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ABSTRACT. - The isoperimetric inequalities of Aleksandrov and Fenchel
for quermassintegrals (cross sectional measures) of convex domains in
Euclidean space are established for non-convex domains, subject to natural
curvature conditions. The techniques are new and draw upon the theory of
Monge-Ampere type equations related to previous work of the author on
equations of prescribed curvature.

RESUME. - Les inegalites isoperimetriques d’ Aleksandrov et Frenchel

pour les quermassintegrals dans le cas de domaines convexes d’ espaces
euclidiens sont etablies pour un domaine non convexe vérifiant des

conditions naturelles de courbure. Les techniques sont neuves et reposent
sur des equations de type Monge-Ampere reliees a un travail anterieur de
l’auteur sur des equations a. courbure prescrite.

1. INTRODUCTION

In this paper we derive isoperimetric inequalities for quermassintegrals
(cross sectional measures) of domains in Euclidean space, which extend both
the classical isoperimetric inequality and certain cases of the Aleksandrov-
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Fenchel inequalities for convex domains. Our techniques are novel in that
they are drawn from the theory of fully nonlinear elliptic equations and
exploit connections with prescribed curvature equations, already displayed
in our works ([10], [11]).

For a bounded, convex domain SZ in Euclidean n-space, the mth
quermassintegral Vm { S2 ) may be defined as the mean integral value of
the m dimensional volumes of the projections of 03A9 on m dimensional

subspaces. Explicitly we write

where is the Grassmann manifold of m dimensional subspaces in
R", Pv (S~) is the orthogonal projection of SZ on the subspace v E Gn, m,
Hm denotes m dimensional Hausdorff measure in Rn and 03C9 denotes the

normalized Haar measure on Gn, m . When SZ = B, the unit ball in we

have Vm(B) = the volume of the unit ball while for arbitrary
SZ we clearly have Vn (n) _ ~C’~ ( S~ ) = the Lebesgue n-dimensional
measure of H. Equivalent definitions may be given in terms of Minkowski
mixed volumes or the mean integral value of the m dimensional volumes
of the intersections of SZ with m dimensional planes in (see [1], [2],
[8] for further details).
For our purposes here, we need to relate Vm to curvatures of the

boundary Assuming aSZ E C2, we define the mth mean curvature
function of ~03A9 by

where ~ 1, - - - , are the principal curvatures of ~SZ and the sum in
(1.2) is taken over increasing m-tuples ( i 1, - - - , im ) C ( 1, - ~ - , n - 1 ) .
The curvature ~ 1, - - - , are normalized so that they are positive on
spheres, and for m = 0, we define Ho ~c~SZ~ - 1. We then have the

following formulae (see [1], [8])

for m = 1, - - - , n - 1. With Vo ( ~ ) - 1, we see that (1.3) extends to
embrace the case m = n. When m = 1, we obtain
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where ?-~’~ -1 is the perimeter of S2 . The Aleksandrov-Fenchel

inequalities may be written in the form,

for m  k, with equality holding only if S2 is a ball. In the special case
k = n, we obtain thus, for any m > 1,

The main result of our work is to establish these inequalities for non-
convex domains Q, subject to natural curvature conditions. At the same
time we supply a completely new proof of (1.4), independent of previous
proofs involving Minkowski mixed volumes, which are strongly tied to the
convex case (see [ 1 ], [2]). A new proof of the fundamental mixed volume
inequalities (for convex sets) is also given in the recent doctoral dissertation
of Andrews (Australian National University 1993). Note that the identity
(1.3) provides an extension of the quermassintegral definition to smooth
non-convex domains (see [8] for the connection between this and integral
means aristing from intersections with planes).
To formulate the appropriate conditions on H we say that the boundary

aS~ E 0 _ l~  n - 1, if Hj [o~SZ] > 0 for 0, 1, ... k. If
~03A9 is connected, an E rk, if only 0. We will sometimes

refer to domains with boundary ~03A9 E 0393k as being k convex. An arbitrary
domain is clearly 0-convex while a C2 domain is convex if and only if
it is (n - 1)-convex.

THEOREM 1.1. - The isoperimetric inequalities (1.4) are valid for any
bounded C2 domain S~ which is n - m - 1 convex.

