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ABSTRACT. - We first show that no oscillation can appear in a 2 x 2

hyperbolic system whose two eigenvalues are linearly degenerate. For
such a system, oscillations can only propagate. The method uses both
compensated compactness ideas and the characteristics of the system,
which is partly formal. We then make some heuristic remarks on the
extension to the 3 x 3 gas dynamics system, and we link this question to
the "separation of the wave cone and the constitutive manifold" (Ron
DiPema)..
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RESUME. 2014 On montre d’abord qu’aucune oscillation ne peut apparaitre
dans un système 2 x 2 dont les; deux valeurs: propres sont linéairement
degenerees. Pour un tel système, les oscillations peuvent seulement se

propager. La methode utilise a la fois des idées de compacité par compens-
ation et leg; caracteristiques du système, ce qui est partiellement formel.
On fait ensuite quelques remarques beuris.tiques sur te système 3 x 3 de la
dynamique des gaz, et on retie cette question a la « separation du cone
d’ondes et de la variete constitutive »: (Ron DiPerna).
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334 M. RASCLE

1. INTRODUCTION

The results and comments we present here have been strongly inspired
by the ideas of Ron DiPerna. We want to study the Young measure (see
e.g. Young [16], Tartar [13]) associated to a sequence of approximate
solutions to a general 2x2 nonlinear strictly hyperbolic system of conser-
vation laws:

A typical problem is to prescribe the initial data:

and to study the convergence of a (sub) sequence of approximate solutions
to ( 1.1 ), (1.2) to an admissible weak solution of the Cauchy Problem
(1.1), (1.2).
Another motivation is to study homogenization problems: e. g. we

include oscillations (numerical oscillations, eddies...) in the initial data:

and we want to study the weak limit of ut as E - 0 +. Observe that the
wave-length - but not the amplitude - of such oscillations is thus vanishing
as E goes to 0.

Throughout the paper, we will assume that the system ( 1.1 ) is strictly
hyperbolic and 2x2 (except in Sections 4 and 5). In the genuinely nonlin-
ear (GNL) case - resp. in the linearly degenerate (LD) case - an

eigenvalue X is strictly increasing (or decreasing) - resp. is constant - across
a corresponding simple wave. Between these two extreme situations, there
are of course many intermediate cases, corresponding for instance to a
change of convexity in some constitutive relation.

If the system is GNL, it is well known, since the pioneering paper of Ron
DiPerna [4], that, even with oscillating initial data ( 1. 4), no oscillation can
persist for any positive time. Roughly speaking, the time-life of oscillations
of wave-length E is of the order of 8.

In contrast, in the LD case, such oscillations can persist. Typically, if
we choose:

with suitable constant states a and b, these oscillations will just propagate
along contact discontinuities connecting a and b. So in this case initial
oscillations can persist, precisely because there is no entropy condition,
no dissymmetry between a and b, no dissipation of energy along a contact
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discontinuity. However, in this example, oscillations are not created: they
were already present in the initial data. In this case, the goal is precisely
to show that no oscillation can develop if it was not present in the initial
data.

In other words, in the LD case, the goal is to investigate the dynamics
of the Young measure. This is an important problem since the classical
reproach to this theory is precisely it’s static feature: the Young measure
(Y.M.) at some given point (x, t) only describes the values at the same
point of weak limits of subsequences g (u£), without any information on
the situation at other points (x, t). This is the great weakness of this
tool and there are current investigations (L. Tartar [14], independently
P. Gerard [7]) to develop a more powerful tool.
However, in this problem we know two things:
(a) the Y. M. at any point (x, t) has a tensor-product structure. This is

a result of compensated compactness: see further;
(b) initially this Y.M. is a delta-function for all x under consideration,

i. e. there is no oscillation in the initial data.

As we will show in Section 3, this implies that no oscillation will develop
later on. In other words, this is a result on the dynamics of the Young
measure in the LD case, in the spirit of the notion of measure-valued
solution introduced by Ron DiPerna [5]. The method we use here has been
developped a few years ago and has been presented in a few Conferences. It
is partially heuristic, since it uses a (technically difficult) Green formula
along generalized characteristics. Very recently, Chen Gui-Qiang [2] has
given a rigorous treatment of this result, using a Lagrange-Euler type
change of coordinates which avoids this technical problem.
The sequel of the paper is organized as follows. In Section 4, we make

a few (very!) heuristic remarks on the possibility of extending this approach
to the 3x3 system of the full Gas Dynamics Equations. We conclude it
is very unlikely that oscillations could appear.

