Sur une équation quasilinéaire d'ordre 2 non elliptique

par

G. AUBERT

I.U.T. de Nice, 41, boulevard Napoléon-III, 06041 Nice, France

RÉSUMÉ. – On prouve l'existence, pour des données petites, d'une solution régulière pour le problème quasilinéaire :

$$-\operatorname{div}(\operatorname{D} g(\operatorname{D} u)) + \operatorname{F}(x, u) = 0, \quad u \in W_0^{1, p}(\Omega).$$

On ne fait aucune hypothèse d'ellipticité sur g; nous supposons simplement que g est la différence de deux fonctions strictement convexes.

Mots clés: Equations quasilinéaires, calcul des variations, théorèmes du point fixe.

ABSTRACT. — We prove, for small data, the existence of a regular solution for the quasilinear problem:

$$-\operatorname{div}(\operatorname{D} g(\operatorname{D} u)) + \operatorname{F}(x, u) = 0, \quad u \in W_0^{1, p}(\Omega).$$

We do not assume any condition of ellipticity on g; only we suppose that g is the difference of two strictly convex functions.

Key words: Quasilinear equations, calculus of variations, fixed point theorems.

Classification A.M.S.: 35 B.

1. INTRODUCTION

Dans ce travail on se propose de démontrer l'existence d'une solution pour le problème aux limites:

$$-\operatorname{div} A (Du) + F(x, u) = 0$$

$$u \in W_0^{1, p}(\Omega)$$

$$(1.1)$$

où Ω est un ouvert borné, régulier, de \mathbb{R}^N et où A est le gradient d'une fonction de \mathbb{R}^N dans \mathbb{R} .

Le problème (1.1), ou des variantes de celui-ci a déjà été étudié par de nombreux auteurs. Nous renvoyons aux livres de Gilbarg-Trudinger [1], Ladyzenskaya-Uralceva [2], Morrey Jr [3] pour une étude générale de ce type d'équations. Citons également quelques résultats plus récents sur le sujet : Webb [4], Boccardo-Murat-Puel ([5], [6]).

Ces différents travaux ont abordé les questions d'existence, de régularité (estimations L^{∞} , continuité holdérienne, principe du maximum, . . .) sous une hypothèse essentielle : l'ellipticité de l'opérateur A; les contributions des auteurs précités portant surtout sur divers comportements de la fonction F.

Dans ce papier on étudie le problème (1.1) sous aucune hypothèse d'ellipticité. Plus précisément on démontre l'existence de solutions pour des problèmes variationnels du type :

$$-\sum \frac{\partial}{\partial x_i} \left(\frac{\partial g}{\partial t_i} (\mathbf{D} u) \right) + \frac{\partial h}{\partial u} (x, u) = 0$$

$$u \in \mathbf{W}_0^{1, p} (\Omega)$$
(1.2)

où g n'est pas supposée convexe et de ce fait l'équation quasilinéaire (1.2) n'est pas elliptique.

Notons que (1.2) correspond formellement à l'équation d'Euler du problème du calcul des variations

$$\operatorname{Inf}\left\{\int_{\Omega} \left(g\left(\mathrm{D}u\right) + h\left(x, u\right)\right) dx; \ u \in \mathrm{W}_{0}^{1, p}\left(\Omega\right)\right\}. \tag{1.3}$$

Le problème (1.3) peut ne pas avoir de solutions mais ceci n'exclut pas, a priori, la solvabilité de (1.2). Pour l'étude de problèmes du type (1.3) nous renvoyons le lecteur à Aubert-Tahraoui ([7], [8]), Raymond [9], Mascolo-Schianchi ([10], [11]).

2. PRÉLIMINAIRES

 Ω sera un ouvert régulier, borné de \mathbb{R}^n et $W_0^{1, p}(\Omega)$ désignera l'espace de Sobolev des fontions réelles u appartenant à $L^p(\Omega)$, nulles sur le bord

de Ω , dont les dérivées distributions $\frac{\partial u}{\partial x_i}$ sont des éléments de $L^p(\Omega)$ pour i=1, N.

On notera:

|t| la norme euclidienne d'un vecteur $t \in \mathbb{R}^l$ et ty le produit scalaire usuel de \mathbb{R}^l .

 $|u|_p$ la norme L^p d'une fonction $u \in L^p(\Omega)$.

Du(x) le vecteur gradient de u au point x, de composantes $\frac{\partial u}{\partial x_i}(x)$.

 $D^2 u(x)$ la matrice hessienne de u au point x. On assimilera $D^2 u(x)$ à un vecteur de $\mathbb{R}^{N \times N}$.

mes Ω la mesure de Ω , diam Ω le diamètre de Ω .

On notera systématiquement c_i toute constante dépendant de Ω .

L'idée directrice pour démontrer l'existence d'une solution pour le problème (1.2) est la suivante. On suppose g de classe C^2 , ce qui implique selon un résultat de Hartmann [12] que g peut se décomposer comme différence de deux fonctions strictement convexes, régulières, i.e.

$$g = g_1 - g_2 \tag{2.1}$$

où g_i sont des fonctions strictement convexes et de classe \mathbb{C}^2 .

Ainsi décomposé le problème (1.2) s'écrit.

$$-\operatorname{div}(\operatorname{D}g_{1}(\operatorname{D}u)) + \operatorname{div}(\operatorname{D}g_{2}(\operatorname{D}u)) + \frac{\partial h}{\partial u}(x, u) = 0$$

$$u \in W_{0}^{1, p}(\Omega)$$
(2.2)

Puisque g_2 est une fonction convexe

$$g_2(t) = \sup_{\mathbb{R}} (ty - g_2^*(y))$$
 (2.3)

où g* désigne la fonction polaire de g. D'autre part (2.2) peut être considérée, formellement, comme l'équation d'Euler du problème

Inf
$$\left\{ \int_{\Omega} (g_1(Du) - g_2(Du) + h(x, u)) dx; u \in W_0^{1, p}(\Omega) \right\}$$
. (2.4)

L'écriture (2.3) de g₂ nous suggère de définir la famille de fonctionelles

$$J_q(u) = \int_{\Omega} (g_1(Du) - q Du + h(x, u)) dx$$

où $q \in (L^{p'}(\Omega))^N$, 1/p + 1/p' = 1.

Pour tout q on montrera que le problème

Inf
$$\{J_q(u); u \in W_0^{1, p}(\Omega)\}$$

admet une unique solution u_q vérifiant

$$-\operatorname{div}\left(\operatorname{D}g_{1}\left(\operatorname{D}u_{q}\right)+\operatorname{div}q+\frac{\partial h}{\partial u}\left(x,\,u_{q}\right)=0.\right)$$
(2.5)

Considérons l'application T

$$q \to Dg_2(Du_q) = T(q).$$

Si cette application admet un point fixe q_0 alors il est clair que u_{q_0} est une solution de (2.2).

La question principale pour résoudre ce dernier point est de déterminer un bon ensemble pour lequel on puisse appliquer le théorème du point fixe de Schauder; bon dans le sens où la compacité de l'application T se démontre sans problème, la difficulté étant le passage à la limite dans l'intégrale

$$\int_{\Omega} q_n \, \mathrm{D} u_{q_n} dx$$

lorsque (q_n, u_{q_n}) tend faiblement vers (q_0, u_0) dans $(L^{p'}(\Omega))^N \times W_0^{1, p}(\Omega)$ cette difficulté disparaît si div q_n est borné dans un certain $L^{\gamma}(\Omega)$; d'où le choix de l'ensemble de définition du paramètre q

$$q \in E = \{q \in (L^{p'}(\Omega))^N, \operatorname{div} q \in L^{\gamma}(\Omega), |q|_{p'} \leq M_1 \text{ et } |\operatorname{div} q|_{\gamma} \leq M_2\}$$

où M₁, M₂ et γ sont des réels que l'on précisera plus loin.

Ce procédé permet de contourner le problème de la compacité de T mais la difficulté demeure dans la preuve de l'inclusion

$$T(E) \subseteq E. \tag{2.6}$$

La vérification de (2.6) demandera un calcul important d'estimations a priori basées sur des travaux de Stampacchia [13] et Hartmann-Stampacchia [14].

Dans le paragraphe suivant on démontrera l'existence d'une solution pour le problème (2.5) à q fixé. Dans le paragraphe 4 on établira des estimations L^{∞} pour u_q et Du_q en fonction des normes $|\operatorname{div} q|_{\gamma}$ et $|\partial h|$

 $\left| \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma}$. On démontrera également une estimaton $W^{2, \alpha}(\Omega)$ basée sur

l'inégalité de Calderon-Zygmund. Enfin dans le paragraphe 5 on déduira des calculs précédents l'existence d'un point fixe pour l'application T, et ainsi la mise en évidence d'une solution pour le problème (1.2).

