Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau

par

Rose-Marie HERVÉ et Michel HERVÉ

Université Paris-VI, Mathématiques Pures et Appliquées, Tour 45-46, Place Jussieu, 75252 Paris Cedex 05, France

RÉSUMÉ. – Nous étudions l'équation différentielle satisfaite par les fonctions réelles f(r) telles que $u(re^{i\theta})=f(r)e^{iq\theta}$ $(q\in N^*)$ soit solution de l'équation de Ginzburg-Landau $-\Delta u=u(1-|u|^2)$. Nous montrons : qu'une telle fonction f(r), si elle est définie sur un voisinage de 0, est analytique et parfaitement déterminée par le nombre $a=f^{(q)}(0)/q!$; qu'une seule valeur de a, soit A, donne une fonction f(r) croissant strictement de 0 à 1 quand r croît de 0 à $+\infty$, et dont nous donnons un développement asymptotique pour $r\to +\infty$. Nous montrons aussi que toute valeur $a\in]-A$, $A[\setminus\{0\}$ donne une fonction f(r) oscillant indéfiniment, et que l'écart entre deux zéros consécutifs a pour limite π .

Mots clés: Équations différentielles, développements asymptotiques.

ABSTRACT. – We consider the ordinary differential equation satisfied by the real functions f(r) such that the $u(re^{i\theta}) = f(r)e^{iq\theta}(q \in N^*)$ are solutions of the Ginzburg-Landau equation $-\Delta u = u(1-|u|^2)$. We show: that such a function f(r), if defined on a neighbourhood of 0, is analytic and uniquely determined by the number $a = f^{(q)}(0)/q!$; that one value of a only, say A, yields a strictly increasing function f(r) running from 0 to 1 as r runs from 0 to $+\infty$, of which we give an asymptotic expansion for $r \to +\infty$. We also prove that any $a \in]-A$, $A[\{0\}$ yields an indefinitely oscillating function f(r), and that the length of the interval between two consecutive zeroes has π as its limit.

Classification A.M.S.: 34 L 30, 35 B 05.

1. INTRODUCTION

L'équation

$$r^{2} f''(r) + rf'(r) - q^{2} f(r) + r^{2} f(r) [1 - f^{2}(r)] = 0, r \ge 0, q$$

$$\operatorname{donn\acute{e}} \in N^{*},$$

$$(1)$$

fournit les solutions de la forme $u(re^{i\theta})=e^{iq\theta}f(r)$ de l'équation $-\Delta u=u(1-|u|^2)$ récemment étudiée dans \mathbb{R}^2 par Brézis, Merle et Rivière [1]; elle présente cette particularité remarquable, signalée par Hagan [2], que les solutions de (1) définies sur un voisinage de 0 sont de trois sortes bien distinctes, précisées par le

Théorème. -1) Toute solution réelle de (1) sur un intervalle [0, R] est au voisinage de 0 la somme d'une série entière de la forme

$$f_a(r) = r^q \left[a + \sum_{k=1}^{\infty} P_k(a) r^{2k} \right], \quad a \in \mathbb{R}.$$
 (2)

Dans la suite, la notation $f_a(r)$ désignera aussi le prolongement analytique de cette somme.

- 2) Parmi les a > 0, il existe une valeur A séparatrice en ce sens que :
- Si a > A, $f_a(r)$ croît strictement de 0 à $+\infty$ quand r croît de 0 à une certaine valeur finie.
 - $-f_A(r)$ croît strictement de 0 à 1 quand r croît de 0 à $+\infty$.
- $-Si \ 0 < a < A$, f_a reste strictement comprise entre ± 1 et oscille indéfiniment, de part et d'autre de la valeur 0, sur l'intervalle $[0, +\infty[$.
- 3) f_A et la solution, dépendant de $R \in]0, +\infty[$, qui croît strictement de 0 à 1 quand r croît de R à $+\infty$, ont un développement asymptotique commun, quand $r \to +\infty$, suivant les puissances de $1/r^2$ jusqu'à un ordre quelconque: jusqu'à l'ordre 2, ce développement est $f(r) = 1 q^2/2 r^2 q^2 (q^2 + 8)/8 r^4 + o(1/r^4)$.
- 4) Pour 0 < a < A, les zéros > 0 de f_a sont en fait > q; si r_n est le n^e , $r_{n+1} r_n$ et par conséquent r_n/n ont pour limite π .

Remarques complémentaires. -

- 1) f_A est l'unique solution réelle du problème aux limites sur $[0, +\infty]$ formé de l'équation (1), f(0) = 0, $f(\infty) = 1$.
- 2) $\forall R \in \mathbb{R}_+^*$, l'équation (1) a aussi une solution réelle unique sur [0, R] valant 1 pour r = R: c'est une f_a avec a > A, donc croissant indéfiniment de 0 à $+\infty$ quand r croît de 0 à une certaine valeur finie >R.

3) Les solutions réelles de (1) définies sur tout \mathbb{R}_+ sont exactement les f_a , $|a| \leq A$, et sont toutes strictement comprises entre ± 1 .

