=x and (x, 1) lies on the
1-shock set.

The proof that the 2-shock set is also closed is essentially the same.
The following proposition describes the regularity of the solution:

THEOREM 5.1. - If the initial data are Ck smooth, k >__ 1, then the shock
set is closed and its (open) complement the solution is Ck smooth.

Proof - The shock set is closed by Lemma 5.6. Any point (x, 1) in the
complement (!) of this set is a point of continuity of both z (x, t) and
w (x, t). Moreover, if ) = § + (0 ; £, 1) and y = ~ ± (0 ; x, t), Lemma 5.4
implies t) > 0, t) > 0. It follows that x = x ( y, 0 and x = ~r ( y, 1)
may be inverted on the relevant range: y =, f ’ (x, 0 and y = g (x, I); in

1) and y = g (x, t).
At the same time, (5 . 6) and (5.10) yield
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whence it follows, by induction, that if z (x, t) and w (x, t) are Cl on (!),
for some l = o, ... , k -1, then x ( y, t), t), and thereby also f (x, t),
g (x, t), are Cj + 1. However, since

we infer that f (x, t), g (x, t) in CI 
+ 1, l - 0, ..., k -1, implies that z (x, t),

w (x, t) are in 1. Therefore, the restriction of the solution on C~ is in

Ck and the proof of the theorem is complete.
In general, the shock set may be quite sizeable. We now proceed to

show that generically, for initial data in Ck, k >_ 4, the set of shock

generation points is locally finite.

LEMMA 5.7. - Suppose is a I-shock generation point and let

Y- - ~- (~ ~ x~ ~~ .Y+ - ~+ (~ ~ x~ ~. Then

Similarly, if (x, f) is a 2-shock generation point and y _ _ ~ _ (0 ; x, t~,
.Y + - ~ + (~ ~ x~ ~, then

Proof. - When (x, f) is the focus of a 1-compression wave, (5.31)
follows immediately from (5.25). We thus assume (x, 1) is a point of
continuity of z (x, t) and we set y = ~ + (o ; x, 1). Then (5 .19) holds and
may be written in the form

Consider any sequence {xn}, Xn --+ x as n - oo, and set yn = ç - (0 ; xn, 1).
In particular, as n - oo . By Lemma 5.2 we deduce

Lemma 5.4 implies that X (., t) is differentiable at y = y and t~ = o.
Therefore, Z (., x ( . , f), f) is differentiable at y = y and

By virtue of (5 . 33), (5 . 34), the left-hand side of (5 . 35) vanishes and this
establishes (5. 31 ).
The proof of (5 . 32) is essentially identical.

THEOREM 5.2. - Solutions of ( 1. 4) with initial data in Ck, k >-_ 4, are
generically piecewise Ck smooth and do not contain centered compression
waves. Solutions of ( 1 . 4) with (real) analytic initial data are always piecewise
smooth.

Proof. - Suppose the solution contains a bounded sequence {(xn,
of distinct I -shock generation points. Upon setting y" _ ~ _ (0 ; x", tn),
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(5.19) and (5 . 31 ) imply

By account of (5. 25) and (5 . 31 ), (5. 36) also holds when the solution
contains a 1-compression wave, with focus at, say (x, l), where now

is any sequence in the interval
[~ _ (0 ; x, t~, ~ + (0 ; x, f)]. In either case, tn). Also, passing if
necessary to a subsequence, we may assume that {yn} converges to some
y. Because of (5. 36), z~ is bounded away from zero, uniformly in n,
and 

For any y near y we define

Using (5.4) it is easy to verify that Z ( y, x, t) = o, Zy (y, x, t) = 0 hold
simultaneously if and only if x = X ( y), t = T ( y). In particular, 
tn = T ( yn). The construction of these functions also implies

We now consider the Lipschitz function

and we note that

ny virtue ot iheorems 4.1 and 4.3, x ( y, t) is right-differentiable with
respect to t and its right derivative is given by

this together with Lemma 5.2 imply that the function x ( y, T (y)) is right-
differentiable at any y with T’ (y) >_ o, left-differentiable at any y with
T’ (y) _ 0 and in either case

wnere
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From (5.40), (5.43) and (5.39) it follows that almost everywhere the
derivative of F (y) is given by

By Lemma 5.2, Xy (y, T ( y)) is either zero or proportional to

Z ( y, x ( y, T ( y)), T ( y)). Since Z ( y, X ( y), T ( y)) = 0, we infer, by account
of (5.40),

We also note that M (y) - (y) is bounded away from zero and T’ (y)
is Ck - 3 smooth.

