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ABSTRACT. - We consider an abstract nonlinear second order equation,
whose principal part satisfies some conditions inspired by Oleinik’s

conditions on degenerate hyperbolic equations. We prove local existence
and regularity results in suitable scales of abstract Sobolev spaces. Several
applications to concrete equations are given.
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RESUME. - On considere une equation abstraite du second ordre,
nonlineaire, dont la partie principale satisfait a des conditions inspirees
par celles de Mme Oleinik pour les equations hyperboliques degenerees.
On obtient des resultats d’ existence locale et de regularite dans des
echelles d’ espaces de Sobolev abstraits. Plusieurs applications aux equations
concretes sont donnees.

1. INTRODUCTION

We investigate here the local solvability of a second order abstract
Cauchy problem of the following form:

Classification A.M.S.: 34 G 20, 35 ~.. 70.
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(a prime denotes a time derivative) in the framework of Banach spaces.
More precisely, let V, V’ be two Hilbert spaces coupled by the

(sesquilinear) pairing (,); denote with H the Hilbert space completion of V
with respect to the scalar product (,), restriction of ( , ) to V x V, and identify
H with its dual space. This gives the Hilbert triple V C H C V’ (see [L 1 ],
[LM]).

Consider now Eq. ( 1 ). We shall assume that A(t) can be decomposed as

where the operator A(t) : V -~ V’ satisfies, for all v, w E V, t E [0, T~,
T > 0,

while A, B, C satisfy

(thus we can think of A, B, C as operators of order 2,1,0 respectively) and

Under the above assumptions, Eq. (1) is a quasilinear weakly hyperbolic
equation. As it is well known from concrete counter examples (see [CS]),
even in the linear case f = 0 Pb. (1), (2) is not in general locally solvable;
stronger assumptions on the operator A are needed.
When ass. (5) is strengthened to

so that Eq. (1) becomes strictly hyperbolic, then various methods are

available, in order to prove the local existence for (1), (2). Among the
most important, we mention the energy method of [LM] and the theory
developed in [K], based on semigroup methods; see also [L2]. Indeed, it is
also possible to handle more general equations of the form

(see [K]). Of course in general the local solutions thus obtained cannot be
extended to global ones, since, as it is well known from concrete examples,
a blow up may occur in a finite time.
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Another approach to the study of (1),(2) is to impose restrictions on the
data, assuming that they belong to suitable Banach scales of subspaces of
H, while the coefficients have the right order in the scale. From this point of
view, hyperbolicity is inessential, and what we get are abstract versions of
the nonlinear Cauchy Kowalewski theorem (see e.g. [BG], [Ni], [Ov], [Y]).

Here we follow a different path. Starting from some sufficient conditions
devised by O. Oleinik [O] for the global solvability in C° of weakly
hyperbolic equations of second order, in [D] a corresponding theory was
developed in order to study weakly hyperbolic abstract equations of the form

Our aim here is to apply the theory to the study of the local solvability
for Pb.(1),(2).
We begin by recalling the framework of [D]. We assume that there exists

an n-tuple of bounded commuting operators

which generate the norm of V:

(in the following we shall write shortly ~v~~~v~V,|v|~|v|H) and enjoy
the property

( 12) H has a countable basis of common eigenvectors of d~ , ... , dn.

Moreover, we define for j > 1 the Banach spaces

where, for any multiindex a = (al, ..., = 1 0 ... o dnn . We have
thus the Banach scale generated by d (see [AS])

We remark that Hj, endowed with the product
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has a natural Hilbert structure, which however will not be used here. For

sake of simplicity we shall make the assumption

Then we consider the Cauchy problem

under the following assumptions.
As to the operator .~4~(t~, we shall assume that it has the form (3) and that

for some nonnegative constant ~, for some functions in L 1 ( 0 , T)
such that ,~ > 0 a.e., for almost any t the following inequality holds:

where i is the inclusion V C V’, and (17) means that the left hand side
is a nonnegative operator for the product (,). Note that, thanks to the
requirement that B(t) ~ ~ ~ ~, V’) (see (6)), both tB . Band B . tB are
defined and belong to ~’ j .

