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ABSTRACT. - In this paper we study the problem of the existence of
geodesics in static space-tinies which are a particular case of Lorentz
manifolds. We prove multiplicity results about geodesics joining two given
events and about periodic trajectories having a prescribed period.
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RESUME. - Dans ce papier on etudie le probleme de l’existence de
géodésiques dans les espaces-temps statiques qui représentent un cas parti-
culier de varietes de Lorentz. On demontre ici des resultats de multiplicite
pour les geodesiques qui relient deux events fixes et pour les trajectoires
periodiques ayant une periode fixee.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let M0 be a connected n-dimensional manifold of class Ck (k >_ 3) and
set

Let ( ., . ) be a Ck (positive definite) Riemannian metric on M0 and P
be a positive, smooth scalar field on We set

that is

where Tp M0 denotes the tangent space to 9ERo at P. g is a Lorentz metric,
i. e. a pseudo-Riemannian metric with index 1.

The manifold T! equipped with the Lorentz metric g is called a static
spacetime (for many of the definitions given here we refer to [18] and its
references).

9J! is called complete if each geodesic y (s) (2) can be extended (in 9M)
for all real values of the affine path parameter s.

9K is called geodesically connected if given two events Qi, Q2 ~ M there
exists a geodesic y : [0,1] ] -~ KR such that

If y is a geodesic there exists a constant E~ such that

A geodesic y is called space-like, null or time-like if EY is respectively
greater, equal or less then zero.

y is called non degenerate if y(0) and y ( 1 ) are not conjugate points
(i. e. there does not exist a non-zero Jacobi field J along y which vanishes
for s=O and s =1 ).

If (P (s), t (s)) is a geodesic joining (PI, ti), since the metrice tensor g is
independent of t, (P (s), t (s) + i) is a geodesic joining (P 1, tl + i) and
(P2, t2 + i). Therefore the number of geodesics joining two events (Pi, t 1)
and t2) depends only on PI, P2 and t2 - .

We shall denote with

(2) We recall that y (s) is a geodesic if (s) = 0 for all s, where y (s) is the tangent vector
to y at y (s), and (s) is the covariant derivative of 03B3 (s) in the direction of y (s), with
respect the Lorentz metric g.
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81GEODESICS IN STATIC SPACE-TIMES

the number of time-like geodesics joining (P1, tl) and (P2, t2).
Unlike the situation for positive definite Riemannian spaces, there are

complete, static spacetime manifolds which are not geodesically connected
(Anti-de Sitter space [ 15], [21]).

In this paper we shall prove the following theorem:

THEOREM 1.1. - Assume the Riemannian manifold M0 to be connected
and complete, and 03B2 to be a C2 scalar field on M0 satisfying the following
assumption:

there exist v, M > 0 such that (P) >_ v for all P E ( 1. 5)

Then equipped with the metric g defined by ( 1. 2), is geodesically
connected.

Moreover, setting 0 = ( t2 - we have:

(i) for every P1, P2 E M0 with P2, there exists 0394 sufficiently small
such that N (P1, P2, 0) = o.

(ii) if all the time-like geodesics are non-degenerate, then N (P1, P2, 0)
is finite for all P1, P2 E for all 0 E f~.
Now assume that is not contractible in itself and there exists a

retraction of M0 on a compact subset.
Then, for any two given points Q1= (P1, tl), there

exists a sequence ~ yn ~n E ~ of geodesics joining Q1 and Q2 such that

Moreover

Remark 1.2. - Some results of theorem 1.1 have been proved in [6],
[7], [8] for stationary spacetime manifolds. Moreover (ii) can be also

obtained by standard techniques of Lorentzian Geometry (see e. g. [4]).
The proof we give here holds for static space-times and it uses a

variational principle, stated in section 2, which permits to overcome the
difficulties arising from the indefiniteness of the metric g.

