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ABSTRACT. - Under appropriate assumptions on the collision kernel we
prove the existence of global solutions of the Enskog equation with elastic
or inelastic collisions. We consider also this equation with spin, that is,
the case when the angular velocities of the colliding particles are taken
into account. In this case we also prove global existence results.
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RESUME. - Nous demontrons que sous des hypotheses appropriees sur
le noyau de collision il existe une solution globale de I’equation d’Enskog
avec collisions elastiques ou inelastiques. Nous considerons aussi le modele
avec spin, ou la vitesse angulaire des particules n’est pas negligee dans la
description des collisions. Dans ce cas nous prouvons aussi des resultats
d’existence de solutions globales en temps.
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0. INTRODUCTION

In this paper we prove the global existence of solutions for the modified
Enskog equation modeling elastic or inelastic collisions. This equation is
a kinetic equation involving a collision kernel Q of Boltzmann type but
taking into account the delocalization of collisions due to the finite size
of the colliding particles and the transformation of translation energy into
internal energy during the collision. This leads us to look for the micro-
scopic density f(t, x, v), x, v E f~3, t >_ 0, solution of the initial value pro-
blem

where the collision kernel Q is given by the following set of notations

where by n, n + and n _ we denote

and f (u), f + (u) and f _ (u) hold for

Finally we define the velocities (v*, by the (linear) formula

Notice that the operator T can be easily inverted and give rise to the
formula (v’, v i ) = T -1 (v, with

a > 0 is a parameter (related to the size of particles) and E E ( 1 /2, 1] is the
elasticity coefficient; when 8=1 the collisions are totally elastic and v’ = v*,
vi -vi.
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In the section IV of this paper we will consider a model with spin which
generalizes (0.1) in which the density f depends also on the spin of the
particles, co. In this case one has to introduce also the spins before and
after collision, and the formulas (0.4) and (0.4’) have to be
modified. As we will see below the introduction of the spin changes a
little bit the analysis of the problem.

In (0.2) we have used the notation ( .,. )y which for a given nonnegative
y means the following

and ( . , . ) denotes the usual inner product in ~83. Finally the local rate
of collisions Y is a continuous function that we assume to satisfy

or

There exist more general models for this kind of collision phenomena
which define the local rate of collisions Y as a non local function of the
densities n, n + or n _ (see [22], [23]). We can also consider such general
Y’s but we will not do it here to simplify the presentation of our results.
On the other hand, in the case of models with spin, assumptions (0.6’)
or (0.6") can be improved, as we will see in section IV below.
Our main concern here is to give the (first) mathematical treatment of

the inelastic Enskog equation. We will also slightly improve the existing
results for the elastic equation. Under the above assumptions we will
prove the existence of global solutions of (0.1) for arbitrarily large initial
data.

Taking into account the recent progress in the analysis of Boltzmann
equation and in particular the renormalization method of DiPerna and
Lions ([13], [15]) (that we will use mainly as a "compactness" technique)
and the averaging lemmas in Golse, Lions, Perthame, Sentis [17] (initiated
in [18]), the main difficulty of equation (0.1) lies on the obtention of an
a priori bound on f implying the weak compactness in L 1 of any family
of solutions. For the Boltzmann equation this is usually achieved through
Boltzmann’s H-Theorem which asserts that the total entropy

is nonincreasing in time. With such a bound the collision operator is
not well defined in L~, but has a sense in the renormalized fashion:
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for every b > 0. We are going to show that this is the
situation for (0 .1 ) when E =1 under assumptions (0. 6)-(0 . 6") and y = 0
(which is physically satisfactory). The same result has been proved by
several authors under slightly less general assumptions. See for example
the works of Arkeryd ([2], [3]), Arkeryd and Cercignani [5], Cercignani
[10] and Polewczak ([22], [23]).
For inelastic collisions (E  1 ) we cannot give such a general result and

we will assume either (0. 6)-(0 . 6’) with = y = 0 or (0. 6) with ~y > 0 in
(0 . 5). In both cases it turns out that the collision operator Q ( f ) is in L 1

and thus the solutions of (0 .1 ) will be usual solutions in the distributional
sense. Both sets of assumptions are not entirely physically satisfactory,
because in the first case we assume that for high densities the gas undergoes
to few particle collisions, while in the second case we neglect the grazing
collisions (which are known to be singular and are generally treated

separately by a Landau-Fokker-Planck operator [12] in plasma physics).
We would like also to give further references of the physical background

of (0 .1 ). Our main motivation to study inelastic collisions in (0 .1 ) comes
from astrophysical models of collisions in a planetary ring. See Araki,
Tremaine [I], Goldreich, Tremaine [19] and Hornung, Pellat, Barge [20]).
Further references for models with inelastic collisions and spin can be
found in Cercignani [11]. Moreover a derivation of the Enskog equation
can be found in Resibois [24].
From a mathematical viewpoint different ideas have been used so far

to treat Enskog equation. Toscani and Bellomo [25] prove global existence
near the vacuum and in the limit a -~ 0, Bellomo and Lachowicz

