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ABSTRACT. - Consider (area minimizing) soap bubbles (i. e. surfaces of
constant mean curvature) spanning a Jordan curve r in ~3. We show that
they converge to infinitely large minimal surfaces spanning r as their
volumes approach infinity.

RESUME. - On considere des bulles de savon (i. e. des surfaces de
courbure moyenne constante) a bord d’une courbe Jordan rclR3. Nous
demontrons qu’ils convergent vers des surfaces minimales infiniment larges
a bord r si leur volume tend vers l’infini.

Mots clés : Surfaces de courbure moyenne constante.

1. INTRODUCTION

In order to find soap bubbles (i. e. surfaces of constant mean curvature)
spanning an oriented, rectifiable Jordan curve r in ~3, one minimizes
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area (or the Dirichlet energy) under a volume constraint. Let
and

Hr = { u E H~ (D, [R3) n C° (D, f1~3):

u~ aD is a weakly monotonic representation of r}.
For u E H2 (Q, f~3), Qee one defines the Dirichlet energy

the area

and the oriented volume

We also use the notation E (u, Q’) : = E (u~ for Q’ c SZ.
The following solution of the volume constrained Plateau problem is due

to H. Wente [23] (the immersion property was established in [19]).
EXISTENCE THEOREM. - Let V be a given constant and

Then there exists in an element which minimizes the Dirichlet energy
and area. The mapping u~ D is a real analytic conformal immersion of
constant mean curvature. [Such a u will called a "minimizer of volume V"
(spanning 1,).]

In 1980 Wente [23] established

SOAP BUBBLE THEOREM. - Let be a sequence of oriented rectifiable
Jordan curves in R3 with 0 E and length (h’k) ~ 0 as k - ~. Let uk be

minimizers of volume 4 ~ spanning Then a subsequence of u (still
3

denoted by uk) converges to a round sphere So of radius 1 and containing
the origin in the following sense: there exist radii r~ -~ oo and conformal
maps Drk  D such that cpk and their first derivatives converge to vo
and its first derivatives on any disk DR, where vo is a conformal representa-
tion of So with vo (oo) = 0. (A more general study in this direction was later
on taken by Brezis and Coron [3].)

Formulated in another way, this theorem says that for a fixed r
minimizers uv of volume V become more and more spherical as V -~ o0
in the sense that after suitable rescaling u~ converge to round spheres.

In this paper we are concerned with the following question raised by
Wente: if we do not rescale u~, can we get infinitely large minimal surfaces
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61LARGE SOAP BUBBLES WITH A FIXED BOUNDARY

spanning r in the limit? Or: if we blow larger and larger soap bubbles
with a fixed boundary, can we get an "infinitely large soap bubble" ?
We prove.

MAIN THEOREM. - Let uk be a sequence of minimizers of volume V k  o0
spanning r, which satisfy the classical three point condition of the Plateau
problem [4]. Then a subsequence of uk (still denoted by converges to

an infinitely large minimal surface u spanning r. More precisely, we have
(D* ~ - DB~ ~ ~~ D* ~ = DrB{ ~ ~)~

A. (properties of u).
1. u E H2 (DBDr) for every r > 0, u|~D parametrizes r topo-

logically and is a real analytic conformal minimal immersion;
2. lim I u (z) == oo, lim n (z) exists, where n denotes a continuous unit

normal of u;
3. for some is an embedding of finite total Gaussian curvature

and u (D*) is a graph over a plane;
4. u minimizes area under constant volume constraint (for precise mean-

ing see Proposition 2. 2).
B. (Convergence of uk) There is a conformal transformation D ~ D

such that

1. converge to u uniformly on and strongly in

H2 for earch r > o;
2. uk  cp converge to u locally smoothly in D*;
3. if r is a regular Jordan curve of class for some l >_ 1 and

ae(0, 1), then Uk 0 cp also converge to u in the Cl norm on for each
r>O.

