
Plenty of elliptic islands
for the standard family
of area preserving maps

Pedro DUARTE

Universidade de Lisboa, Faculdade de Ciencias,
Departamento de Matematica,

Lisboa 1700, Portugal

Ann. Inst. Henri Poincaré,

Vol. 1l, n° 4, 1994, p. 359-409 Analyse non linéaire

ABSTRACT. - For the Standard Map, a well-known family of conservative
diffeomorphisms on the torus, we construct large basic sets which fill in
the torus as the parameter runs to oo. Then we prove that, for a residual set
of large parameters, these basic sets are accumulated by elliptic periodic
islands. We also show that there exists a ko > 0 and a dense set of

parameters in [ko, oo ) for which the standard map exhibits homoclinic

tangencies.

Key words: Unfolding of a homoclinic tangency, thickness of a hyperbolic basic set.

RESUME. - Pour l’application Standard, une famille bien connue des
diffeomorphismes conservatives sur le Tore, on construit des ensembles
hyperboliques qui remplissent le tore lorsque Ie parametre tend vers l’infini.
On demontre alors que pour un ensemble residuel de grands parametres ces
ensembles hyperboliques sont accumules par des lies elliptiques periodiques.
Nous montrons aussi qu’il existe ko > 0 et un ensemble dense des

parametres dans [ko, oo) pour lesquels 1’application Standard présente des
tangences homoclines.
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360 P. DUARTE

1. INTRODUCTION

For surface diffeomorphisms the unfolding of a homoclinic tangency is a
fundamental mechanism to understand nonhyperbolic dynamics. Infinitely
many coexisting sinks is one of the surprising phenomena which occur,
for dissipative systems, every time a homoclinic tangency is generically
unfolded. This remarkable fact is due to S. Newhouse: he proved that
arbitrarily close to a surface diffeomorphism with a homoclinic tangency,
there are residual subsets of open sets of diffeomorphisms whose maps
have infinitely many sinks. J. Palis conjectured that the same should hold
for conservative systems with elliptic islands playing the role of sinks. In
the present work we verify this is true in the context of the standard map
family and prove there are "plenty" of elliptic islands for a residual set of
large parameters. We were motivated by Palis’ conjecture and also by the
work in progress of Carleson and Spencer, as well as by an earlier question
of Sinai to Palis about this family. This family of diffeomorphisms on
T~ is given by,

The orbits (xn, xn-1 ) of fk correspond to solutions of the difference

equation 03942xn = 2xn + xn-i = 03BA sin(203C0xn), which is a discrete
version of the pendulum equation = K But only for small
values of k is the dynamics of the standard map an approximation of the
pendulum’s phase flow. In fact while the pendulum is always integrable, for
any K, the standard map is integrable for k = 0, meaning T2 is completely
foliated by invariant KAM curves. However as k grows, all these curves
gradually break up and the orbit behavior becomes increasingly "chaotic".
Simple computer experiments may lead to the conjecture that for large
k, in a measure theoretical sense, most points have nonzero Liapounov
exponents. Nevertheless this question is completely open. There is no

single parameter value k for which it is known that Pesin’s region, of
nonzero Liapounov exponents, has positive Lebesgue measure. Carleson
and Spencer have a work in progress in this direction: they plan to prove
this conjecture for parameter values where no elliptic points exist. They
also conjecture that for a set of parameters with full density at oo (in a
measure sense), there are no elliptic points. Our work does not contradict
this conjecture, but it certainly shows how subtle this subject is. It is

interesting to point out that Sinai’s question to Palis, made several years
ago, concerned the possible abundance of elliptic islands in line with our
present work.
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361ELLIPTIC POINTS OF THE STANDARD MAP

Notice that, since fk is conjugated to f-k via the translation (x, y) H

(x -~- ~ , y + 2 ) , we can restrict our attention to the parameter half line
k ~ [0, -E-oo). The following theorems synthesize our main results. We begin
constructing a family of large basic sets for fk.

THEOREM A. - There is a family of basic sets Ak of fk, such that:
l. Ak is dynamically increasing, meaning for small E > 0, Ak+E contains

the continuation of Ak at parameter k + E.
2. The thickness of Ak grows to ~. For all sufficiently large k,

3. The Hausdorf Dimension of Ak increases up to 2. For large k,

4. Ak is conjugated to a full Bernoulli shift in 2nk symbols, where

5. Ak fills in the Torus, meaning that as k goes to 0o the maximum
distance of any point in T 2 to Ak tends to 0. For large k, T2 = 
where ~~ _ £.
Then for this family of basic sets A~ we prove:

THEOREM B. - There exists ko > 0 and a residual subset R C [ko, oo) such
that for k E R the closure of the f k’s elliptic periodic points contains Ak.

THEOREM C. - There exists ko > 0 such that given any k > ko and
any periodic point the set of parameters k’ > k at which

the invariant manifolds and generically unfold a
quadratic homoclinic tangency is dense in [k, -I-oo). P(k’) denotes the
continuation of the periodic saddle P at parameter k’.

We do not claim to be original in Theorem A which is rather a description
of the basic set family A~ mentioned in theorems Band C. These results
are proved through sections 4 to 6. To finish this introduction we present
.brief ideas of the _proofs . of theorems _A~ to C. ’Given any :periodic function
p : ff~ with period l, cp(x + 1) = + l, l E 7~,
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362 P. DUARTE

defines an invertible area preserving dynamical system on T2, for which
the following hyperbolicity criterion holds: An invariant set A is uniformly
hyperbolic whenever there exists some constant A > 2 such that for all

(x, A, ] > ~. This type of system includes the Standard Map
Family where = 2x + k For this family the critical region
~ ~ c~~ (~) ~  a~, for some fixed A > 2, shrinks to a pair of circles ~~ _ ~ 4 ~

oo. Thus for all large k the maximal invariant set

will be a "big" hyperbolic set. Theorem B follows from theorem C using
a renormalization scheme, showing that arbitrarily close to a tangency
parameter an elliptic point is created through the unfolding of a saddle-
node bifurcation. In order to prove theorem C we use the following version
of Newhouse’s "gap" lemma: any pair of Cantor sets in the circle

S~ = ~ / 7~ , such that the product of their thicknesses is > 1,
must intersect KS n K~‘ ~ ~ . We apply this lemma extending the stable
and unstable manifolds of l~~ to global transversal foliations .~u of T~.
Remark that these foliations will be f -invariant only if restricted to a small
neighborhood of Using that the leaves of are almost horizontal,
when we push by the diffeomorphism f , we get a new foliation

~~‘ _ ( f ~ ~ ,~ ~’2‘ which folds along the circles ~ ~ _ ~ 4 ~, thus making two
circles of tangencies with the almost vertical foliation see Fig (1). The
Cantor sets KU are then the projections of Ak to one of these tangency
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363ELLIPTIC POINTS OF THE STANDARD MAP

circles along the foliations .~’S and For large k, T ( ~S )T ( I~u ) » 1
and so there will be a tangency between leaves of and 
A major difficulty is to give rigorous estimates of the thickness 
and for which we must prove that the linear distortion of the one
dimensional dynamical systems induced by the foliations .~’s and .~u is
bounded uniformly in k. To be able to do this we construct these globally
defined foliations in the following way. We modify the function cp~
near its critical points into a new function having a pole for each zero
of cp~ and such that ~~ (~) ( » 2. The new system ( 1 ) with in place of
cp~ is a singular area preserving diffeomorphism of T2. Although singular,
it is hyperbolic in its maximal invariant domain, which has total measure,
and most importantly it has smooth global invariant foliations.