Le type de résultats que nous obtiendrons peut se résumer formellement ainsi : il existe un ouvert borné Ω_0 tel que pour tout ouvert $\Omega \subset \Omega_0$ le problème :

$$-\operatorname{div}\left(\operatorname{D}g_{1}\left(\operatorname{D}u\right)-\operatorname{D}g_{2}\left(\operatorname{D}u\right)\right)+\frac{\partial h}{\partial u}(x, u)=0 \quad \operatorname{dans} \Omega$$

$$u \in W_{0}^{1, p}\left(\Omega\right)$$

admette au moins une solution.

3. EXISTENCE D'UNE SOLUTION DE (2.5) A q FIXÉ

Dans ce paragrahe on démontre, pour tout $q \in (L^{p'}(\Omega))^N$, l'existence et l'unicité d'une solution pour le problème

$$\operatorname{Inf}\left\{ J_{a}(v), v \in W_{0}^{1, p}(\Omega) \right\} \tag{3.1}$$

où

$$J_{q}(v) = \int_{\Omega} (g_{1}(Dv) - q Dv + h(x, v)) dx.$$

Hypothèses. - On suppose:

H1. (i) $g_1: \mathbb{R}^N \to \mathbb{R}$ strictement convexe, de classe \mathbb{C}^2 .

(ii) $g_1(0) = 0$ et $\forall v \in W_0^{1, p}(\Omega)$ la fonction $x \to g_1(Dv(x))$ appartient à $L^1(\Omega)$.

(iii) Il existe des constantes $a_i > 0$ telles que $\forall t \in \mathbb{R}^N$

$$g_1(t) \ge a_1 |t|^p \tag{3.2}$$

$$|Dg_1(t)| \le a_2 + a_3 |t|^{p-1}$$
 (3.3)

$$|D^2 g_1(t)| \le a_4 |t|^{p-2}$$
 (3.4)

$$\sum_{i,j} \frac{\partial^2 g_1(t)}{\partial t_i \partial t_j} n_i n_j \ge a_5 |n|^2, \quad \forall n \in \mathbb{R}^N.$$
 (3.5)

H2. (i) p. p. $x \in \Omega$, la fonction $u \to h(x, u)$ est convexe et de classe C^1 .

(ii) $\forall v \in L^p(\Omega)$, la fonction $x \to h(x, v(x))$ appartient à $L^1(\Omega)$.

(iii) Il existe des constantes $b_i > 0$ telles que $\forall u \in \mathbb{R}$

$$\left| \frac{\partial h}{\partial u}(x, u) \right| \le b_1 + b_2 |u|^{r-1}. \tag{3.6}$$

H3. (i) $2 \le p$.

(ii) $1 \le r \le p$.

Théorème (3.1). — Sous les hypothèses H1 à H3 le problème (3.1) admet une unique solution u_a pour tout $q \in L^{p'}(\Omega)^N$. De plus u_a vérifie

$$-\sum \frac{\partial}{\partial x_i} \left(\frac{\partial g_1}{\partial t_i} \left(D u_q \right) \right) + \operatorname{div} q + \frac{\partial h}{\partial u} (x, u) = 0.$$
 (3.7)

Preuve. — La démonstration est classique. On remarquera que la fonctionnelle J_q est semi-continue inférieure faible sur $W_0^{1,p}(\Omega)$ puisque g_1 est convexe et continue et que l'application

$$u \to \{u \to h(x, u(x))\}$$

est continue de $L^p(\Omega)$ dans $L^1(\Omega)$ grâce à H2 (ii). Pour conclure il suffit de borner dans $W_0^{1, p}(\Omega)$ les suites minimisantes.

Soit v_n une telle suite. Grâce à (3.2) on a

$$a_1 | \mathbf{D}v_n |_p^p - \int_{\Omega} q \mathbf{D}v_n dx + \int_{\Omega} h(x, v_n) dx \le k$$

où k est une constante universelle.

Puisque h(x, .) est convexe et de classe C^1

$$h(x, v_n) \ge h(x, 0) + v_n \frac{\partial h}{\partial u}(x, 0)$$

d'où

$$a_1 \left| \operatorname{D} v_n \right|_p^p \leq k + \int_{\Omega} q \operatorname{D} v_n \, dx - \int_{\Omega} h\left(x,\, 0\right) \, dx - \int_{\Omega} v_n \, \frac{\partial h}{\partial u}\left(x,\, 0\right) \, dx$$

ce qui entraîne, avec l'inégalité de Poincaré, l'existence d'une constante $c'=c'(q,\Omega)$ telle que

$$a_1 | \mathbf{D}v_n |_p^p \leq k' + c' | \mathbf{D}v_n |_p$$

Cette dernière inégalité implique que la suite v_n est bornée dans $W_0^{1, p}(\Omega)$ et donc qu'il existe une sous-suite notée encore v_n et u_q telle que

$$\lim v_n = u_q$$
 dans $W_0^{1, p}(\Omega)$ faible

 v_n étant aussi minimisante, il en résulte, grâce à la semi-continuité inférieure faible de J_a que

$$\lim J_q(v_n) = J_q(u_q) = \inf J_q.$$

De plus ce minimum est unique car J_q est strictement convexe. Quant à l'équation d'Euler (3.7) il suffit de remarquer que son écriture est justifiée par les hypothèses (3.3) et (3.6).

4. ESTIMATIONS A PRIORI

Dans cette section on donne des estimations L^{∞} de u_q et Du_q ainsi qu'une estimation L^p pour D^2u_q . Notre référence sera, pour cela, l'article de Stampacchia [13] sur la régularité de certains problèmes du calcul des variations. Les calculs sont techniques mais maintenant classiques et nous les reproduisons ici dans un souci de commodité mais également dans le but de préciser les bornes de certaines constantes intervenant dans les majorations.

Nous aurons besoin par la suite des deux lemmes suivants dus à Stampacchia [13].

Lemme 4.1. — Soit $\Phi(t)$ une fonction non négative, non croissante pour $t \ge k_0$ telle que pour $h > k > k_0$

$$\Phi(h) \leq \frac{C}{(h-k)} \alpha |\Phi(k)|^{\beta}$$

où C, α sont des constantes non négatives et $\beta > 1$. Alors

$$\Phi(k_0+d)=0$$

où

$$d^{\alpha} = C \left(\Phi(k_0)\right)^{\beta - 1} \frac{\beta^{\alpha\beta/(\beta - 1)}}{(\beta - 1)^{\alpha}} \quad \blacksquare$$

Lemme 4.2. — Soient $a_{ij}(x)$ des fonctions mesurables et bornées sur Ω telles que

$$\sum a_{ij}(x) n_i n_i \ge \alpha |n|^2, \quad \alpha > 0, \quad \forall n \in \mathbb{R}^N$$

et soit $u \in H^1(\Omega)$ telle que

$$\int_{\Omega} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} - f_j \right) \frac{\partial v}{\partial v_j} dx \le 0 \ (\ge 0), \qquad \forall \ v \in W_0^{1, 2}(\Omega), \quad v \ge 0$$

où les fonctions f_j appartiennent à $L^{\gamma}(\Omega)$, $j=1,\ldots,n$; $\gamma>N$, alors il existe une constante K dépendant de γ et N telle que

$$\begin{split} u(x) & \leq \max_{\partial \Omega} u + \frac{K}{\alpha} \sum \big| f_i \big|_{\gamma} (\operatorname{mes} \Omega)^{1/N - 1/\gamma} \\ \left(u(x) & \geq \min_{\partial \Omega} u - \frac{K}{\alpha} \sum \big| f_i \big|_{\gamma} (\operatorname{mes} \Omega)^{1/N - 1/\gamma} \right) & \blacksquare \end{split}$$

Nous utiliserons également les deux inégalités de Sobolev sur $W_0^{1,\,p}(\Omega)$

$$\begin{aligned} |u|_{\infty} & \leq K(N, p) (\operatorname{mes} \Omega)^{1/N - 1/p} |Du|_{p} & \text{si} \quad p > N \\ |u|_{p^{*}} & \leq S(N, p) |Du|_{p} & \text{si} \quad p < N \end{aligned}$$

où p^* est le réel défini par $1/p^* = 1/p - 1/N$.

Nous commençons par donner une estimation L^p de u_q l'unique solution du problème (3.1).