([6], [7], [8]) recover the Boltzmann equation. Concerning general initial
data, renormalization is used by Arkeryd and Cercignani [4] to treat the
case y = - oo (i. e. the ~,-integration is performed over the complete sphere)
which is physically irrelevant. Arkeryd [3], Arkeryd and Cercignani [5]
introduce new ideas which allow to treat the case E =1, Y = Y°°, y=0 and
in this case our results will be a mere extension of those in ([3], [5]).
Polewczak ([22], [23]) proves existence of renormalized solutions for E =1
either when y > 0 in (0. 5) or when Y decays rapidly to 0 at infinity
(assuming a condition which is slightly less general than (0.6"). Finally,
for further general references on the Enskog model we address the reader
to ([7], [23]).
The plan of this paper is as follows. In Section I we state our main

results for the model without spin and prove the main auxiliary results.
Section II deals with the proof of Theorem 1 while in section III we prove
Theorem 2. Finally in Section IV we introduce the model with spin and
give the main results for this case.
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I. MAIN RESULTS

In this section we give a precise statement of our main results and we
also show how the main entropy and energy estimates can be obtained.
The proofs of the Theorems 1 and 2 will be given in the next two sections.

THEOREM. 1 (Elastic or inelastic collisions). - Let the initial data fo
satisfy

take E E ( 1 /2, 1 and assume (0. 6) and either (i ) or (ii ) with
(i ) (0. 6’) holds with = 0 and y = 0 in (0. 5),
(ii) y > 0 in (0 . 5).

Then, problem (0 1 )-(0. 2) has a solution f ~ C ([0, T]; L 1 (R6)) such that for
every T >_ 0 there exists a constant C (T) with:

Moreover for all T>O,

THEOREM 2 (Elastic collisions). - Let the initial data fo satisfy (I . .1 ),
assume (0 . 6), (0 . 6") and take y = 0 in (0 . 5). Then the modified Enskog
equation for elastic collisions i. e. (0 . 1 )-(0 . 2) with E = l, has a renormalized
global solution f E C ([0, T]; L1 (R6)) which satisfies (1 . 2).
We will recall the meaning of "renormalized" solution in the proof of

theorem 1 in section III.

Remarks. - (1) The results of theorem 1 (i ) and theorem 2 were
announced in [16]; here the condition (0.6’) is improved. Let us emphasize
that this unphysical limitation on Y is the main point which should be
improved. On the other hand, as we already said in the introduction, we
could easily treat, following [22], kernels Y which depend nonlocally on f,
but we prefer to skip this case for the purpose of clarity.

(2) Both assumptions (i ) and (ii ) show the necessity of truncation (in
order to get an estimate for the total entropy, which in turn implies an
L1-bound for Q + and Q - ).

(3) (ii ) was introduced by Polewczak in [23]. Our method however
greatly simplifies the proof in [23]; in [23] renormalized solutions are
obtained while here we obtain standard ~’-solutions.

(4) As we will show in section IV, a theorem similar to theorem 1 can
be stated for the models with spin. In that case (i ) will remain the same,
while (ii ) will be improved.

Vol. 8, n° 3/4-1991.
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Let us now give some calculations on Q + and Q - which show why
(1.2) holds. Following Cercignani [12] and Truesdell and Muncaster [26],
for every function W (x, v) in C~ ( (~6) we have:

because the change of variables (v, vl) - (v*, vi) has a jacobian given by
~ det T ( -1= (2 E -1). Then we change the notations, replacing (v*, by
(v, vi), V1 - v (resp. v) thus become (resp. v’) [see (0 . 4’)]. Noticing
that  03BB,, v i - v’ ) = ( 1- 2 e) ( À, 03C5>, we also perform a change of vari-
ables 03BB ~ -03BB which yields

Choosing and ~r - I x I2 successively, we obtain, for smooth solutions,

Notice that (I . 4) alone yields the conservation of the total mass, (I . 5),
and (1.6), which we will use below to obtain estimates for

v)dxdv.