Recalling that {yn} converges to y, we deduce from (5.41) that in the
vicinity of y F’ (y) changes sign infinitely many times or vanishes ident-
ically. This being the case, it follows from (5.45), (5.46) that if

F ( y) = O ( I y - y ~ l), for some /=1, ... , k - 3, then T’ (y), and thereby
F’ (y) itself, should also be O hence F ( y) = D ( I y - y I l + 1 ). Thus,
starting out from which follows directly from (5.41),
we show by induction that F ( y) = O ( I y - y Ik - 2). Returning to the right-
hand side of (5 . 45), we now have and this

implies T’ ( y) = o ( ( y - y Ik - 3), i. e.,

We have thus shown that 1-compression waves cannot appear and 1-

shock generation points cannot accumulate, unless the inital data satisfy
the conditions (5 . 47) at some point y in ( - oo, oo). Recalling the definition
(5 . 37) of T (y), we easily verify that the set of initial data (zo (y), wo (y))
which satisfy (5.47) at some point y in any fixed compact interval [a, b]
is closed and nowhere dense in the Banach space Ck ( - oo, oo ), k >_ 4.

Therefore, the set of initial data that satisfy (S . 47) at some point y in
( - oo, oo) is of the first category.
Assume now the initial data ara analytic on ( - o~o, oo). If (5 . 47) is to

hold for l =1, 2, ... then T (y) has to be constant, say 1, over ( - oo , oo )
and, by virtue of (5. 39), X ( y) also has to be constant, say jc, over

(- oo, oo). Under these conditions at most one 1-shock generation point
may appear, namely at (x, 1). Thus in every case the number of 1-shocks
is locally finite.
A similar argument shows that the set of initial data that may generate

2-compression waves and/or infinitely many 2-shock generation points in
a bounded region of the upper half-plane is of the first category in

oo), k >_ 4. Similarly, it is shown that when the initial data are

(real) analytic the number of 2-shocks is locally finite. The proof of the
theorem is complete.
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6. UNIQUENESS OF SOLUTIONS

In this section we show uniqueness of solutions for the Cauchy problem
of ( 1.4) via Holmgren’s method, which works here mainly due to the one-
sided Lipschitz estimates on solutions established in Theorems 3.1 and
4.5. Our result applies only when on a neighborhood of each point the
initial data for at least one of the Riemann invariants satisfies a one-

sided Lipschitz condition that rules out centered rarefaction waves of the
corresponding family.

THEOREM 6.1. - Let (uo (x), vo (x)) be functions with bounded variation
and small oscillation defined on ( - ~, oo) and taking values in the physically
relevant range. Assume that the induced Riemann invariant field Zo (x)
satisfies a one-sided Lipschitz condition

Then there is a unique admissible BV solution (u (x, t), v (x, t)) for the

Cauchy problem for (1.4) on ( - oo, ~)  [0, oo) with initial data

u (x, v (x, 

Proof. - Suppose (M(x, t), t)) is another admissible BV solution of
( 1. 4) on a strip (-00, ~)  [0, T] with u (x, 0) = uo (x), v (x, t) = vo (x),

We have to show that the column-vector field

V: = (u - u V-V)T vanishes identically or, equivalently, that

holds for any fixed C~ "test" row-vector field G (x, t) with compact
support in ( - oo , oo ) x (0, T).
Upon noting the identity

with
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we deduce

In order to apply Holmgren’s method, we approximate A with a family
~£, E > o, of smooth matrix fields constructed by the following procedure:
We fix any nonnegative C~ kernel x ( y, s) with support contained in the
unit circle and total mass 1. For E > 0 we set x£ ( y, s) = E - 2 x ( y/E, and

mollify, in the usual way, the Riemann invariant fields (z (x, t), w (x, t))
and (z (x, t), w(x, t)) associated with (u (x, t), v (x, t)) and (u (x, t), v (x, t)):

defined for - oo  x  oo , E _- t  oo . Finally we set

and then define

We now solve the Cauchy problem

and proceed to derive bounds for ax PE, independent of s.
We view ax PE as solutions of the equation

which obtains by differentiating (6.10) with respect to x. We must rewrite
(6.12) in characteristic form. Comparing (6 . 9) with (2.1) and recalling
(2. 5) to (2.9) and (6.8) we deduce that the eigenvalues of dt are

the corresponding right (column) eigenvectors are

and the corresponding left (row) eigenvectors are

We write
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where

We also set

We multiply (6.12) first by R and then by S. Using (6.15), (6.16), (6.17),
(6.13), (6.14) we deduce, after a lengthy but straightforward calculation:

We have to estimate the coefficients of cp and 03C8 on the right-hand side
of (6.18), (6.19). We claim that

where À- and ~, + denote, respectively, the infimum and the supremum of
À (u (x, t), v (x, t)) over the upper half-plane and A is the constant appear-
ing in (3 . 40). To verify (6 . 20) we fix x in ( - oo, oo), t >__ ~, ( y, s) in the
support of Xf. and i > 0. Let ç denote the minimal backward 1-characteristic
emanating from the point (x - y, t - s + i). Then