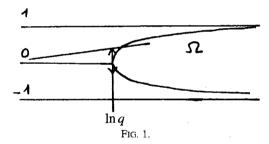
Variantes de l'équation (1) utilisées dans les preuves. -

$$r \frac{d}{dr} [rf'(r)] = (q^2 - r^2) f(r) + r^2 f^3(r)$$
(3)

$$\frac{d}{dr} \left[\frac{1}{r^{2q-1}} \frac{d}{dr} (r^q f(r)) \right] = r^{1-q} f(r) [f^2(r) - 1]$$
 (4)

$$\varphi''(t) = [q^2 + e^{2t} (\varphi^2(t) - 1)] \varphi(t)$$
 pour $\varphi(t) = f(e^t)$ (5)

De (3) résulte que, si l'intervalle ouvert I a pour borne inférieure R>0 (resp.: supérieure $R<+\infty$), une solution f bornée sur I se prolonge à gauche (resp.: droite) de R: en effet, rf'(r) a une limite finie quand $r\to R$, comme primitive d'une fonction bornée, donc $f'(r)\to y'$ fini, $f(r)\to y$ fini, et f se prolonge en la solution qui, pour r=R, vérifie les conditions initiales y,y'. De son côté, (5) entraîne la propriété invoquée dans la suite sous le nom de convexité logarithmique: φ est convexe >0 ou concave <0 sauf si son graphe se trouve dans la région $\Omega=\{(t,\tau): \tau^2<1-q^2e^{-2t}\}$.



Enfin (4) équivaut au système différentiel

$$rf'\left(r\right)+qf\left(r\right)=r^{q}\;g\left(r\right),\;g'\left(r\right)=r^{1-q}\;f\left(r\right)\left[f^{2}\left(r\right)-1\right] \tag{6}$$
 ou à sa forme intégrée

$$f(r) = \frac{1}{r^q} \int r^{2q-1} g(r) dr, \qquad g(r) = \int r^{1-q} f(r) [f^2(r) - 1] dr$$
 (7)

et l'on a, entre 2 solutions f, F, la relation

$$\frac{d}{dr}r\left[f'\left(r\right)F\left(r\right) - f\left(r\right)F'\left(r\right)\right] = rf\left(r\right)F\left(r\right)\left[f^{2}\left(r\right) - F^{2}\left(r\right)\right] \tag{8}$$

prouvant que la différence entre deux solutions >0 ne peut s'annuler plus d'une fois sur \mathbb{R}_+ : si l'on avait f>F>0 sur l'intervalle $I\subset\mathbb{R}_+$ et f=F aux bornes de $I,\ r$ [] au 1^{er} membre de (8) serait $\geqq 0$ à la borne inférieure de $I,\ <0$ à la borne supérieure et croissant sur I.

2. PREUVE DE LA 1° PARTIE DU THÉORÈME

En portant $f(r) = \sum_{n=1}^{\infty} a_n r^n$ dans (1), on trouve $a_n = 0 \,\forall\, n < q$, puis $a_n = 0$ pour tout n n'ayant pas la parité de q, $a_q = a$ indéterminé, mais déterminant $a_{q+2k} = P_k(a) \,\forall\, k \in N^*$ par la formule de récurrence

$$4k(k+q)P_{k} = \sum_{l+m+n=k-q-1} P_{l} P_{m} P_{n} - P_{k-1}$$
 (9)

à partir de $P_0(a)=a$, où le \sum disparaît si $k\leq q$, et sinon compte $C_{k-q+1}^2< k(k+q)/2$ termes. P_k est donc un polynôme impair et, en choisissant α et $\lambda>0$ de manière que

$$\alpha^2 = 8 \,\lambda^{q+1} - 2 \,\lambda^q / (q+1) \tag{10}$$

on a $|P_k(a)| \leq \lambda^k |a|$ pour $|a| \leq \alpha \forall k \in \mathbb{N}$: la série (2) a donc un rayon de convergence $\geq 1\sqrt{\lambda}$.

Proposition 1. – Toute solution f définie sur un intervalle]0, R[, ou bien tend vers $\pm \infty$ quand $r \to 0$, ou bien prolonge une f_a .

Preuve. – Pour cause de convexité logarithmique : si $f \ge 1$ et $f' \le 0$ en un point $r_0 \in]0$, $R[, f(r) \to +\infty$ quand $r \to 0$; si $f'(r_0) > 0$ et f > 1 sur $]0, r_0]$, f(r) a une limite ≥ 1 quand $r \to 0$; si celle-ci était finie, soit l, deux intégrations de (3) donneraient $f(r) \sim (q^2 l/2) \ln^2 r$. Reste donc à étudfier une solution $f:]0, R[\to]-1, +1[$.

Si g lui est associée par les formules (7) (où la 1^e intégrale est prise de 0 à r puisque r^q $f(r) \to 0$ avec r), l'emploi de ces formules en alternance donne successivement, quand $r \to 0$: $g(r) = 0(r^{1-q})$, f(r) = 0(r), $g(r) = 0(r^{2-q})$, $f(r) = 0(r^2)$, ..., g(r) = 0(1), $f(r) = 0(r^q)$, et le processuss s'arrête là, car l'intégrand 0(r) dans la 2^e intégrale n'entraîne que g(r) = 0(1); les 2 dernières estimations donnent $f'(r) = 0(r^{q-1})$ par la 1^e formule (6).