In Section 5, we turn to the other extreme situation: the GNL case.
This is another beautiful paper of Ron DiPerna [6], on the geometric
separation (in the phase portrait) of what he called the "constitutive
manifold" and the "wave cone", for general systems of conservation laws.
The purpose of this Section is just to summarize the main ideas of this
paper, whose importance has been completely underestimated. The most
striking result is that a GNL hyperbolic system is some weak version of
an elliptic system, (at least if we add suitable Entropy conditions). Indeed,
this elliptic feature "explains" why oscillations cannot propagate for such
a system. Of course, in general, realistic systems have both GNL and LD
eigenvalues. So there is of course a difficult coupling betwen these two
types of behaviour.

Vol. 8, n° 3/4-1991.
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2. BASIC FACTS ABOUT COMPENSATED COMPACTNESS

We denote by - the weak convergence in any LP space (1 _~  oo) or the
weak-star convergence in L°° as E - 0. In either case, a weakly convergent
sequence of (possibly) oscillating functions (ut) satisfies:

and the weak limit u is some averaged values of uE.
We first recall that for any sequence of functions (uE), uniformly bounded

in L~, the associated Young measure has the following property: there
exists a subsequence, still denoted by (uE), such that, for any continuous
function g, we have:

see for instance Tartar [13]. For a LP version of this result, see Ball [1].
We just mention here that the sequence (if) is strongly convergent, i. e.

does not oscillate, if and only if v x, is a delta-function.
We now give two basic examples of compensated compactness.

Example 1. - Let Q = ~ (x, and let ~~.c£), (vE) be two weakly convergent
sequences in ~~ --’ v. Assume that

where Kl and K2 are two strongly compact subsets of the negative
Sobolev space (Q). In such a case, we will briefly say that uE and

are "nice".

Then
---~ u . v in the distribution sense

and under the assumptions (2.3) the quadratic function Q(u, v) = uv is

only nonlinear function of if and v~ which behaves nicely as s - 0.

Example 2 (Div-curl lemma in B~~). - Let v£, .~’~, zE) - {u, v, y, z) in
L2 weak such that

then

and again, under the assumption (24), Q (u, v, y, z) = uz- vy is the only
non linear function of ~c£, vE, z~ which behaves nicely as E - o.
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We will come back to these examples later. We now recall how this
type of information has been applied to 2 x 2 systems of conservation laws
by L. Tartar and Ron DiPerna. We first consider the additional conserva-
tion laws of the system (1.1), i. e. the entropy-flux (E-F) pairs (cp (u),
~r (u)). For smooth solutions of ( 1.1 ), they satisfy:

while for discontinuous solutions the classical Lax admissibility criterion
requires:

for any convex entropy cp of the system. Then we consider a sequence (ui
of approximate solutions of (1.1). For instance is the solution of the
nonlinear parabolic Cauchy Problem:

where D is some diffusion matrix. We assume two a priori estimates:

(uniform L °~ bound) and

(energy estimate). The latter is quite easy, while the former is in general
extremely difficult. Then, using Murat’s Lemma [8], it is easy to obtain,
for any E-F pairs (p, ~r), (1~, q):

So we can apply the Div-Curl Lemma to these four sequences of
functions p~, if, where (and similar notations for
the other terms). Therefore we obtain

In other words, the associated Young measure satisfies, for almost all
points (x, t):

The problem was thus reduced by L. Tartar to the following Static
Identification Problem:
For any given point (x, t), find a probability measure satisfying

(2.13) for all E-F pairs ~~p, is) and {~, q).
In the 2x2 GNL case, this problem has been solved by Ron DiPerna [4],

using a large family of entropies constructed by P. Lax. The only probabil-
ity measure solution is a delta-function. So, even if there were oscillations
at time t = o, they cannot persist for any positive time.

Vol. 8, n° 3/~4- i 99 ~ .
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In contrast with this static approach, the concept of measure-valued
solution, also introduced by Ron [5], is dynamical. Taking the weak limit
in (2.11), we trivially obtain [compare to 2.6)]:

for any convex entropy cp. Of course, any component Uj (or - Uj) of u is
a convex entropy of the system, so (2.14) implies ( 1 . 1 ).