Furthermore, by virtue of Theorem 3. 2,

Combining (6. 22), (6 . 21 ) and (3 . 40) we deduce
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Since

(6.20) follows easily from (6.23), (6. 24).
A similar argument shows

where ~ _ and Jl+ denote, respectively, the infimum and the supremum of
Jl (u (x, t), v (x, t)) over the upper half-plane and B is the constant appear-
ing in (3.41).
Next we observe that by virtue of (6 . 7), (6.1) and (4 . 7) we have

while (3.41) yields

We are now ready to estimate cp and W through (6.18) and (6. 19). To
that end we will use a method introduced in [4]: We construct a Lipschitz
function C on [E, T] by

Fixing a point t of differentiability of C, we proceed to estimate + (t).
Assume first for some x in ( - oo, oo). Then

ax cp (x, t) = 0, at cp (x, t) = 0 (t) and so (6 .18) yields
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with all coefficients evaluated at the point (x, t). By virtue of (6.26) we
get

where ~o stands for when Bf1 (x, t) >_ 0 and for when Bf1 (x, t)  o. By
(6 . 29), t) ~ _ ~ (t). Furthermore, since our solutions take values in
the strictly hyperbolic regime and have small oscillation, it follows from

(2. 6) that

Therefore, the coefficient of on the right-hand side of (6.31) is

positive and thus (6.28) may be invoked to yield a lower bound for that
term. In what follows, b will denote a generic constant that may be
made arbitrarily small by taking T and the oscillation of the initial data
sufficiently small. A careful review of the proof of Theorem 3 .1 and
Lemma 3 . 4 reveals that

where (z, w) is any fixed state in the range of the initial data (zo, wo) for
the Riemann invariants. It then follows from (6 . 30), (6.31), (6 . 27) and
(6.28) that

where k and c are positive constants independent of E and k  w/z + ~. The
same inequality (6 . 34) obtains, with k  w/z + b, when C (t) = - cp (x, t). On
the other hand, when 0 (t) _ ~ W (x, t), the above procedure yields (6 . 34)
with k  1 + S. Since w  z, we conclude that (6. 34) holds almost every-
where on [E, T] with

Integrating the differential inequality (6. 34), starting out from ~ (T) = 0,
we deduce
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Recalling (6.29) and (6.15), (6. 36) gives

In turn, (6.10) and (6. 37) imply

whence, assuming k > 1,

In particular, it follows from (6. 37), (6. 38), (6. 39) that we may extract a
sequence { En ~ 0 as n - , such that

uniformly on compact subsets of ( - oo, oo) x (0, T], where P is a locally
Lipschitz function satisfying

We have now laid the preparation for verifying (6 . 2). We fix T E (0, T).
For any s in (0, r), we combine (6.10), (6 .11 ) and (6.5) to deduce, after
a short calculation,

Recalling (6 . 37), (6 . 40) and since, as E --~ 0, dE -+ .91, boundedly almost
everywhere on ( - oo , oo ) x (0, T), . (6 . 42) yields

From (6. 6) and the general properties of BV functions we get

Therefore, it T and the oscillation of the initial data are sufficiently small
to render b  1 in (6 . 35), i. e. k  2, it follows from (6 . 41), (6 . 43) that the
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right-hand side of (6 . 43) tends to zero, as i -~ 0, and this establishes (6. 2).
The proof of the theorem is now complete.

Uniqueness of solutions also holds when the one-sided Lipschitz condi-
tion for the Riemann invariant z in Theorem 6.1 is replaced with a one-
sided Lipschitz condition for the other Riemann invariant w. However, in
that case an additional restriction on the initial data becomes necessary.
THEOREM 6 . 2. - Let (uo (x), vo (x)) be functions with bounded variation

and small oscillation defined on ( - ~, oo) and taking values in the physically
relevant range. Assume that the induced Riemann invariant fields (zo (x),
wo (x)) take values in a small neighborhood of a state (z, w) with z  2 w
and wo satisfies a one-sided Lipschitz condition

Then there is a unique admissible BV solution (u (x, t), v (x, t)) for the
Cauchy problem for (1. 4) on (- oo, oo) x [o, oo) with initial data
u (x, v (x, 0) = vo (x), - oo  x  oo .
Proof. - We retrace the steps of the proof of Theorem 6.1.

Estimates (6. 27), (6. 28) should now be replaced with

This will lead us again to (6. 34), almost everywhere on [~, T], where,
however, (6. 35) is now replaced with

Since we are assuming z  2 w, we may still choose T and the oscillation
of the initial data so small that k  2. This is exactly what we need in
order to infer, via (6.41) and (6 . 44), that the right-hand side of (6 . 43)
tends to zero as 1 - 0. The proof of the theorem is complete.

