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ABSTRACT. - We construct a class of topologically non-trivial surfaces
with singularities, immersed in (~3, with gauss curvature K= 1.
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RESUME. - On construit une classe de surfaces dans 1~3, presentant des
singularités, topologiquement non triviales, dont la courbure gaussienne
est constante et positive.

We will construct a class of surfaces ~ immersed into U~3 with Gauss
curvature K = 1. Such a surface ~ is strictly convex near any point locally

. 
but not necessarily globally convex. The surfaces shall be topologically
not trivial; therefore they will have singularities, namely a finite set of
branch points pl, ... , pk. This assumption is reasonable since a regular
manifold with handles in ~3 cannot have positive curvature in all points.
The notion of Gauss curvature of ~ is intrinsic, but it can be defined as
well by means of the second fundamental form; then K = det II/det I. This
extrinsic definition of K shall be adopted here.
For example, if iF denotes a 2-leaf cover of S2 c 1R3 with two simple

branch points in the poles, the Gauss curvature of K can be defined as
K -1 in all points of~. But since iF is topologically trivial and area
(iF)= 8 «, whereas area (S2) = 4 ~c, we conclude from the Gauss-Bonnet
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theorem that each branch point should carry a Dirac measure of curvature
multiplied with ( - 2 ~c). More generally ~ will denote a 2-leaf cover of
S2 with (2 g + 2) simple branch points. Then we can understand iF
as some concrete Riemann surface, if we use a classical notion (cf. [1]).
The singularities of iF again are branch points, and these singularities are
fairly weak.
The result not only shows an example surface, but we prove an existence

theorem for solutions of a boundary value problem giving surfaces with
Gauss curvature K = 1. Namely we look at the Dirichlet problem for the
equation K = 1 in the space of sections of the normal bundle of S2 or
of ff. This equation is of Monge-Ampere type and the boundary value
problem could be solved. The branch points have to be respected, where
the equation K = 1 always is singular. We did calculate the commutator
of the degenerating metric on ~ with the linearization of the curvature K
in order to obtain a Fredholm operator on the sections in the normal
bundle of ~ using elliptic regularity.
Our approach is a local one and uses complex analysis. To see how far

away from S2 the constructed surfaces could be, one may need sub- or
supersolutions. In a subsequent paper we will prove a similar result for
the equation K --_ 1 and surfaces iF of dimension 3, with H2 (, Z) being
quite nontrivial. In that case the commutator has less regularity [5].
The present paper was written during a visit to the Australian National

University in Canberra. I would like thank the University of Canberra
and the Mathematical Research Center for their hospitality.

1. MULTIPLIERS IN A HOLDER SPACE

If the metric of a manifold degenerates, where we want to control its
curvature, we need a continuity theorem for unbounded multipliers.

LEMMA 1. - Let I: =[0, 
If we denote

and define T ( f) (t) : = ~ f(t), then T : (I) - C~ (I) is bounded.
t

Proof - We havef(t)= and ] f (r) | ~ M . 03C403B1, since f is Hölder

continuous. Then if 0  s  t  I , we have
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3SURFACES OF CONSTANT CURVATURE

since

The function of s and t in the bracket is homogeneous and does not
change if we replace (s, t) by for ~, > o. So we can assume
0st=1.

The function g (s) : = + s°‘ + 1 ( 1- s) 1- °‘ is continuous for 0  s  1
( 1- s)°‘

~ 

as well as for s-0 and for s ~ l. It has a maximum n*. Now

N : = n* . M gives the lemma 1.
a+ 1 "

If U c is a ball around 0 E and if for smooth functions f : 
we define a vector

denoting the k-jet of f at zero, then we denote

LEMMA 2. - For N = 2 the mapping defined by

(T f) (u) : = 1 |u|. f(u) for any U E U, is well defined and continuous.

Proof - We will imitate the following technique obtaining Lipschitz
bounds for functions h in 2 variables.