Moreover, we shall need the following assumptions on the commutators
of A, B, C, M with d: for some s > 1, for j = 1,..., = j ,

with norms in these spaces not greater than Further, we assume that for

j = 1,..., s, for all a with = j the following decomposition holds:

Evidently we can suppose that > In concrete examples, (18) is
trivially satisfied, and only (19) needs verification (see Section 4).
As to the regularity of the coefficients, we shall assume that, for some

integer s > 2,

We have then
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THEOREM 1. - Assume that, for some integer s > 1, (~)-(~), (12), (1 ~),
(17)-(19) hold, and that

Then, for all uo, u 1 E HS, there exists an interval I’ _ [0, Tj, Q  03C4 ~ T,
such that ~’b. (15~, (16) has a unique solution

Note that assumption (21) implies an estimate of the form

for a suitable continuous function r~s (t; r), increasing in each argument. If
we assume instead that a stronger estimate holds (see (25) below), we can
prove a result of existence for solutions of (15), (16). To this end, we
define the graded Frechet space

endowed with the grading defined in (13). We have then

THEOREM 2. - Let so > 0. Assume (3)-(cS), (12), (14), (17)-(1 ~) hold for
all s > 0, that (21 ) holds for all s ~ s~, and that the following estimate
holds for s > so, v E .~s:

where 03C8s (t; r) is a continuous function, increasing in each argument.
Then, for all uo, ul E there exists an interval I’ _ ~0, T], 0  T  T,

such that Pb.(15), (16) has a unique solution belonging to

Moreover, if for all r, h > 0 the derivative (in the sense of
Fréchet) can be extended to an element of

for all s > so, and if the regularity assumptions (20) are satisfied for all
s > 0, then we have

Vol. 11, n° 4-1994.



348 P. D’ANCONA

In the last section, we shall give some applications of Thms. 1,2 to
the mixed problem for weakly hyperbolic partial differential equations of
the form

both with Dirichlet and with periodic boundary conditions (see also [DM]
for related results in the concrete case). We shall also consider applications
to equations on manifolds and of higher order (of non-kowalewskian type).

2. PRELIMINARY RESULTS

A. Existence and regularity for the linear equation

We recall here in the following lemmas some results from [D], concerning
abstract linear equations, that we shall need in the proof of Thms. 1,2.
We consider the linear Cauchy problem

We have the following a priori estimates for the solutions of (28), (29):

where the constant C depends on the norms of
B(t), ~(t)~ M’(~) in cO(l; £(H, H)) and the C1(r; .c(v, v~))
norm of A(t).

Moreover, the following existence and regularity result holds:
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LEMMA 2. - Let s > 2; assume that (3)-(6), (12), (14~, (17)-(~9~ hold. Then
for all uo, uI E Hs, f E (30) has a unique solution u(t)
in cO(I; n 

Moreover, if the regularity assumptions (20) hold, and f E

then u(t) belongs to

B. The strictly hyperbolic case

In this subsection we recall some results on strictly hyperbolic linear
equations (see also [D]), which are proved by combining classical arguments
with suitable energy estimates.

We consider again Pb.(28),(29); instead of condition (5), we shall assume
that the strict condition (8) holds. Then we have:

LEMMA 3. - Let s > 0. Assume that (3), (4), (6), (8) hold, that, for
j = 0, ... , s, for all v E Hj+l,

and that

for j = 0,..., s.
Then for all u° E Hs+1, ~cl E Hs, f E C°(I; HS~ Pb.(28), ~29~ has a

unique solution u(t) belonging to

Moreover, the following estimate holds:

where the constant C depends on the norms of A(t), B(t), C(t), M(t) in
the spaces listed in (33) and on the CO(l; ,C (V, V’)) norm of A’ (t).
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SKETCH OF THE PROOF. - The basic tool in the proof is the method of a
priori estimates of higher order, which now we recall briefly. Define for
j = 1, ... , s the energy of order j of the solution u to (28), (29) as

By differentiating (36) with respect to time we obtain

Now, if we apply da to Eq. (31) for |03B1|  j, we can write

Since by (32) and (8)

and also

we arrive at an estimate of the form 0 = 1,..., s)

An application of Gronwall’s lemma gives the a priori estimate (35), after
some easy passages.
Now it is not difficult to conclude the proof of Lemma 3, by the following

standard argument (Faedo-Galerkin finite dimensional approximation).
Assumption (12) implies the existence of a sequence PN of projections
on H, with finite dimensional image VN, commuting with di , ... , dn and
strongly converging to the identity of H. We consider then the Cauchy
problems in VN

which have a global solution owing to the finite dimension of

VN. Moreover, estimate (35) clearly holds for the functions with
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constants independent of N, since PNA, PN M and PN f satisfy exactly the
same assumptions as ,,4.,11~, F. Note in particular that, since I~~ = PN (H)
is spanned by a finite set of eigenvectors for d 1, ... , dn, then is

Hs-valued for all s > 0.