So, in the LD case, if we start with given (non oscillating) initial data
uo, the problem is to combine the static information (2 .13), the dynamical
information (2.14) and the initial condition:

to show that no oscillation will develop. This is the purpose of the next
Section.

3. NON APPEARANCE OF OSCILLATIONS IN THE 2 x 2 LD
CASE: A FORMAL RESULT

We first write any 2x2 system - for smooth solutions - in non conserva-
tive form:

À1 (u) and À2 (u) are the real and distinct eigenvalues of the Jacobian
matrix f’ (u), w (u) and z (u) are respectively the Riemann invariants in the
sense of Lax associated to À1 and À2. The following prototype of LD
system has been introduced by D. Serre (see [11]):

The result we are going to state would be the same if only one eigenvalue
was LD but we only show it for the particular case (3 . 2).

For this system, ~,2 = ~,2 (z) = z, ~,2 = ~,1 (w) = w, i. e. the two eigenvalues
are LD, and we just have made a particular choice of the Riemann
Invariants. This system has no physical interpretation, but e. g. it would

correspond to the elasticity system in the linear case, or to the isentropic
gas dynamics equations in the (unrealistic) case where the pressure

We can write this system in conservative form, e. g.

where M == l/(z 2014 and v = w/(z - w). In fact, u and v just two particular
entropies of (3 . 2). Due to the LD feature of this system, there are enough
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bounded invariant regions to guarantee that u will remain strictly positive
and bounded if it is the case for uo .
We now consider a sequence of approximate solutions

of (3 . 2). For instance, assume that (V, vt) is the solution of the "viscous"

problem:

with initial data in L 00, bounded independently of E:

Let vx, t be the measure- valued solution vx, t associated to the sequence

( WE, Z£) .
As a particular example, we obtain the following formal result:

THEOREM 1. - Let (wE, zE) be the solutions of (3 . 3), (3 . 4). Assume there
is no oscillation in w at time t = o. To simplify, assume that

where wo is a piecewise-smooth function. Moreover, assume we can justify
the formal steps 4 and 6 below. Then:

(i ) No oscillation in w will develop later on: the measure ~ 1, x, defined
below in (3.6) remains a delta-function.

(ii) Of course, here ~,1 and ~,2 play symmetric roles, so the same result
holds if we replace w by the other Riemann Invariant z.

Remark. - The same conclusion is true for some systems with only
one LD eigenvalue. In this case, the result strongly depends on the
conservative form of the system, and not only on the nonconservative
form (3 .1 ).

Proof. - First observe that the other Riemann Invariant can be either

oscillating or non oscillating. In other words, the information on wand z
are uncoupled. The proof consists of several steps.

Step 1. - We first show that for almost all (x, t) the Young measure

v x, has a precise structure, namely a tensor-product structure:

t - (P (w, z)) 1 - x, r0 ~2~ x, t (3 . 6)

where ~ 1, x~ and ~2, x~ are non negative measures which operate respec-
tively on wand z and p is a suitable weight-function.

This is a result of "compensated compactness with varying directions":
in fact, w£ and zE satisfy:

Vol. 8, n° 3/4-1991.
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which is of course an approximation of (3. t). Therefore it is. natural to

expect that, roughly speaking, "we can pass to the limit on the product
of the Riemann Invariants": if w~  w* and z~z* then

Since the same result would be true if we replace w and z respectively by
arbitrary functions g (w) and h (z), such a result would imply

[Since the left hand side is nothing else than the weak limit of g h (~E}~.
We can rewrite (3. 9) under the form:

If the coefficients ~,~ and ~,2 were smooth, this result would be a trivial
extension of the Example 1 in Section 2, but here these coefficients can
be wildly oscillating as 8 goes to 0.
The relation (3.10) has been conjectured in M. Rascle ([9], for the

elasticity system. This sort of idea was also mentioned in L. Tartar [13]
and in R. DiPerna [4].

In fact, the relation (3.10) is false for a general 2x2 system:
D. Serre [11] has constructed a counter-exemple which is precisely based
on system (3.2): for this system (3 . 2), there exists oscillating solutions

zE) for which ~3 ~ 10) is false.
However, even for these solutions, this relation becomes true if we add

a suitable weight-function p(w, z),- whose expression is precisely given, So
the correct general formula, conjectured by D. Serre [II], is (3.6).