Section 2 is dedicated to the construction of the foliations .~’s and In
section 3 we estimate the linear distortion of the one dimensional dynamics
induced by these foliations. Section 4 is used to construct the family of
basic sets and prove theorem A. Theorems C and B are then respectively
proved in sections 5 and 6.

2. GLOBAL FOLIATIONS

In this section we study the differentiability of the invariant foliations for
a class of singular hyperbolic diffeomorphisms on the torus T2 ~ ~2 ~~2.

2.1. Singular Hyperbolic Diffeomorphisms

be a smooth function satisfying:
1. ~ is periodic, + 1) = -~- ~ (~ Ell),
2. ~ has a finite number of poles ( all of them with finite order ) in

each fundamental domain,
3. For some A > 2, ] > A.

Define f : D C T2, f (x, y) = (-y + x) mod 7L2. The
domain of f is the complement of a finite union of vertical circles,
one for each pole of D - ~ (x, ~) mod Z~ : 1j; (x) i- oo}, which is
diffeomorphically mapped onto D’ = ~(~, ~) rnod 7~2 : oo~. We
call such f a singular diffeomorphism.
Now, given a pair V2 of consecutive poles of the vertical cylinder

C = {(x, y) mod Z2| v1  x  v2} is mapped onto the horizontal one C’ ==
Vol. 11, n° 4-1994.
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{ (x, y) mod Z2|v1  y  v2} with both ends infinitely twisted in opposite
directions. To understand how f acts on C notice it is the composition
f = T o R of a 90 degree rotation R(x,y) = (-y, x) mod Z2, with

T(x, y) = (x + y) mod Z2, a singular map which rotates each

horizontal circle {y = A similar description is true

about ~f -1 (~, ~) _ (y, -x + mod 7L2, which decomposes as

f-l = T’oR’ where R’(x,y) = (y, -x) mod Z2 is a 90 degree rotation
and ~’’ (x, ~) _ (x, y ~- ~ (~) ) mod 7l2 preserves vertical circles.

The singular diffeomorphism f preserves area since

has determinant 1. Notice that the maximal invariant set

has full measure in T2. We are going to see now that f : Doc> is

uniformly hyperbolic.

PROPOSITION 1. - There are continuous functions as, lf 2 --~ (~ such
that:

Conditions 3 and 4 state that the line fields generated by ( cx S ( x , ~ ) ,1 )
and (1, ~) are fixed under the actions of and f. The existence of
such continuous invariant line fields can be proved applying the Contraction
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fixed point Theorem to the action of f -1, or f, on the space C°(T2, (-1, l~).
We remark that 3 and 4 are respectively equivalent to

Knowing that as and aU are continuous and bounded a priori by 1, these
expressions give us 1. Symmetry 2 follows from the reversible character
of f. Denote by I : T 2 -~ ~ 2 the linear involution y ) = (y, x ) . Then
reversibility of f simply means that f (I (x, y)) = y) ) .

Defining the continuous line fields:

= line spanned by the vector (as(x, ~) ,1 )

= line spanned by the vector 

we have the following obvious consequence:

COROLLARY 2. - For any (~, 2J) E T2, R~ = 
and this is an invariant hyperbolic splitting for f : D
D~.
Denote by FS and the foliations associated to the continuous line

fields ES and E~ . The two invariant foliations have a finite number of

closed leaves, one for each pole of ~. Since they are symmetric with
respect to the linear involution I(~, ~) - (~, ~) we only describe For

each pole v of since as (v, y) = 0, the vertical singular circle {x = v}
is a leaf of On the other hand given a pair vi  v2 of consecutive poles
of ’ljJ, the vertical cylinder C = {(x, y) mod Z2 |v1  x  v2} is foliated

by open leaves winding around it with their ends accumulating on the two
opposite boundary circles. This is because as (x, y) is nonzero, thus with

.constant. sign, inside C. Notice that

Vol. 1 l, n° 4-1994.
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2.2. Differentiability of Foliations

To study the differentiability of aU and as we introduce the Lie

derivatives along the vector fields ~),1 ) and ( 1, ~) ) :

We are going to prove that:
1. as are C1 functions.
2. are also C1 functions. It follows that is continuously

differentiable along the vector with

is continuously differentiable along the vector field ~/), 1) with

3. 8sau is Holder continuous along the vector field ~),1), 
is Holder continuous along the vector field ( 1, au t~, ~) ) .
Most of the differentiability’ statements above follow in the same way as

in the general theory of invariant foliations for smooth hyperbolic dynamical
systems. See [HP], see also [HPS]. The main point in redoing this theory for
this specific class of singular hyperbolic diffeomorphisms is that we need
to have explicit bounds for the derivatives and Holder constants mentioned
above. These bounds depend on the function but we will show that

indeed they only depend on the following two parameters: A > 2, and
.~ > 0, such that ~ ~ .~ > 0

This bound 1/~ exists because and ~~ are bounded functions, as
follows easily from the fact that 2014~ is a periodic function (without
poles). Also it is straightforward to check that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Notice

Finally we will make the following commodious assumption: A > 10.

Although statements 1, 2 and 3 should be true for any A > 2 this

assumption of a stronger hyperbolicity forces a stronger contraction of
the derivatives by the action of f on the space ~-1,1~) which
simplifies the calculations.

PROPOSITION 3. - as, au are of class C~, and for a = a~‘

PROPOSITION 4. - 8uau and are of class C1 and

Propositions (3) and (4) are proved in the spirit of [HPS], using the
Fiber Contraction Theorem to get the existence and continuity of these
derivatives of ~) and y) .
LEMMA l. - (Fiber Contraction Theorem)
Let x be a topological space and To : -~ x a map having one

globally attracting fixed point ao E X. Let y be a complete metric
space and T : x x y --~ x y be a continuous map of the form

_ (To(a), where for all a E x, --~ y is

a Lipschitz contraction with Lipschitz constant 0  ~c  1 uniform in

cx E ~, that is

Then if 03B20 is the unique fixed point of 03B3 ~ T1 (ao, 03B3), (03B10 3 ,Qo) is a

globally attracting fixed point for T.

See [HP], [S] for a proof of this lemma. By symmetry 2 of proposition
(1) we can restrict ourselves to study For instance to prove proposition

Vol. 11, n° 4-1994.
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(3) take X = [-1,1]) acting as the space of "horizontal" line fields
(1, a) with a E X, take Y = ~° ( T2, ~- l, l~ 2 ) as a space containing the
derivatives of ~’1 functions a E X and let T describe the

action of f on the derivatives 8sa, 8ua of the C1 line fields ( 1, a ) with
a E X. Now iterating some E X x y we obtain a sequence

E X x y converging uniformly to the unique attracting
fixed point E X x y given by lemma (1). This proves aU is
of class Cl. Since the proofs are quite standard we leave the calculations
to the reader. We just remark that differentiating (2) with respect to 8s, au,
8s8u and and using the following notation,

we obtain the relations

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Remark that by items 3 and 4 of proposition (1) we have

Also from (1) it follows that

This last equality is used in the first and third relations above. Now from
these equalities, knowing that all the derivatives involved exist and are
a priori bounded by 1, it is easy to deduce the estimations stated in

propositions (3) and (4).

COROLLARY 5. - is continuously differentiable along the vector field
(1~ ~J~~ and

is continuously differentiable along the vector field (x, y),1) and

The statements of differentiability follow at once from proposition (4)
and next lemma, whose proof is an easy exercise in Differential Geometry.
Once again we will leave the calculations to the reader.