Alors le [] au 1^{er} membre de (8), où F = f_1 , tend vers 0 avec r, tandis que le 2^e membre est 0 (r^{4q+1}); le [] est donc 0 (r^{4q+1}), $\frac{d}{dr} \frac{f(r)}{f_1(r)} \to 0$ et $\frac{f(r)}{f_1(r)}$ a une limite finie a, qui est aussi celle de $f(r)/r^q$. Si α dans (10) est choisi > |a| et si $r_0 < 1/\sqrt{\lambda}$, $f_{a'} \to f_a$ quand $a' \to a$ uniformément sur $[0, r_0]$; comme f est comprise entre $f_{a\pm\varepsilon} \, \forall \, \varepsilon > 0$, on conclut $f = f_a$.

3. PREUVE DE LA 2º PARTIE DU THÉORÈME

PROPOSITION 2. – Si la solution f vérifie $f \ge 1$ et f' > 0 en $r_0 \in \mathbb{R}_+^*$, il existe $R \in]r_0$, $+\infty[$ tel que f(r) croisse strictement de $f(r_0)$ à $+\infty$ quand r croît de r_0 à R.

Preuve. – La fonction φ associée par (5) étant strictement croissante pour $t \geq t_0 = \ln r_0$, on choisit $t_1 \geq t_0^+$ tel que $\varphi(t_1) \geq \sqrt{2}$, puis $R \geq e^{t_1} \left[1 + \varphi(t_1)/\varphi'(t_1)\right]$ tel que $(R - e^{t_1})^2 \geq R + 1$, enfin $\rho \in \left[\sqrt{2}\sqrt{R+1}, \sqrt{2}\left(R - e^{t_1}\right)\right]$. On compare alors, pour $t \geq t_1$, φ considérée comme solution de $\varphi''(t) = \alpha(t)\varphi^3(t)$ avec $\alpha(t) = q^2\varphi^{-2}(t) + e^{2t}\left[1 - \varphi^{-2}(t)\right] > e^{2t}/2$, à $\psi(t) = \rho/(R - e^t)$ solution de $\psi''(t) = \beta(t)\psi^3(t)$ avec $\beta(t) = (1/\rho^2)(Re^t + e^{2t}) \leq e^{2t}/2 < \alpha(t)$; les conditions initiales $\psi(t_1) \leq \varphi(t_1), \psi'(t_1)/\psi(t_1) \leq \varphi'(t_1)/\varphi(t_1)$ entraînent $\psi(t) < \varphi(t)$ pour $t > t_1$, $e^t < R$: si en effet la fonction analytique $\varphi - \psi$ était > 0 sur t_1 , t_2 mais nulle en t_2 , la combinaison classique $\frac{d}{dt}(\psi\varphi' - \varphi\psi') = \varphi\psi(\alpha\varphi^2 - \beta\psi^2)$ donnerait φ/ψ strictement croissant sur t_1 , t_2 , t_2 in t_3 , t_4 en t_4 .

Ainsi $\varphi(t) \to +\infty$ quand $e^t \to R' \leq R$. \square

PROPOSITION 3. — Si une solution f sur $[r_0, r_1]$ $(0 < r_0 < r_1)$ est < 0 sur $]r_0, r_1[$ mais nulle en r_0 et r_1 , elle est > -1 sur ces intervalles, s'annule de nouveau en, $r_2 \in]r_1, r_1^2/r_0[$, f > 0 sur $]r_1, r_2[$ et $\sup_{]r_1, r_2[}|f| < \sup_{]r_0, r_1[}|f|$.

Proposition 4. – Soit a > 0: s'il existe $r_0 \in \mathbb{R}_+^*$ tel que $f_a(r_0) = 1$, il existe aussi $R \in]r_0, +\infty[$ tel que $f_a(r)$ croisse strictement de 0 à $+\infty$ quand r croît de 0 à R.

Preuve. – Quand t croît à partir de $-\infty$, la fonction φ_a associée par (5) à f_a est d'abord convexe strictement croissante; elle le reste indéfiniment si son graphe ne franchit pas la frontière de Ω (fig. 1) et l'assertion résulte alors de la proposition 2. S'il la franchit, φ_a devient concave et peut, soit rester strictement croissante, soit passer par un maximum situé dans Ω . Dans le 1^{er} cas, ou bien le graphe franchit à nouveau la frontière de Ω , alors φ_a redevient convexe strictement croissante et la proposition 2 s'applique encore; ou bien le graphe reste dans Ω , alors φ_a est strictement croissante et strictement comprise entre 0 et 1 sur tout $\mathbb R$. Dans le 2^e cas, après son maximum φ_a est concave strictement décroissante, puis s'annule et, d'après la proposition 3 appliquée au besoin une infinité de fois, ne peut jamais prendre la valeur 1. \square

La démonstration précédente fait apparaître comme possibles les 3 sortes de solutions f_a annoncées par le Théorème, mais n'en prouve pas l'existence; c'est à celle-ci qu'on va s'employer maintenant, en commençant par la $1^{\rm e}$ sorte.