For system (3.2), this weight-function in (3.6) is given by

and in some sense it describes how the characteristics are twisted in the
interaction of waves of the two families. In the general case, to prove
(3.6) is a very difficult problem, but if (at least) one of the eigenvalues is
LD, then the proof is much easier. It is given in D. Serre [11].

Therefore the measure-valued solutions of system (3.2) satisfy (3.6)~
(3.11).

Step 2. - The system (3.2) has two large families of entropies, respec-
tively associated to the two characteristic Holds, defined for arbitrary
(smooth) functions g and h:

with the same function p = (z - w~ -1 as in ~3~ . 6), E3 .11 ~. The proof is quite
easy: We multiply the equations in (3 . 2) respectively by a,~ cp and a~Z cp

Annales de l’Institut Henri Poincaré - Analyse non linéaire



341OSCILLATIONS AND CONSERVATION LAWS

and we add. Necessarily (p satisfy;

which is a first order linear hyperbolic system, with non constant coem-
cients. Since 03BB2 (resp. only depends of z (resp. w), it is very easy to

solve this system. So we just let the reader check that functions 03C6
given in ~3 12), ~~ . 1 3) satisfy ~3 . ~ ~) for any functions g and h. Actually,
this is the deep reason for which (3.6) holds.

Step 3. - Moreover, as a function of the conservative variables u and
~ in (3.3), the entropy c~ in (3.12) [or ~3 . ~ ~)~ is convex with respect 
and v if and only if the function g (or h) is convex with respect to w (or z).
Indeed, we have in (~ . ~ ~~

so that the eigenvalues of the Hessian matrix of (p with respect to u and v
are 0 and (U2+ V2)ju3).g" Therefore they are nonnegative if and only
if g is convex.

Step 4. - Since we only want to study the oscillations of w, we only
use the family of entropies ~3 , ~ 2~. They satisfy the very nice relation: 

, _,

which is never true in the GNL case, but which is always true in tne

linear case. We come now to the form-al part of the proof. Let us first
define the (generalized) characteristics of the system:

Far BV solutions, even in the GNL case, they would be well defined,
see for instance C. M. Dafermos [3], as sections in the sense of Filippov
of ordinary differential equations with discontinuous right-hand side. Of
course, in such a case, there is no unique solution, but for instance there
is a unique maximal (or minimal) solution, which is enough for our
purpose. We also remark that generalized characteristics are Lipschitz
curves. Of course, here we dont’t want to consider only BY solutions.
However, the definition of these characteristics is easier here in a LD case

(since there is no shock). Anyway, this step is format.
Let us integrate (2.6) with respect to x and ~, in the domain ~ bounded

in the (x, t) plane by the lines {~=0}, {~=T} and two characteristics,
say {(X+(~), ~)} and {(X-(~), 0)}. starting respectively from arbitrary
points X+(0) and X-(~): see Figure 1. Then we apply the Emergence
Theorem. Due to (3.15) and (3.16), there is no integral over the character
istics. We obtain, for any convex entropy p:

Vol. 8, n° 3/4-1991.
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Step 5. - We rewrite the definition of a measure-valued solution: for
any convex entropy cp, satisfies:

Let us choose the entropies (3.12), with a convex function g. Using (3 . 6)
and (3 .11), we obtain:

Let us normalize p~ ~ ~ t so that:

Similarly

Let us define

This is the group velocity of the possible oscillations. Observe that this
expression is different from the weak limit of ~,2, which is of course:

(see D. Serre [11]). Using all these equations, (2.14) becomes: for any
convex function g,

x, t~ x, t~ 3 . 22

Step 6. - We use the same formal method as in Step 4 we formally
define the "homogenized characteristics": we just replace in (3.16) "’2
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by 03BB2

and we integrate with respect to x and t on the corresponding domain Q.
So we rewrite inequality (3 . 17) under the form: for any convex function g.

In other words, knowing the precise (static) structure (3.6) of the
measurevalued solution vx, t, we can completely uncouple the information
on each Riemann Invariant: z only plays a role through X + (t).