If

and

hold for any (xl, x2), (yl, Y2) in a rectangle in f~2, then these two estimates
imply a Lipschitz bound for h by the triangle inequality.
The same holds in polar coordinates too. Here h is Lipschitz on U c ~2,

if

and
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holds for all points (zo, and (rl, in a disk around zero.
This argument shall be used for Holder norms. We may fix a unit

vector î in f~2.
Then and i = 1: . i, o, we use lemma 1 obtaining

We have to estimate f along circles around 0. In this case ~ =r,
and the size of the angle between s and t is equivalent to the distance
between s and t. Therefore

Since |s-t|~2||s|, |f(t) r-f(s) r|~M. |s-t|03B1 is also true.
Since we know in R2  C that T o the distance

~2014~j ] is equivalent to ~T2014o)+ ’201420142014 we can add up the

inequalities above to prove lemma 2 in a way which is analogous to that
for Lipschitz bounds given above.

Remark. - It is not difficult to generalize from N = 2 to arbitrary N.

THEOREM 1. 2014 7/* U is a ball around zero in R2 and T/(M) : =1 |u|f(u)
and T2f(u):=1 |u|2f(u), then the mappings T:C1+03B1[1](U) ~ C03B1(U) and

TZ: (U) -~ C~ (U) are both continuous.

Proof - Lemma 2 implies the first estimate. Therefore we only have
to check that T maps also which can easily be done.
The theorem is now useful for estimates of elliptic equations with

degenerate coefficients.

2. GAUSS CURVATURE OF SECTIONS IN THE NORMAL
BUNDLE ON A SPHERE

We assume U : = {(M~ M~) E 0  ~  1}. S~ denotes the 2-sphere in
!R~ is a regular mapping. On the set V=x(U), we have a
metric With any smooth function

/?:U-~~, we get a section in the normal bundle N onV, namely
Z (u) : =/? (M). ~ (M), and we may define a surface in [R~.
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LEMMA 1. - The first fundamental form of  is

with

and

If po -1, then det I (po) = det 
We follow the notation and formulas of [3].

LEMMA 2. - The second fundamental form of iX is

with

and

If po - 1, then det II (po) = det 

Remark. - The Gauss curvature of  is here

Here we must assume, that x (U) = V c S~ has a conformal structure,
and that the metric has a singularity at u=0. We assume

e.. , ( u ))) E 0 (u) E(M)/ ) and where 11 is smooth and

11 (0) = 1 and 11 does not vanish. Such a map x can easily be constructed
as the inverse image under stereographic projection from f~2 into S2
starting with the mapping (ul, u2) - (ui - u2, 2 Ul u2) of onto itself.
Then the surface is a double cover of SZ around the

pole p E S. It is obvious that 0 at the pole p has also Gauss curvature
K= 1. We will, therefore, restrict ourselves to perturbations of p0~1 such

is small enough and q = E . p. Then K(p)=K(1Z)
has value 1 at u = (0, 0). First we should look at the leading term of the
Gauss curvature, defining

THEOREM
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Proof - We simply write the determinant as a A -vector product.

For simplicity we may first assume that E (u) = 
Then we get the commutators

and

_ " , 
- 

~J .~ ..

The functions are smooth and bounded E I  const. | E 1/2.
In summation, we conclude from theorem l, that

and

After adding all terms up, assuming -, we obtain the estimate
stated in the theorem.

COROLLARY 1. - If we split M (p) into three terms, all three have to be
p, of order 0, 1 cr 2, we get:

then we have the estimate

COROLLARY 2. - If p E and p =1 + E p, then the Gauss curvature
K ( p) of the surface p (u) . x (u) is

THEOREM 3. - The mapping M is differentiable on the ball
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Proof. - The inequality ~P~c 2 +« _ - 2 1 excludes the possibility that the
denominator vanishes for u ~ 0. The multiplier 
acts differentiably on B, and its derivative is

Analogously, we derive from p =1 + E p the formula

Here B)/ collects all terms of the function where p, but

not its derivatives, are linearized along (E a). But the continuity of the
linear operator can be proved, if each multiplier on
C~ (U) has a uniform estimate, and if the effect of the denominator E2
can be cancelled out against E. The argument of theorem 2

applies, and here too the terms of M are bounded just as we proved
above.