Proposition 4.3. – Il existe une constante $c_1 = c_1$ (N, p, mes Ω) telle que pour tout $q \in L^{p'}(\Omega)^N$ on ait

$$\left| \left| \mathbf{D} u_q \right|_p^p \le c_1 \left(\left| \operatorname{div} q \right|_{p'} + \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'} \right)^{p'}. \tag{4.1}$$

Preuve. – Puisque u_q est la solution du problème (3.1) on a, pour tout $v \in W_0^{1,p}(\Omega)$

$$\begin{split} \int_{\Omega} \left(g_1 \left(\mathrm{D} u_q \right) - q \, \mathrm{D} u_q + h \left(x, \, u_q \right) \right) dx \\ & \leq \int_{\Omega} \left(g_1 \left(\mathrm{D} v \right) - q \, \mathrm{D} v + h \left(x, \, v \right) \right) dx. \end{split}$$

On choisit v=0 et en tenant compte que $g_1(0)=0$ et que

$$h(x, u_q) \ge h(x, 0) + u_q \frac{\partial h}{\partial u}(x, 0)$$

on obtient

$$\int_{\Omega} g_1(\mathbf{D}u_q) \leq \left(\left| \operatorname{div} q \right|_{p'} + \left| \frac{\partial h}{\partial u}(x, 0) \right|_{p'} \right) \left| u_q \right|_{p}$$

soit avec (3.2)

$$a_1 | \mathbf{D} u_q |_p^p \le \left(|\operatorname{div} q|_{p'} + \left| \frac{\partial h}{\partial u}(x, 0) \right|_p \right) |u_q|_p$$

et avec l'inégalité de Young

$$a_1 \left| Du_q \right|_p^p \le \frac{\varepsilon^p}{p} \left| u_q \right|_p^p + \frac{1}{p'} \varepsilon^{p'} \left(\left| \operatorname{div} q \right|_{p'} + \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'} \right)^{p'}$$

or grâce à l'inégalité de Poincaré

$$|u_q|_p \le \left(\frac{\operatorname{mes}\Omega}{w_N}\right)^{1/N} |Du_q|_p$$

 $(w_N$: mesure de la sphère unité de \mathbb{R}^N) d'où

$$\left(a_1 - \frac{\varepsilon^p}{p} \operatorname{mes} \Omega^{p/N} w_N^{-p/N}\right) \left| Du_q \right|_p^p \le \frac{1}{p'} \varepsilon^{p'} \left(\left| \operatorname{div} q \right|_{p'} + \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'} \right)^{p'}$$

on choisit & tel que

$$\frac{a_1}{2} = \frac{\varepsilon^p}{p} \operatorname{mes} \Omega^{p/N} w_N^{-p/N}$$

ce qui entraîne

$$\left| \left| \operatorname{D} u_{q} \right|_{p}^{p} \leq c_{1} \left(\left| \operatorname{div} q \right|_{p'} + \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'} \right)^{p'}$$

$$\tag{4.1}$$

avec

$$c_1 = \frac{2}{a_1 p'} (\text{mes } \Omega/w_N)^{p'/N} \left(\frac{pa_1}{2}\right)^{-p'/p}$$
 (4.2)

On déduit aisément de la proposition 4.3 une estimation L^{∞} pour u_q lorsque p > N. En effet grâce à l'inégalité de Sobolev pour le cas p > N on a

$$|u_a|_{\infty} \leq K(N, p) (\text{mes }\Omega)^{1/N-1/p} |Du_a|_p$$

d'où avec (4.1)

$$|u_q|_{\infty} \le c_2(N, p, \operatorname{mes}\Omega) \left(|\operatorname{div} q|_{p'} + \left| \frac{\partial h}{\partial u}(x, 0) \right|_{p'} \right)^{p'/p} \tag{4.3}$$

avec

$$c_2 = c_1^{1/p} K(N, p) (\text{mes }\Omega)^{1/N-1/p}.$$
 (4.4)

Pour le cas $p \le N$ on obtiendrait le même type d'estimations en utilisant les techniques de Stampacchia [13], théorème 6.2. Dans un souci de simplication et pour ne pas donner un caractère trop répétitif aux démonstrations nous omettons ce cas là et nous n'exposerons par la suite que le cas p > N.

Il est important de remarquer que, dans la constante c_2 de l'inégalité (4.3), intervient explicitement la mesure de Ω avec une puissance positive.

On se propose maintenant d'obtenir une estimation L^{∞} pour Du_q . Toujours en suivant Stampacchia [13] on suppose

$$\Omega$$
 est uniformément convexe et de classe $C^{1, 1}$ (4.5)

et, pour l'instant

(4.6)
$$u_q \in C^1(\Omega) \cap W^{2,2}(\Omega).$$

Soit $x_0 \in \partial \Omega$; pour k > 0 on note

$$\lambda_k(x) = k \delta(x)$$

où $\delta(x)$ est la distance d'un point x à l'hyperplan tangent à $\partial\Omega$ au point x_0 . Quitte à faire un changement de repère, on peut supposer λ_k linéaire et

$$\mathrm{D}\lambda_k = \widetilde{k} = (k_1, \ldots, k_N)$$
 avec $\sum_i k_i^2 = k$.

Enfin on note

$$\gamma_0 = \text{Sup}(N(N+1)/2, p')$$
 (4.7)

et on suppose pour la suite

(4.8)
$$\operatorname{div} q \in L^{\gamma}(\Omega), \qquad \gamma > \gamma_0.$$

Proposition 4.4. – Sous les hypothèses précédentes il existe des constantes c_3 , c_4 , c_5 telles que

$$\left| \operatorname{D} u_q \right|_{\infty} \le c_3 \left| \operatorname{div} q \right|_{\gamma} + c_4 \left| \frac{\partial h}{\partial u} (x, 0) \right|_{\gamma} + c_5 \left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma}$$

avec $c_i = c_i$ (N, p, Ω , a_5), i = 3, 4, 5.

Preuve. – La démonstration se fait en deux étapes. Pour simplifier on note u pour u_q .

Étape 1. – On va d'abord montrer $u(x) \le \lambda_d(x)$ pour un certain d. On reprend l'inégalité définissant $u = u_a$

$$\int_{\Omega} (g_1(\mathrm{D}u) + u \operatorname{div} q + h(x, u)) \, dx \le \int_{\Omega} (g_1(\mathrm{D}v) + v \operatorname{div} q + h(x, v)) \, dx.$$

On choisit

$$v = u_k = \begin{cases} u(x) & \text{si} \quad u(x) \leq \lambda_k(x) \\ \lambda_k(x) & \text{sinon} \end{cases}$$

 $u_k \in W_0^{1, p}(\Omega)$; on note

$$\mathbf{A}_{k} = \{ x \in \Omega / u(x) \ge \lambda_{k}(x) \}.$$

Avec ce choix de v on obtient

$$\int_{A_k} (g_1(\mathbf{D}u) - g_1(\tilde{k})) \, dx \le \int_{A_k} (h(x, \lambda_k) - h(x, u)) \, dx + \int_{A_k} \operatorname{div} q(\lambda_k - u) \, dx.$$

Or puisque h(x, .) est convexe, $\lambda_k \ge 0$ et $u - \lambda_k \ge 0$ sur A_k , on a pour tout $x \in A_k$

$$h(x, u) - h(x, \lambda_k) \ge (u - \lambda_k) \frac{\partial h}{\partial u}(x, \lambda_k) \ge (u - \lambda_k) \frac{\partial h}{\partial u}(x, 0)$$

d'où

$$\int_{\mathbf{A}_{k}} (g_{1}(\mathbf{D}u) - g_{1}(\widetilde{k})) dx \le \int_{\mathbf{A}_{k}} \left(\operatorname{div} q + \frac{\partial h}{\partial u}(x, 0)\right) (\lambda_{k} - u) dx.$$

En utilisant l'hypothèse d'ellipticité (3.5) et en remarquant que

$$\int_{A_{1}} \mathbf{D} g_{1}(\tilde{k}) (\mathbf{D} u - \tilde{k}) dx = 0$$

il vient

$$a_5 \int_{\mathbf{A}_k} |\mathbf{D}u - \tilde{k}|^2 dx \le \int_{\mathbf{A}_k} \mathbf{L}(x) (\lambda_k - u) dx$$

où on a noté

$$L(x) = \text{div } q + \frac{\partial h}{\partial u}(x, 0).$$

Avec l'inégalité de Sobolev on déduit

$$a_5 \left(\int_{A_k} |u - \lambda_k|^{2^*} dx \right)^{2/2^*} \leq S^2 |L|_{\gamma} |u - \lambda_k|_{\gamma}$$

où 1/2* = 1/2 - 1/N et $1/\gamma + 1/\gamma' = 1$ d'où avec l'inégalité de Hölder

$$\left(\int_{A_{k}} |u - \lambda_{k}|^{2^{*}} dx \right)^{2/2^{*}} \\
\leq \frac{S^{2}}{a_{5}} |L|_{\gamma} \left(\int_{A_{k}} |u - \lambda_{k}|^{2^{*}} \right)^{1/2^{*}} (\operatorname{mes} A_{k})^{1 - 1/2^{*} - 1/\gamma}. \quad (4.9)$$

Si h > k on a

$$(h-k)^{2^*} \int_{A_h} |\delta(x)|^{2^*} dx$$

$$= \int_{A_h} |\lambda_h - \lambda_k|^{2^*} dx \le \int_{A_h} |u - \lambda_k|^{2^*} dx \le \int_{A_k} |u - \lambda_k|^{2^*} dx. \quad (4.10)$$

D'autre part soit $\theta < 2^*$ alors

$$\operatorname{mes} \mathbf{A}_{k} = \int_{\mathbf{A}_{k}} |\delta(x)|^{\theta} \frac{1}{|\delta(x)|^{\theta}} dx$$

$$\leq \left(\int_{\mathbf{A}_{k}} |\delta(x)|^{2^{\bullet}} dx \right)^{\theta/2^{\bullet}} \left(\int_{\mathbf{A}_{k}} |\delta(x)|^{-\theta (2^{\bullet}/\theta)'} dx \right)^{1-\theta/2^{\bullet}}$$

οù

$$1/(2^*/\theta)' = 1 - \theta/2^*. \tag{4.11}$$

Un calcul simple montre que la convergence de la deuxième intégrale dans l'inégalité ci-dessus est assurée si

$$\theta (2^*/\theta)' < (N+1)/2.$$

On choisit donc θ tel que

$$\theta(2^*/\theta)' < (N+1)/2$$
 et $\theta(1-1/\gamma-1/2^*) > 1$.