Step 7. - We can now conclude this formal proof. Under the simplify-
ing assumptions of Theorem 1, there is initially no oscillation in w, i. e.

and we want to show that

So we assume wo is piecewise smooth. Let us choose two adjacent
sequences and (x + ) converging to the same arbitrary point xo, and
let us consider the generalized characteristics X ± ( . ) starting from x + . If
there are several solutions, we pick up any of them, for instance - since
this step is formal - the minimal one for X+ and the maximal one for
X _ . Let us define

Now we can choose an and bn such that

For each n, we choose the function g = gn in (3 . 24) such that

So the first integral in (3 . 24) must be equal to zero. Therefore

In other words, as n - oo,

This precisely means that oscillations in w cannot develop if they were
not present in the initial data. So the (formal) proof is complete.
Of course, in system (3.2), the two Riemann Invariants w and z play

symmetric roles. So the same result would be true if we replaced w by z.
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To conclude this Section, we make two remarks:
(i ) We have only used the information on w. Again, the structure (3.6)

enables to almost completely uncouple the evolution of x, 

The method also works if only one eigenvalue is LD, at least if we properly
choose the conservative form of system (3 .1 ).

(ii ) Our proof is of course formal, since we use (generalized) characteris-
tics in a context where we don’t know if they exist. However, the result
would be rigorous if for instance ~,~ was constant. On the other hand, for
smooth solutions, (3. 1 2) implies:

So there exists a function y (x, t) such that

This idea comes from the Euler-Lagrange change of coordinates and
has been used in D. Wagner [15] and in unpublished results of D. Serre.
It is used by Chen Gui-Qiang in a recent preprint [2] to avoid these
technical difficulties with characteristics.

4. SOME HEURISTIC REMARKS ON THE 3x3 CASE

Let us consider the system of Gas dynamics Equations (GDE):

with the classical notations. For this system, the second eigenvalue À2 is
LD, associated to a strict Riemann Invariant ~i. ~. a function whose

gradient is a left eigenvector of the Jacobian matrix of the system): the
specific entropy S. The entropy production inequality is:

More generally, for any non decreasing function g,

where a (g) is a bounded measure, depending on g. Compare with (3.32):
the structure is the same. However, in Section 3, the entropy production
measure was in fact 0, due to the LD feature of the full system (although
we dud not use this information). Here, any attempt to imitate step 7 in
Section 3 fails, since the function g would have to be non decreasing, non-
positive, identically equal to zero on some interval [a, b]. So we cannot
control the evolution of the width of this interval with respect to the time.
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This difficulty reflects the following possibility. Consider this system in
Lagrangian mass coordinates:

The entropy production is now another nonnegative measure:

Let us consider the case where

Then the solution is:

In this case, oscillations do appear, which were not present in the initial
data. The reason is that the entropy production measure a is singular
along the line x = 0, which is precisely a characteristic curve of the second
family.

In fact, this case is completely unrealistic, since entropy is only produced
along shock waves of either the first or the third family. Due to the Lax
Entropy Criterion, these shock curves are transverse to the characteristics
of the second family, as long as the system is strictly hyperbolic, i. e. away
from the vacuum state.

However, a more realistic case is the following. Let us consider a

sequence of initial data for system (4.4). Clearly, if there are initial
oscillations - of wave-length 8 - in the GNL fields, the interaction of waves
will produce oscillations in the LD field, roughly speaking before a time
of order a. The entropy production measure oc£ is:

8: delta-function, X J ( . ) : shock curves
where the ~i3 are related to the strength of the shocks. Therefore, oscilla-
tions do appear between time 0 and time 0(s), although (1,&#x26; is supported
by non-vertical shock curves: the reason is that the J3j oscillate each time
the waves interact. The extreme (but unrealistic) case would be the one
where, say a 1-shock interacting with a 3 rarefaction would produce a 1-
rarefaction, a contact, and a 3-shock. In such a case, depicted in Figure 2,
the J3j would oscillate between zero and "large" positive values. In realistic
cases, the strength of the shocks would have much smaller amplitude
oscillations (so that interactions would not transform shocks into rarefac-
tions and vice-versa) but nevertheless oscillations would be created.

So, for system (4.4), oscillations of wave-length E in the GNL fields
can produce oscillations in the LD field, before time 0(E), and then
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FIG. 2. - 3x3 system (4. 4): extreme (but unrealistic) picture in which oscillations in the
GNL fields would produce oscillations in the LD field. The (vertical) contact disconti-
nuities are not represented.

cancel. Therefore, for larger time, there would be no other production of
oscillations in the LD field, we only expect a propagation of the ones
which have been created during this initial boundary layer.
Now, if there is no initial oscillation in any field (GNL as well as LD),

this initial boundary layer should not exist, so that no oscillation would
be created, even in the LD field. 