We remark that this theorem also provides a resolution of the exterior
Plateau problem: find a minimal surface spanning r, which has the confor-
mal type of the punctured disk and stretches out to infinity. This problem
has been solved in [21] ] by employing a sequence of expanding minimal
annuli, where one additionally prescribes the asymptotical normal at infin-
ity. In the present paper we encounter the same analytical difficulty as in
[21], i. e. we have to deal with sequences of mappings whose Dirichlet
energies approach infinity. This kind of difficulty seems to be new, and
we hope that our arguments (in this paper and in [21]) can be useful to
other problems also. We note that the situation in the present paper is
more complicated than in [21]. One major reason is that the size of a
minimal surface is well-controlled by its boundary via the maximum

principle or isoperimetric inequality whereas in general this is not the case
for surfaces of nonzero mean curvature. This presents additional difficulties
for estimating the area of certain subsets of our soap bubbles. We appeal
to the monotonicity formula for area, Wente’s Soap Bubble Theorem, his
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diameter estimate for soap bubbles in [23] and Heinz’ isoperimetric
inequality for "small" surfaces of constant mean curvature [10].
An additional remark: the Main Theorem of this paper is a counterpart

to Wente’s Soap Bubble Theorem, but a subtlety should be recognized.
The round sphere limit of the rescaled bubbles disappears at infinity
during the convergence of the unscaled bubbles uv as V -~ oo, while the
minimal surface limit of the unscaled bubbles shrinks to a point during
the rescaled convergence. Thus the two theorems capture different parts
of the expanding soap bubbles in the limit.
We are indebted to H. Wente for introducing us to the subject and

stimulating discussions. This work was done at Heidelberg University and
Ruhr University, Bochum, we are grateful to F. Tomi, J. Jost and SFB 237
for kind supports. (The author was also partially supported by an NSF
grant.) We thank the referee for pointing out a gap in the original
manuscript.

2. CONVERGENCE OF MINIMIZERS OF LARGE VOLUME

We fix a least area disk uo spanning r and define ao = A (uo),
Vo = V (uo). Put do = diam r, lo = length (r), a (V)=inf {E (u) : u E Hr, v ~
and

~f (V) = { H : H is the mean curvature
of some minimizer u of volume V spanning r}.

Here the sign of H is determined by the equation ~u = 2 The

mean curvature of u will be denoted by H (u). We assume w. 1. o. g. that
OEr.

LEMMA 2.1. - We have

1. for all V E IR:

2. for all V E IR and H ~ H (V):

We refer to [17] for a proof. This lemma says that the area and mean
curvature of a minimizer of volume V approximately equal those of a
round sphere of the same volume if V is large.
For a continuous mapping u defined on a closed plane domain whose

boundary contains S 1: = aD we define Q (u, p) = (BP), SZo (u, p) = the
connected component of S~ in Q (u, p), where 
We shall abbreviate E (u, Q (u, p)) to Ep (u).
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63LARGE SOAP BUBBLES WITH A FIXED BOUNDARY

We also define S~o (u, p) to be the annulus bounded by S 1 and the
outside boundary of Qo (u, p), provided that Qo (u, p) is .a bounded C~
domain contained in CBD. Thus, Q$ (u, p) is obtained from 00 (u, p) by
filling in holes between the inside and outside boundaries of Qo (u, p).
E: (u) will stand for E (u, Q$ (u, p)).

In the sequel we only treat minimizers of positive volumes, since negative

volumes merely involve a switch in orientation. Let so E ( 0, 2014) be the
number satisfying 1 1-~20 e2 Eo = 6 . Put Ro = max d 

2 d° l° 

/

y 
E o 5 

° 

~ B 7T /J -

LEMMA 2. 2. - There exists Ro > Eo 1 Ro such that 
’

for all P E (Ro, Eo R), whenever u is a minimizer of volume -1t R 3 with

R > ko.