Un tel choix est possible car

$$\gamma > N(N+1)/2$$
.

En combinant les inégalités (4.9) et (4.10) il vient

$$(h-k)\left(\int_{\mathbf{A}_{h}}\left|\delta\left(x\right)\right|^{2^{\star}}dx\right)^{1/2^{\star}} \leq \mathbf{D}\left(\int_{\mathbf{A}_{k}}\left|\delta\left(x\right)\right|^{2^{\star}}dx\right)^{\theta/2^{\star}\left(1-1/2^{\star}-1/\gamma\right)}$$

οù

$$D = \frac{S^2}{a_5} \left(\int_{\Omega} |\delta(x)|^{-\theta (2^{\bullet}/\theta)'} dx \right)^{(1-\theta/2^{\bullet}) (1-1/2^{\bullet}-1/\gamma)} |L|_{\gamma}.$$

Si on pose

$$\Phi(h) = \left(\int_{A_h} |\delta(x)|^{2^*} dx\right)^{1/2^*}$$

Φ vérifie les hypothèses de lemme 4.1 avec $k_0 = 0$, $\alpha = 1$ et $\beta = \theta (1 - 1/2 - 1/\gamma) > 1$ et il existe donc un réel

$$d = D \left(\int_{A_0} |\delta(x)|^{2^*} dx \right)^{1/2^* (\beta - 1)} \frac{\beta^{\beta/(\beta - 1)}}{\beta - 1}$$

tel que

$$\Phi(d) = 0$$
 i. e. $u(x) \le \lambda_d(x)$ p. p. $x \in \Omega$

de même on montrerait l'existence d'un réel d' tel que

$$u(x) \ge \lambda_{-d'}(x)$$
 p. p. $x \in \Omega$

ce qui est équivalent à $|u(x)| \le \lambda_{d''}(x)$ où $d'' = \operatorname{Max}(d, d')$. Puisque u est supposée de classe C^1 , nous avons en x_0

$$|\operatorname{D} u(x_0)| \leq d''$$
.

Mais x_0 est un point quelconque de $\partial\Omega$ et d est indépendant de x_0 d'où

$$\operatorname{Max} |\operatorname{D} u(x)| \le d''. \tag{4.12}$$

Étape 2. – On applique le principe du maximum pour montrer que $Du \in L^{\infty}(\Omega)$. Puisque $u = u_q$ minimise J_q il vient, en écrivant l'équation d'Euler associée et en posant $p_s = \frac{\partial u}{\partial x}$

$$\sum \int_{\mathbf{A}_{h}} \left(\frac{\partial g_{1}}{\partial t_{i} \partial t_{j}} (\mathbf{D} u) \frac{\partial p_{s}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} + \left(\operatorname{div} q + \frac{\partial h}{\partial u} (x, u) \right) \frac{\partial v}{\partial x_{s}} \right) dx = 0$$

pour tout $v \in W_0^{1,2}(\Omega)$ ce qui implique avec (4.12) et le lemme 4.2 l'existence d'une constante K (N, γ) telle que

$$\left| \operatorname{D} u \right|_{\infty} \le d'' + \frac{K}{a_5} \left| \operatorname{div} q + \frac{\partial h}{\partial u}(x, u) \right|_{\gamma} (\operatorname{mes} \Omega)^{1/N - 1/\gamma}. \tag{4.13}$$

La constante d'' qui est explicite peut se majorer en fonction de puissance positive du diamètre de Ω et de $|L|_{\gamma} = \left| \operatorname{div} q + \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma}$ si bien que (4.13) peut s'écrire sous forme plus simplifiée

$$|Du|_{\infty} \le c_3 |\operatorname{div} q|_{\gamma} + c_4 \left| \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma} + c_5 \left| \frac{\partial h}{\partial u}(x, u) \right|_{\gamma}$$

où les constantes c_i dépendent explicitement de la mesure de Ω , du diamètre de Ω et de la constante d'ellipticité a_5 . De plus $c_i \to 0$ si mes Ω et diam $\Omega \to 0$.

Dans le théorème précédent nous avons supposé la régularité

$$u_q \in C^1(\Omega) \cap W^{1,2}(\Omega)$$
.

Cette régularité de la solution u_q est en effet vérifiée, grâce aux résultats de Stampacchia [13] ou Hartmann-Stampacchia [14] (cf. également Gilbarg-Trudinger [1]). On a même mieux : si Ω est de classe $C^{1,1}$ et si div $q \in L^{\gamma}(\Omega)$ alors

$$u_q \in W^{2, \gamma}(\Omega) \cap C^{1, 1}(\overline{\Omega})$$

et au sens des distributions

$$\sum \frac{\partial^2 g_1}{\partial t_i \, \partial t_j} (\mathbf{D} u_q) \, \frac{\partial^2 u_q}{\partial x_i \, \partial x_j} = \operatorname{div} q + \frac{\partial h}{\partial u} (x, u_q)$$
 (4.14)

c'est-à-dire une équation de la forme

$$\sum a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} = f. \tag{4.15}$$

(4.14) peut donc être considérée comme une équation linéaire du $2^{\rm e}$ ordre, uniformément elliptique, à coefficients continus dont le second membre appartient à $L^{\gamma}(\Omega)$. On sait alors que la solution de ce type de problème vérifie une inégalité dite de Calderon-Zygmund :

$$|D^2 u_a|_{\gamma} \le K (|f|_{\gamma} + |u_a|_{\gamma} + |Du_a|_{\gamma})$$
 (4.16)

où K dépend de N, γ , Ω mais aussi des coefficients a_{ij} , notamment de $|a_{ij}|_{\infty}$ et de leurs modules de continuité (cf. par exemple Gilbarg-Trudinger [1] ou Agmon-Douglis-Niremberg [15]).

Dans notre cas une estimation de K, comme on le verra par la suite, est fondamentale. Mais la maîtrise des coefficients a_{ij} est délicate, en particulier celle de leurs modules de continuité. Pour cela nous avons été amené à étudier en détails (4.16). Sa démonstration nécessite plusieurs étapes. On commence par la démontrer lorsque l'opérateur elliptique dans (4.15) est le laplacien; et c'est ici le point difficile car il faut utiliser la théorie des intégrales singulières due à Calderon-Zygmund. Puis on démontre (4.16) pour un opérateur à coefficients constants. L'étape suivante consiste à justifier (4.16) localement c'est-à-dire pour tout ouvert Ω' strictement inclus dans Ω et enfin on assure sa validité jusqu'au bord en utilisant des cartes locales. On renvoie à Gilbarg-Trudingerg [1] pour plus de détails.

Comme il a été dit plus haut nous aurons besoin d'une évaluation de la constante K. Il nous a fallu, pour cela, revoir et adapter la démonstrtion de l'inégalité de Calderon-Zygmund.

Soit Ω un ouvert strictement inclus dans Ω et soit $x_0 \in \Omega'$. On note

$$a_{ij}(x) = \frac{\partial^2 g_1}{\partial x_i x_j} (Du_q(x))$$
$$D_{ij}(u) = \frac{\partial^2 u}{\partial x_i \partial x_j}$$

et Lo l'opérateur à coefficients constants

$$L_0 u = \sum a_{ij}(x_0) D_{ij} u.$$

La deuxième étape de la démonstration de l'inégalité de Calderon-Zygmund permet d'affirmer qu'il existe une constante $k(N, \gamma)$ telle que

$$\left| D^{2} v \right|_{\gamma} \leq \frac{k}{a_{5}} \left| L_{0} v \right|_{\gamma} \tag{4.17}$$

pour tout $v \in W_0^{2, \gamma}(\Omega)$, où a_5 est la constante d'ellipticité associée à g_1 .

LEMME 4.5. - Soit $v \in W_0^{2,\gamma}(\Omega)$, alors

$$\left| D^{2} v \right|_{\gamma} \leq \frac{2k}{a_{\varepsilon}} \left| \sum a_{ij}(x) D_{ij} v \right|_{\gamma}$$
 (4.18)

si

$$\left| Du_q \right|_{\infty}^{p-2} \le \frac{a_5}{4 a_4 k} \tag{4.19}$$

où a_4 est la constante intervenant dans l'hypothèse (3.4) de croissance sur le hessien de g_1 .