Soit a>0: tant que $0< f_a<1$, la fonction g_a associée par (6) décroît strictement à partir de 2 qa (sa limite quand $r\to 0$), et les intégrales figurant dans (7), prises de 0 à r, donnent respectivement $r^q f_a(r)$ et $g_a(r)-2 qa$, d'où successivement

$$g_a(r) < 2 qa, f_a(r) < ar^q, g_a(r) > 2 qa - ar^2/2,$$

 $f_a(r) > a [r^q - r^{q+2}/4 (q+1)]$ (11)

le maximum du [] vaut $[2^{q+1}/(q+2)][q(q+1)/(q+2)]^{q/2}$; si son produit par a dépasse 1, on est assuré que f_a prend la valeur 1 et par conséquent se comporte selon la proposition 4.

Si f_a prend la valeur 1, c'est une seule fois (prop. 4), pour $r=f_a^{-1}(1)$; il en est de même de $f_{a'}$ $\forall a'>a$, et alors $f_{a'}^{-1}(1)< f_a^{-1}(1)$, puisque a'>a entraı̂ne $f_{a'}>f_a$. De même, pour tout a' assez voisin de a, $f_{a'}$ prend la valeur 1 (une seule fois), et $f_{a'}^{-1}(1) \to f_a^{-1}(1)$ quand $a'\to a$. En effet, quand $a'\to a$, $f_{a'}\to f_a$, $f_{a'}\to f_a'$, uniformément, sur un intervalle $[0,\ r_0]$ déterminé, à la fin de la preuve de la proposition 1, à partir des développements (2); partant de cette valeur r_0 qui n'est plus singulière pour l'équation (1), l'emploi répété de la dépendance continue (locale dans le cas non linéaire) de la solution vis-à-vis des conditions initiales prouve que : si f_a est prolongeable à $[0,\ r_1]$, $f_{a'}$ l'est aussi pour a' assez voisin de a, et $f_{a'}\to f_a$ uniformément sur $[0,\ r_1]$. D'où les deux assertions en prenant $r_1=f_a^{-1}(1+\varepsilon)$, $r_2=f_a^{-1}(1-\varepsilon)$, $0<\varepsilon<1$: en effet $|f_{a'}-f_a|<\varepsilon$

sur $[0,r_1]$ entraı̂ne $f_{a'}^{-1}(1)$ compris entre r_1 et r_2 , qui tendent vers $f_a^{-1}(1)$ quand $\varepsilon \to 0$.

Ainsi les a pour lesquels f_a prend la valeur 1 forment un intervalle ouvert $]A, +\infty[(A \ge 0 \ a \ priori)]$ sur lequel $f_a^{-1}(1)$ est fonction continue strictement décroissante de a; $f_a^{-1}(1) \to 0$ quand $a \to +\infty$, car le 2^e membre de la dernière inégalité (11) tend vers $+\infty$ avec $a \ \forall r \in]0, 2\sqrt{q+1}[$. Reste à savoir si $s = \sup_{a>A} f_a^{-1}(1)$ est fini ou non. Pour répondre à cette question, et à quelques autres, admettons provisoirement A>0, qui résultera de la proposition 5.

 f_A ne peut, ni prendre la valeur 1, ni s'annuler en $r_1 \in \mathbb{R}_+^*$, puisque la fonction croissante f_a , a > A, devrait tendre vers f_A quand $a \to A$, uniformément sur $[0, r_1]$. En se reportant à la discussion du graphe de φ_a (preuve de la prop. 4) on voit que f_A reste strictement croissante (et même $f_A' > 0$) et strictement comprise entre 0 et 1, donc se prolonge à tout \mathbb{R}_+ , et tend vers $L \in]0, 1]$ quand $r \to +\infty$; mais, avec $L \in]0, 1$ [, (5) donnerait, pour $t \to +\infty$, $\varphi_A''(t) \sim L(L^2-1)e^{2t}$, qui est absurde. Puisque f_A est définie et strictement comprise entre 0 et 1 sur tout \mathbb{R}_+^* , s fini entraînerait, pour a assez voisin de A, f_a prolongeable à [0, s+1] et < 1 sur cet intervalle, contrairement à la définition de s.

Soit maintenant 0 < a < A: d'abord f_a ne peut avoir le même comportement que f_A , car alors on aurait $0 < f_a < f_A$ sur tout \mathbb{R}_+^* , et (8) donnerait $(f_a/f_A)(r)$ strictement décroissant de a/A à 1 quand r croît de 0 à $+\infty$. Alors φ_a s'annule sur \mathbb{R} , f_a s'annule sur \mathbb{R}_+^* , et il suffit de montrer que f_a s'annule 2 fois, pour que la proposition 3 lui donne une suite infinie de zéros tendant vers $+\infty$; on aura en outre $-f_A < f_a < f_A$ sur tout \mathbb{R}_+^* . Supposons donc que f_a s'annule seulement en r_1 sur \mathbb{R}_+^* , de sorte que $f_a(r) < 0 \ \forall r > r_1$: la preuve de la proposition 3, où φ est remplacée par $-\varphi_a$, t_0 par $-\infty$ et $\psi(t)$ par $\varphi_a(2t_1-t)$, donnerait, pour $t>t_1$, $0<-\varphi_a(t)<\varphi_a(2t_1-t)\to 0$ quand $t\to+\infty$; alors, pour t assez grand, le graphe de φ_a serait dans Ω (fig 1), et $\varphi_a<0$ entraînerait φ_a convexe.