Proof - Assume the contrary. Then there are minimizers 03C5k of volume

x R) with Rk ~ oJ and radii 03C1k e (Ro, so such that
3

We apply the Soab Bubble Theorem to to obtain
R~

or

Hence by Lemma 2. 1
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On the other hand, the monotonicity formula for area [16] implies for
r 1 and p>do

where Hk = H (uk) and ds denotes the arclength element in the metric

induced by vk. But f ds  length (r) as r -~ 1 by [ 10], hence we obtain
aDr

Multiplying (2. 3) by e’ and then integrating it yield

for 

But Lemma 2.1 implies

Choosing p = Eo Rk in (2. 4) we deduce on account of (2 . 2) and (2. 5)

if Rk is large enough and a>Ro. Applying this to a= 03C1k we get a
contradiction to (2 . I).

Q.E.D.
The following lemma is an easy corollary of Wente’s Soap Bubble

Theorem.

LEMMA 2 . 3. - There exists a number Ro > ko such that the following is
true. For each minimizer u of volume 4 3 03C0 R3 with R ~ R0, there is a smooth,

simply connected domain 03A9~ such that ujq, is an embedding and

E (u, Q) > 31 8 03C0 R2. Moreover, there is a round sphere So of radius I and

containing the origin, such that the embedded surface  u (fi) is within
R

Annales de l’Institut Henri Poincaré - Analyse non linéaire



65LARGE SOAP BUBBLES WITH A FIXED BOUNDARY

distance from the spherical cap S0BB1/100 in the C1 sence. We shall
1 ,000

call o a sphere domain for u. We choose zo e o such that  u (zo) is a
R

closest point on  u (fi) to the north pole of So (the origin is thought of as
R

the south pole of so). We call zo a north pole of u.

For each minimizer u of volume no less than 03C0 Rg, we define a
3

nomalization for u to be a conformal transformation 03C6 : D - D such that 03C6

maps the origin to a north pole of u. If the origin is itself a north pole
of u, then we say that u is normalized..

For a map u : D - R3, we define û:B ~ R3 via ti (z) = u(1 z).
LEMMA 2.4. Let u be a normalized minimizer of volume

4 3 x R3 (R > Ro). Then

provided that 03C1~(R0,1 2 ~0 R) and P? 2 p are both regular values of the

Since M is normalized, the assumption about p implies that
Q~ (M, p) and Q$ (M, 2 p) are well-defined annuli with common inside

boundary S1. Consider z0 ~ ~03A9*0 (û, 03C1)BS1 such that

dist (z,, 2 p)BS’)=~: =dist (~ p)BSB ~ (~ 2 p)B~).
Set

and

If r >_ 1, we are done. Otherwise, by the Courant-Lebesgue lemma [4] there
exists r 1 E (r, Jr ) such that

Since rl  1 and ~03A9*0 (M, ~03A9*0 (M, 2 surround Sl, we can
find an arc in a’ Drl (zo) connecting ~03A9*0 (u, and ~03A9*0 (u, 2 
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Hence

Then the desired inequality follows from (2. 6) and Lemma 2. 2.
Q.E.D.

A word about the strategy of our arguments: in order to estimate the
Dirichlet energy of ti on compact regions, we look at certain "good"
regions on which the Dirichlet energy of ti is under control and try to
show that these regions exhaust the whole domain of ti. Now the region
S2o (M, p) have the exhausting property by the above lemma, and
Lemma 2. 2 provides an estimate of the Dirichlet energy of ti on the

subregions Qo (M, p). SZo (M, (M, p) is the union of several disk type

domains, we call their images under the inversion disks.
z

It remains to control the Dirichlet energy of u on these disks. Let L (u)
denote the 1-dimensional Hausdorff measure of the set u -1 (aBp) in the
metric induced by u. Note that for a regular value p > do of I u I, Lp (u) is
just the length of the curve u|~03A9 (u, 03C1)BS1).