From Theorem 1.1 we deduce more precise versions of the Sobolev
inequalities used in [ 10], [ 11 ] . In an ensuing paper [ 14], we will treat

versions of inequalities (1.4), (1.5) in arbitrary domains, which have

interesting applications to extremal problems in analysis and geometry.
The plan of this paper is as follows. In Section 2, we derive an integration

formula for elementary symmetric functions of Jacobians of vector fields
which extends corresponding formulae in [7] and [10]. The case of (1.5)
for convex domains then follows immediately from an existence theorem of ’
the Monge-Ampere type equations in Section 3. The integration formulae
are further developed in Section 4, so that in Section 5 we can derive
Theorem 1.1 in the general case by consideration of further Monge-Ampere
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type equations, treated in the author’s papers ([9], [13]). Finally in Section 6,
we provide some remarks concerning related work.
The special case of Theorem 1.1, k = n, was announced in our

previous papers, but our proof followed the lines of Section 3. The present
proof resulted from earlier considerations on solution bounds for curvature
quotient equations [2] and recent observations pertaining to the monotonicity
of the integrands in Section 4 with regard to parameter t.

2. INTEGRATION FORMULAE

We derive, in this section, integration formulae for vector fields, which
extend the classical divergence theorem in general and corresponding
integral identities of Reilly [7] for particular cases. Adopting the notation
of [10], for a real n x n matrix A = we let 8m = be the

sum of its m x m principal minors. If H is a bounded domain in ~n,
with boundary ~03A9 E C2, we let 03B3 E C1 (H) be an extension to H of the
outer unit normal vector field on ~03A9 and introduce the extended tangential
gradient operator a, given by

where D = ~D~ , - - - , Dn) is the gradient in IRn. The eigenvalues of the
matrix ~c~~y~ , restricted to are then ~ 1, - - - , r~~ _ 1, 0 where ~ 1, - - - , Kn- i
are the principal curvatures of Accordingly we have the formulae

Now let g = (g1, - - - , gn) be a smooth vector field on 0 with

gi E C~ (~) n (C2 (S2), i = 1, ..., n. Following [9], we write

where i ~ , - - - , im are distinct indices and 8 = ~ 1 according 
is an ever or odd permutation of il, - - - , jm and zero otherwise. Writing also
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we then have

so that by the divergence theorem

where g’ is the tangential projection of g on an given by

By splitting the sum in (2.6) into parts where i = j and i ~ j, we then obtain
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Formula (2.8) agrees with that of Reilly [7] for the case when g = D f for
some function f E C2 (SZ). Furthermore, when g is normal on so that

g’ vanishes there, then we obtain from (2.8),

as asserted in [9], Lemma 3. For our later estimation, we need to eliminate
the derivatives of the normal component g ~ ~y [from (2.8)]. Certain special
cases of the inequalities (1.5) are readily inferred from the simpler formula
(2.9). We treat these in the next section and take up the further development
of (2.8) in the following section. Note that inequalities (2.8), (2.9) will
continue to hold if we only assume gi E C0,1 (03A9).

3. CONVEX DOMAINS

For purposes of illustration, we supply here a specialization of our
approach to convex domains where the technicalities are relatively simple.
The starting point is an existence theorem for the Dirichet problem for the
equation of prescribed Gauss curvature, which is proved in [3] and [15].
For the graph S of a function u e C2 ( S~ ) , the principal curvatures (with
respect to the downwards directed normal) are the eigenvalues of the
Jacobian matrix D v where v is the vector field given by

The mth mean curvature function of S is thus given by
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so that in particular the Gauss curvature Hn [S] is given by

THEOREM 3.1. - ([3], [15]). Let 03A9 be a uniformly convex domain with

boundary aSZ E G’3 and 03C8 positive function in 03A9 such that E C2 (03A9),
0 on ~SZ and

Then there exists a unique convex solution u E C3 (S~) n C~~ 1 (SZ) of the
Dirichlet problem,

To deduce (1.5) from Theorem 3.1, we use the inequality

By the integration formula (2.9), we have

and letting ~ approach the constant we conclude (1.5). By using
classical existence theorems of Ivochkina [4] for the prescribed mth order
mean curvature equation, we can in fact extend the inequality (1.5) from
convex domains to domains Q which are m-convex, i. e. E Also

if E and we let

we obtain by integration over E the classical isoperimetric inequality (1.5)
with m = n - 1 and no geometric restrictions.