Preuve. - On reprend l'inégalité (4.17)

$$|\mathbf{D}^2 v|_{\gamma} \le \frac{k}{a_5} |\mathbf{L}_0 v|_{\gamma}$$

Lo peut s'écrire

$$L_0 v = \sum (a_{ij}(x_0) - a_{ij}(x)) D_{ij} v + \sum a_{ij}(x) D_{ij} v$$

d'où

$$\big| \operatorname{L}_0 v \big|_{\mathsf{Y}} \leq 2 \sum \big| \operatorname{a}_{ij} \big|_{\scriptscriptstyle \infty} \big| \operatorname{D}_{ij} v \big|_{\mathsf{Y}} + \big| \sum \operatorname{a}_{ij} \operatorname{D}_{ij} v \big|_{\mathsf{Y}}.$$

Mais avec l'hypothèse (3.4)

$$\left| a_{ij} \right|_{\infty} = \left| \frac{\partial^2 g_1}{\partial x_i \, \partial x_j} (\mathbf{D} u_q) \right|_{\infty} \leq \left| \mathbf{D}^2 g_1 (\mathbf{D} u_q) \right|_{\infty} \leq a_4 \left| \mathbf{D} u_q \right|_{\infty}^{p-2}$$

ce qui entraîne avec (4.17)

$$\left| D^2 v \right|_{\gamma} \le \frac{k}{a_s} \left(2 a_4 \left| D u_q \right|_{\infty}^{p-2} \left| D^2 v \right|_{\gamma} + \left| \sum a_{ij} D_{ij} v \right|_{\gamma} \right)$$

soit

$$\left(1 - \frac{2a_4k}{a_5} \left| Du_q \right|_{\infty}^{p-2} \right) \left| D^2 v \right|_{\gamma} \leq \frac{k}{a_5} \left| \sum a_{ij} D_{ij} v \right|_{\gamma}$$

si on impose

$$1 - \frac{2a_4k}{a_5} \left| Du_q \right|_{\infty}^{p-2} \ge 1/2$$

c'est-à-dire

$$|\operatorname{D} u_q|_{\infty}^{p-2} \leq \frac{a_5}{4a_4 k}$$

alors

$$\left| D^2 v \right|_{\gamma} \le \frac{2k}{a_5} \left| \sum a_{ij} D_{ij} v \right|_{\gamma} \quad \blacksquare$$

Proposition 4.6. – Si Du_q vérifie (4.19) alors il existe une constante c_6 (N, γ , Ω , a_4 , a_5) telle que

$$\left| \mathbf{D}^{2} u_{q} \right|_{Y} \leq c_{6} \left(\left| \operatorname{div} q \right|_{Y} + \left| \frac{\partial h}{\partial u} (x, u_{q}) \right|_{Y} + \left| \mathbf{D} u_{q} \right|_{\infty}^{p-2} \left(\left| \mathbf{D} u_{q} \right|_{Y} + \left| u_{q} \right|_{Y} \right) \right). \tag{4.20}$$

Preuve. – Étape 1. – On démontre la proposition pour tout ouvert Ω' strictement inclus dans Ω .

On se donne R > 0 et vérifiant

$$R < dist(\Omega', \partial\Omega)$$

et soit φ une fonction régulière, à support dans la boule $B_R(x_0)$, $x_0 \in \Omega'$, telle que :

- (i) $0 \le \varphi \le 1$;
- (ii) $\varphi = 1$ dans la boule $B_{R/2}(x_0)$;

(iii)
$$\varphi = 0$$
 pour $|x| \ge \frac{3 R}{4}$;

$$(iv) \ \big| D\phi \big|_{\infty} \leqq \frac{8}{R} \ \text{et} \ \big| D^2 \phi \big|_{\infty} \leqq \frac{64}{R^2}.$$

Dans (4.18) on choisit $v = \varphi u_q$, il vient, si on note $\left| \cdot \right|_{B_R}$ la norme L^{γ} dans la boule B_R

$$|\mathbf{D}^{2} u_{q}|_{\mathbf{B}_{\mathbf{R}/2}} \le \frac{2k}{a_{5}} \sum |\varphi a_{ij} \mathbf{D}_{ij} u_{q} + 2 a_{ij} \mathbf{D}_{i} \varphi \mathbf{D}_{j} u_{q} + a_{ij} u_{q} \mathbf{D}_{ij} \varphi|_{\mathbf{B}_{\mathbf{R}}}$$

soit encore

$$\begin{split} \left| D^2 u_q \right|_{\mathsf{B}_{\mathsf{R}/2}} & \leq \frac{2k}{a_5} \left(\left| \operatorname{div} q + \frac{\partial h}{\partial u}(x, u_q) \right|_{\mathsf{B}_{\mathsf{R}}} \right. \\ & + \frac{16}{\mathsf{R}} \sum |a_{ij}|_{\infty} \left| D_j u_q \right|_{\mathsf{B}_{\mathsf{R}}} + \frac{128}{\mathsf{R}^2} \sum |a_{ij}|_{\infty} |u_q|_{\mathsf{B}_{\mathsf{R}}} \right). \end{split}$$

Mais

$$|a_{ij}|_{\infty} \le |D^2 g_1(Du_q)|_{\infty} \le a_4 |Du_q|_{\infty}^{p-2}$$

d'où

 $|\mathbf{D}^2 u_q|_{\mathbf{B}_{\mathbf{R}/2}}$

$$\leq k' \left(\left| \operatorname{div} q + \frac{\partial h}{\partial u}(x, u_q) \right|_{\mathbf{B}_{\mathbf{R}}} + \left| \mathbf{D} u_q \right|_{\infty}^{p-2} \left(\left| \mathbf{D} u_q \right|_{\mathbf{B}_{\mathbf{r}}} + \left| u_q \right|_{\mathbf{B}_{\mathbf{R}}} \right) \right)$$
(4.21)

οù

$$k' = \frac{2k}{a_5} \operatorname{Max} \left(1, \frac{16 a_4}{R}, \frac{128}{R^2} \operatorname{N} a_4 \right).$$

On obtient l'estimation désirée sur Ω' en recouvrant ce dernier par un nombre fini de boules de rayons R/2.

Étape 2. – En procédant par cartes locales, on démontre que l'estimation précédente est vraie jusqu'au bord.

Puisque $\partial\Omega$ est supposée régulière, pour tout $x_0\in\partial\Omega$ il existe un voisinage $N(x_0)$ et un difféomorphisme ψ de N sur la boule unité B de \mathbb{R}^N tel que

$$\psi(N \cap \Omega) \subseteq \mathbb{R}^{N}_{+}$$
 et $\psi(N \cap \partial\Omega) \subseteq \partial \mathbb{R}^{N}_{+}$

Écrivant $y = \psi(x)$, $u'_q(y) = u_q(x)$, $x \in \mathbb{N}$, $y \in \mathbb{B}$ l'équation (4.14) peut s'écrire sous la forme

$$L' u_q' = \sum a_{ij}' \frac{\partial^2 u_q'}{\partial y_i \partial y_j} = f'$$

οù

$$a'_{ij}(y) = \sum_{ij} \frac{\partial \psi_i}{\partial x_i} \frac{\partial \psi_j}{\partial x_i} a_{rs}(x)$$
 et $f'(y) = f(x)$.

En procédant comme dans la première étape avec la demi-boule $B_R^+(0) \subseteq B$ à la place de la boule $B_R(x_0)$ on obtient une inégalité du type (4.21), et, en sommant sur les cartes locales on démontre la relation cherchée : il existe une constante $c_6(N, \gamma, \Omega, a_4, a_5)$ telle que

$$\left| \mathbf{D}^2 u_q \right|_{\mathbf{Y}} \leq c_6 \left(\left| \operatorname{div} q \right|_{\mathbf{Y}} + \left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\mathbf{Y}} + \left| \mathbf{D} u_q \right|_{\mathbf{X}}^{p-2} \left(\left| \mathbf{D} u_q \right|_{\mathbf{Y}} + \left| u_q \right|_{\mathbf{Y}} \right) \right).$$

On remarquera que la dépendance de c_6 par rapport au domaine Ω est présente par les cartes locales décrivant $\partial\Omega$ et par le nombre de boules nécessaires pour recouvrir Ω .