Cases in which M0 is not complete are considered in [9].
If y : [0,1] - 9K is a smooth curve and Ql’ Q2 we set

If 9M is geodesically connected we define

d(Qi, I(y): y is a geodesic joining Qi, Q2 ~ . (1 . 7)

Q2) is called the geodesic distance between the events Q2.

Vol. 8, n° 1-1991.
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The same estimates used in proving Theorem 1 . 1 permit to deduce the
following result:

THEOREM 1 .3. - Let ~ and g be as in Theorem 1. l. Then for any
Qi, Q2 ~ M there exists a geodesic y joining Ql and Q2 such that

d (Qm QZ) = l (Y)~
Let us now give the following definition:

DEFINITION 1. 4. - Let y (s), s E [o,1] be a smooth curve on x (~~
We denote by x (s) and t (s) the components of y on M0 and R respectively.
y is called a T-periodic trajectory if it is a geodesic for g and it satisfies

the conditions

We say that Y is non trivial if x (s) is not constant.
Moreover two periodic trajectories Y1 (s) and Y2 (s) are said to be geometri-

cally distinct if the supports of the curves Y1 1 and Y2 are dfferent (i. e.
Yl ([~~ 1]) ([~~ 1]))~

It is easy to see that if Q ~ M0 is a stationary point for 03B2 then

y(s)=(Q,sT) is a trivial T-periodic trajectory.
The existence of one time like non trivial T-periodic trajectory has been

recently proved in [7], [13], [14]. Here we shall prove the existence of
infinitely many, geometrically distinct, T-periodic trajectories having
energy arbitrarily large.
Moreover we prove the analogous of (ii) of Theorem 1. l, essentially in

the same way.
More precisely we have the following result:

THEOREM 1. 5. - Let ~ and g be as in Theorem 1 . l. Moreover assume
that M0 is compact and 03C01(M0) is finite. Then for every T > 0 there
exists a sequence ~ Yn ~n E ~ of non trivial, geometrically distinct, T-periodic
trajectories on ~ such that

Moreover if all the T-periodic trajectories are non degenerate, only finitely
many are time-like.
Of course in the periodic case the concept of nondegeneracy needs a

small modification: a periodic orbit y is called nondegenerate if there does
not exist a non zero 1-periodic Jacobi field along y.
When M0 is not compact the results of theorem 1.5 do not hold in

general. In fact if 9J! is the Minkowskii space-time [i. e. 9K=~~~ 1 and in
( 1. 2) ~ , ~ is the euclidean metric and P(P)=1] ] the only T-periodic
trajectories are the trivial ones y = (P, s T), P E [Rn).
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Nevertheless the following multiplicity result holds:

THEOREM 1. 6. - Let M0 = Rn and assume that the Riemannian metric

on M0 and the function (3 satisfy the following assumptions:

where ] ( is the Euclidean norm and grad 03B2 (x) is the gradient of 03B2 with
respect the Euclidean scalar product in 

Then for any m ~ N there exists T = T (m) such that for all T >_ T there
exist at least m non trivial, time-like, geometrically distinct, T-periodic
trajectories Y1, ..., ~ym such that, for every i = l, ..., m,

Remark 1.7. - These assumptions are e. g. satisfied by a universe
containing a unique massive star whose radius is larger than the Schwartz-
child radius.

In the literature there are not many global results about the existence
of geodesics for Lorentz manifolds. The only results we know, besides the
ones we have quoted earlier, are due to Avez [2], Galloway ([ 11 ], [12]),
Seifert [24], Tipler [26] and Uhlenbeck [27].
The papier is organized as follows:
In section 2 we introduce a variational principle (see Theorems 2.1 and

2.2) which will be systematically used in the subsequent sections. This
variational principle allows the use of the "classical" Liusternik-Schnirel-
mann theory for infinite dimensional manifolds (see e. g. [23]) in

Theorem 1.1, the cohomology of the "free loop space" on M0 (see
e. g. [28]) in Theorem 1 . 5, and the use of more recent techniques of the
critical points theory (see e. g. [22]) in Theorem 1 . 6.