LEMMA 2. - Let M be a manifold, f : D~ a Cl function and X, Y
C1 vector fields on M. If o~X f is of class C1 then f is differentiable
along X and

Vol. 11, n° 4-1994.
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2.3. Holder Continuity

Let us give precise definitions of what we mean by Holder continuity
of a function 6: ~2 -~ R along the foliations and Given constants

0  03B3  1 and C > 0 we say 03B8 is (C, continuous along
respectively if for (x, y) and (x’, y’) in the same leaf of 

respectively we have

Remark that if (x, y) and (x’, y’) belong to the same leaf of resp.
then .

Now given any fixed 0  ~y  1 assume that A is large enough so that
(A + 1)z  (A - 1)3-~ and define

PROPOSITION 6. - ~s03B1u is 4 C q -Holder continuous along Fs, and
is (4 lC )-Hölder continuous along 5’".

Because of the usual symmetry it is enough to study along .~s .
We have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Clearly F is a C1 function. Then we can rewrite the above relation

Stating matters in this form we see c~s ~’~ is an invariant section
of the trivial fiber bundle T2 x [-1,1] by the fiber preserving map
(~, ~, z) ~ ~ f (~, ~), FfC~,~> ~z)~ - Although the base map f : ~2 -~ T~
is singular we can adapt the usual proof of Holder continuity for the unique
invariant section of F. See [S]. For this we need the following technical
lemma.

LEMMA 3. - The function F satisfies:

. ~ w ~

Proof. - For the proof of item 1 just remark that from (5) and (6), using
the mean value theorem, we have, for any pole ~/o of ø

Item 2 is an easy boring calculation. Item 3 follows because

Proof of proposition (6). - Let (x, y) and (x’, y’) be two points in the
same leaf of We will use the following notation: for n > 0,

Vol. 11, n° 4-1994.
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Let N be the least integer n > 0 such that the interval ~n~ contains a
pole of ’ljJ. Notice that while ~n ~ contains no pole the difference yn
grows exponentially with n because expands the stable leaves. By the
mean value theorem for each n  N there is a point (~n, ~n), in the same
leaf of .~s which contains (xn, Yn) and (~n , ~n ) , such that

Thus writing, for n  N, an = ~~’(~n) - ~n)~ [ we have

Now, abbreviating a = (03BB+1 03BB-1)2, we will prove by induction that for n  N

otherwise it can be easily proved that

Remark that j~o - yo ( _ ~ ~o + because E ~~o , yo~ , and
by item 3 of lemma (3),
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Other steps follow from item 2 of the same lemma. Now assume 2) holds
for n  ~V - 1. The same argument we used above shows that

Then

proving that 2) also holds for n + 1. From 2) we have

To see this choose a pole By item 1 of lemma (3),

The last inequality is clear if IYN - 1. Otherwise, trivially,

This proves 3). Thus using this inequality together with 1) we get

Vol. 11, n° 4-1994.
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We finish this section by giving some estimations which will be needed
in the next section. A straightforward calculation upon the estimatives of

proposition (3) gives,

Another important Holder continuity is, under the same assumptions and
constants of proposition (6),

To prove this write in terms of the derivatives ~u03B1s and 8sas. Then
it is enough to prove for these two that

To prove 1 let (~, ~/), (~, ?/) be points in R~ such that ~ - ~)  1 and take

(~*, ~/*) to be the unique intersection of the unstable leaf by (~ ~/) with the
stable one by (~~/). Because (~~/) and (~*,?/*) are on the same unstable
leaf we have ~ - ~  -20142014~ - Because (~c*,~) and (~,~/) are

A 2014 i
on the same stable leaf we have : -r20142014!?/ 2014 Thus

and so
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To prove 2 we choose (~*, y*) in the same way. Then

3. BOUNDED DISTORTION

In this section we define the one dimensional dynamics on the circle S1
induced by the invariant foliations and These dynamics are given
by singular expansive maps S~ --~ ~1. The reversible character of

f implies ~s which we will simply call W. This map lifts to a C1
periodic having the same poles as In fact if A

is large W is close to Our main goal here will be to prove a modulus of
Holder continuity for the map log ~’ C and to deduce from it a bound for
the linear distortion of W which will depend only on the two parameters A
and .~. Finally we use the bound on the distortion to estimate the thickness
of a given compact 03A8-invariant Cantor set containing no poles of 03A8 and

defined by some Markov Partition, in terms of the ratios between intervals
and gaps of this Markov Partition.

3.1. The map W

Consider the singular circles ~’s E and

I~~ respectively transversal to the foliations
and We are assuming, where there is no loss of generality, that 0

is a pole of ~. Now ~’s induces on the cylinder T2 - Cs a trivial fibration
~~ -~- G’s -~ ~~ = Cs whose fibers are the connected components of the

Vol. 11, n° 4-1994.



376 P. DUARTE

leaves of in the cylinder T2 - Cs . This fibration is invariant by the
action of f . To see this, use the factorization f -1 = T’ o R’ described in
section 2.1. We see at once that any given fiber ~rs 1 (x) C T2 - G’s when
mapped by f - ~ splits onto a finite number of complete leaves of .~s in T 2 ,
as many as the number of poles. See Fig. 2. Thus the f image of every
complete leaf of ~s in T2 is a piece of some fiber of 7r~ bounded between
two horizontal consecutive singular circles. Also induces on T2 - Cu a
trivial fibration ~r.~ : T2 - = C~, which is invariant by the action of
f -1. In both cases we have natural dynamical systems describing the action
of f and f -1 on the fibrations T 2 - CS --~ S~ and ~ru : T~ - § 1.
These are the singular expansive maps ~s, §1 -~ §1:

The reversibility of f will imply that W s = which we simply denote by
~. Using the above expressions for ~, we see that each interval I, bounded
by consecutive poles of is expanded by W onto S1 winding infinitely
many times around it. In fact the restriction map WI: is an infinitely
branched covering space of the sign of in I giving the orientation
character of WI. Over its maximal invariant domain,

where D = oo}, the map W : 0~ -~ 0~ is conjugated to a
full shift in infinitely many symbols. Let m be the number of poles
in each fundamental domain and denote by h , - - - , Im C (0,1) all the

connected components of (~,1) - poles o f ~. Then, since ~Z --~ ~l is

a covering is a doubly infinite sequence of subintervals
of Ii which we denote by - - -, I _ 1 i , I0i, I+1i,.... The set of all these
subintervals with l E Z and 1  i  m, forms a Markov Partion for W.

Thus ~ : t~~ -7 A~o is conjugated to the full one sided shift in the infinite
alphabet A = Z x ~ 1, - - - m}.

We give now a precise definition of natural liftings for these projections.
Let gs, gu : ~2 --~ ~ be the Cl functions whose graphs ~(gs(~, y), g)~ and
~ (~, 9~ (x, y) ) ~ are liftings of leaves of the foliations ~S and They
can be defined by
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and

Then 03C0s and 7ru are defined implicitly by

where k(x) E 7L is the only integer such that 0  ~ + k(x)  1. Notice that

3) is equivalent to y), 0) and (x, y + k(y)) belonging to the same
leaf of and (0, y)), (x + 1~(x,), y) belonging to the same leaf of

From the definitions 1) and 2) and the symmetry y) = ~)
it follows easily that

Then from the definition 3) we get

The projections ~82 ~ R are respectively discontinuous along the
horizontal lines f ~ = k } (k E Z) and the vertical ones { ~ = k ~ (k E Z),
and everywhere else of class Cl. Also they are periodic with period 1 in
both variables:

as follows from the periodicity of the functions gs and gu:

Both sides of these relations solve the same Cauchy problem. We still have
to prove that 03C0s and 1r u are well defined. By symmetry we may stick to

Vol. 11, n° 4-1994.
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~-~ . We can prove the following relation, again by checking that both sides
are solutions of the same Cauchy problem,

Thus, by the Implicit Function Theorem, ~-s is well defined. Then we define
W s, W u : putting

Symmetry (11) implies that = which we simply denote by ~. It is
a function outside the poles of ~. By the periodicity of the projections
.and also .that ’of ’ljJ it is clear that the function 03A8 is periodic with period 1.