LEMMA 2. 5. - There is a positive constant c > 0 such that

whenever u is a normalized minimizer of volume 4 303C0 R3 with R > Ro and
p e Ro, ~° R is a regular value of ] u ] satisfying~ l ,000 ~
Proof - We claim that there is a constant R 1 >_- FZ° such that the

following is true. If u is a normalized minimized of volume 4 ~ 3 R~ with
and p E (Ro, 2014~2014 R is a regular value of then

- B~ 1, 000

whenever z lies in a p-bubble disk. For later use we note that (2.9) also

holds on for provided that R~R2 for some
1,000 

-

R2. This is a direct consequence of Lemma 2 . 1. We may assume R 1 >_ R2.
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67LARGE SOAP BUBBLES WITH A FIXED BOUNDARY

Whenever the above claim is established, the desired energy estimate

(2.7) follows immediately. In fact, we deduce from (2.9) and Heinz’
isoperimetric inequality [10] that

for each p-bubble disk Q’. Hence

which together with Lemma 2 . 2 implies (2. 7). (This covers all R >_ R1.
But (2. 7) is automatic for Re[Ro, R1] ] on account of Lemma 2 .1, if we
choose c suitably.)
Now we prove the claim. Consider a sphere domain Q for u given by

Lemma 2. 3. Since u is normalized, it is readily seen that Q must contain
the origin; in particular, Q is not a p-bubble disk. Since

_ 2014~2014 R _ 1 R and the distance of u (Q) from the origin is at leastp_ 
1,000 

_ 

1,000 
~ ) g

1 R, it follows that Q is disjoint from the p-bubble disks. Hence
200
Lemma 2.1 and Lemma 2. 4 imply for any p-bubble disk Q’

provided that R is large enough in comparison with ao and Vo. According
to Theorem 4 .1 in [23] we have for z E S2’

Combining (2 .10), (2 .11 ) with Lemma 2 .1 then yields the estimate (2. 9),
provided that R is large enough in comparison with ao, do, lo and Vo.

Q.E.D.

LEMMA 2. 6. - There is a constant c > 0 such that

for any normalized minimized u o.f’ orbitrary volume and r E (o, 1).

Proof. - In view of Lemma 2 .1 we only need to consider minimizers u

of volume no less than 4 ~ R3. We first observe

for p > 0 and some universal constant c > o. One shows this by writing
p = 2m + s for a natural number m and s E (0,2), applying Lemma 2. 3 to
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radii 2k, k  m and summing up. (We actually apply Lemma 2. 3 to regular
values of I û which approximate the radii 2k.) The desired estimate follows
from (2 .13) and Lemma 2.5, because for any the coarea formula
and Lemma 2. 2 imply

and hence for a regular value p E [p’/2, p’] of I u ] the condition (2. 8) is
satisfied.

Q.E.D.

We fix once for all three distinct points zl, z2, z3 E S1 and three distinct
points pl, p2, Recall the classical three point condition for u E Hr: u
maps ( zl, z2, z3 } bijectively to { p1, p2, p3 } . (We do not specify which
zi is mapped to which p~, because we need to switch orientation to treat
negative volumes, see the comment preceeding Lemma 2. 2). We define

_ ~P : ~P is a normalization for a minimizer of volume - >_ 4 ~ R3
which satisfies the three point condition .

(R1 was defined in the proof of Lemma 2. 5.)

LEMMA 2 . 7. - ~ is compact in the topology.
We defer the proof till the end of this section. Now we are in a position

to show the convergence of minimizers with volume blowing up.