Pour achever, par A>0, la preuve de la $2^{\rm e}$ partie du théorème, il suffit de montrer que, pour |a| assez petit, f_a s'annule sur \mathbb{R}_+^* , et ceci résultera de la partie (ii) de la

PROPOSITION 5. – (i) Étant donné $r_1 \in \mathbb{R}_+^*$, il existe $a_1 \in \mathbb{R}_+^*$ tel que les quotients f_a/a , $|a| \leq a_1$, soient définis, bornés dans leur ensemble, équicontinus, sur $[0, r_1]$.

(ii) Quand $a \to 0$, f_a/a tend, uniformément sur tout conpact $\subset \mathbb{R}_+$, vers la fonction de Bessel J_q , donnée par la formule ci-dessous, qui a une infinité de zéros >0.

Preuve . – (i) Si α et λ dans (10) sont choisis de manière que $\lambda < 1$, pour $|a| \le \alpha$ on a $|f_a/a|$ et

 $|f_a'/a| \leq \beta = \sum_{k=0}^{\infty} (q+2k) \lambda^k$ sur [0, 1] (ce qui achève de prouver (i) si $r_1 \leq 1$), en particulier $|\varphi_a(0)|$ et $|\varphi_a'(0)| \leq |a|\beta$.

Si $r_1 > 1$, et si f_a est définie sur $[0, r_1]$, on peut considérer φ_a comme solution sur $[0, t_1 = \ln r_1]$ d'une equation de la forme $\varphi''(t) = c(t) \varphi(t)$: si $\gamma \ge 1$ et $\gamma \ge |c(t)| \, \forall t \in [0, t_1]$, un raisonnement classique montre que les conditions initiales ci-dessus, vérifiées par φ_a en 0, entraînent $|\varphi_a(t)|$ et $|\varphi_a'(t)| \le |a| \beta e^{\gamma t} \, \forall t \in [0, t_1]$. Posons donc $\gamma = q^2 + e^{2t_1}$: si $|a| \le \alpha$ et $|a| \beta e^{\gamma t_1} < 1$ alors φ_a est définie, de valeur absolue $\le |a| \beta e^{\gamma t_1}$ ainsi que $|\varphi_a'|$, sur tout $[0, t_1]$; d'où l'assertion en revenant à la variable $r = e^t$.

(ii) Quand $a \to 0$, $P_k(a)/a$ tend vers $P_k'(0) \forall k \in \mathbb{N}$, et la dérivation de (9) donne $4k(k+q)P_k'(0) = -P_{k-1}'(0)$; $P_k'(0)$ est donc le coefficient du terme de degré q+2k dans le développement taylorien à l'origine de la fonction de Bessel J_q :

$$J_q(r) = q! r^q \sum_{k=0}^{\infty} \frac{(-1)^k r^{2k}}{4^k k! (q+k)!}$$

 α et λ étant choisis comme pour (i), on a $|P_k(a)/a| \leq \lambda^k \forall k \in \mathbb{N}$ pour $|a| \leq \alpha$, donc f_a/a et f'_a/a tendent vers J_q et J'_q uniformément sur [0, 1].

D'autre part, sur un intervalle compact $[1, r_1]$: une borne commune pour les quotients f_a/a , f'_a/a , en implique une, d'après (1), pour les f''_a/a ; alors le Théorème d'Ascoli fournit des suites $a_n \to 0$ telles que les suites correspondantes f_{a_n}/a_n , f'_{a_n}/a_n , f''_{a_n}/a_n convergent uniformément sur tout compact, et la limite F de la 1^e suite est solution de l'équation différentielle $r^2 F''(r) + r F'(r) + (r^2 - q^2) F(r) = 0$, c'est donc J_q . \square

4. PREUVE DE LA 3° PARTIE DU THÉORÈME

La valeur $R \in \mathbb{R}_+^*$ n'étant pas singulière pour l'équation (1), celleci admet, pour chaque $b \in \mathbb{R}_+^*$, une solution unique $f_{R,b}$ vérifiant $f_{R,b}(R) = 0$, $f'_{R,b}(R) = b$; elle est strictement croissante pour r > R assez voisin de R. Quant à son comportement pour de plus grandes valeurs de r, les raisonnements qui prouvent la proposition 4, basés sur la figure 1 et la convexité logarithmique, font apparaître les trois mêmes possibilités que pour les f_a : croître strictement de 0 à $+\infty$ quand r croît de R à une certaine valeur finie; croître strictement, mais en restant strictement comprise entre 0 et 1, sur tout R, R [; passer par un maximum, puis décroître strictement, s'annuler, et par suite (prop. 3) osciller indéfiniment, en restant strictement comprise entre R [. La seule nouveauté est dans les moyens à employer pour montrer que ces possibilités se réalisent toutes trois.