From definitions 3) and 4) it follows at once that for D  ~  1,

These relations show us how close W is to p. For large A, the leaves of
~’S are almost vertical because [  ~11. .. Thus ~%(~) = is

close to 

PROPOSITION 7. -

Proof -

Differentiating the relation 03C8(x) = by (12) we get

Annales de l’Institut Henri non linéaire
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By item 2 of proposition (7) setting

we have, recall (8), |03A8’(x)|~03BB-1 .

Finally, it is geometrically clear that the projections 03C0s and 03C0u

semiconjugate f resp. f ~ ~- with the expansive map ’l1, that is

03C0s o f = 03A8 o 03C0 s and 03C0u o f-1 = 03A8 o 03C0u.

3.2. Distortion Estimates

We prove a modulus of Hölder continuity for the function 
which is the main tool to get the boundness of linear distortion. Assume
that 0  ~y  1 is fixed and a > 0 is large enough so that

See (14) for the definition of ~c. Then set

where 7) was defined by (7).

LEMMA 4. - If [x, y] C R contains no pole of 03C8 and  1

then

PROPOSITION 8. - Bounded Distortion Property

Vol. 11, n° 4-1994.
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Proof -

Remark that

Proof of lemma 4. - Consider the expression for W’ (x) given on item 2
of proposition (7). Taking logarithms we have

Thus

where

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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From the estimative (8) and the Holder continuity relation (9) one can

easily conclude that

To estimate Ai remark log (l 2014 ~ ~S’~~ ) is of class C1. A simple
computation shows that this function has derivatives smaller than ~ . Thus

Now suppose that the interval [x, y] does not contain any pole of Let

zt = x -~- t(y - x) for t E [0,1]. By the Mean Value Theorem,

Notice that, as 03C8 has no poles inside [x, y], the sign of keeps
unchanged for t E [0,1]. Again by the Mean Value Theorem, using (5),

On the other hand,

because 1; (  M, see (12), and by definition of gs, 1;  i _ ~L.j-.
Thus 

,,

Adding all these inequalities we prove the lemma.
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3.3. Invariant Cantor Sets and Thickness Estimates

Let K be a closed subset of SI or R. The thickness of K can be

defined as follows. See [N3] and also [PT]. Any bounded component of
the complement of K, K or R - K, will be called a gap of K. For

every triple ( Ul , C, U2 ) formed by a pair of gaps Ul, U2 and a bounded
component C of 51 - ( U1 U U2 ) resp. R - ( Ul U U2 ) we define

where denotes the length of U. Then the thickness of K is the infimum

taken over all possible triples ( U~ , ~’, U2 ~ .
Suppose now we are given a ~-invariant Cantor set K C S~ defined as

the maximal invariant set,

over a finite disjoint union of closed intervals Ulm containing
no poles of ~. Further more we will assume that, ~P = I2, ~ ~ ~ , is

a Markov Partition for W : K -~ K. Our goal here is to give an estimation
for the thickness T(K) in terms of the easily computable thickness 
of the Markov Partition P, which we define to be the minimum,

taken over all and over the gaps U of P adjacent to Ii, where a gap of
P simply means a gap of ~l. Now under the same assumptions of
proposition (8) which states the Bounded Distortion Property the following
estimation holds.

PROPOSITION 9. - T{I~~ ~ 
We now make precise our assumptions on P. Lift the Markov Partition

P to I~, the universal covering of Sl. We obtain a countable disjoint union
of intervals. These intervals will still be said intervals of P. Also we keep
calling gaps of P to gaps of this countable union. With this terminology
we assume:

1. The gaps of P contain all the poles of ~.
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2. For each interval I of ~, ~ (I ) is the convex hull of a finite union of
intervals of P, covering at least one fundamental domain of Sl.

It follows from 2 that the set 8P, of all boundary points of the intervals
Ii , I2, ... Im in P, is invariant -~ ~ 1. Thus it consists of periodic
and preperiodic orbits of W.
The proof runs as follows.

Proof. - We begin with some notations, comments and definitions which
will be very useful. Denote by 9 the set of all gaps of K. Then define
order of a gap. The gaps of P will be said to have order 0. We denote by
go the set of all these gaps. Now remark that as these gaps contain all poles
of 03C8 the restriction of W to any interval which intersects no gap of order
0 is an expansive diffeomorphism. Thus, by invariance of K, if U E 9 is
not of order 0 is another and longer gap of K. If U e ? - 90

E go we say U is a gap of order 1. ~~ will denote the set of
all gaps with order 1. Notice that W2 is an expansive diffeomorphism over
any interval which intersects no gap of order  1. By induction we define
the set of all gaps of order n, ~~, as consisting of those gaps U ~ 90
such that is of order n - l. Again by induction we can check that
for U E ~n, the restriction of to an interval intersecting no gaps of
order  n is an expansive diffeomorphism. As 11 expands all gaps must
have finite order. Thus 0 is the disjoint union

Let now (Ui , C, U2 ) be triple formed by a pair of gaps U1 e ~n, U2 E 
and the bounded component C of (Ui U U2 ) . We have to prove that

Suppose n > m. If inside C there are gaps of order  n we choose
among them f7~ to be the one which is closer to Ui. Otherwise simply
define U2 = U2 . Consider the new triple where C’ is the
bounded component U Now C’ C C and C’ contains no
gaps of order  n. Since C’ is bounded by gaps of order  n, 

is bounded by points in c~~ and this proves it is an interval of P. Also
is a gap of P. By the Mean Value Theorem we pick points ( E C’

and (i E Ui such that
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Then by the bound on distortion,

Notice that  1 and 1, because they are respectively
an interval and a gap of P ..

Remark that it is easy to construct Markov Partitions P for W, satisfying
conditions 1, 2 with arbitrarily large thickness T(7~). The maximal invariant
domain of W, see (10), is an infinitely thick hyperbolic "Cantor set",
inside which we can find arbitrarily thick compact invariant Cantor sets.

4. THE BASIC SET FAMILY

In this section we construct the family of basic sets Ak.

4.1. A Family of Singular Diffeomorphisms

We start adding to the Standard Map family y) = ( -y + x)
a singular perturbation which transforms it into a family of
singular hyperbolic diffeomorphisms gk (x , y) = ( -y + x). The new
function will satisfy the assumptions made in section
2, and the perturbation will vanish outside small 2 k1/3-neighborhoods
of the critical points of The size of these neighborhoods is chosen as to
the smallest possible provided there exist constants 03BB>> 2 and 0 l  A

satisfying (3) and (4) for all To understand the role of the exponent
"1/3" replace ~ by cp~ in the left hand side of (4) and remark that the
resulting expression, call it becomes unbounded near -1 /4 and 1 /4,
which up to small errors are the critical points of Now suppose that

x, in the expression is close to one of these "critical" points, say
I x - 4 I  ~ E for some E > 0. An easy computation shows that up to a
negligible error ] is bounded from below by
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If we want to choose E > 0 the largest possible so that 
whenever |x±1 4I > k-~ and still have a uniform bound on (4) for all 
we must have  ~ 1 l whenever |x±1 4| > k-E. Thus k3E-l must
be bounded, implying that E  1/3. So the best choice for our purposes
is E = 1/3.