4. INTEGRATION FORMULAE REVISITED

In this section we develop an extension of (2.9) to general vector fields.
First we need to re-examine (2.8) with a view towards controlling the terms
involving g - q.
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If A = = ] are real n x n matrices, we can expand

where the mixed invariant Sm, k is given by

Similarly we have the expansion

where

Applying the expansion (4.3) to the second integrand in (2.8), we obtain

Next it is readily checked that

has vanishing tangential component on so that in particular

and hence by integration by parts we obtain from the second integral
in (2.8),
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Combining (4.6) with the expansion (4.1) for the first integrand in (2.8),
we thus obtain the formula

Setting

we then have

so that the formula (4.7) may be written in the form,

Consequently if

for all t > g . 03B3, we estimate, for go = (g. 03B3),

by virtue of (4.5). In the next section, we will take g as a gradient field so
all the above matrices are in fact symmetric.
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5. PROOF OF THE ISOPERIMETRIC INEQUALITY

Our approach is to exhibit an appropriate vector field g satisfying (4.11 ).
This will be accomplished by solving certain Hessian equations, rather than
the curvature type equation (3.5) and taking g as the gradient of a solution,
instead of the vector field (3.1). Specifically we shall use the following
existence theorem from [9] or [13].

THEOREM 5.1. - Let B be a ball in and 03C8 a non-negative
function in C1 ~ 1 (B). Then there exists a unique convex solution u E

(B) n (B) of the Dirichlet problem,

In order to use Theorem 5.1, we suppose that the domain Q lies in the
ball Bp of radius p centred at the origin and take B = BR to be the larger
concentric ball of radius R > p. The function ~ is chosen initially to satisfy

From the Aleksandrov estimate ([3], Lemma 9.2), we then have

provided c~~ E m > 1, by (4.12). Again using the convexity of u,
we may estimate

whence we obtain the estimate
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When m = 0, we obtain, instead

To proceed further, we use the Newton-Maclaurin inequalities,

for 0  m  l~  n, to obtain from equation (5.1), the differential

inequality,

with constant c given by

Let us now specify 9 further so that

where 6 > 0, is chosen sufficiently small to ensure E if

~03A9g E Integrating (5.8) over SZs we thus obtain from (4.10),

We now need to show that the integrand in (5.9) is non-negative for
t > ~y ~ Du. Fixing y E we choose a principal coordinate system
at y, so that in particular the xn axis is directed along the unit inner normal
at y (see [3], Ch. 14). Writting

we then have
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so that for t = -y - Du = -.Dn u, we have

by the Newton-Maclaurin inequalities and the convexity of u. Next we
note that the function

is concave on the cone

Therefore can estimate from (5.9) and (4.5),

so that

Combining (5.15) and (5.3) and sending 6 to zero, R to infinity, yields,
for any 1  m  k  n,
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which agrees with (1 .4), k  n. When m = 0, we obtain, in place of (5.9),

so that we have, for any 1  l~  n,

which agrees with (1.5). This completes the proof of Theorem 1.1.

Remark 5.2. - Theorem 5.1 follows from the estimates presented in [9].
Indeed, the assertion of [9], Theorem 1 extends directly to the more general
operators

through approximation by the uniformly elliptic operators (cf [ 12] ),

In [13], we treat the classical solvability of equations of this type in

general domains and show, for example, that Theorem 5.1 is valid for any
uniformly convex domain 0 with boundary ~03A9~ C4 and resultant solution
u E C I ~ 1 (Q). In our derivation of the isoperimetric inequalities, we could
also have approximated x~ by positive functions ’Ø and taken corresponding
solutions u e C~ (B). Alternatively we could have dispensed with elliptic
regularity theory altogether and solved the Dirichlet problem (5.1) in the
viscosity sense of [12], using the Perron process.
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6. FURTHER REMARKS

6.1. Using Theorem 1.1 [inequality (1.5)], we can improve the Sobolev
inequalities presented in [ 10], [11]. For a function u E C2 ( SZ ) , we set

Then if u e C2 (H) n C° (H) satisfies Ck ~u~ > 0 in 0, k = 1, ..., m,
we have the estimate

where

is the constant in (1.5). In particular (6.2) holds for functions u that
are admissible with respect to the m-mean curvature operator (see [11]).
Inequalities of this type were used by us in [10], [11] to derive a priori
solution bounds for mean curvature equations. The constant c in (6.2) is

optimal and as in the case m = 1, it can be approximated by letting u tend
to the characteristic function of a ball. We pursue further and more general
inequalities of this type in [14], as well as develop more precise bounds
for equations of prescribed curvatures and curvature quotients.

6.2. It can be shown that balls are the only domains for which equality
is achieved in Theorem 1.1. This follows from Korevaar [5] since the

boundary c~~ of any extremal domain SZ, for which equality is achieved,
must satisfy
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