5. EXISTENCE D'UNE SOLUTION POUR LE PROBLÈME **QUASILINÉAIRE**

Nous allons démontrer dans ce paragraphe l'existence d'une solution pour le problème

$$-\operatorname{div}\left(\operatorname{D}\left(g_{1}-g_{2}\right)\left(\operatorname{D}u\right)\right)+\frac{\partial h}{\partial u}\left(x, u\right)=0$$

$$u \in W_{0}^{1, p}\left(\Omega\right)$$
(5.1)

Pour cela on associe à (5.1) la famille de problèmes aux limites

$$-\operatorname{div}\left(\operatorname{D}g_{1}\left(\operatorname{D}u_{q}\right)\right) + \frac{\partial h}{\partial u}\left(x, u_{q}\right) + \operatorname{div}q = 0$$

$$u \in \mathbf{W}_{0}^{1, p}(\Omega)$$
(5.2)

οù

$$q \in \mathbf{E} = \left\{ q \in \mathbf{L}^{p'}(\Omega)^{\mathsf{N}}, \operatorname{div} q \in \mathbf{L}^{\gamma}(\Omega) / |q|_{p'} \le \mathbf{M}_1 \text{ et } |\operatorname{div} q|_{\gamma} \le \mathbf{M}_2 \right\}$$

avec

$$\gamma \ge \operatorname{Sup}(N(N+1)/2, p')$$

et où M₁ et M₂ sont des constantes qui seront précisées plus loin.

Nous avons démontré dans les sections précédentes l'existence et l'unicité de u_a , sa régularité $W^{2,\gamma}$, ainsi que certaines estimations a priori pour u_a , Du_a , et D^2u_a . Soit maintenant l'application

T:
$$q \to Dg_2(Du_q)$$
.

Si cette application admet un point fixe q_0 alors u_{q_0} est une solution de (5.1).

Outre les hypothèses H1, H2 et H3 sur g_1 et h on suppose H4. (i) $g_2: \mathbb{R}^N \to \mathbb{R}$ est strictement convexe et de classe \mathbb{C}^2 .

(ii) Il existe des constantes a_6 , a_7 , $a_8 > 0$ telles que pour tout t dans \mathbb{R}^N

$$\begin{aligned} |Dg_{2}(t)| &\leq a_{6} + a_{7} |t|^{s-1} \\ |D^{2}g_{2}(t)| &\leq a_{8} |t|^{s-2} \\ 2 &< s < p. \end{aligned}$$
 (5.3)

$$|D^2 g_2(t)| \le a_8 |t|^{s-2}$$
 (5.4)

$$2 < s < p. \tag{5.5}$$

L'existence d'un point fixe pour T nécessite plusieurs calculs préliminaires.

LEMME 5.1. - Sous les hypothèses précédentes il existe une constante M_1 telle que

$$|q|_{p'} \leq M_1$$

entraîne

$$\left| \operatorname{D} g_2(\operatorname{D} u_q) \right|_{p'} \leq \operatorname{M}_1.$$

Preuve. - Avec l'hypothèse (5.3)

$$\left| \operatorname{D} g_2(\operatorname{D} u_a) \right| \leq a_6 + a_7 \left| \operatorname{D} u_a \right|^{s-1}$$

d'où

$$|\operatorname{D} g_2(\operatorname{D} u_q)|_{p'} \le a_6 (\operatorname{mes} \Omega)^{1/p'} + a_7 |\operatorname{D} u_q|_{(s-1)|p'}^{s-1}$$

Mais

$$L^p(\Omega) \subset L^{(s-1)p'}$$
 si $2 \le s < p$

et donc

$$|\operatorname{D} g_2(\operatorname{D} u_q)|_{p'} \le a_6 (\operatorname{mes} \Omega)^{1/p'} + a_7 (\operatorname{mes} \Omega)^{(p-1)/p} |\operatorname{D} u_q|_p^{s-1}.$$
 (5.6)

Il reste à borner $|Du_q|_p$ en fonction de $|q|_{p'}$. Pour cela on utilise l'inégalité définissant u_q

$$\int_{\Omega} \left(g_1 \left(\mathbf{D} u_q \right) - q \, \mathbf{D} u_q + h \left(x, \, u_q \right) \right) dx \le \int_{\Omega} \left(g_1 \left(\mathbf{D} v \right) - q \, \mathbf{D} v + h \left(x, \, v \right) \right) dx$$

on fait v = 0, il vient avec (3.2)

$$a_1 | Du_q |_p^p + \int_{\Omega} (h(x, u_q) - h(x, 0)) dx \le |q|_{p'} | Du_q |_p$$

mais grâce à la convexité de h(x, .)

$$h(x, u_q) - h(x, 0) \ge u_q \frac{\partial h}{\partial u}(x, 0)$$

ď'où

$$a_1 | \mathbf{D} u_q |_p^p \le |q|_{p'} | \mathbf{D} u_q |_p + |u_q|_p \left| \frac{\partial h}{\partial u}(x, 0) \right|$$

or avec l'inégalité de Poincaré

$$|u_q|_p \le (\operatorname{mes}\Omega)^{1/N} w_N^{-1} |\operatorname{D} u_q|_p$$

ce qui entraîne

$$\left| \left| \mathbf{D} u_q \right|_p \le \left(\frac{1}{a_1} \left(\left| q \right|_{p'} + \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'} (\operatorname{mes} \Omega)^{1/\mathbf{N}} w_{\mathbf{N}}^{-1} \right) \right)^{1/(p-1)}$$

et finalement avec (5.6)

$$|Dg_2(Du_a)| \le d_1 + d_2 |q|_{p'}^{(s-1)/(p-1)}$$

οù

$$d_1 = a_6 \; (\text{mes }\Omega)^{1/p'}$$

$$+ a_7 \left(\operatorname{mes} \Omega \right)^{(s-1)/((p-1)N) + ((p-s)/p)} w_N^{(1-s)/(p-1)} \left| \frac{\partial h}{\partial u} (x, 0) \right|_{p'}^{(s-1)/(p-1)}$$

$$d_2 = \frac{a_7 \left(\operatorname{mes} \Omega \right)^{(p-s)/p}}{a_1^{(s-1)/(p-1)}}.$$

Si $|q|_{p'} \le M_1$, pour obtenir $|Dg_2(Du_q)|_{p'} \le M_1$ il suffit de choisir M_1 tel que

$$d_1 + d_2 M_1^{(s-1)/(p-1)} \leq M_1$$

c'est-à-dire

$$\frac{d_1}{M_1} + d_2 M_1^{((s-1)/(p-1))-1} \le 1$$

ce qui est toujours possible si M_1 est suffisamment grand puisque grâce à l'hypothèse (5.5)

$$\frac{s-1}{n-1} - 1 < 0$$

Le choix de M_2 est plus délicat, il nécessite les estimations a priori établies précédemment. Nous devons trouver M_2 tel que

$$|\operatorname{div} q|_{\gamma} \leq M_2$$

entraîne

$$\left|\operatorname{div}\left(\operatorname{D}g_{2}\left(\operatorname{D}u_{q}\right)\right)\right|_{\gamma}\leq \operatorname{M}_{2}.$$

Lemme 5.2. — Si Du_q vérifie (4.19) alors il existe des constantes c_7 , c_8 , c_9 dépendant de la mesure de Ω telles que

$$\begin{aligned} \left| \operatorname{div} \left(\operatorname{D} g_{2} \left(\operatorname{D} u_{q} \right) \right) \right|_{\gamma} & \leq c_{6} a_{8} \left| \operatorname{D} u_{q} \right|_{\gamma}^{s-2} \left(\left| \operatorname{div} q \right|_{\gamma} + c_{7} + c_{8} \left| \operatorname{D} u_{q} \right|_{\infty}^{r-1} + c_{9} \left| \operatorname{D} u_{q} \right|_{\infty}^{p-1} \right). \end{aligned} (5.7)$$

Preuve. – On a vu précédemment que $u_q \in W^{2, \gamma}(\Omega)$, ainsi

$$\operatorname{div}\left(\operatorname{D} g_{2}\left(\operatorname{D} u_{q}\right)\right) = \sum \frac{\partial^{2} u_{q}}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} g_{2}}{\partial t_{i} \partial t_{j}} \left(\operatorname{D} u_{q}\right)$$

d'où

$$\left|\operatorname{div}\left(\operatorname{D} g_{2}\left(\operatorname{D} u_{q}\right)\right)\right|_{\gamma} \leq \left|\operatorname{D}^{2} u_{q}\right|_{\gamma} \left|\operatorname{D}^{2} g_{2}\left(\operatorname{D} u_{q}\right)\right|_{\infty}$$

soit encore avec l'hypothèse (5.4)

$$\left|\operatorname{div}\left(\operatorname{D}g_{2}\left(\operatorname{D}u_{q}\right)\right)\right|_{\gamma} \leq a_{8} \left|\operatorname{D}u_{q}\right|_{\infty}^{s-2} \left|\operatorname{D}^{2}u_{q}\right|_{\gamma}.$$

Si Du_q vérifie (4.19) alors l'estimation (4.20) sur $D^2 u_q$ entraîne $|\operatorname{div}(Dg_2(Du_q))|_{\gamma}$

$$\leq c_6 a_8 \left| Du_q \right|_{\infty}^{s-2} \left(\left| \operatorname{div} q \right|_{\gamma} + \left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} + \left| Du_q \right|_{\infty}^{p-2} \left(\left| Du_q \right|_{\gamma} + \left| u_q \right|_{\gamma} \right) \right) \quad (5.8)$$

or avec l'hypothèse (3.6) de croissance pour $\frac{\partial h}{\partial u}(x, .)$

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\mathbf{v}} \le b_1 + b_2 \left| u_q \right|^{r-1}$$

donc, avec l'inégalité de Poincaré

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} \le b_1 (\text{mes } \Omega)^{1/\gamma} + b_2 \left| u_q \right|_{(r-1)\gamma}^{r-1}$$

i.e.