For an explicit definition of pk we take an auxiliary C°° function /3: ~ --~ R
such that:

and all the derivatives of /~ are monotonous inside (-oo, 0) and (0,oo).
Define then pk : R -~ RU f oc}

The sum is a well defined C°° function since it is locally finite, (actually all
summands have disjoint supports for > 8) and it is obviously periodic,

Setting then I~ -j R U {oo}, = + pk(x), this is a smooth
periodic function,

with two poles of second order - 4 and  in ~- 2 , 2 ~ .
All estimatives in the following proposition hold for k1/3 > 20. Items 3

and 4 will be needed in the next section to prove that the invariant foliations

of gk depend on k in a differentiable way.

PROPOSITION 10. - For large k,
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Two important remarks should be made now. First, inside ~- 2 , 2 ~ the

critical points of = 2x + k sin(2xx) are very close to - 4 and 4 .
Denote them by 0  v-  v+  1. Then a simple computation shows that

Second, the derivatives cp(x) - 2 = k cos(27rx) and p(x) always have
the same sign. Thus ~~ (x) ~ ] > (x) ~, , except inside ~- 4 , v_ ~ U w+, 4 ~ .
Notice these are very small intervals with length ( 161~ ) - I . In any case
~~~(x)~ > ~p~(x), - 2 always holds.

Proof - Let us prove 1. Using the inequality

we conclude I  -L,
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Consider now two cases z) ~ 2014 ~ I > ~73- and :r + ~ ~ ii)
~ ~L ~ ~ ~~. The minimum value of through case z) is attained

1 = ~-3. Thus if z) is the case

Otherwise in case i~)

We have used the following inequality

In order to prove 2 we decompose its summands as follows:

Using item 1 and the obvious bounds 8~-3l~ and for I and
( ~~ (~) ~ respectively, one can easily see that both summands ~~ ", ~~x2 and

II B 
~

are very small. Actually the first is arbitrarily small, if k is large,
while the second can only be forced to be smaller than 4. To estimate
the other two sunimands we consider two cases: z) ~ 2014 ~ n I > 2~i~3 and

~+ ~ I > and it) ~~ ~ 4 ~ I  ~~~1~:~ . In the first case, because the
derivatives of j3 are monotonous, we have ]   3 . 2~ k and

|03C1’’’k(x)|   3 . 2g k4/3. in case it) we have explicit formulas for
and its derivatives so that an estimation is straightforward. Putting

together all these estimations We can prove item 2.
Finally to prove 3 and 4 we consider the same two cases i) and ii) as

above. Remark that, because of item 1, the right hand sides of 3 and 4 are
bounded from below by 32 and 3 . 322 respectively. In i) the proof is
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trivial because the left hand sides of 3 and 4 have upper bounds which are

much lesser than the lower bounds mentioned above:

In case ii) we have explicit formulas for -~ and p~ (x),

making it easy to check 3 and 4. )) 

"

We can now estimate constant = see (14),

and the distortion constant Ci = with ~ = 2 , see (16).

The distortion converges to 0 as k tends to 00 .

4.2. Construction of Ak

Using the same notation of section 3, Wk will be the expansive map
associated to the singular diffeomorphism gk. We begin constructing a
Cantor set Kk as the maximal invariant set

over a Markov Partition satisfying assumptions 1 and 2 of
section 3.3. These intervals are chosen so that
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’ Jo, Ji are inside the region ~p~ = 0~,
. r(Pk) is large.
Then we set the basic set Ak to be the square of Kk relative to the

product structure induced on T~ by the projections ~s , ~-u : T 2 -~ ~ ~ ,

A~ will be a compact invariant basic set for both fk and gk .

Let Bl and B; be small intervals close to - 4 , respectively at the left
and right of this point, defined by

Similarly, close to (, Bi and Br are the intervals

We define Jo = ~a, b~ and Ji = ~b’ ~ a’ + 1~ by choosing:

Since > (32 ~/~ - 1)/~ > 30 ~~/~ see (14), all four intervals
B = Bi , B;, B+r are expanded by 03A8k onto intervals with length
Vol. 11, n° 4-1994.
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> 30 I~~~3 » 1. Thus it is possible to find ~, a’, band b’ as

above. It is clear that such Pk is a Markov Partition satisfying assumptions
1, 2 of section 3.3. For some positive integers and m’, [a, b] is

mapped, orientation preserved, onto [a - n, a’ + m] and [b’, a’ + 1] is

mapped, orientation reversed, onto [a - n’, a’ + m’] . Furthermore we can
choose a, a’, b and b’ so that n = n’, m = m’, and 
and the number of fundamental domains covered by W k (Jo) == is

nk = n + m. Then Kk is conjugated to the full one sided shift in 2nk
symbols. To estimate nk observe that inside Jo we have 
since ’ljJ k = Thus

and estimating I we obtain,

PROPOSITION 11. - (Kk) n ~ru ~- (Kk) is a compact invariant
basic set for both fk and gk, conjugated to the full Bernoulli shift in 2nk
symbols.

Proof - Ak is closed in the complement of the discontinuity circles

Cs ~ Cu of the projections 03C0s, 03C0u. Also it lies inside the compact set

which is disjoint from Cg U C~. Thus Ak is compact. Once we see it

is invariant by gk, Ak will obviously be a basic set because it has a

global product structure. It will also be a basic set of fk, because it

follows from the definition of Jo, J1, that ~~ ~ (Jo u n ~ru ~ (Jo U J~ )
is inside the region {03C1k(x) = 0}. It remains to prove the invariance

of ^k by gk. Let I = (-1 4,3 4) and consider the C1 diffeomorphism
~~ : l~~ - (Cs x I, g) _ g))~ mapping ll~
onto ~~ x Kk. The singular diffeomorphism on I x I 
can be explicitly defined by

denotes the Markov Partition introduced in section 3.1

for the singular expansive map W k, and ~a ~- stands for the inverse
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map of the restriction of Wk to ~~ . For the sake of rigor we should
mention that the components of Tk are to be taken modulus integer
translations otherwise they could be outside of I. Assume for the meanwhile
that we already know that this map Tk satisfies the conjugacy relation,

o ~~ _ ~~ o Then for Ak’s invariance it is enough to prove that
Kk x Kk is invariant by Tk. For any a Ia n _Kk --~ Kk is a

diffeomorphism and n Kk ) = Kk and = 7c, n K~ .
Thus Tk(Kk x Kk) = Kk x Kk. Finally, because ~ ~ : Kk is

conjugated to a one sided full shift in 2nk symbols it follows that

Tk : ~~ x ~~ x Kk , and therefore gk : Ak, are conjugated
to a full Bernoulli shift in 2nk symbols. Let us now get back to prove
the conjugacy relation. Because the projections ~r~ and 7ru respectively
semiconjugate gk and g1:1 with ~~ we have

Thus it is enough to prove that ~s (x, ~) and ~) ) always belong
to the same interval ~x e A. Since _ -y 
we have to see that (x, y) and (x’, ~’) = (x, -~ -I- ~(x)) project, along

into the same interval or which is equivalent, that + t ( y) )
and y’ + l (y’)) also project, along into the same fundamental

domain m + 7, m e Z. Given z e R, l(z) denotes the only integer
such that - 4  z + l(z)  ~. Now

shows that g~ (x’, y’ + l (g’ ) ) and g~ (~, y + l (y) ) have their x coordinates in
the same fundamental domain -Z -I- .I, l E 7~, and so y’ + l (g’ ) ) )
and -~- l (g) ) ) also belong to the same fundamental domain..

For all sufficiently large parameters, say k > LO, ~ ~ : ~ ~ ~ ~ 1 is a singular
expansive map and gk : ~2 ~ T~ is a singular hyperbolic diffeomorphism.