PROPOSITION 2. 1. - Let vk be a sequence of minimizers of volume vk -~ o0
spanning r, which satisfy the three point condition. Then there are a

subsequence of vk (still denoted by a conformal diffeomorphism cp : D -~ D
and a map u E C° (D*, I~3) (~ C°° (ID*, f~3) such that

1. The mappings cp converge to u uniformly on and

strongly in H2 for each r E (0, 1), uk also converge to u locally
smoothly in TD* ; moreover, if r is a regular Jordan curve of class for
some l >-1 and a E (0, 1), then uk converge to u in the Cl norm on D r

for each r E (o,1 ) ;
2. u~ S1 parametrizes r topologically and u~ D* is a conformal branched

minimal immersion ;

Proof - We may assume that all v have volume ~4 303C0 R31. For each
vk we choose a normalization By Lemma 2. 7 we may assume by
passing to a subsequence that cpk converge to a conformal diffeomorphism
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cp : D -~ D. Then the energy estimate (2.12) holds for uk = vk ° cp, possibly
with a different constant c. By passing to a subsequence we deduce that
uk converge to a map Me n H2 weakly in H2 for

or1 i

each rE(O,I). To show the uniform convergence of uk away from the
origin, we first observe that the three point condition and the energy
estimate (2 .12) imply that S1 are equicontinuous, cf. [4]. Since uk satisfy

the equation 0394uk = 2 H auk A auk and we have the estimate (2.9), we
ax ay

can then apply Theorem 4.1 and Theorem 4 . 3 in [11] ] to conclude that
are equicontinuous for each fixed re(0,1). The desired uniform

convergence follows.

Once the equicontinuity is established, the local smooth convergence is
standard. For the additional Cl convergence on we refer to [20].

Taking limit in the equations 
auk 

yields ~u = 0, hence
ax ay

u has zero mean curvature (u is conformal since so are That u|S1
parameterizes r topologically is standard. The estimate 3 follows from

Lemma 2. 2.

We finally show the strong convergence of uk in H2 (D B Dr) for r E (0, 1 ).
Passing to a subsequence we may assume that lim E D B D1~2) exists.

k -i 00

It suffices to show lim E D B D 1 ~2). For large k we
k - 00

can connect uk I D1/2 with 1/2 along ~D1/2 by a (parameterized) thin
strip of area Ek - 0 and volume ~k - 0 to obtain a map uk defined on D.
Then

In order to achieve V (uk) = V (uk) we modify uk in the following way. First
observe that by the weak and uniform convergence of uk we have

lim V B D1~2) = V (u~ D B D1~2), cf. Theorem 2 . 3 in [20]. Now fix k and
k -~ 00

choose a point Choose an oriented round sphere S near
whose volume is roughly V (uk ~ D B D1~2) - V (y D B D1~2) - bk~ cut a

small disk S’ from S and a small disk Dp(z) c D1~2 B ~ 0 } from D, and
then connect S "’- St with (z) along a (S B S’) and aD p (z) by a thin
tube T. The resulting map will be denoted by uk. For suitable choice of S,
S’, r and T we can make sure that and 

with as koo. It follows that Hence
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A D1~2~ - A B D1~2~ + Ek > 0. Taking limit yields

Q.E.D.
We shall call u a "limit minimal surface" (spanning r).

PROPOSITION 2 . 2. - Let u be a limit minimal surface spanning r. Then
u minimizes area under constant volume constraint in the following sense:
if v E n H2 (D B Dr), v E C° (D*, R3), 03C5| s is a weakly monotonic repre-

or1 1

sentation of r and v~ Dr B ~ o ~ = u’ Dr B ~ V D B Dr) = V (u~ D B Dr) for some
r E (0,1), 

It follows from a classical argument of R. Osserman ([14], [6]) that u
has no true branch points in the interior, L e. for each z E ID*, u maps a
neighborhood of z onto an embedded surface.

Proof of the Proposition. - Let uk ~ u be as in Proposition 2 . 1. For
large k we connect with v~ along aDr by a thin strip of area
Ek - 0 and volume bk - 0 to obtain a map uk defined on D. Then

By the same argument as in the last part of the proof of Proposition 2.1
we can modify uk to obtain a suitable comparison map uk. Taking litpit in
the inequality A (uk) >_ (uk) yields A (VI D B Dr) >_- A (u~ D B D).