In section 3 we introduce the functional setting for the study of the
critical points of the action integral related to the metric g. In sections 4
and 5 we prove theorems 1. 1, 1 . 3, 1. 5, 1 . 6.

Vol. 8, n° 1-1991.



84 V. BENCI, D. FORTUNATO AND F. GIANNONI

2. THE VARIATIONAL PRINCIPLE

Consider the static spacetime manifold 9K equipped with the Lorentz
metric g [see ( 1.1 ) and ( 1. 2)] and the action functional

where y (s) = (x (s), t (s)), s E [o,1 ], is a smooth curve on ~.
Let Qi = (P1, Q2 = (P2, t2) be two points in 9M. The geodesics joining

Q 1 and Q2 are the critical points of f with the condition (1. 3) ; namely
they are the smooth curves y : [0,1] joining Q~ and Q2 and satisfying

for any C~0 vector field along y. Here v denotes the covariant
derivative of v with respect the metric g and along y.

Analogously the T-periodic trajectories (cf Definition 1. 4) are the sta-
tionary points of f with the condition (1 . 8), namely they are the smooth
curves y (s) = (x (s), t (s)) on M which verify ( 1. 8) and satisfy (2 . 2) for any

Coo vector field along y, when v is 1-periodic and i (o) = o, i ( 1 ) = o.

Since the metric g is indefinite, the action functional (2 .1 ) is unbounded
both from below and from above and this causes difficulties in the research

of the geodesics for g. Nevertheless the study of the stationary points off
can be reduced to the study of the stationary points of a suitable functional
which is bounded from below when P is bounded.

Infact let Q1= (P1, ti), Q2 = (P2, t2) be two points in ~ and consider
the functional

where 6 = - , 0394=t2-t1 1 and x : [0,1] - 9Jlo is a smooth curve on M0 with
x (o) = P1, x (1) = P2 and xes) is the tangent vector to x at x (s).

Observe that (2. 3) is bounded from below if 03B2 is bounded.
The following theorems holds.
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THEOREM 2 . 1. - Let y (s) _ (x (s), t (s)), s E [0,1], be a smooth curve on
~ satisfying ( 1. 3).

Then the following statements are equivalents:
(i) y is a stationary point off with the condition (1. 3) ;
(it) x is a stationary point for J with the condition (1. 3), i. e.

for any Co vector field v along x, and t = t (s) solves the problem

Moreover, if (i) [or (ii)] is satisfied, we have

Proof - (i) => (ii). Let

be a stationary point of f with respect the condition (1.3); then

for all Co vector field along y.
Taking v = 0 in (2 . 7) we have

then there exists a constant c such that

Integrating in [0,1] we get

(3) Here a’ (cp (s)) denotes the gradient of a at cp (s) and Vs the covariant derivative with
respect the Riemannian metric ( , ).

Vol. 8, n° 1-1991.
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By (2 . 9) and (2 .10) we deduce that t = t (s) solves (2 . 5). Now, if we
substitute (2. 5) in (2. 7) and choose i = 0, we see that (2. 4) is satisfied.

(ii) ~ (i). Suppose that x solves (2 . 4) and defines c as in (2 10). Then,
since t solves (2. 5), we get (2. 9) and consequently (2. 8).

Now if in (2 . 4) we add (2 . 8) and substitute 02 [10 a x) ds ]-2 by (2 . 5),

we see that y = (x, t) satisfies (2. 7), namely it is a stationary point of f.
Finally (2 . 6) is immediately checked..
An analogous result holds for the T-periodic trajectoires.