Au point $T=\ln R$, on a $\varphi_{R,b}=0$, $\varphi'_{R,b}=Rb$; si $\varphi_{R,b}$ reste comprise entre 0 et 1 sur $[T,\ T+\theta]$ avec $0<\theta\le 1/2$, sur cet intervalle on a $\varphi''_{R,b}>-e^{2T+1}$, donc $\varphi'_{R,b}>Rb-e^{2T+1}$ qui, pour b assez grand, entraı̂ne $\varphi_{R,b}(T+\theta)=1$ pour un θ convenable. Soient d'autre part r_1 , $r_2(R< r_1< r_2)$ deux zéros consécutifs de $f_{A/2}$ entre lesquels $f_{A/2}>0$, et soit M le maximum de $f_{A/2}$ sur $]r_1,\ r_2[$: comme dans la preuve de la proposition f_1 0, pour f_2 1 assez petit f_2 2, est définie et de valeur absolue f_2 3 sur f_2 4, f_3 7, f_4 7, f_4 8, restait f_4 9, a significant au moins f_4 9, restait f_4 9, restait f_4 9, la différence f_4 9, restait au moins f_4 9, restait f_4 9, restait f_4 9, restait au moins f_4 9, restait f_4

Ainsi les $b \in \mathbb{R}_+^*$ pour lesquels $f_{R,b}$ prend la valeur $1 \text{ sur }]R, +\infty[$, et ceux pour lesquels $f_{R,b}$ prend la valeur $0 \text{ sur }]R, +\infty[$, forment deux parties non vides de \mathbb{R}_+^* ; ces deux parties étant disjointes et ouvertes, il y a aussi des $b \in \mathbb{R}_+^*$ pour lesquels $f_{R,b}$ ne prend sur $]R, +\infty[$ ni la valeur 0 ni la valeur 1, donc reste strictement croissante (en fait $f'_{R,b} > 0$) et strictement comprise entre 0 et $1 \text{ sur tout }]R, +\infty[$. Ces $f_{R,b}$ tendent vers $1 \text{ quand } r \to +\infty$, comme f_A et pour la même raison; de ce fait il n'y en a qu'une, soit $f_{R,B}$.

Le développement asymptotique commun à f_A et aux $f_{R,B}$ va s'obtenir à l'aide du lemme suivant, relevant de la théorie des équations différentielles linéaires.

Lemme. – Sur un intervalle I de borne $\sup + \infty$, soient a(r) une fonction continue tendant vers $\lambda \in \mathbb{R}_+^*$ quand $r \to +\infty$, et x(r) une fonction $\in \mathcal{C}^2(I)$ et tendant vers 0 quand $r \to +\infty$: si y(r) = x''(r) - a(r)x(r) est $0(1/r^k)$ [resp.: $o(1/r^k)$, $\sim \alpha/r^k$] $(k > 0, \alpha \neq 0)$, alors x(r) est $0(1/r^k)$ [resp.: $o(1/r^k)$, $\sim -\alpha/\lambda r^k$] et x'(r) est aussi $0(1/r^k)$ [resp.: $o(1/r^k)$].

Indication sur la preuve. – On choisit $x_0(r)$, solution > 0 de l'équation $x_0''(r) = a(r)x_0(r)$, et telle que $x_0'(r)/x_0(r)$ tende vers $\sqrt{\lambda}$ quand $r \to +\infty$; on pose

$$x\left(r\right) =x_{0}\left(r\right) z\left(r\right) ,$$

d'où $z'(r)=[1/x_0^2(r)]\int x_0(r)\,y(r)\,dr$, et l'on évalue z(r) par la règle de l'Hôpital. Des exemples tels que $a(r)=1,\ x(r)=(1/r)\sin r$ ou $(1/r)+(1/r^2)\sin r$ prouvent que k ne peut être remplacé par k+1 dans l'estimation de x'(r), et ceci complique l'emploi du lemme dans la récurrence qui suit.

Emploi du lemme. – Les solutions f de (1) considérées ici correspondent à des solutions $\varphi > 0$ de (5) dont le graphe est situé dans Ω , donc concaves, et tendant vers 1 quand $t \to +\infty$; alors $\varphi'(t) \to 0$, ou $rf'(r) \to 0$ quand $r \to +\infty$. Dans toute la suite on prendra $a(r) = f(r)[1 + f(r)] \to 2$ quand $r \to +\infty$.

Appliquons d'abord le lemme à $x_0\left(r\right)=f\left(r\right)-1$: d'après (1), $y_0\left(r\right)=x_0''\left(r\right)-a\left(r\right)x_0\left(r\right)=\left[q^2\,f\left(r\right)/r^2\right]-\left[f'\left(r\right)/r\right]\sim q^2/r^2,$ donc $x_0\left(r\right)\sim -q^2/2\,r^2$ ou $f\left(r\right)=1-q^2/2\,r^2+o\left(1/r^2\right),$ $f'\left(r\right)=x_0'\left(r\right)=o\left(1/r^2\right),$ enfin $y_0\left(r\right)=q^2/r^2+o\left(1/r^3\right).$

On peut maintenant raisonner par récurrence en supposant (ce qui vient d'être vérifié pour n=1) que $y_0\left(r\right)$ a un développement limité (en abrégé d.l.) suivant les puissances de $1/r^2$ avec reste $o\left(1/r^{2n+1}\right)$ et que $f\left(r\right)$ en a un avec reste $o\left(1/r^{2n}\right)$, soit (12) $f\left(r\right)=1+\sum_{k=1}^n c_k/r^{2k}+o\left(1/r^{2n}\right)$, de sorte que $a\left(r\right)$ aussi en a un, avec même reste.