Next we will push further our computations to obtain equivalent

expressions for and then we analyse the integrals

We proceed one step further by performing in (I . 4) a change of variables
(v, ~,) -~ (v 1, v, - ~,) and integrating (1.4) in x. Then we change x in
y = x + a ~, and by using the symmetry of Y we obtain,

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Finally, by using the same kind of changes of variable with Q - we have

Putting together (0 . 2), (1 . 4), (I . 7) and (I . 8) we have proved the

PROPOSITION 3. - Let f be a smooth solution of (0.1)-(0.2) with
Y E L°° (f~2). Then for every smooth function ~ (x, v) we have

We choose now B)/(x, v)=lvI2. Then the equality

gives

which shows that

Our next choice of test function is (classically) W (x, T?) = ( x, v ) which
yields

which provides the estimate

Vol. 8, n° 3/4-1991.
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Indeed by using in Proposition 3 and (I . 11) we see that

and then using again (I . 11 ) an Cauchy-Schwarz’s inequality we obtain

which implies

Estimate (I. 14) is reminiscent of [23] and enables us to considerably
simplify some proofs in [23].
Our final a priori estimate deals with the entropy and is obtained by

choosing 03C8 = log f and using the inequality y (log z - log y) -- z - y. Then
Proposition 3 yields

All these estimates will be used in the proofs of theorems 1 and 2 below.
They are actually one of the main tools that we use to prove these results.

II. PROOF OF THEOREM 1

To prove theorem 1 we use some of the renormalization ideas introduced
by DiPerna and Lions in [13] to obtain the global existence of solutions
for the Boltzmann equation with arbitrarily large initial data. In the proof
of theorem 1 we will not try to find renormalized solutions but standard
solutions in the sense of distributions. However in order to get some
intermediate compactness results, we will follow here a first part of the
renormalization program.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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II. 1. Entropy and energy bounds

LEMMA 4. - Under the assumptions of Theorem 1 any smooth solution

of (0 . 1 )-(0 . 2) satisfies the estimate (I . 2).

Proof. - First we notice that formulae (I . 5), (I 11) and (I .15) imply
that this lemma will be proved as soon as we obtain an estimate for

f log f ~ dx dv.
Moreover, as it can be seen, for instance, in [13],

for some constant C independent of t and off Therefore we only have to

prove an estimate on the entropy function H (t) = f flogfdxdv.
As in [9] we set g (t, x, v) = f (t, x + tv, v) and we perform the change of

variables (X, t) -~ z = x + (v 1- v) t + a ~, to deduce that

Hence, using (0 . 1 ), (I . 4), (I .14) we find

Finally from (I . 16) and the above inequality we infer that

In the case of assumption (i ) we proceed differently because now y is
equal to 0. Considering separately values larger or smaller

Vol. 8, n° 3/4-1991.
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than 1 we find

by (0.6’), and the r. h. s. of the above inequality is less than or equal to

where belongs to by (1.14). Therefore from (1.16) we obtain

where C is independent of f. Now we use a result in [14] which implies

where Ci is independent of f and C2 depends only on

Finally from the Gronwall lemma and (II. 2)-(II. 3) we find that for every
T > 0 there exists a constant C (T) such that

and thus Lemma 5 is proved. D

Notice that the above argument immediately gives (1.3).

11.2. Truncated equation

Following ([5], [13]) we can easily build a solution f k to the truncated
equation

where (t)k = inf(k, t) for all t and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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with

and xk is defined in a similar way by simply dropping the asterisk.
Since the kernel Qk (f) is bounded in L°° ([0, T]; for every

p E ( 1, +00), it is easy to find a solution f k to (II. 5). Moreover a careful
examination of the changes of variables performed in section I shows that
the estimate (I . 2) still holds for fk and uniformly in k. Furthermore (I .14)
holds also, with f (v), f _ (v 1 ) replaced by 

11.3. Passing to the limit

Here we will show that the sequence {fk} is relatively compact in some
sense and that at the limit we find a solution of (0.1)-(0.2).

LEMMA 5. - Under the assumptions of theorem 1 and extracting sub-

sequences that we still denote we have: there exists f such
that

(a) for all T  + oo and for all 03C8 such that

in L"(0, T; L1 (f~3)) for all p  + oo.
(b) For 

in LP (0, T; L 1 ((J~3)) for all p  + oo .
(c) Q± (f) E L°° (o, T; L1(R3  R3)) and the limit f satisfies (0 .1)-(0 . 2)

D ,

We recall that the estimate in (c) is already clear from the argument of
section II. 1.