THEOREM 2 . 2. - Let y (s) = (x (s), t (s)), s E [o,1], be a smooth curve on
~ satisfying (1. 8). Then the following statements are equivalent:

(i) y is a stationary point of f with respect the condition (1. 8).
(ii) x is a stationary point for the functional J (with 0 = T) on the smooth

curves x (s) c M0 which satisfy (1. 8). Moreover t = t (s) solves the problem:

Moreover, i_ f ’ (i) or (ii) is satisfied, we have

The proof of Theorem 2. 2 is the same as the proof of Theorem 2.1.

3. THE FUNCTIONAL FRAMEWORK

By a well known result of Nash (see [17]) equipped with the
Riemannian metric ( , ), is isometrically embeddable in [RN with N
sufficiently large. This means that there exists a Ck mapping

with injective differential ~I’o (P) for all such that

for all Pe9Mo and 03C5 ~ TP M0. Here ( . , . ) denotes the Euclidean inner
product in 
Our aim is to get a more explicit form of the functional (2 .1 ) using the

embedding ’Po.
In the following we set

where P E M0 and 03C5 ~ TP M0.
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We improperly set

Moreover we shall identify with its dual space. Thus we have that
Tx Mo c 
Then the study of the geodesics on 9M for the metric g is equivalent to

the study of the geodesics on Mo x [R for the metric g, defined by

where x E Mo, ~1, ç2ETxMo and Ti, 
We now introduce our functional setting.
If I = [0, 1], W1 (I, [RN) denotes the ordinary Sobolev space of RN-valued

functions defined on I.
We denote by

its norm. Here the dot " . " denotes the derivative with respect to sand
~ I the Euclidean norm in [RN.

Let x2 E M o and introduce the space of the W1-curves on M joining
xi and x2.

Q1 is a closed submanifold of W1 (I, [RN) (cf. e. g. [23] and its references)
and its tangent space at x ~ 03A91 is given by

where

Analogously we define the space of the W1-closed curves on Mo

(S1= = I/~ 0, 1 ~), whose tangent space at x E A1 in given by

On the following we shall use the notation W~ 1 to denote W~ (I, [RN) or
W~ [RN) depending on the case.

If Mo is complete, Q1 and A 1 are complete Riemannian manifolds with
the Riemannian structure inherited from e. g. [1], [20].
Now we recall a technical Lemma which will be useful to prove that

the functional J [defined by (2.3)] on Q1 and A 1 satisfies the Palais-Smale
condition (c/. [8], lemma 2.1].

Vol. 8, n° 1-1991.
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LEMMA 3.2. - Let {xk} be a sequence in 03A91 (or A 1 ) such that

xk converges to xo weakly in W 1.

Then there exist two sequences

and

such that

~k converges to 0 weakly in and vk converges to 0 strongly in W 1.

4. PROOF OF THEOREMS 1.1, 1.3, 1.5

By Theorems 2.1 and 2.2 the study of the geodesics for g joining two
given events Q 1, Q2 or the study of the T-periodic trajectories on

is equivalent to the study of the critical points of the functional J
[cf. (2. 3)] on 03A91 or on A 1.
Now we introduce the well known condition (C) of Palais-Smale.

DEFINITION 4.1. - Let X be a Riemannian manifold modelled on a Hilbert
space and let F ~ C1 (X, R). We say that F satisfies (P.S.) if any sequence
{ c X such that F (zn) is bounded and F’ (zn) -~ 0, possesses a convergent
subsequence.
We shall prove that the functional J defined in (2.3) satisfies (P.S.).

More precisely the following Lemma holds

LEMMA 4.2. - Let 03B2 satisfy assumption (1.5). Then J satisfies (P.S.) on
521. If we assume also that M0 (and therefore Mo) is compact, then J

satisfies (P. S.) on A 1.

Proof. - It will be useful to use (~ 1 as joint notation for the space 01
and A 1.

c C~ 1 such that

From (4.1) we deduce that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and, since o is bounded, we get that

If U~ 1= SZ 1 or if C~ 1= A 1 and Mo is compact, (4 . 3) implies that

~ xn ~ is bounded in W 1 independently of n.
Then, passing eventually to a subsequence, we get that

xn converges to x weakly in W 1.