io = 83 is enough for this to be true, but we can take to = 203 so that all
estimatives in (10) hold. On their maximal invariant domains,
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these maps are conjugated to full shifts in the infinite alphabet A =
Z x ~o,1 ~, respectively the one sided full shift a : ~+ {,A.) -~ ~+ (.~),
~+ (,A) _ and the two sided full shift (7:E(~)-~E(~), E(~) = Al.
Thus every Cantor set Kko and every basic set Ako constructed above has a
continuation or Ako k defined all over [o, oo ) . Moreover, for k > ko
the continuation Ako k of is always a basic set for the Standard Map
fk. To see this let Jo = [ao , bo], Ji = ao + 1] be the Markov Partition
defining Then the C~ functions a(k), c~’ ( 1~ ), b(k) and b’(k) defined by

are the boundary points of a family of Markov Partitions Jo(k) =
~a(k), b(k)~, Jl(k) _ (b’(1~), a’(k) + 1~, defining the continuation of Kko,

Since grows with k, the boundary points a(k), b(k), a’(k) and b’(k)
slowly move away from the poles ~4. Thus as A; 2014~ oo the intervals Jo (k)
and Ji (k) shrink inside the region where pk vanishes, which shows that

the continuation of for k > ko lies inside ~ pk (x) = 0~ and so it is

a basic set for the Standard Map Finally remark that for each k the
definitions of the Cantor set Kk and the basic set Ak depend on an arbitrary
choice of a Markov Partition Pk = ~ Jo, Jl ~. This selection can easily be
made explicit so that these families become dynamically increasing in the
sense of item 1, Theorem A, and continuous with respect to the Hausdorff
metric except on a discreet set {ko, k1, 1~2, ~ - ~ ~, formed by an increasing
sequence of parameters oo, where it is only right continuous, meaning
Aki = lim 

2

4.3. Measuring A k

PROPOSITION 12. - For all sufficiently large k, T(Kk) > k 9 3 .
Proof. - By the localization of the extreme points a, a’, b, b’ of the

Markov Partition it is clear that both gaps (a’, a) and (b, b’) have length
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 ~ 3 , and both intervals Jo = ~c~, b~ and Ji = ~b’, a’ + l~ have length
> ~ - ~~. Thus, using the distortion estimative (18), it follows that

LEMMA 5. - The ( Cs u Cu) - I x I, defined by
(x, y) ~ (~-s (x, y) , y)), is a C1 diffeomorphism close to the identity

Proof - To prove that ~~ is Cl close to the identity, we only have to
see that is C1 close to the vertical projection (x, y) ~ x, because by
symmetry 7ru will then be C1 close to the horizontal projection (x, y) t-~ y.
By definition 3) of section 3.1, for 0  ~/  1, x. Thus

Differentiating the relation above we get

Because as is small and a~ is close to 1 we get ax and a respectively
close to 1 and 0. The calculations are left to the reader..

PROPOSITION 13. - For all sufficiently large k,
A
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Proof - 1) The idea is to remark that, by construction, all gaps of Kk have
length  ~-. Thus = S~ and also x ~) = T~
where the second ball is associated to metric defined on T~ by the ~~~:
norm == Now because ~~ is C~ close to the identity
it has a Lipschitz constant close to one. This is enough to conclude that
B_(A,)=T’.

2) The local thickness of a Cantor set K at a point x e K is defined as

where the supremum is taken over by all compact subsets A of K. From
the definition it is clear that always

Another important remark is that local thickness is invariant by
diffeomorphisms. For surface diffeomorphisms local stable and unstable
thickness of a basic set A are defined as follows. See [PT,N3]. Take
sections ~s and ~~‘ through the point x E A respectively transversal to the
stable and unstable foliations. Then

The invariance by diffeomorphisms enables one to prove this definition
is independent of the transversal section. It can also be proved that the
definition is independent of point x E A. Thus and are

two well defined numbers. Because of all remarks above it is obvious, in
our setting that

3) For Dynamically defined Cantor sets the following relation holds
between thickness and Hausdorff Dimension.

See [PT,N3] . Thus because l~~ is diffeomorphic to Kk x Kk,
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5. PERSISTENT TANGENCIES

We prove Theorem C in this section. Push the g-invariant foliation .~’~
by the Standard Map f into a new foliation gu = Then gu and ~S
have two circles of mutual tangencies. We project the basic set l~~ along
the foliations ~’S and gu to one of these circles and obtain two Cantor sets
K8 and respectively. Then applying the gap lemma to these Cantor
sets we conclude that for all sufficiently large k there is a tangency between
stable and unstable leaves of Ak. Finally we show that all these tangencies
unfold generically.

5.1. Circles of tangencies

We begin defining a pair of new foliations gu and ~s, respectively the
forward and backward images of and .~s by the Standard Map f. These
foliations are defined by the vector fields (~u,1 ~ and ( l, ,C3s ), where

A simple computation shows then

The set of tangencies between ?~ and is

and similarly the set of tangencies between .~~ and ~s is

Both these tangency sets consist of two circles. Denote by v- and v+ the
critical points of p. A straightforward application of the Implicit Function
Theorem gives

PROPOSITION 14. - The set = is the union of two horizontal
x E ~ ~ ~ x E ~ i ~, which are graphs

of G ~ functions a+ , ~+ : ~ ~- -~ ~ 1 satisfying

Vol. 11, n° 4-1994.



396 P. DUARTE

Symmetrically, = consists of two vertical circles which are

graphs, ~(~+(~), E ~1 ~ and ~( o_ (x), x) x E ~1 ~, of C~- functions
p~ : ~1 -~ ~1 satisfying the same conditions 1 and 2 above.

Fix the critical point v+ of pk near 4 and denote by Sh C = 

respectively by S’v C = the horizontal circle of tangencies near
~(~, v+) : x E ~1~, respectively the vertical circle near ~(v+, x) : ~ E ~1~.

Proof - It is geometrically obvious that f maps = the set
of tangencies between ( f -~ ) *.~’s and onto the set of tangencies
between and = Also f E ~1 ~
onto ~ (x, v) : x E § 1 ~ . Thus by continuity f (,5’v ) _ 

We define the projection of Ak along ~’s into Sh as

and the projection of Ak along ~~‘ into as

Remark that an intersection point x E Kh n K’h is a point of tangency
between stable and unstable leaves of Ak. Both Kh and I~h are compact
sets because ~rs 1(K) and are closed in the complement of CS.
To get the persistent tangency phenomenon, we estimate the thickness of
the Cantor sets Kh and 

PROPOSITION 15. - For all sufficiently large k,

Proof. - We need the following easy fact. Let be a Lipschitz
homeomorphism with Lip(h)  ~c,  ~c. Then for any compact
set K C Sl,

Now if h : 51 -~ S~ is a diffeomorphism C1 close to the identity we can
choose p close to 1 such that Lip(h)  ~c and  ~c to

Annales de l’Institut Henri Poincaré - Analyse non linéaire



397ELLIPTIC POINTS OF THE STANDARD MAP

conclude that T ( K ) is close to T ( h ( K ) ) . More generally if h : § ~ ~ § 1 is

Cl close to an isometric rotation 8 : S~ -~ S~ then also T(K) is close to
T(h(K)). We just have to remark that 8 preserves thickness and apply the
same argument to h o 

Consider on ,~~ the metric induced by its natural parametrization
S~ ~ ~ ~--~ ( x, a ( x ) ) E Sh, via which we make the identification § 1.