Proof. - The proof of (a) requires the use of some ideas related to the

renormalization theory ( see [13]). We define ~= -log(l+8/~) 8 + ~ for all k
Vol. 8, n° 3/4-1991.
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and for all b > o. Then from (II. 5),

and now we fix S and let k go to + oo. It is classical that Qk ( fk)/(1 + bfk)
is weakly compact in L I ((o, T) X (R6) and then, following [13], the weak
compactness of Q: ( f k)/( 1 + is obtained through a gain-loss inequality
similar to that of [2]. It was extended to Enskog models (see [5], [22]) for
E =1, and here, for E  1, the argument has again to be adapted.

Consider separately the points (t, x, v, vl, ~,) such that

tor every K > 1; we have (dropping the k’s)

Denoting A et B the two integral terms in (11.10), we obtain that
A/( 1 is weakly compact [exactly as + ~f k)], while a change of
variable (v, v*) --~ (v’, v) and ~, -~ - ~, gives

appari Irom me aosoiute value, is the entropy loss term,
we conclude that B is bounded in L~ ([0, T] x (~6). Finally, this shows that
Q: + V) is weakly compact in L1 ((0, T) x (~6).
The end of the proof of (a) uses principally the averaging lemma in

[17], [18]. Since is weakly compact in L 1 and since 
is bounded in L 00 (0, T; L 1 ((~6)), we obtain that [with the notations in

(a)] is compact in LP (0, T; L1 (~6)) for all p  + oo. [In fact we
could allow any function B(/ such that ~[r ( 1 + ( v ~ 1 + «) E L °° for any a > 1.]
Finally, by using the weak compactness which is deduced from
the entropy estimate, we see that the inequality (35) in [13] shows that

is compact in T; L~ (~6)) for all p  + oo and (a) is proved.
We prove (b) only for Q -, since the same ideas applied to Q + and (a)

show that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Thus

A simple extension of the averaging technique used to prove (a) shows
that for every R > 0,

in LP (0. T; L1 (1R3)) and this for every ÀES2. Since Y(nk, is bounded
in L~, we also have that for every R > 0,

in T; L1 (R3x)). Now, since both integrals in (II .11) are nondecreas-
ing in R, they both converge to a limit as R goes to + oo, and this limit
is in L~ (0, T; L~ (~X)). (Indeed, the L~ estimate is proved as in sub-
section II .1.) Moreover from (11.11) we obtain

in LP (0, T; L~ (f~x)). And with this (b) is proved. D
A first consequence of (II. 12) is that Qk ( fk) -~ Q - (~

k

[resp. Q~ ( f k) -~ Q + ( f ‘)] in the distributional sense, and thus equation
k

(0.1)-(0.2) holds in ~’ dans (c) is proved.
Finally the proof of theorem 1 is completed by noting that f satisfies a

transport equation with a source terme in L°° ((0, R); L~ ((~6)) which
implies that f E C ([0, T]; L1 ((~6)).

HI. PROOF OF THEOREM 2

As pointed out above, Theorem 1 was proved by a partial use of the
renormalization method. Theorem 2 gives the existence of renormalized
solutions and its proof will follow exactly the proof performed in [13] and

Vol. 8, n° 3/4-1991.
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adapted to Enskog model in [5], [22] and we do not repeat it here. Thus
we only need to prove an entropy bound.

III.1. Entropy bound

LEMMA 6. - Under the assumptions of Theorem 2, any smooth solution
f of (0 . 1 )-(0 . 2) satisfies

where Co depends only on fo.

Proof - From (0. 6") we deduce that

where z ( . , . ) is a bounded function. Then consider the right hand side
of (1.16). Following [9] we have .

On the other hand

where C and C’ are independent of everything; therefore Co only depends
on fo. This and (III. 3) prove the lemma. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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COROLLARY 7. - Under the assumptions of Theorem 2, any smooth
solution of (0 . 1 )-(0 . 2) satisfies (I.2).

Proof. - This is classically deduced from (111.1), (1.5) and (1.11) (see
[9], [13], [26]). D
Remarks. - 1. Lemma 6 is the equivalent of the H-theorem for (0.1)-

(0.2). It seems that the first H-theorem proved for the Enskog equation
is due to Resibois [24], and it was proved rigorously, under different
assumptions, by Bellomo and Lachowicz [7] and by Polewczak [22] in the
case E =1.