Now, by (4. 2), we have

uniformly and ~03BE~1~1, where o ( 1 ) denotes an infinitesimal

sequence and « (x) _ (3 (x) .
By Lemma 3.2 we can take, in (4.5),

where

Then we have

Since W~ is compactly embedded into L 00, by (4 . 4) we deduce that

Moreover by (4.4) and (4. 6) we have

converges to 0 weakly in W 1.

Now, by (4. 7), (4. 8) and (4. 9) we get

so (4. 6) and (4.10) imply that

Vol. 8, n° 1-1991.
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Moreover, since {xn} converges weakly in L2 to I, we have

(4 .11 ) and (4.12) imply that

and finally from (4. 8) and (4.13) we deduce that

Proof of Theorem ( 1.1 ). - Since Mo is connected, (P. S.) holds, and J is
bounded from below, by virtue of Theorem 2.1, we easily get that M is
geodesically connected by a minimum argument.

Now if we have inf x(s), x(s)>x(s) ds>0, so, if A is small
Mo 0

enough, by (1.5) we have inf J > 0 and we get (i).
n1

Moreover if all the geodesics joining Qj~ and Q2 are non degenerate,
then all the critical points of J on 03A91 are isolated. Then if we assume that
the are infinitely many time-like geodesics we get a contradiction, because
by Lemma 4.2 and Theorem 2.1 we get a sequence of critical points of J,
converging to a critical point of J.
Now assume that Mo is not contractible in itself and there exist a

retraction of Mo on a compact subset. Under this assumptions, it is

possible to apply a well known theorem of Serre (see [25]), in order to
prove that

(see e. g. [10]). Notice that we need the assumption about the retraction
of Mo on a compact subset, because, whenever ~1 (Mo) is finite, in order
to apply the Serre Theorem, the Betti numbers of Mo and of its universal
covering space must be finite (and not only eventually zero).

For every ce R, we set J~ _ ~ x E S21 : J (x) - c ~. Since J satisfies (P.S.)
and inf J > - oo , we have that

n1

(4) Here catx A denotes the Liusternik-Schnirelman category of A c X in the topological
space X.
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Indeed, if there exist c E R such that cat03A91 (Jc) = + oo, we can consider

Moreover, by virtue of (P.S.), the set Z of the critical points of J is

compact, hence there exists a neighbourhood Uz of Z, such that

Now, by a well known deformation Lemma (see e. g. [19]), there exists
E > 0 such that Jë-E includes a strong deformation retract of 
Then

and this contradicts the definition of c. Then (4.14) is proved.
Now, by (4.14), we get immediately that there exists a sequence xn of

critical points for J on S21 such that

so our assertion on y~ followss by Theorem 2.1.
Let us prove (iii). Under our assumptions on the topology of Mo, we

have the existence of a sequence Km of compact subsets of 03A91 such that

(see e. g. [10]). Moreover, by the minimax characterization of the critical
level J (xn) (see [23]), if

we have

If two of these critical levels are equal, there exist infinitely many critical
points having such a critical level (see [23]). Then by (4.15) we get easily
(iii)..

Proof of Theorem 1.3. - By Theorem 1.1 the set G(Q1, Q2) of geodesics
joining Qi, Q2 ~ M is not empty.

Q2) such that

Now

and from (4.16) and by Theorem 2.1 we get

Vol. 8, n° 1-1991.
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Since = (I (yn))2, we deduce that { J (xn) ~ is bounded. Then, by
lemma 4.2, we deduce that

So, using once again Theorem 2.1, we get that there exists y E G (Q1, Q2)
withl(y)=d(al, a2)..

In order to prove Theorem 1.5 we cannot use the Liusternik-Schnirel-
man category since in general cat1 (1) is not known. However we can
exploit some of the results on the cohomology of A 1 proved in [28] to
obtain our result.