The projection ~rs : Sh -~ S~ restricted to Sh is a diffeomorphism C~ close
to the identity which maps Kh onto K. The order of the Cl closeness is
~1 3. See lemma (5). Thus if k is large we can find a Lipschitz constant
less then ~/~ for both the projection and its inverse which gives us

In order to estimate T(K’h) we remark that by symmetry the same argument
above proves that (eventually for larger I~),

where Kv == Sv D ~u 1 (K) is the projection of Ak along FU into Sv .
Again on Sv we consider the metric induced by its parametrization
S~ 3 .r t-~ (~(~), ~) E sv, and make the identification S~, - ~~. The
Standard Map f takes Sv onto Sh, mapping Kv onto K;:,

By the previous remarks it is enough to prove now that the restriction
diffeomorphism f : Sh is C1 close to the isometric rotation 0: §1,

= cp(v) - x. We prove below that so it is with

Then if k is large f o 8 -1 and 0 o f -1 have Lipschitz constants  4 -~°
which gives us,

To estimate notice that f maps (~(~c), ~r) to ( -x + ~(~r)).
Thus, modulus the above identifications and Sv = ~ 1, we have
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f (x) = cp(e(~)) - x, and by proposition (14)

5.2. Gap lemma

We now use the following circle version of Newhouse’s Gap Lemma to
get the persistent tangency phenomenon.

PROPOSITION 16. - If. K1 K2 C Sl are compact sets such that

T(~) > 1 then Kl n K~ ~ ~ .

Proof - It follows easily from the usual Gap Lemma for Cantor sets
in the real line. See [PT]. Lift Ki and K2 to periodic closed Cantor sets

It is obvious that = T ( K2 ) and that
none of the Cantor sets K2 is contained in a gap of the other because

they are both unbounded. Thus we can apply the usual Gap Lemma to
conclude .K~ f~ .~~ ~ 0 and so I~1 ~1 I~2 ~ 

From proposition (15) we get

COROLLARY 17. - For all sufficiently large parameters k there is a

tangency in Sh between one stable leaf W s ( fk , x) and another unstable
one of two points Ak.

Proof - Given k large, since r(Kh) > ~~ 1, there is some

point Q E Kh n Q is a tangency point between and 

for some pair (z, z’) E .~~ x Kk . Now, is a piece of stable leaf of
Ak for both ,~~ and g~, because it lies with all its forward iterates inside
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the region {fk = Similarly, is a piece of unstable leaf of
l1~ as a basic set of the Standard Map fk, because all backward iterates
of inside (f-1k = g-1k}..

5.3. Generic Unfolding

All tangencies in ~~ n K’h between stable leaves in and

unstable ones in are quadratic and unfold generically. We will
give complete analytic proofs of these facts.
Even so the following heuristic description should be enough to convince

ourselves. We have seen that the leaves in are almost vertical

and, symmetrically, that those in ?!’J~(J~) are almost horizontal. Now, the
same factorization of section 2.1 holds for the Standard Map, see fig. 5, so
when we push ~ru 1 (K) by f we first rotate 90 degrees counterclockwise
to an almost vertical foliation and then slide along horizontal circles in a
way that verticals are folded to a foliation 9 of curves parallel to the graph
of cp, G = ~ { cp (x ) , ~ ) : x Thus the tangency circles between ~s and
~~‘ are very close to the circles of tangencies between vertical lines and the
foliation 9 of horizontal displacements of G, which are the critical circles
{(x, v_ ) : x E v+) : x E Thus the difference of curvatures
at a tangency point is close to the second derivative cp" (v~ ) ~ 4~-21~. The
tangencies are quadratic!
As the parameter k grows the stable leaves in become more and

more vertical with very small displacements along Sh and the same is true
about becoming horizontal without moving much in the vertical
direction. When k increases the critical values of c~~ are pushed apart
with velocity one and in the same way fk pushes the leaves in 
along the circle Sh. Thus as we move the parameter k, while the leaves
of are almost still, those in move comparatively fast
along ~‘~ with velocity close to one. All tangencies unfold generically!

Fix a point (xo, go) E Sh and denote by C respectively
~y~‘ C ~~‘ , the stable and unstable leaves of these foliations through (xo, 
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The following proposition shows that the tangency between ~y~ and ~y~‘ is

quadratic.

PROPOSITION 18. - -y~’ and -y~‘ are graphs of C2 functions ~s , ~u : i~.

Proof - As gs (7rs (xo, ~o) = xo~ see definition 3) of section 3. l,

is the stable leaf of through (xo, Defining 
= ~) where xo = ~ys is the graph of ~s and

it is of class C2 since it solves the C1 differential equation ~y = as (x, y).
In particular ~s’ (~) = + and

where y’0 = is the graph of CPu : R ~ R 03C6u(y) =

-gu(y, ~o) + cp(~) . In the same way we see that ~u(~) = gu(y, ~o)
is a function of class C2 with second derivative smaller than l~-1~3. An
elementary calculation, using proposition (14), shows that

and so
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Now in order to prove that these tangencies unfold generically as k
varies, we analyse the dependence of the invariant foliations on the

parameter k. Consider the Markov Partition {I03B1}03B1~A, A = Z  {0,1},
for W k : 0~ (~) -~ ~~ (l~) defined in section 3.1. The full shift

~ : ~ (,A.) --~ ~ (.,4), ~ (.,4) _ is conjugated --~ 

by CPk : ~(.~4) -~ 

the unique point x of with itinerary a = (an)n>0
meaning that ‘dn > 0 E I03B1n (k),

Let to > 0 be as given in section 4.2. x CX)) defined

by ~(a,1~) _ is a continuous function and we have

PROPOSITION 19. - For each a E ~(.~1.), 1~ t--~ differentiable and

a~ : ~ (,A.) x ~ ~ 1 is continuous satisfying

Proof - Let S be the space of all sequences x = (xn)n>ü of real

numbers, with the usual pointwise convergence, and define the open subset

For each 03B1 E A, consider the map Ga : oo) X I ~ I03B1, where

7 == ~- 4 , ~), defined = x mod Z. Up to an integer
translation is the inverse of Then we define the

continuous map,

Now remark that F(a,1~, x) _ 0 means that all the following three

equivalent statements are true
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~ is a continuous map such that

We now want to conclude by an implicit function theorem argument that
&#x26; is differentiable in k and a~ is continuous in (a, k), which will imply
the same about ~ . For this to be true we need to know that for each

~(,r4), (k,x) ~-~ is a G~1 function with derivatives

depending continuously on (a, ~, ~). Now the maps D -~ R are of

class C1 because of lemma (7) below, proving ~(~,:r) =1 is a Cl
function of (k, x) . It is easy to prove, after lemma (7), that 
and D3F(a, k, x) are continuous functions of (a, k, x). Remark now
that (1~, ~) ~ x) is the linear projection (k, x) x minus a

perturbation G(a, l~, ~) _ with very small derivatives,

Thus D3F(a, k, x) = .~ --~ D3G(a, k, x) is invertible, which shows that an

implicit function theorem argument applies to prove continuity of a~ (a, l~).
Let us now estimate ~~ . Assume a E ~ (,A.) is a fixed point of y. For

some m E Z we _ ~ ( r~,1~ ~ + m . Differentiating this
relation with respect to k we have,

Thus, using lemma (7) below,

Consider now the case a E ~ (,~4.) is a prefixed point, meaning that for some
m E Z, ~~.+1(~). Write xn(l~) _ 
Differentiating = we get

By regressive induction in n we can prove that