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} \leq b_1 (\operatorname{mes} \Omega)^{1/\gamma} + b_2 (\operatorname{mes} \Omega)^{(r-1)/N} w_N^{(1-r)/N} \left| Du_q \right|_{(r-1)\gamma}^{r-1}$$

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} \leq b_1 (\operatorname{mes} \Omega)^{1/\gamma} + b_2 (\operatorname{mes} \Omega)^{(r-1)/N} w_N^{(1-r)/N} (\operatorname{mes} \Omega)^{1/\gamma} \left| Du_q \right|_{\infty}^{r-1}$$
(5.9)

D'autre part

$$|u_{q}|_{\gamma} \le (\text{mes }\Omega)^{1/N} w_{N}^{-1/N} |Du_{q}|_{\gamma} \le (\text{mes }\Omega)^{1/N+1/\gamma} w_{N}^{-1/N} |Du_{q}|_{\infty}. \quad (5.10)$$

Avec (5.9) et (5.10) on déduit de (5.8)

$$\begin{aligned} \left| \operatorname{div} \left(\operatorname{D} g_{2} \left(\operatorname{D} u_{q} \right) \right) \right|_{\gamma} & \leq c_{6} \, a_{8} \, \left| \operatorname{D} u_{q} \right|_{\infty}^{s-2} \left(\left| \operatorname{div} q \right|_{\gamma} + c_{7} + c_{8} \, \left| \operatorname{D} u_{q} \right|_{\infty}^{r-1} + c_{9} \, \left| \operatorname{D} u_{q} \right|_{\infty}^{p-1} \right) \end{aligned}$$

οù

$$c_7 = b_1 (\text{mes } \Omega)^{1/\gamma}$$

$$c_8 = b_2 (\text{mes } \Omega)^{1/N + 1/\gamma} w_N^{-1/N}$$

$$c_9 = (\text{mes } \Omega)^{1/\gamma} + (\text{mes } \Omega)^{1/N + 1/\gamma} w_N^{-1/N} \quad \blacksquare$$

Lemme 5.3. — Il existe des constantes $c_3(\Omega), c_4(\Omega), c_{10}(\Omega), c_{11}(\Omega)$ telles que

$$|\operatorname{D} u_{q}|_{\infty} \leq c_{10} + c_{3} |\operatorname{div} q|_{\gamma} + c_{4} \left| \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma} + c_{11} \left(|\operatorname{div} q|_{\gamma}^{(r-1)/(p-1)} + \left| \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma}^{(r-1)/(p-1)} \right). \tag{5.11}$$

Preuve. – Nous avons démontré dans la proposition 4.4 l'estimation

$$\left| \operatorname{D} u_q \right|_{\infty} \le c_3 \left| \operatorname{div} q \right|_{\gamma} + c_4 \left| \frac{\partial h}{\partial u} (x, 0) \right|_{\gamma} + c_5 \left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma}$$

or avec (3.6)

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} \leq b_1 + b_2 |u_q|^{r-1}$$

ďoù

$$\left| \frac{\partial h}{\partial u} (x, u_q) \right|_{\gamma} \le b_1 (\text{mes } \Omega)^{1/\gamma} + b_2 (\text{mes } \Omega)^{1/\gamma} \left| u_q \right|_{\infty}^{r-1}$$

mais nous avons également démontré l'estimation L^{∞} pour u_q (estimation 4.3)

$$|u_q|_{\infty} \le c_2 \left(|\operatorname{div} q|_{p'} + \left| \frac{\partial h}{\partial u}(x, 0) \right|^{p'} \right)^{p'/p}$$

soit

$$|u_q|_{\infty} \le c_2 (\operatorname{mes} \Omega)^{1/p'-1/\gamma} \left(|\operatorname{div} q|_{\gamma}^{p'/p} + \left| \frac{\partial h}{\partial u}(x, 0) \right|_{\gamma}^{p'/p} \right)$$

ce qui entraîne

$$\begin{split} \left| \frac{\partial h}{\partial u} \left(x, \, u_q \right) \right|_{\gamma} & \leq b_1 \, (\text{mes } \Omega)^{1/\gamma} \\ & + b_2 \, c_2^{r-1} \, (\text{mes } \Omega)^{\mathsf{v}} \bigg(\left| \operatorname{div} q \, \right|_{\gamma}^{(r-1) \, p'/p} + \left| \frac{\partial h}{\partial u} \left(x, \, 0 \right) \right|_{\gamma}^{(r-1) \, p'/p} \bigg) \end{split}$$

avec $v = \frac{1}{\gamma} + \frac{(r-1)(\gamma - p')}{\gamma p'}$ d'où l'estimation finale en remarquant que $p' = \frac{p}{r-1}$

$$\begin{split} \big| \operatorname{D} u_q \big|_{\infty} & \leq c_{10} + c_3 \, \big| \operatorname{div} q \big|_{\gamma} + c_4 \, \left| \frac{\partial h}{\partial u}(x, \, 0) \right|_{\gamma} \\ & + c_{11} \left(\big| \operatorname{div} q \big|_{\gamma}^{(r-1)/(p-1)} + \left| \frac{\partial h}{\partial u}(x, \, 0) \right|^{(r-1)/(p-1)} \right) \end{split}$$

où

$$c_{10} = c_5 b_1 (\text{mes }\Omega)^{1/\gamma}$$

 $c_{11} = c_5 b_2 c_2^{r-1} (\text{mes }\Omega)^{\nu}$.

Les constantes c_3 , c_4 , c_5 étant celles intervenant dans la proposition 4.4, c_2 étant définie par (4.4).

Le choix de la constante M_2 découle des inégalités (4.19), (5.7), et (5.11). Ce choix n'est pas unique et il semble difficile de déterminer une valeur optimale. En tous cas il apparaît clairement que la détermination de M_2 est liée à la taille de Ω . La proposition suivante établit que $M_2 = 1$ convient si Ω est assez petit.

Proposition 5.4. – Si le diamètre de Ω est suffisamment petit, alors

$$|\operatorname{div} q|_{\gamma} \leq 1$$

entraîne

$$\left|\operatorname{div}\left(\operatorname{D}g_{2}\left(\operatorname{D}u_{q}\right)\right)\right|_{\gamma}\leq1.$$

Preuve. - On pose

$$H = \left| \frac{\partial h}{\partial u}(x, 0) \right|$$

$$K = \left(\frac{a_5}{4 a_4 k} \right)^{1/(p-2)}.$$

Avec les inégalités (4.19), (5.7) et (5.11) il suffit d'imposer

$$|Du_a|_{\infty} \leq F \leq K$$

avec F vérifiant

$$c_6 a_8 F^{s-2} (1 + c_7 + c_8 F^{r-1} + c_9 F^{p-1}) \le 1$$
 (5.13)

ainsi que l'inégalité

$$c_{10} + c_3 + c_4 H + c_{11} (1 + H^{(r-1)/(p-1)}) \le F$$
 (5.14)

(5.13) est satisfaite si F est assez petit et (5.14) est vérifiée si le diamètre de Ω est également suffisamment petit puisque les constantes c_{10} , c_{3} , c_{4} et c_{11} dépendent explicitement du diamètre de Ω (ou de son volume).

Ainsi, avec le lemme 5.1 et la proposition 5.4 l'application

T:
$$q \rightarrow Dg_2(Du_q)$$

vérifie

$$T(E) \subset E$$
.

Proposition 5.5. — Sous les hypothèses H1 à H4 et si Ω est suffisamment petit, l'application T admet un point fixe.

Preuve. - Si

$$E = \{ q \in L^{p'}(\Omega)^{N}, \operatorname{div} q \in L^{\gamma}(\Omega) / |q|_{p'} \leq M_{1}, |\operatorname{div} q|_{\gamma} \leq 1 \}$$

où M_1 est définie dans le lemme 5.1 et où $\gamma > \operatorname{Sup}\left(\frac{N(N+1)}{2}, p'\right)$ alors

E est un convexe fermé de $L^{p'}(\Omega)^N$ et $T(E) \subset E$. Pour appliquer le théorème du point fixe de Schauder il suffit de démontrer que T est continue et compacte.