Q.E.D.

Proof of Lemma 2.7. - Consider the three chosen points zl, z2, z3 on
S 1. It suffices to show dist (cp -1 (z~)) > 0 for each pair i, j, i ~ j.
Assume the contrary, say we have a sequence of minimizers a

normalization cpk for each uk such that dist(03C6-1k (z 1 ), 03C6-1k (z2)) ~ 0 as

k - oo . Then the boundary values k|S1 of are not equiconti-
nuous. But the convergence argument in the proof of Proposition 2. 1 for
the sequence uk applies to Uk here and shows that S1 are equicontinuous.

Q.E.D.

3. THE ASYMPTOTICAL BEHAVIOR OF LIMIT MINIMAL
SURFACES

We fix a limit minimal surface u and a sequence uk ~ u as in

Proposition 2.1.

LEMMA 3 . 1. - Qo (û, p) is a bounded subset of C for every p > 0. On the
other hand, dist (0, ~03A90 (u, p) B S1) >_ clog p for some constant c > 0.
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Proof. - We first show Qo(û, Otherwise, u would have
finite Dirichlet energy by Proposition 2.1. Hence the origin is a removable
singularity of u. In particular, and u has finite volume. More-

over, using the Courant-Lebesgue lemma we can find radii rl - 0 and
positive numbers E, - 0 such that

Then

on Drl whenever for some kl depending on I. Henceforth we only
consider for each I. Let vk be the harmonic extension of uk|Drl to

Drl. Then 

and

Hence, if we define on and on then

Now we apply the isoperimetric inequality [18] to get

Choose an oriented round sphere S of volume (we sup-
press the dependence of S on k, /). Then by (3 . 1) 

~

In order to correct the volume of uk, we are going to "attach" S to it.
Consider a disk Dr (z) c such that is an embedding. Then
u (Dr (z)) contains a graph G defined over a plane disk Qp of radius p > 0
and contained in the cylinder c p2) for some c > o. While
keeping c fixed we shall determine p later on. By the convergence of uk
towards u, there is some ko such that if k _> ko, then is also an

embedding and for some Qk c Dr (z), uk is a graph Gk over QP with
Gk c Zp.
For fixed I, observe
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for k large enough. But V (Uk) -~+00, thus S has volume > 3 ~ (say) for
4

large k. We translate S so that it touches the center p of the top of Zp
from above. Here we assume that the normal of uk points upwards. (For
later applications we remark that, if S had negative volume, then we
should bring S to the bottom of Zp.) Denote by So the spherical cap of S
lying over Qp and centered at p, and by G~ the region of the cylinder
Qp x (~ 1 lying between So und Gk. We replace So U Gk by G~ and use

S ~So and Gk to construct a new map D ~ (~3. Easy compu-
tations show

Now we fix an I with O (p4).
Then

Since the volume of S has a uniform positive lower bound, we can modify
it to make the volume equal while the area of uk increases at
most by O (p4). Hence A  A (uk), provided that p has been chosen
small enough (independent of k, /). This contradicts the minimizing prop-
erty of uk, however.
Next we assume that ~20 (û, p) is unbounded for some p and let p’ > p

be a regular value for the function u I2. Then Q~ (û, p’) is also unbounded.
The maximum principle, the implicit function theorem and the fact

imply that ~03A90 (u, p’) B S 1 consist of properly embed-
ded analytic curves running to infinity in both directions such that each
compact subset of C meets only finitely many of them. By the Courant-
Lebesgue lemma and Proposition 2 .1, 3, we can find arbitrarily small

circles around the origin such that 
no (u, 03C1’)|~u ~03B8|

d03B8 and hence

d03B8 also become arbitrarily small. Choosing r small

enough we can achieve that C1/r meets ~03A90 (u, p’) B S 1 at least once. Then
it follows that any component of p’) has a boundary point
on Hence u ~2 differs arbitrarily little from (p’)2 on