A
$$x_{n-1}(r) = f(r) - 1 - \sum_{k=1}^{n-1} c_k / r^{2k}$$
 (où le \sum disparaît si $n = 1$)

correspond par le lemme $y_{n-1}(r) = y_0(r) - \left[\frac{d^2}{dr^2} - a(r)\right] \sum_{k=1}^{n-1} c_k/r^{2k}$

qui, d'après la double hypothèse de la récurrence, a un d.l. suivant les puissances de $1/r^2$ avec reste $o(1/r^{2n+1})$; puisque $x_{n-1}(r) \sim c_n/r^{2n}$, un $1^{\rm er}$ emploi du lemme prouve que ce d.l. est réduit à $-2 \, c_n/r^{2n} + o(1/r^{2n+1})$.

A
$$x_n(r) = f(r) - 1 - \sum_{k=1}^n c_k/r^{2k}$$
 correspond de même
$$y_n(r) = y_{n-1}(r) + 2c_n/r^{2n} - \left[\frac{d^2}{dr^2} - a(r) + 2\right]c_n/r^{2n}$$

qui est d'abord $o\left(1/r^{2n+1}\right)$; un $2^{\rm e}$ emploi du lemme fournit $x_n'\left(r\right)=o\left(1/r^{2n+1}\right)$ ou

$$f'(r) = -\sum_{k=1}^{n} 2kc_k/r^{2k+1} + o(1/r^{2n+1});$$
(13)

en portant (12) et (13) dans l'expression de $y_0(r)$, on obtient un d.l. de $y_0(r)$ avec reste $o(1/r^{2n+2})$, donc aussi un d.l. de $y_n(r) = y_0(r) - \left[\frac{d^2}{dr^2} - a(r)\right] \sum_{k=1}^n c_k/r^{2k}$ avec même reste.

Compte tenu de $y_n\left(r\right)=o\left(1/r^{2n+1}\right)$, ce dernier d.l. a une partie entière réduite à un terme en $1/r^{2n+2}$, dont on peut noter le coefficient $-2\,c_{n+1}$, d'où par un dernier emploi du lemme : $x_n\left(r\right)=c_{n+1}/r^{2n+2}+o\left(1/r^{2n+2}\right)$ et $x_n'\left(r\right)=o\left(1/r^{2n+2}\right)$; ces résultats permettent de remplacer : dans (12), le reste $o\left(1/r^{2n}\right)$ par $c_{n+1}/r^{2n+2}+o\left(1/r^{2n+2}\right)$; dans (13), le reste $o\left(1/r^{2n+1}\right)$ par $o\left(1/r^{2n+2}\right)$; en portant (12) et (13) ainsi améliorés dans l'expression de $y_0\left(r\right)$, on obtient un d.l. de $y_0\left(r\right)$ avec reste $o\left(1/r^{2n+3}\right)$, et la récurrence est complète.

Calcul des termes c_n/r^{2n} du développement. Sachant que f(r) et f'(r) ont des d.l. de tous ordres, (1) en fournit pour f''(r), et l'on est asssuré que la dérivation terme à terme des d.l. de f(r) fournit ceux du $1^{\rm er}$ membre de (1); en annulant le coefficient de $1/r^{2n}$ au $1^{\rm er}$ membre de (1), on trouve $(4\,n^2-q^2)\,c_n-2\,c_{n+1}$ égal au coefficient de $1/r^{2n+2}$ dans le polynome $s_n(r)\,[1+s_n(r)]\,[2+s_n(r)]$, où $s_n(r)=\sum_{k=1}^n c_k/r^{2k}$. Sachant que $c_1=-q^2/2$, cette formule de récurrence donne

$$c_2 = -q^2 (q^2 + 8)/8.$$

Remarque. – Le fait que toutes les solutions considérées ici ont le même développement asymptotique jusqu'à un ordre quelconque laisse présager que le quotient de deux d'entre elles tend vers 1 exponentiellement quand $r \to +\infty$: c'est ce qu'on va vérifier. f et F étant deux solutions de (1), > 0 ainsi que f' et F' sur]R, $+\infty[$ et tendant vers 1 quand $r \to +\infty$, en posant 1+u=f/F on définit u(r) solution d'après (8) d'une équation de la forme $\frac{d}{dr}[\mu(r)u'(r)]=\nu(r)u(r)$, où $\mu(r)=rF^2(r)$ et $\nu(r)=rf(r)F^2(r)[f(r)+F(r)]$ sont > 0 ainsi que μ' et ν' sur]R, $+\infty[$, $\mu(r)\sim r$ et $\nu(r)\sim 2r$ quand $r\to +\infty$. Alors $w=u/\mu u'$ vérifie l'équation de Riccati (14) $w'=(1/\mu)-\nu w^2$, dont les courbes intégrales dans le plan (r,w) se mettent en place à partir de la courbe Γ d'équation $w^2=1/\mu(r)\nu(r)$, lieu des points où w'=0 (fig. 2).