COROLLARY. - The mapping K ( 1 + E p) = K (p) is differentiable on the
ball B.

Proof.

and

and by construction

Now we use the same estimates as before and apply theorem 1.
We check for 

We define = AE and it will denote the leading term of ~.

This is a mapping K : (B) - C°‘ (B).
If we restrict the source space, defining
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then K is continuous and injective onto its range W c C« (IJ). It has a
formal inverse L: = E -1 AE, and L maps W again onto C~2~ « (LJ).
THEOREM 4. - On the space C2 +« (G), a linear projection II exists with

finite corank, such that II ~ ~ : Cex (U) -> C2 bounded.

Proof - If we assume E = E (u) = lull, it is particularly easy to see that
the commutator [E, A]=EA-AE is a compact operator from 
into C« (IJ), namely [A, E] cp = (2 u . ~ + 2) cp. This implies

mapping into ~2 + « (IJ), and [E, 0 -1 is again a compact operator.
But now we can apply theorem 1 to see that cp -~ E -1 [E, ~ - ~] cp is
bounded for any cp E C" (0) if (A - 2 (p) = 0 and ] (v a - 2 (p) = 0. This
second condition, however, follows from the first. Quite formally we get

If we now choose a projector P, which projects simultaneously C2 +°‘ (IJ)
onto C~2~ °‘ (IJ), and ~4 + °‘ (U) onto ~~2~ °‘ (U), then and

are bounded on C°"(U). If P~ denotes the comple-
ment projector P~: = 1 2014 P, then, for any the functions

and are meromorphic in a certain finite
dimensional space, but this does not exclude that their sum could even be

regular. Thus, we need a projection II of finite corank such that II P = II;
and and vanish for all 
Then

is bounded from into since all possible unbounded terms
equal 0. If we consider more generally E (u) _ ~ u ~ 2 . ~ (u), ~(0)==1, ~
smooth, we have a similar formula too for [A, E], and the argument
remains unchanged. ,

COROLLARY 1. - The mapping II ~ ~ ~ K (p) is differentiable on the ball
B. Always Kl (p) = K (1 + E p) always equals K (1 + E p).

Proof. - Clearly the mapping p  K (1 + E p) from B into is

bounded and differentiable with uniformly bounded derivatives. By defini-
tion then II ~ ~ : C" (IJ) -~ ~2 +« (0) is linear and bounded. This implies the
statement.

COROLLARY 2. - The mapping is

injective and a Fredholm operator.
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Proof . - That fl~ is bounded, follows from theorem 2. It is injective
and has a formal inverse

which is bounded if we restrict ~ using a projection of finite corank.
Therefore ~ must be a Fredholm operator.

LEMMA 3. - The mapping K = K ( p) satisfies at po ---1 the
det I ( p)

equations K (Po) -1 and K* |p0 [E 6] _ - 4 E 6 - K 03C3 for any 03C3 E (U).
Proof. - The computations are easy because the terms of M 1 (p) need

not be considered since they are quadratic in p just around po.

LEMMA 4. - A constant projection Q : C°‘ (LJ) -~ C°‘ (IJ) of finite corank
exists, such that is a surjective Fredholm operator from

(U) onto (IJ) for any p = 1 + E p, if p E (U) is sufficien tly
small.

Proof. - This is clear since the space of Fredholm operators is open
in the ring of bounded operators, and p0 [EJ is Fredholm operator
indeed.

Handling the corank of Q, we proceed as follows. We increase the
space (U) using a finite dimensional subspace in (O), such that
K* ~po is surjective on the larger space.