5. THE GNL CASE: GEOMETRIC SEPARATION OF THE WAVE
CONE AND THE CONSTITUTIVE MANIFOLD

We now recall some very nice ideas developed in R. DiPerna [6]. First,
examples 1 and 2 in Section 2 are particular examples of the following
general result of F. Murat, L. Tartar, see e. g. L. Tartar [13]. Assume that
a sequence is weakly convergent in L2 and satisfies

where t = xo. Then the quadratic functions Q(u) such that

(as E - 0) are exactly the ones which vanish on the "wave
cone":
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In the particular case of Example 2 in Section 2 (Div-Curl Lemma), we
had

As the simplest example, let us consider the Laplace Equation in two
coordinates (x, t), and let us write it as an elliptic first order system:

Now let us consider a weakly convergent sequence of approximate sol-
utions (uE, vE) to this system, such that

So we can apply the Div-Curl Lemma, to obtain

Since this is a strictly convex function of u, v, we easily deduce the strong
convergence of sequences and (V). Of course, nobody was really
anxious about this problem (!), but the geometric view is the following: in
(5 . 5), we have applied the Div-Curl Lemma to a very particular sequence,
namely to a sequence of functions u2, u3, u4) with values in the
"constitutive manifold":

Now the geometric view of the elliptic nature of system (5.4) is quite
simple: the set A and the set are

transverse, see Figure 3, case (a). In particular,

In fact, this condition is necessary to avoid oscillations, see

L. Tartar [ 13] : if (u+-u_)EA for some pair (u _ , u + ) E M X M, then for
any step-function u of one variable, taking the only values u_ and u+,
the sequence (uE) defined by:

is a sequence of (faster and faster) oscillatin solutions to a general
system (5 .1 ).
As we have seen, condition (5. 8) is satisfied for an elliptic system such

as (5 . 4). Now the beautiful idea of Ron DiPerna is the following: consider
the nonlinear elasticity system:

Vol. 8, n° 3/4-1991.
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r

Case (b): hyperbolic GNL
Case (a): elliptic case (genuinely nonlinear) case.

A is a characteristic
direction.

Case (b): hyperbolic GNL Case (c): hyperbolic case,
case. Transverse view with GNL and LD

eigenvalues
~ 

In fact, we have added the two "natural" entropy-flux pairs, corresponding
to the conservation of energy

and to the dual relation (when we exchange stress and strain, space and
time) 

°
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(E* is the Legendre transform of E). Of course, system (5.10) is clearly
strictly hyperbolic and GNL. Therefore the last two equations are only
satisfied for smooth solutions.

It is now clear that (5.8) is satisfied for system (5.10): if not, a pair
(U _ , U+)eM x M whose difference lies in the wave-cone A would satisfy
the Rankine-Hugoniot relations

and

where s = - ~o/~ i and ç is associated to ~Lt] = (I~ + - I~ _ ) as in (5.2).
Obviously, this is impossible, since the system is genuinely nonlinear. The
corresponding geometric situation is depicted in Figure 3, case (b). The
wave cone A contains directions which are rangent to the constitutive
manifold M: the characteristic directions. However, as Ron showed in [6],
A is separated - at least locally - from the manifold M itself.

This is a weak version of "ellipticity" and that "explains" why GNL
systems - at least in the 2x2 case - don’t admit oscillating solutions,
whatever the initial data are.

On the contrary, this is no longer the case for a linearly degenerate, in
particular for a linear system. Naturally, realistic systems, e. g. system
(4.1) or (4 . 4) of gas dynamics, have both GNL and LD eigenvalues. We
represent the corresponding situation in Figure 3, case (c).

6. CONCLUSION

In conclusion, to understand "real" hyperbolic systems, it is certainly
necessary to mix techniques and ideas from linear hyperbolic systems, in
order to study LD eigenvalues and (weak versions of) elliptic techniques,
in order to study GNL eigenvalues. In this direction, despite it’s static

feature, the theory of Young measures and "classical" compensated com-
pactness has given some important results, both in the genuinely nonlinear
and in the linearly degenerate case. It has certainly been the most powerful
tool of the eighties. Recently, more sophisticated techniques have been
developed by L. Tartar [14] and independently by P. Gérard[7]. It is still
too early to know if these new tools will be powerful enough to go further,
and which other ingredients will be necessary.
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