(~ p’). Consequently I u (2 > p2 on the outside boundary of

00 (u, p’) ~1 D1lr for a suitably chosen r.
This implies contradicting the assumption about

Qo (û, p). Hence Qo (û, p) is bounded.
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Finally the estimate dist(0, ~03A90 (u, p) B S 1 ) >_ clog p follows from (2. 7)
and a limit procedure, where we may assume that p is a regular value

Q.E.D.

COROLLARY 3 .1. - Let p > do be a regular value of u I2. Then SZo (u, p)
is an annulus and each component of SZ (u, p) B 03A90 (u, p) is a disk.

Proof. - The maximum principle implies that p) is an annulus
and each bounded component of aSZ (u, p) B aSZo (u, p) bounds a disk in
S2 (u, p). On the other hand, aSZ (u, p) has no unbounded component,
otherwise it would intersect aoo (û, p’) for some large p’ > p by the lemma.
The assersion follows.

Q.E.D.

LEMMA 3. 2. - For some ro E (0, 1), u~ Dro is a stable minimal immersion

of finite total Gaussian curvature. 
°

Proof. - Choose 0  R  r  1 such that u has no branch point along
the circles Cr, CR. Let zl, ..., zN be all branch points of u in 
with orders m 1, ... , ,mN. By the Gauss-Bonnet formula for branched
surfaces [13] we have

where K = the Gaussian curvature of u, d~ = the area form induced by u
and K~, ds denote the geodesic curvature and arclength element in the
metric induced by u respectively. Letting the superscript k indicate that a
geometric quantity is determined by uk, we have

Clearly

On the other hand, if then Hence by

Lemma 2.1, lim sup f. ~-~oo 
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We deduce

Letting R ~ + oo we conclude that K dro is finite and u has no branch
points on D*, for some r’ E (o,_ r). If the minimal immersion ul Dr, is stable,
we are done. Otherwise there is a test function cp with supp cp c D*, such
that the second variation of area ~~ is negative.

Choose ro E (0, r’) such that supp cp U D:o = 0. Then ul D;o is stable.
In fact, if this were wrong, we would be able to find B~ with

But then ( ~ ~ cp (2 + 2 K cp2) d~  0 for a linear combination (p of cp, B)/

with ~~ This contradicts the minimizing property of u

(Prop. 2. 2), cf [2].
Q.E.D.

The immersion uj Dro, considered as an immersed surface (an equivalenceclass of immersions as well as an oriented integral varifold in the sense
of [12]), will be denoted by E. According to Lemma 3.1, E is complete
away from its boundary aE ^-_~ uj 
By Proposition 2 .1, 3, E has quadratic area growth

Consider the contained in the unit ball Bi. It
P

follows from Theorem 3 . 6 . 3 in [12] that any sequence oo sub-
converges to an oriented integral 2-varifold 03A3~ which is supported in B11
and stationary in 0 ~ . Moreover (M means mass [12], [16])

in particular M (Y~)~ -7t.
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A standard cut-off function argument shows that is stationary in B 1.
The varifolds I:oo obtained in this fashion will be called asymptotic vari-
folds.

Let be an asymptotic varifold. The proof of Theorem 1.1 in [1] ]
implies that is a cone. Note that contrary to the situation in [1] ] we
have here aI:p cF ~B1. But this does not affect the argument, because the
length of converges to zero as p - oo . On the other hand, the
curvature estimates for stable minimal surfaces obtained by R. Schoen in
[15] and (3 . 2) imply that properly immersed minimal
surface. It follows that is a cone on the sum of finitely many great
circles in aB 1. By the area estimate (3. 2), E ~ must be a flat disk of

multiplicity 1.