LEMMA 5 . - The mapping f14 = ~E maps (LJ) onto (U), if
the source space carries no restrictions for the boundary values on aU.

Proof. - If ~r is a monomial of degree r ->_ 3, then DE ~r is a monomial
of the same degree. Then 

If ~S is a monomial of degree s, then can be defined as a
monomial of degree (s + 4) and in (LJ). Then E -10 -1 E ~S is homogen-
eous of degree s + 2, and is in CS + 1 (U), and contained in C2 (U) if
s >_ 1. Since 1B (E2) = const. E, we have no problems with s=0, and any
monomial ~S must be in the range of (IJ) -~ C°‘ (LJ). Since the

range of K is closed, we see that K is surjective.

LEMMA 6. - There exists a finite dimensional subspace W0 ~ C2+03B1[2] (LJ)
such that 2+03B1[2](U)~W0 ~ C03B1(U) is surjective. There exists a finite
dimensional subspace W E (IJ) such that

is surjective as well.

Proof. - Since f!~ is a Fredholm operator, it is necessary that the
dimension of W is larger than or equal to the corank of f~.

Vol. 8, n° 1-1991.
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Since we see that is a compact
mapping from Both mappings l?~ and K* ~po have the
same corank on C~2~ °‘ (IJ), if there is no kernel of K* ~po E. If, however
K* ~po has a kernel on (U), we may simply increase the diameter
of U to circumvent the kernel by using perturbation arguments. Then we
get surjectivity on a larger ball and the former arguments given above
hold again. Lemma 5 implies the existence of such a space W.
The space W makes it possible to define a splitting of Y : = C2 + « (aU, ~),

namely into and some arbitrarily fixed complement
Y1 in Y. For any y ~ Y1 we define v = ext (y) such that v satisfies

and has boundary values But since K+4E
could have a kernel on (0), it may be necessary to fix a subspace
Y1cYl, such that ext (y) can be well defined for y E Y2.

PROPOSITION 1. - For any y* E Y2, f its norm I y* I is small, we can
easily construct W E Wand p E (LJ) such that

Therefore we can define a subspace Y c Y2 such that

if Y E Y. In this case 

Proof. - The mapping K~ is differentiable on the space (IJ) keep-
ing in mind that K (1 + E co) = K 1 
We have

and

By construction K1 * ~ o [ext (y*)] - 0.
Lemma 6 implies that o : is surjective and a

Fredholm operator.
The iteration procedure of the implicit function theorem has to start

with w = 0, and if the norm of ext (y*) is too large we may take instead
E* . ext (y*), E* E f~ +. The choice of w may not be unique, but we can fix a
differentiable section among these vectors, such that they depend smoothly
on y*.

THEOREM 5. - In the space of immersions of class of aU into I~3
near xo : ~U ~ S2 (winding around twice), there exists a finite codimensional
submanifold Y such that for any yEY there exists a solution F of the
nonstandard Plateau problem where F = F (y) satisfies K -1 and has as
boundary values the curve y and a branch point near the pole P of

(~3.
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Proof. - If y is some smooth section in the normal bundle of S2 along
xo (aU), the theorem follows from proposition 1.

Otherwise we simply have to redefine the set U such that xo maps U
onto the sphere S2 with the same pole but such that xo (aLJ) parametrizes
the curve y in both angular variables correctly. We only have to reparame-
trize y such and p is is near the value 1 in C2 +°‘ (aU, R).

Since we have never used the fact that au is a circle, all arguments
remain unchanged.