REMARK 6 . 1. - Suppose we drop both assumptions (6 . 1 ) and (6. 45)
and still attempt to establish uniqueness by the argument used in the
proof of Theorems 6.1 and 6 . 2. We now have to estimate (~x Z£ and ax w£
via (6.46) and (6.28), respectively. This again leads to (6.34), almost
everywhere on [E, T], but now with (6.35) or (6 . 48) replaced with

Thus, we can no longer guarantee that k  2. Perhaps sharper analysis of
(6 . 18), (6. 19) would yield estimate (6. 37) with k  2 or a direct treatment
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of (6 .10) would render estimate (6 . 39) with k  2. However, we have been
unable to improve our estimates so it is not clear to us at this time whether
the simultaneous presence in the solution of centered rarefaction waves of

both families renders the issue of uniqueness intrinsically harder or whether
our failure is purely technical.

Because of the localized range of influence in hyperbolic systems, one
may combine Theorems 6.1 and 6. 2 into the following, more general
statement.

THEOREM 6. 3. - Let (uo (x), vo (x)) be functions with bounded variation
and small oscillation defined on ( - ~, ao) and taking values in the physically
relevant range. Assume that the induced Riemann invariant fields (zo (x),
wo (x)) take values in a small neighborhood of a state (z, w) with z  2 w.
Furthermore, suppose that ( - ~, oo) is the union of two open subsets Z and
W such that (6.1) holds for all x, y, in Z and (6.45) holds for all x, y in
W. Then there is unique admissible BV solution (u (x, t), v (x, t)) for the
Cauchy problem for (1. 4) on ( - ~, ~) x (0, oo) with initial data

u (x, v (x, 

Proof. - Without loss of generality, Z and W may be assumed to be
locally finite unions of open intervals. Now if (a, ~i) is an interval contained
in Z and E is a very small positive number, repeating the proof of
Theorem 6.1 with a test vector field G of compact support in

(a + s, fl- E) x (0, T), we conclude that any two solutions of the initial

value problem must coincide on the rectangle (a + E) X (0, T), for T
sufficiently small. Similarly if (y, b) is contained in W, repeating the proof
of Theorem 6. 2 we infer that any two solutions coincide on the rectangle
(y + E, b - E) x (0, T). The proof is then easily completed with the help of
Theorems 3 .1 and 6.1.

7. DECOUPLING OF CHARACTERISTIC FIELDS

Here we employ the results of Section 3 to demonstrate, in a direct and
simple manner, that in solutions of ( 1. 4) with initial data that are constant
outside a bounded interval the two characteristic fields decouple completely
in a finite time.

THEOREM 7 . .1. - Let (z (x, t), w (x, t)) be. the Riemann invariant fields
induced by an admissible weak solution (u (x, t), v (x, t)) of (1. 4) with initial
data that are constant outside a bounded interval, say
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where (z _ , w _ ), (z + , w + ) are neighboring states 
Let 03C8 be the minimal forward 2-characteristic emanating from (x _ , 0) and
x be the maximal forward I-characteristic emanating from (x+, 0). If t is
the time at which x and 03C8 intersect, then

(a) for t>t and x (t)  x  ~ (t) it is z (x, t) = z +, w (x, t) = w _ ;
(b) for t > t and x  x (t) it is w (x, t) = w _ while z satisfies the single,

genuinely nonlinear hyperbolic conservation law

(c) for t>t and x > ~ (t) it is z (x, t) = z + while w satisfies the single,
genuinely nonlinear hyperbolic conservation law

Proof. - The minimal backward 2-characteristic ~ emanating from any
point (x, t) with t > o, has to stay strictly to the left on [0, t],
because B)/ is minimal, and hence it is intercepted by the x-axis inside the
interval ( - oo, x _ ). Then Theorem 3 . 2 yields w (x, t) = w _ . From (2 . 5),
v = z + w _ , and so ( 1. 4) 2 reduces to (7.2).

, Similarly, the minimal backward 1-characteristic ~ emanating from any
point (x, t) with t > o, x> X (t) has to stay strictly to the right of x on
[0, t], because x is maximal, and hence. it is intercepted by the x-axis inside

, the interval (x ~ , oo ). Then Theorem 3. 2 yields z (x, t) = z + . From (2. 5),
v = z + + w, u = z+ w,and so ( 1. 4) 2- reduces to (7 . 3) .

~ .. In particular, if 
‘ 

t> t then it is z (x, t) = z +,
w (x, t) = w _ . This completes the proof of the theorem.

. By virtue of Theorem 7 .1, one may determine the large: time behavior
of solutions of our system (1.4) by studying the large time behavior of

, 

solutions of the two single, genuinely nonlinear conservation laws (7.2)
and (7 . 3), under initial data that are constant outside a bounded interval.
A detailed treatment of this problem, based on the theory of generalized
characteristics, may be found in [1].

° 

’ 
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