Hence we can apply the results of L. Simon [17] to obtain.

LEMMA 3 . 3. - the unique asymptotic varifold and E p converges to
smoothly as 03C1 ~ ~. In particular, E for some Po>O is a graph

(of multiplicity 1) over the plane containing E~ and the unit normal of E
has an asymptotical limit at infinity.

This lemma, the next one and Lemma 3 .1 establish the asymptotic
behavior of u as stated in the Main Theorem.

LEMMA 3 . 4. - We have

1. if p > 0 is large enough, then SZ (u, p) = SZo (u, p) ;
2. if r > 0 is small enough, then u~ Dr is an embedding.

Proof. - 1. If p > po is large enough, then p is a regular value of I u 12
and image (u) n aBp is a smooth Jordan curve y according to Lemma 3.1,
3 . 2 and 3 . 3. Consequently, u maps the inside boundary of Qo (u, p) onto
y. If Q (u, p) has a component p), then u also maps aSZ onto y.
This contradicts the fact that E B Bpo is a graph (with multiplicity 1).

2. This follows from 1, Lemma 3 .1 and the fact that is an
embedded surface of multiplicity 1.

Q.E.D.
To give a complete proof of the Main Theorem, there only remains the

following last step.

PROPOSITION 3 . 1. - u is an immersion in the interior.

Proof. - Choose a regular value p > do of such that u is an

embedding on p). Recall that p) is a smooth
annulus region with outside boundary Sl. Assume that u has branch points
in M. According to [7] and the fact that u has no true branch points in the
interior (Prop. 2.2) there is an orientation preserving branched covering
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x : M -~ M’ together with a commutative diagram,

where the quotient space M’ is a compact and oriented surface possibly
with boundary and u’ is an immersion in M’ and continuous on M’.

Let L denote the inside boundary of M. Since u (L) is extreme

(u (L) c aBp and p > do) and ul L is an embedding, is a diffeomorphism
onto a boundary component L’ of M’. We distinguish between two cases.

Case 1. - aM’ has a second component.
In this case M’ is an annulus and 03C0 maps aM onto aM’. Hence the

generalized Riemann-Hurwitz formula [8] 
implies where On denotes the total branch order 
We arrive at a contradiction.

Case 2. - aM’ = L’.
Then M’ is a disk. The Jordan curve bounds a (closed) dis SZ 1

in 1VI’. Since x is an embedding along L, we have M, z) =1 for any
where Because L" must have preimage points in M,

we obtain deg (x, M, z) = 2 for all It follows that

Now we choose an orientation preserving diffcomorphism cp : _M --~ Q~ with
and define .u:D* -~ ~3, via 

Then a topological representation of r. Moreover,

Next we choose a smooth disk v : D B  ~ [R3 with 03C5|L = u|L and define vl,

[19] there is an integral 3-current I with aI = JVl - JV2 and

V (I) = V (v 1 ) - V (v 2), where J"i denotes the integral 2-current induced by
v; and V (I) is the oriented volume of I, defined as I (dx1 A dxl A dx3). By
the construction of vi , v2 and the fact about the degree of 7~~ we have

Hence the mass of aI, M (aI) satisfies

Note V (u~ 0, otherwise (3 . 3) and (3 . 4) would contradict the minimiz-
ing property of u. Let S be an oriented round sphere of volume V (I). The
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classical isoperimetric inequality [5], 4 . 5 . 9 (31), implies A (S) _- 2 A (u~ ~~).
Following the arguments in the proof of Lemma 3.1 we attach S to u|M
to make the volume of ul M equal to V (ul M) and its area strictly less than

We again arrive at a contradiction.
Q.E.D.

The above arguments and the techniques in [9] and [6] also give the
following additional information.

PROPOSITION 3.2. - u has no ramification point (cf. [18] for definition)
along Sl. If r is real analytic, then u is immersed up to boundary.
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