3. BRANCHED SURFACE WITH GAUSS CURVATURE =1

Let R denote a hyperelliptic Riemann surface of genus g.
S2 c R3 denote a fixed immersion of R into the sphere S2,

which is conformal, covers twice almost all points, and has (2 g + 2) simple
branch points.
We will denote them as ~ 1, ... , ~2g + 2 E ~ with dxo (~~) = 0 and

This notation generalizes the notation of section 2, where

ko : S2 had a source space of genus g= 0.
We fix a smooth embedding ~o : S 1 ~ ~ surrounding all branch points
in ~ with the exception of and define : = int (~), here denoting
the interior of 8, such that ~ is a manifold of genus g with boundary
b (S1). Then xo (~~ ) is an immersion of S1 into f~3 and bounds a surface
of genus g in 1R3 which has Gauss curvature 1 everywhere and (2 g + 1 )
branch points at P l, ..., P 19 + l. We may study surfaces near xo but again
with Gauss curvature 1. If u = (ul, U1) are local coordinates of ~ around
a branch point ~~, then xo induces a metric on ~, denoted again as
et~ (u) dui du’, as a pull back of the metric in f~3. Any surface near xo may
be parametrized as a section in the normal bundle N on xo (~) namely
_Z (u) = p (u) . _xo (u), and as such define a surface In local

coordinates, the first and the second fundamental form of  can be

computed as in section 2.
Now we can similarly use this notation further and define

For the computation of the 2-jet we use local coordinates u around

~~ and we see that (F) is a well defined finite codimensional subspace
of C2 +« (F). .

In local coordinates u around any ~~, we again may assume that the

metric tensor is diagonal and of the form E(M)/ ) and
where 11 is smooth and 11(0)=1. We will focus our
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interest on the surfaces where and
p E (F). As an immediate generalization of theorem 1, we get

PROPOSITION 2. - with then the Gauss curva-

ture of  is K()=K(p)=K(1+E03C1) and is in 

Proof. - That the Gauss curvature of  is in C03B1 is obvious outside
the branch points. Near the branch points, however, we can easily apply
the theorem 2, since the singular term of the metric is then cancelled out.
That the Gauss curvature equals 1 in the branch points is clear from

looking at the spherical image around ~~.

PROPOSITION

Ki (p) : = K (1 + E p) is a smooth mapping of B into C« (F). 
’

then 

if and E is the diagonal term of the metric in the local
coordinates.

Proof. - We do not need a general Laplace-Beltrami operator on ~ ,
since A is invariant under a change of conformal coordinates. Therefore
the explicit formulas can be read in theorem 3, because differentiation is
performed locally. We only have to check that the singular multiplier E -1
does not induce a weaker regularity than stated.

PROPOSITION 4. - The mapping K: = AE as a map of (U) (~ )
into Cex (ff) is injective and a Fredholm operator.

Proof. - K is a product of injective mappings on and has a
formal inverse section 2. As K was well defined with
values in on the subspace only, the inverse L is well
defined and bounded again on a space of finite codimension. But for
testing the Fredholm character of K, this is enough. We can apply
theorem 4.

Since we have defined the boundary a~ in k with a smooth embedding
we can now define a space Y (b) = Y as C2 +« (a, ~3), such

that yEY and p denotes the boundary values of
some i. e. Then we must study the Dirichlet
problem for y and the equation K (1 + E p) = K (p) -1 with boundary
values y.

LEMMA 7. - In Y(8), there exists a subspace Y1 (~) of finite codimension
such that for y = p . xo : a~ (~) -> f~3, there exists an extension
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Proof. - As in theorem 4, we see that

is an injective Fredholm operator.’ Since (~ ) p+ Y (b) is isomorphic
to we can see that or is solvable for

boundary values in a finite codimensional subspace of Y (b). But the
mapping K* ~po [E.] : (IJ) (~ ) --~ C°‘ (~ ) is only a compact perturbation
of This implies lemma 7.

- THEOREM 6. - There exists a submanifold (b) c Y (b) of finite codimen-
sion such that for any y E (~), ~ there exists an extension

e (y_) = p . xo E (~ ) such thatK p) - K ( 1 + E p) --_ 1 on ~ . There-
fore the surface has the property that its Gauss curvature is

identical to 1.