First of all we recall one of those results.

PROPOSITION 4.3. - If Mo is compact and ~1 (Mo) = 0 then there exists
an infinite set of positive integers Q c I~I such that

where Hq (A1) is the q-th group of cohomology of A1.
Now consider and set

where iB : H* (A1) --~ H* (B) is the homomorphism induced by the inclusion

Observe that ra defined in (4.17) is not empty and contains compact
sets (in fact it contains the support of k-chain, k= deg rl, which are not
homologous to a constant).
For every c > 0 we set

and the following Proposition holds

PROPOSITION 4.4. - For every c > 0 there exists such that

Proof. - By a well known result (c, f . e. g. [16]) E~ is a strong deforma-
tion retract of a finite dimensional manifold, whose dimension depends
on c (cf. also [5]).

Then, if we take q (c) = n we get the conclusion.. .

LEMMA 4.5. - Let the assumption of lemma 4.2 be satisfied and let
a E H* (A 1 ), a ~ 0. Then the number
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is a critical value of J on Al. Moreover, if we assume that Hq (A1) ~ 0 for
infinitely many q, then there exists a sequence of critical values of J
defined as in (4.10) and such that

Proof. - First of all we prove that ca in (4.19) is well defined. Since
ra contains compact subsets of A1, we have ca  + oo. Moreover, since

[i (x) -_ M, J is bounded from below and 
To prove that c~ is a critical value of J we follow a standard argument.

Arguing indirectly we assume that c~ is not a critical value of J. Since J
satisfies the (P.S.) condition on A~ (see Lemma 4.2), by a well known
deformation Lemma (see e. g. [19]), there exists E > 0 and an homeomorph-
ism rt on A 1 s. t.

Now we claim that

In fact, let rl * : Hq (~ (A 1 )) -~ Hq (A 1 ) be the isomorphism induced from
r~, and B E ra. Then

so we conclude that 11 (B) E ra.
Now, by the definition of c~ there exists B E ra such that sup J (B)  c~ + s;

then by (4 . 21 ), we have

while (4. 22) and (4. 23) contradict the definition of ca.
Finally we prove the last part of lemma 4.5 and assume that 

for Q infinite.
If n E by Proposition 4.4, there exists q = q (n) E f~ such that

Now let with qn>q(n) and consider We claim
that

Arguing by contradiction we assume that there exists B E ra such that

then

where i*2, i*1 are the homomorphisms induced by the inclusion maps

Vol. 8, n° 1-1991.
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Then, since B E ra, we have

From (4. 26) and (4. 27) we deduce that and this contradicts

(4.24). Then the intersection property (4. 25) holds. 
’

By (4. 25) and the definition (4.19) of c~ we easily get

where M is un upper bound for P. Clearly from (4.28) we deduce
(4.20)..

Proof of Theorem 1.5. - In order to prove that J on A 1 possesses

infinitely many critical points {xn} such that

we distinguish two cases.

First cas~e: - Assume that Mo is simply connected, then (4. 29) immedi-
ately follows from Proposition 4.3 and Lemma 4.5.

Second case. - Assume ~cl and finite. Denote by (Mo, p) the
universal covering of Mo. ~1 (Mo) = 0 and Mo is compact since ~1 (Mo) is
finite.

Then arguing as in the first case, we prove the existence of infinitely
many critical points {n} of J, such that

Therefore, if we set we get the existence of infinitely many
critical points.
Then by Theorem (2.2) we get that there exists a sequence yn of

T-periodic trajectories (xn, tn), where tn defined by (2.11), such that
+ oo. Notice that by (4. 29) the sequence {xn} of critical points of

J consists at most of finitely many constant curves, because on the constant
curves J is bounded from above. Then, up to consider a subsequence, we
can assume that all the T-periodic trajectories y~ are non trivial.