Thanks to the boundedness of the sequence {uN} in L2(0,T;Hs) and
of ~~cN ~ in L2 (o, T ; HS _ ~ ), by extracting suitable subsequences we can
assume that

This implies evidently w2 = moreover, by standard arguments (see e.g.
[LM]) it is easy to see that wi = u is the required solution to (28), (29),
and that it satisfies (34), (35). D

3. PROOF OF THE THEOREMS

PROOF OF THEOREM 1. - We begin by observing that estimate (23) easily
follows from ass. (21) with the choice

Theorem 1 will be proved using the contraction mapping principle. To
this end, consider the Banach space

where T is to be chosen, with the natural norm. We define a map
F(v) on Xr as follows: for v E Xr, u = F(v) is the solution to the

- linear problem

which exists and belongs to by Lemma 2.
Next we will show that F maps the closed, bounded set

into itself, provided ~r is small enough and R large enough. Indeed, by
estimate (30) of Lemma 1 we have, for v ~ Y and u = F ( v )
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and choosing e.g.

and T so small that

we obtain that u = F(v) E Y.
Now we show that F is a contraction on Y, provided the value of

T is (possibly) reduced. Let u, v E Y ; the difference F(u) - F(v)
will solve a linear problem like (44), (45) with null initial data and

f (t, u(t)) - J(t, v(t)) as right hand member, hence applying again (30)
we have for w(t) = F(u)(t) - F(v)(t)

where we have used Taylor’s formula and

Thus, if

we conclude that F is a contraction on Y, whose unique fixed point is the
desired local solution to Pb.(15),(16). Q

PROOF OF THEOREM 2. - Assumption (21) does not imply (26), in general;
indeed, the lifespan T of the solution, determined in the preceding proof,
may depend on s, and in particular it may happen that Ts --~ 0 as s ---~ oo.

On the other hand, the stronger ass. (25) implies that Ts = T~o for all

s > so.

To prove this, we begin by observing that the result is true for the

following strictly hyperbolic Cauchy problem (E > 0):
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under the assumptions of Thm. 2. Indeed, if we apply Thm. 1 we obtain
that Pb.(53), (54) has a local solution on some interval I‘ _ [0, 
Tso > 0, such that

and, since uo, ~cl E Hoo, while J(t, u(t)) E by Lemma 3 we
obtain also

The argument can be repeated, using (21) for s = so + 1. By induction,
we obtain (26) for 
Now we observe that Pb.(53), (54) satisfies the assumptions of Lemma

1 with constants independent of E, thus we can apply estimate (30),and by
(25) we have, for each s > so,

By (55) we have

hence (57) gives

Now defining

we have by (58)

by Gronwall’ s lemma this implies that
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and again by (60), (59),

where the constant at the right hand member does not depend on E.
Hence we see that, for each s > so, ~~cE (t) ~ is a bounded sequence in

~’1 (I’; ~s_~), and by Eq. (15) itself, also in C2(~‘; .~s-2). We can thus
extract a subsequence which converges in for all s, whose limit
is the desired solution to Pb.(15), (16), and satisfies (26).
The final remark on the regularity of the solution (see (27)) follows by

differentiating Eq. (15) with respect to time:

Then, starting from (25), and using (26) inductively, we easily obtain
(27). D

4. APPLICATIONS

We list here some applications of Thms. 1,2 to concrete examples of
Cauchy problems for partial differential equations. We give only sketchy
proofs for the following results, since most verifications are straightforward.

1) Weakly hyperbolic equations with periodic boundary conditions.

Consider the following Cauchy problem on [0, T] x T" (where T" =
Rn/203C0Zn is the n-dimensional torus)

where aij , bj, c, ui are functions, while f(u) is a function.