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In fact this relation holds for n = ?r~ since is a fixed point and
== ~(~(~)~). Assuming it holds for some 0  ~  m, then by

(*) and lemma (7),

and it holds for n - 1 too. Thus it is true for n = 0 which proves

Then by continuity of ~~ , since the prefixed points are dense in ~~r4.),
relation I a~ ( a,1~ ) ~ I  ~2 3 is always true..

LEMMA 7. - The family of expanding maps,

where ~o = ~- 4 , 4 ~ , h = ~ 4 , 4 ~, is a C~- function in both variables
and satisfies ,

To prove this lemma we need another one.

LEMMA 8. - The stable and unstable functions x, ~) and x, y)
are of class C1 in ~) x T2.
Furthermore,

Proof - The operator To of section 2.1 acts as Lipschitz contraction on
the space x of all continuous functions cx : ~-l, lj. Thus

x, ~) and x, ~) are continuous. To prove they are ~’1 functions
we apply the Fiber Contraction Theorem, lemma (1), as in section 2.1,

making essential use of items 3 and 4 of proposition (10). We omit the
proof of this fact, assuming we already know as is of class Ci and proceed
to estimate Differentiating
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with respect to k, we obtain

By items 3 and 4 of proposition (10),

Proof of lemma (7). - W is implicitly defined by gs ( 1~, _

~~ (~), for 0  x  1. So by the Parametric Implicit Function Theorem W
is C1. Of course is Cl since it is the flow of a C1 parametric
o.d.e. :

We have

so a~ is solution of a linear equation and by the Gronwall lemma,

Thus, using (17) it follows that ~gs ~k| ~ -2014y- . Now differentiating with

respect to k the above relation we get 20142014 + 20142014 20142014 
== 

20142014. 
So using

item 2 of proposition (7),
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We now want to study how the leaves of .~s and ~~‘ move along the
tangency circle Take a stable leaf of ~s in T 2 - Cs with itinerary
~ E ~ (.A) . The continuation of this leaf is given by

to the intersection of with Sh. Similarly
the continuation of an unstable leaf of ~~‘ in ~(TZ - Cu) with itinerary
a E ~ (.~4.) is given by

and we call k) to the intersection of this leaf with Sh . The genericity
of the unfolding of a tangency between two leaves

where a, b E ~ (.A) is established by the following proposition:

PROPOSITION 20. - For all a E ~ (,A.) ,

Proof - The projection ~rs induces a diffeomorphism S~ C~
close to the "identity". Denote its inverse by h : S1 --~ Sh . Of course
both hand 1r s depend on k. In the proof of lemma (7) we established

(  ~4 3 . Thus differentiating the relation with

respect to k we obtain, 
.

Differentiating 03C0s o h = ids1 x we have + D03C0s 
d h 

= 0 , ors ~ 
~ s ~~

equivalently ~h ~k = - h’ ~03C0s ~k, and so et |~h ~k 6 . since

03A6s(a,k) = h(03A6(a, k)), we have

Similarly, --~__~v is the inverse of the projection diffeomorphism
~-~ : ~1 , we can prove
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To finish the proof notice that = Using
proposition 14 we can show that over the vertical circle Sv,

Thus,

Now Theorem C is an immediate consequence of corollary (17) and the
fact that in a basic set A the stable and the unstable manifolds of every
point in A are dense in A.

6. MANY ELLIPTIC POINTS

In this last section we conclude our work proving Theorem B. The basic
technique is a renormalization procedure which permits us to conclude
the existence of elliptic periodic points arbitrarily close to a homoclinic
tangency in phase-parameter space.

6.1. Renormalization

Consider a 1-parameter family of surface diffeomorphisms M~ --~
M~ of class generically unfolding a quadratic homoclinic tangency at
point Q and at parameter ~c = 0 . Renormalization near the

homoclinic tangency (Q, 0) means the following: For every large n > 0
one finds a small box near (Q, 0) ~ M x R, shrinking to this point
as n ----~ oo , which is mapped by (x, ~c) E--~ (c~~ (~), near itself. Then
in this tiny box one computes adequate rescaling changes in phase and
parameter coordinates,
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such that in this new coordinates the map cp

converges to a normal form y) in the C~ topology. Thus any
feature or property of the dynamics of normal form which is stable

under small perturbations, will also be present in the dynamics of for

parameter values very close to parameter ~c = 0. For dissipative systems,
in fact it is enough to assume the saddle P associated to the tangency is
dissipative ]  1, the above scheme works having as limit
the Quadratic Family of Endomorphisms,

Of course area expansive saddles Idet > 1, reduce to dissipative
ones considering In the conservative case, that is if all preserve
the same area form, it turns out that the same scheme works having as
limit the Hen6n Conservative Family

This was recently established by N. Romero [MR]. For the Henon family we
can easily compute that an elliptic fixed point Q is created through the
unfolding of a saddle node bifurcation at parameter a == 20141. Then as a
runs between -1 and 3 the eigenvalues of Q go through the unit circle
from 1 to -1 and at parameter a = 3 Q goes through a period doubling
bifurcation becoming thereafter hyperbolic. As elliptic points are persistent
under conservative perturbations we arrive at the following conclusion.

PROPOSITION 21. - Let M2 -7 M2 be a family of area preserving C’~
diffeomorphisms, P be a hyperbolic saddle of po , and assume and

W~‘(P) generically unfold a quadratic homoclinic tangency at ~c = 0 . Then

there is a sequence (Qn, in phase-parameter space such that:
. E M x (f~ converges to ( P, 0 ),
. Qn is a generic elliptic periodic point of with period ~ .

A periodic point P of a conservative C~ diffeomorphism f : M~ ----~ M2
is said to be a generic elliptic point if both eigenvalues where

f n _(P) = P, are in the unit circle without resonances of order  3, that is

A, A E Sl, with ~~ ~ 1, a3 ~ 1 and the first coefficient of f’s Birkhoff
normal form at point P is nonzero. This implies KAM Theory applies
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and P is a full density point of "Cantor set" of invariant curves around
P. See [A,Mo].

6.2. Conclusion

Let us prove Theorem B. The shift ~ : ~ (,,4.) --~ ~ (,A) has a countable
number of periodic points. Enumerate them Pi, P2, P3, ~ ~ ~ . For each
k we will denote by Pn(k) the corresponding periodic point of gk in

Doo, Pn(k) _ ~ ( a,1~ ) . Consider ko as in Theorem C. Then for each
n > 0 and m > 0 define Un m as the set of all parameters k > ko such
that Ak or there is a generic elliptic periodic point Q of fk with

 ~ . We prove that Un m is an open dense subset of [ko, oo ) .
The density follows from Theorem C and proposition (21). Let k e Unm.
If Ak then by the right continuity of the family Ak there is a
neighborhood of k in which Pn (k’) g Ak~ , thus a neighborhood contained
in Unm . If Pn(k) E Ak, because generic elliptic points are persistent
under conservative perturbations, the existence of an elliptic point near

holds in a neighborhood of k, thus a neighborhood contained in
Unm . Defining R = ~n 1-~ is a residual set of parameters k
for which Ak is accumulated by generic elliptic periodic points. The proof
is finished! .
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