In order to prove that curves Yn (n EN) are geometrically distinct, assume
that two (non trivial) T-periodic trajectories t~) and t~)
(i ~ j) are not geometrically distinct. Then there exists cp (s) such that

Then we have, for all s,

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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Now, since y~ is non trivial, by the uniqueness on the Cauchy problem

we have yi (cp (s)) ~ 0 for all s, hence

Moreover tj (s) = t~ (cp (s)) for all s, t~ is strictly increasing and [see ( 1.8)]
Therefore (p(0)==0 and cp ( 1 ) =1, hence,

by (4 . 30), cp (s) = s for all s.
The proof of (i) is the same of (ii) of (1.1). N

5. PROOF OF THEOREM 1.6

By virtue of Theorem 2.2, we are reduced to studying the functional

where Rn), 03C3(x)=1 03B2(x), ( , ) is the usual scalar product of

[Rn and a (x) is a symmetric matrix having minimum eigenvalue far from
zero.

For technical reasons we modify J as follows

Clearly it is enough to show that the multiplicity result contained in
Theorem 1.6 holds for the functional I.

Standard calculations show that I is of class C2 on Wl. Moreover I is
invariant under the unitary representation of the group on W 1
given by the time translations [namely J (x (s + 9~)) = J (x (s)) for all 
and 

Let us now recall the following abstract critical point Theorem:

THEOREM 5.1. - Let E be a real Hilbert space on which a unitary
representation G of the group acts.

Let I be a C2 functional on E satisfying the following properties:
(I1) is G-invariant [i. e. d u E E, d g E G, I (u) = I (g (u))].
(I2) I satisfies the Palais-Smale condition (P.S.) in ]0, ~. > 0 [i. e. for

all c E ]0, ~,[ any sequence c E s. t. I’ -~ 0 as k ~ oo and I -~ c

contains a convergent subsequence].
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(I3) There exist two closed G-invariant subs paces El and E2 of E with
codim E2  + o~o and a bounded G-invariant neighborhood B of 0 such that:

(a) I (u)~03BB>I (o), ~ u ~ E1 ~ ~B (~B being the boundary of B);
(b) sup I (E2)  ;
(c) Fix G ~ E1 or Fix G c E2, where 
Suppose moreover that
(I4) ~ u ~ Fix G, with I’ (u) = 0, we have I (u)  03BB.
Then I possesses at least

distinct critical points (5) whose critical values belong to the interval

[~~ sup I (EZ)] ~
Variants of Theorem 5.1 have been proved in [3] and therefore we omit

its proof.
In order to verify that I satisfy the assumptions of Theorem 5.1 we

need some Lemmas.
Notice that under our assumptions sup I = do and I (x)  do for all x E W 1.

w1

LEMMA 5.2. - Under the assumptions ( 1.9), ( 1.10), I satisfies the (P. S.)
in ] - 00, do[, i. e. any ~ W1 such that

contains a convergent subsequence.

Proof. - be a sequence satisfying (5. 3), (5. 4). Since ~3 is

bounded and ( 1.9) holds, (5. 4) implies that

We shall prove that

Arguing by contradiction assume that there exists a subsequence (which
we continue to call by { xn ~ ) such that

By (5 . 5) and (5 . 7) we have

(~) We say that two critical points ul, u2 are distinct if ui for all gEG.
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then by (1.10) we get

Now set

By (5.5) we deduce that ~d dsn~L2 is bounded, then by Wirtinger inequal-

ity,

Since W~ is continuously embedded into L°°, from (5.10) we deduce
that

Now (5 . 3) implies that

Then

By ( 1. 9) and (5 . 8) we have

Moreover (5.9) and (5.11) imply that

and (5 . 14) and (5.5) imply that
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Then from (5.13), (5.15) and (5.16) we deduce that

and (5.9) imply that
ds

and this contradicts (5.4).
Then we conclude that { is bounded in W~ and therefore it contains

a subsequence {x1n} weakly convergent to x in W 1.
Now the same argument used in the proof of Lemma 4.2 (obviously

here we take permit to prove that xn converges to x strongly in

Let k ~ N and set "

... , n; j = o, ... , k ~ (5.18)
where ei, i = 1, ...’, n is the standard basis in [R". Moreover we set

Notice that Wk includes Fix G which is the set of the constant curves.
The following Lemma holds:

LEMMA 5.3. - Suppose that (3 satisfies assumptions ( 1. 9), ( 1. 10) and
(l.ll).