2. We could weaken assumption (0.6") to assume only that

Theorem 2 is also valid under this weaker assumption.

111.2. Renormalized solutions

Following [13], we say that f is a renormalized solution of (0.1)-(0.2)
if

and g = log (1 + f ) solves

It is by now well known ([4], [13]) that this definition is equivalent to
three other definitions: those of mild, exponential multiplier and iterated
form solutions.

In Theorem 2 we seek renormalized solutions of (0.1)-(0. 2). Hence, one
first uses Lemma 6 and the truncation procedure of section II. This pro-
vides us with the weak compactness which is necessary to pass the limit.
And this time we will not be able to obtain distributional solutions, but
renormalized solutions. Lemma 6 together with proofs which follow very
closely those of [13] enable us to apply the renormalization method to our
situation and prove Theorem 2. For more details on the way to apply
renormalization to the Enskog equation and how lemma 6 suffices to do
it our case, see [3], [9], [22], [23].

IV. MODELS WITH SPIN

The Enskog equation is a generalization of the Boltzmann equation
which includes finite particle size. Another possible generalization consists

Vol. 8, n° 3/4-1991.
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in taking into account the spin degrees of freedom. This is done when the
spin of the particle is not negligible during the collision. Considering spin
models modifies the physics of the collisions. Furthermore in this case the
total energy will include not only the translational energy due to the
particles linear velocities but also the spin energy due to the angular
velocities
The Enskog equation for perfectly smooth spherical particles with spin

(see [1], [11]) is still given by (0.1), but now Q ( f ) = Q + ( f ) - Q - (, f’) is
defined as follows

where by n we denote

and n +, n _ are given by (0 . 3). Moreover f (u, t~), , f+ (u, ~), f _ (u, t~) stand
for

The velocities v’, v i and the spins are defined by

where 11 E (0, 1) and  > 0 is a physical constant satisfying

Also we have set

note that Wt is orthogonal to À. Finally, as in Section I, (v*, vi , ~i )
are obtained by inverting the operator T: (v, (v’, v 1, 
The restriction on J.l implies that T is one to one and

Finally Hy(r)=O if r  y and Hy(r)=r if r >_ ~y.
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Note that when ~y > o, to "kill" the grazing
collisions is less restrictive than considering ( u, ~, ~,~ as in sections I to
III. Hence the consideration of the spin degrees of freedom as a non
negligible phenomenon in the collisions enables us to weaken the technical
restrictive conditions we have to assume in order to prove the existence
of solutions. Of course, we would like to get rid of this restriction on the

grazing collisions by always having ( alone in the collision kernel.
This is still an open problem.

IV.I. Estimates

As in the case without spin (see section 1) we can obtain estimates for
the total mass, translational energy and other moments by studying the

value of integrals of the form R6 Q± f) B)/ dv d03C9 for every smooth function
By performing the same kind of variable changes as in section I we can

prove the following

PROPOSITION 8. - Let f be a smooth solution of (0. 1 )-(IV . 1 )-(IV . 2).
Then for every function ~ (x, v, c~) in C°° (f~9) we have:

By choosing now different functions B)/ we can obtain some estimates as
we did in section I. In particular, by choosing B)/= 1 we obtain the conserva-
tion of the total mass:

Then we consider ~ - ~ x ~ 2, x - tv 2 x, v ~ to obtain a bound

for , x ( 2 dx dv d03C9 as a function of R9 f0 ( 1 + |x|2 + I v 2) dx dv d03C9 and

(I 14) still holds under the form

Vol. 8, n° 3/4-1991.
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We have

For some constant v>O depending only on E, r~, ~,. By using

~r = ( v ~ 2 + a ~ ( 2 as a test function in (IV. 6), we obtain
2 ~,

which implies an estimate for the total energy at any time t:

and at the same time we also obtain

Our last estimate, as in the case of the Enskog equation without spin,
deals with the total entropy

As in section I, we consider ~ = log f in (IV. 6) and we apply Proposition 8.
We obtain so an inequality similar to (1.16) (but this time integrated in
co). This inequality will be sufficient to obtain an estimate for the entropy
under assumptions (0 . 6)-(0 . 6") when y=0, E = 1; and either under

assumptions (0 . 6)-(0 . 6’), = y = 0 or y > 0 in the definition of HY.
All the above estimates and the use of the renormalization theory should

enable us to prove two results which are equivalent to Theorems 1 and 2
for the model with spin.
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