We shall apply Thm. 2 with the choices H = ~ = H1 
d = V so that Hs = To this end we recall the following result (due
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essentially to o. Oleinik, [0]; see [D] for details) concerning commutators
of second order degenerate elliptic operators:

LEMMA. - Let S~ be an open subset of R~, and i, j =

1, ...,n functions in (Q) such that

and such that, for some integer s > 1

where as usual ~a = ... o~~n . Denote by A the operator

Then for every a of length s we can write the commutator [A, in the

following form

where are second order selfadjoint operators, while Ra contains the
lower order terms and has order s. In particular, the operators satisfy,
for all v E H2 (SZ), the estimate

while the operators Ra satisfy, for all v E 

and ( , ) are the norm and the scalar product in L~ (5~~.
This Lemma implies (19) for the operator A(t) (Q = R"). The

verification of the other assumptions of Thm. 2 is straightforward; in

particular (24) is a consequence of the inequality
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which follows from the chain rule and the Gagliardo-Nirenberg inequalities,
and of the Sobolev immersion theorems (so = [n/2~ + 1).
Hence we obtain (see also [DM])

PROPOSITION 1. - Assume aij satisfy the weak hyperbol icity condition (6S),
and that there exist a positive constant a and two functions ,Q, ~y in L~- (0, T)
with ,Cj > 0 a. e., such that for almost any t E ~0, T], for all x, ~

Then for all C~ periodic initial data uo(x), ul{x), Pb.(63), (64) has a
unique local solution

for some T’ > o.

The above result can be generalized without difficulty to the case of a
vector valued u, i.e. to the case of systems of weakly hyperbolic differential
equations of second order.

2) Mixed problem with Dirichlet boundary conditions.Let SZ be a bounded
open subset of Rn with smooth boundary, and consider Pb.(63), (64) on
~0, T] x Q. We can choose now d = V, H = V = Ho (SZ), and
we obtain Hs = Ho ( SZ ) (completion of in Note that

V’ - H_ 1 = H -1 ( S~ ) . Then, applying Thms. 1, 2, we have

PROPOSITION 2. - Let s > [n/2] + 1 - so. Assume are

in T] x SZ ), that J(t, x, u) E T] x SZ x C) such that

~x J(t, x, 0) - 0 for x E  s, and that conditions (65) and (69)
hold. Then, for all initial data uo , u1 E Ho ( SZ ), Pb.(63), (64) has a unique
local solution

for some T’ E]O, T]. Moreover, if uo, u1, fare C~functions vanishing with
all their space and time derivatives at the boundary of Q, then the same
holds for u(t).

3) Weakly hyperbolic equations on manifolds. Let M be a smooth compact
Riemannian manifold without boundary and let AM be the associated
Laplace-Beltrami operator. We choose d = ( 1 - (d is composed
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of one single operator), V = we have thus Hs = (see e.g.
[A]), and we consider the Cauchy problem (k > 0 integer) on [0, T] x M:

We shall assume that uo, ui E HS(M) and f E 
Then we have:

PROPOSITION 3. - Let s > [n/2] + 1. For all uo, ui E 
Pb.(70), (71 ) has a unique local solution

for some T’ E]o, T]. Moreover, if the initial data are in C°° ~M), then
u E C°° ( [o, T’l ~ M).
A similar result holds for the equations of the form

where a  1, while X is a smooth vector field on M.

5) A non-kowalewskian degenerate equation. We consider now the

following space periodic fourth order Cauchy problem on [0, T~ x Tn :

We shall assume that a(t), b(t) are C°° function satisfying

for some positive constant a and some function ~3 E > 0 a.e., while

feu) is a C°° function. We choose d = A, H = = H2(Tn);
this gives Hs = Then, applying Thms. 1,2 we have

PROPOSITION 4. - Let so = [n/4] + 1, and assume (74) holds. Then, for
s > so, for all u~ E H2s(Tn), Pb. (72), (73) has a unique local solution

for some T’ T]. Moreover, if the initial data are in G’°° (Tn), then
2G E Tn).
We can also consider the mixed problem on [0, T] for (72), (73)

with Dirichlet boundary conditions. We obtain -a local existence result in
the subspaces of defined by conditions of the form

Vol. 11, n° 4-1994.
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