Then for any k ~ N there exist T = T (k), b = b (k), r = r (k) such that for
any T>_T

where co = sup { P (x) : grad P (x) = 0 ~ .
~n

Proof. - Since Wk is finite dimensional, S;, is compact for every r > 0.
Then there exists xr E S~ such that

We claim that

where do = sup fl.
!?"
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Obviously we have

Then, if by contradiction (5 . 23) does not hold, there exists rn --~ + oo as
n -~ + oo , such that

For every nefl consider and (i.e. and

!! ~) such that

where xrn is defined in (5 . 22) and

By (5 . 24) we get

Then there exists Eo > 0 such that for every 

where meas denote the Lebesgue measure.
Let

and R > 0 such that

Then by virtue of (5 . 26) we have that

Now xn is a bounded sequence of curves included in Wk, hence, up to
consider a subsequence, is uniformly convergent to a continuous curve
x such that

Moreover by (5 . 25), (5. 26) and (5. 27) the function

vanishes in a subset of [0, 1] having Lebesgue measure greater than Eo.
On the other hand the space Wk consists of analytic curves, so the

function (5.29) is an analytic function. Now the locus of zeros of an
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analytic functions which is not identically zero is a discrete set. Then
x (s) = 0 for every 1] and this contradicts (5 . 28).

(5 . 23) is so proved.
Now we have, for any 

where because of ( 1. 9).
~n

At this point we choose r = r (k) and ~ _ ~ (k) > 0 such that

and, because of (5. 30), we can choose T sufficiently large in order to get
(5.21). N

LEMMA 5.4. - Under the assumptions ( 1 . 9), ( 1 . 10) and ( 1 . 11 )

where W is defined in (5 .19) and do = sup ~i.
~n

Proof. - Let Obviously I (x) _ do. Arguing by contradiction
assume that

Then there exists a sequence {xn} ~  such that

as n --~ + oo . Then, by (1.9), as n -~ + oo and, since Xn EW, V n,
we deduce that

Consequently ~xn~L~ ~ 0 as n ~ + oo . Then we have

and this contradicts (5.32). N
Now are ready to prove Theorem 1.6.

Proof of Theorem 1.6. - We have already observed that it is enough to
study the critical point of I. To this aim we show that I satisfies

assumptions (Ii), (I2), (13), (I4) in Theorem 5.1.
Clearly I satisfies Ii. By virtue of lemma 5.2 also (I2) is satisfied with

~, = do.
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Now let and set

where m denotes the greatest integer less or equal than m .

By Lemmas 5.3 and 5.4 we obtain that if T >_ T (cf. Lemma 5.3), I
satisfies assumption with E2 = W, ~, = co + b, aB = Sk.
Moreover by (1.11) also 14 is satisfied, because a constant curve x is a

critical point for I iff grad P (x) = 0, so I (x) _ co.
Since codim (Wk + W) = 0 and dim (Wk n W) = 2 nk, we obtain, by using

theorem 5.1, that, if T >_ T, I possesses at least

critical points x~ ( j =1, ... ; nk).
By Theorem 1.5 we get also

so every Xj is not constant. Moreover, if we denote by t~) the
T-periodic trajectory such that tj satisfies (2.11), and by Eî’j its energy
[cf . ( 1. 4)], we have [by (2 . 6)], 

and from (5. 34) and (5. 35) we get

Finally, as in Theorem (1.5) we see that the T-periodic trajectories y~
are geometrically distinct..
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