Proof. - The space (~) is such that xo (~), and its tangent
space (b) at xo equals Y* (~). For any y E Y* (~), we have by
definition With the same techniques as in

proposition l, we can again prove the surjectivity of

(~ ) ~ Ca (~ ). Namely for the equation

2g + 1

we use a partition of unity 1 = 03A3 03C6j on F and solve the equation
7=1

in local coordinates. We find a solution Vj in these
coordinates with domain of definition U~. Since we are only interested in
a surjectivity, we can take a smooth extension vanishing outside U~ on
~ . Since the mapping

is an isomorphismm from the complement of its kernel onto its range
C« (P), we can apply the iteration technique which proves the implicit
function theorem in Banach spaces. As a result the construction of the

higher order terms which change the space Y* (~) into the submanifold
(~) in Y (~).

If ro : Sl  S2 is an embedding of class C2 and r : S2 denotes
the double cover of ro, then we can fix g ? 0 arbitrarly and 2 g + 1 points
Pi, ... , P29 + 1 in the interior of ro. Together with one point P29 + 2 in the
exterior of ro we have marked all branch points of a hyperelliptic surface
J~ on S2. is a parametrization of J~ then f ""’ (int (I-’o)) = iF
is an open subset of r!Jl being a manifold with boundary of class C2 +« and
of genus g. Now we obtain

Vol. 8, n° 1-1991.
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THEOREM 7. - We fix an embedding r : S2 c (~3 with its double
cover I-’2 : S 1 -~ S2 c 1R3, and a Riemann surface ~ , being hyperelliptic and
having the boundary S1. Then we have a neighborhood ~h of r2 in

R3) and an open submanifold y ~ u of finite codimension, such
that any y ~ y extends to a surface (y) with boundary. This boundary
è2 (y) is parametrized by y, ~ (y) has (2 g + 1 ) interior branch points, and
has Gauss curvature K -1.

Proof. - The open set U E C2 +« (Sl, ~3) can be defined such that any
z E U is the restriction of some ~3).
A mapping ~3) can be given as parametrized in polar is

coordinate (r, d) of f~ 3, where is the radial variable, and
d=d(z)ES1 are the two angular variables. We can reparametrize the
surface z such that (r (z), d(z)) can be written as (p (ul, u2), ul, u2), where
r = r (u) denotes the radial function and the variables u = (u 1, u2) are the
trivial angular variables on S2. In fact the variable u can be pulled back
from S2 onto ~ using xo ", and then u defines also a local variable on

In this way we can easily obtain a situation which was treated in
theorem 6. We find a finite codimensional submanifold in ~3)
such that for any y E (8) the Dirichlet problem of the equation K (p) = 1
can be solved for functions 1R3) and with boundary values y,
obtained from by reparametrization. Then the surface 2 (y), which
is parametrized by ( p (u), u), has Gauss curvature K (~) = K (y) -1 and
its boundary è2 (y) is parametrized by y given before.

Remark l. - For simplicity only we did start above with some curve
r1:Sl Sl, being the double cover of an embedding r:sl Sl, such
that r~ bounds a realization 2 (r) of a hyperelliptic surface ~ with
boundary, immersed into S2 and having 2 g + 1 branch points, which are
fixed. Many other immersions r different from r2 admit a similar exten-
sion to a hyperelliptic surface ~ with simple branch points.

Remark 2. - The codimension co of ~J c ~ can easily estimated, since
it depends only on the number of branch points. co could coincide with
the number of abelian differentials on ~, or co could even vanish similar
to the situation for minimal surfaces with H - 0 ([2] and [4]).

Remark 3. - In order to get not only one solution ~ (y) with K --_ 1
for the Plateau problem with boundary we need a transversal
intersection of some manifolds {yj}j ~ J, representing surface of different
branch points, such that any curve in this intersection must have I J ]
different solutions with K - 1, comparable to the result of [2].
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