Étape 1 : T est compacte. $-u_q$ est l'unique solution du problème

$$\operatorname{Inf}\left\{\int_{\Omega}\left(g_{1}\left(\operatorname{D}v\right)+\operatorname{div}qv+h\left(x,\,v\right)\right)dx,\,v\in\operatorname{W}_{0}^{1,\,p}\left(\Omega\right)\right\}.$$

Soit $q_n \in E$ tel que $q_n \to q_0$ et div $q_n \to \operatorname{div} q_0$ respectivement dans $L^{p'}(\Omega)^N$ faible et $L^{\gamma}(\Omega)$ faible. On note u_{q_n} la solution du problème précédent avec

 $q = q_n$. Alors

$$\int_{\Omega} (g_1(\mathrm{D}u_{q_n}) + \operatorname{div} q_n u_n + h(x, u_n) dx \le \int_{\Omega} (g_1(\mathrm{D}v) + \operatorname{div} q_n v + h(x, v)) dx$$

pour tout $v \in W_0^{1, p}(\Omega)$.

Les estimations précédentes montrent que Du_{q_n} est bornée dans $W_0^{1,p}(\Omega)$; il existe une sous-suite, notée encore u_{q_n} et il existe u_0 tels que

$$u_{a_n} \to u_0$$
 fort

et

$$Du_{q_n} \to Du_0$$
 faible.

Par passage à la limite, il vient

$$\int_{\Omega} (g_1(Du_0) + \operatorname{div} q_0 u_0 + h(x, u_0)) dx \le \int_{\Omega} (g_1(Dv) + \operatorname{div} q_0 v + h(x, v)) dx.$$

Grâce à l'unicité de la solution de problème

$$u_0 = u_{q_0}$$
.

Montrons la convergence forte.

 u_{q_n} et u_{q_0} vérifient respectivement

$$-\operatorname{div}(\operatorname{D}g_{1}(\operatorname{D}u_{q_{n}})) + \operatorname{div}q_{n} + \frac{\partial h}{\partial u}(x, u_{q_{n}}) = 0$$

$$-\operatorname{div}(\operatorname{D}g_{1}(\operatorname{D}u_{q_{0}})) + \operatorname{div}q_{0} + \frac{\partial h}{\partial u}(x, u_{q_{0}}) = 0.$$

On retranche ces deux inégalités et on multiplie la différence par $u_{q_n} - u_{q_0}$

$$\begin{split} \int_{\Omega} \left(\operatorname{D}g_{1} \left(\operatorname{D}u_{q_{n}} \right) - \operatorname{D}g_{1} \left(\operatorname{D}u_{q_{0}} \right) \right) \left(\operatorname{D}u_{q_{n}} - \operatorname{D}u_{q_{0}} \right) dx \\ &= \int_{\Omega} \left(\operatorname{div} q_{n} - \operatorname{div} q_{0} \right) dx \\ &+ \int_{\Omega} \left(\frac{\partial h}{\partial u} (x, u_{q_{n}}) - \frac{\partial h}{\partial u} (x, u_{q_{0}}) \right) \left(u_{q_{n}} - u_{q_{0}} \right) dx \end{split}$$

l'hypothèse de forte ellipticité sur g_1 entraîne

$$(Dg_1(Du_{q_n}) - Dg_1(Du_{q_0}))(Du_{q_n} - Du_{q_0}) \ge a_5 |Du_{q_n} - Du_q|^2$$

et donc

$$\begin{split} a_5 & \left| \operatorname{D} u_{q_n} - \operatorname{D} u_{q_0} \right|^2 \leq \int_{\Omega} (\operatorname{div} q_n - \operatorname{div} q_0) \left(u_{q_n} - u_{q_0} \right) dx \\ & + \int_{\Omega} \left(\frac{\partial h}{\partial u} (x, u_{q_n}) - \frac{\partial h}{\partial u} (x, u_{q_0}) \right) \left(u_{q_n} - u_{q_0} \right) dx. \end{split}$$

Vol. 8, n° 1-1991.

Puisque div q_n tend faiblement vers div q_0 et que u_{q_n} tend fortement vers u_{q_0} , le membre de droite de cette dernière inégalité tend vers 0, d'où

$$\mathrm{D} u_{q_n} \to \mathrm{D} u_{q_0}$$
 dans $\mathrm{L}^2(\Omega)^\mathrm{N}$ fort et donc dans $\mathrm{L}^{p'}(\Omega)^\mathrm{N}$ fort $\mathrm{T}(q_n) = \mathrm{D} g_2(\mathrm{D} u_{q_n})$ tend vers $\mathrm{T}(q_0) = \mathrm{D} g_2(\mathrm{D} u_{q_0})$ dans $\mathrm{L}^{p'}(\Omega)^\mathrm{N}$ fort, d'où

T est compacte.

On aura noté que c'est dans cette démonstration que se justifie l'hypothèse: div q appartient à un borné de $L^{\gamma}(\Omega)$, sinon aucune autre information ne permettrait le passage à la limite dans l'intégrale

$$\int_{\Omega} (\operatorname{div} q_{n} - \operatorname{div} q_{0}) (u_{q_{n}} - u_{q_{0}}) dx.$$

Étape 2 : T est continue. — Ce point ne soulève aucune difficulté compte tenu de l'unicité de u_{q_0} . La démonstration est analogue à celle de l'Étape 1.

T est continue et compacte, il existe donc, d'après le thérème du point fixe de Schauder, $q_0 \in E$ tel que

$$T(q_0) = q_0$$

c'est-à-dire

$$Dg_2(Du_{q_0}) = q_0$$

Cette dernière proposition nous permet de conclure et de prouver l'existence d'une solution pour le problème (1.2) formulé dans l'introduction.

Théorème 5.6. — Sous les hypothèses H1 à H4, il existe un ouvert borné Ω_0 tel que le problème

$$-\operatorname{div}\left(\operatorname{D}g_{1}\left(\operatorname{D}u\right)-\operatorname{D}g_{2}\left(\operatorname{D}u\right)\right)+\frac{\partial h}{\partial u}\left(x,\,u\right)=0\quad\text{p. p. }x\in\Omega$$

$$u\in\operatorname{W}_{0}^{1,\,p}\left(\Omega\right)$$

admette au moins une solution pour tout ouvert $\Omega \subset \Omega_0$, uniformément convexe et de classe $C^{1,\,1}$.

Commentaires. -1. Il est à remarquer que notre procédé de construction, conduit à l'existence d'une solution possédant la régularité $W^{2,\gamma} \cap C^{1,1}$. On peut se poser la question du lien de cette solution avec le problème du calcul des variations associé. Ceci demeure une question ouverte.

2. L'hypothèse $g = g_1 - g_2$ où g_i strictement convexe semble nouvelle et justifie le travail développé dans ce papier. Les hypothèses H1 à H4 sont classiques dans le cadre des équations aux dérivées partielles du second ordre quasi linéaires. Par contre l'hypothèse « Ω assez petit » est plus

contraignante et il serait intéressant de voir si, avec une autre méthode, elle ne pourrait pas être relaxée.

BIBLIOGRAPHIE

- [1] GILBARG-TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer Verlag, 1983.
- [2] LADYZENSKAYA-URALCEVA, Équations aux Dérivées Partielles du Type Elliptique, Dunod, Paris, 1968.
- [3] MORREY Jr, Multiple Integrals in the Calculus of Variations, Springer Verlag, 1966.
- [4] Webb, Boundary Value Problems for Stongly non Linear Elliptic Equations, J. London Math. Soc., vol. 2, 1980.
- [5] BOCCARDO-MURAT-PUEL, Résultats d'Existence pour Certains Problèmes Quasilinéaires, Ann. Sci. Norm. Sup. Pisa, vol. 11, 1984.
- [6] BOCCARDO-MURAT-PUEL, Quelques Propriétés des Opérateurs Elliptiques Quasilinéaires, C.R. Acad. Sci. Paris, t. 307, série I, 1988.
- [7] Aubert-Tahraoui, Théorèmes d'Existence pour des Problèmes du Calcul des Variations..., J.D.E., vol. 33, n° 1, 1979.
- [8] AUBERT-TAHRAOUI, Sur Quelques Résultats d'Existence en Optimisation Non Convexe, *Appl. Anal.*, vol. 18, 1984.
- [9] RAYMOND, Théorème d'Existence pour des Problèmes Variationnels non Convexes, Proc. R. Soc. Edinburgh, Sect. A, vol. 107, 1987.
- [10] MASCOLO-SCHIANCHI, Existence Theorems for non Convex Problems, J. Math. Pures Appl., vol. 62, 1983.
- [11] MASCOLO-SCHIANCHI, Non Convex Problems of the Calculus of Variations, Non Linear Anal., vol. 9, n° 4, 1985.
- [12] HARTMAN, On functions Representable as a Difference of Convex Functions, Pac. J. Math., vol. 9, 1959.
- [13] STAMPACCHIA, On some Regular Multiple Integral Problems in the Calculus of Variations, Comm. Pure Appl. Math., vol. 16, 1963.
- [14] HARTMAN-STAMPACCHIA, On some Non Linear Elliptic Differential Functional Equations, Acta Math., vol. 115, 1966.
- [15] AGMON-DOUGLIS-NIREMBERG, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, Comm. Pure Appl. Math., vol. 12, 1959.

(Manuscrit reçu le 4 septembre 1989.)