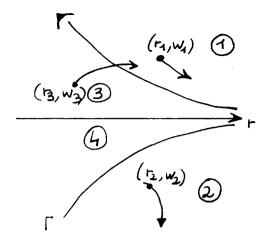


FIG. 2.

Une courbe intégrale partant, dans le sens r croissant, d'un point (r_1, w_1) de la 1° région a une pente < 0 et la conserve car elle ne peut franchir Γ ; le long de cette courbe, r décrit $[r_1, +\infty[$; la fonction w(r) correspondante étant > 0, il en est de même de u'(r)/u(r), mais |u(r)| strictement croissante contredit $u(r) \to 0$ quand $r \to +\infty$.

Une courbe intégrale partant d'un point (r_2, w_2) de la $2^{\rm e}$ région garde aussi une pente <0; le long de cette courbe, w décrit $[w_2, -\infty[$, car la dérivation de (14) donne $w'' = -(\mu'/\mu^2) - \nu' \, w^2 - 2 \, \nu w w' < 0$ si ww' > 0; mais r ne peut décrire qu'un intervalle borné, car (14) entraîne $\mu \, (r_2) \, w' < 1 - \mu \nu \, (r_2) \, w^2$, d'où résulte que l'intégrale de $\frac{dr}{dw}$ converge à l'infini.

Enfin, une courbe intégrale partant d'un point de la 3e région franchit Γ et se retrouve dans la 1e. Pour notre fonction u=(f/F)-1, le graphe de $w\left(r\right)$ est donc dans la 4e région: $-1/\sqrt{\mu\nu\left(r\right)}< w\left(r\right)<0$ entraı̂ne $\left(u'/u\right)\left(r\right)<-\sqrt{\frac{\nu}{\mu}\left(r\right)}$ qui tend vers $-\sqrt{2}$ quand $r\to+\infty$, d'où $\limsup_{r\to+\infty}\frac{1}{r}\ln\,|u\left(r\right)|\leq -\sqrt{2}.$

5. PREUVE DE LA 4° PARTIE DU THÉORÈME

Soit |a| < A. Le fait que φ_a n'a pas de zéro $\leq \ln q$ est en évidence sur la figure 1. Soient t_1, t_2, \ldots les zéros consécutifs de φ_a et σ_n le maximum de

 $|\varphi_a|$ sur $[t_n, t_{n+1}]$: on sait que $0 < \sigma_n < 1$ et (proposition 3) que la suite σ_n décroît strictement vers $\sigma \in [0, 1[$. Sur $[t_n, t_{n+1}]$ on a la double inégalité

$$(1-\sigma_n^2)e^{2t_n}-q^2 \le [1-\varphi_a^2(t)]e^{2t}-q^2 \le e^{2t_{n+1}}-q^2$$

dont les membres extrêmes sont > 0 pour n assez grand; notant ceux-ci m_n^2 , M_n^2 avec $0 < m_n < M_n$, et le membre médian c(t), on a sur $[t_n, t_{n+1}]$

$$\varphi_a''(t) + c(t) \varphi_a(t) = 0$$
 et $m_n^2 \le c(t) \le M_n^2$,

d'où résulte de façon classique $\pi/\mathrm{M}_n \leq t_{n+1} - t_n \leq \pi/m_n$ et par suite: que, quand $r \to +\infty$, $t_{n+1} - t_n$ est infiniment petit et e^{t_n} , $e^{t_{n+1}}$, M_n , $m_n/\sqrt{1-\sigma^2}$ infiniment grands équivalents; puis que $r_{n+1}-r_n \sim e^{t_n} \left(t_{n+1}-t_n\right)$ a une limite inf $\geq \pi$ et une limite sup $\leq \pi/\sqrt{1-\sigma^2}$. Si $\sigma=0$, on conclut que $r_{n+1}-r_n$ a pour limite π .

Pour montrer qu'effectivement $\sigma=0$, raisonnons par l'absurde en supposant $\sigma\in]0, 1[$. Tout d'abord, sur $[t_n,\,t_{n+1}],\,|\varphi_a''|< M_n^2$ entraîne $|\varphi_a'|< M_n^2\,(t_{n+1}-t_n)$ puisque φ_a' s'annue en un point de l'intervalle; par suite, sur $[r_n,\,r_{n+1}]$ on a $|f_a'|< M_n^2\,(t_{n+1}-t_n)\,e^{-t_n}$, dont la lim sup quand $r\to\infty$ est $\le \pi/\sqrt{1-\sigma^2}$: ainsi f_a' est borné sur R_+ .

D'autre part, 0 et $\pm \sigma_n$ étant les valeurs extrêmes de φ_a sur $[t_n, t_{n+1}]$, l'inégalité de Cauchy-Schwarz donne $\sigma_n^2 \leq (t_{n+1} - t_n) \int_{t_n}^{t_{n+1}} \varphi_a'^2(t) dt$, d'où

$$\int_{t_n}^{t_{n+1}} e^{-2t} \, \varphi_a^{\prime 2}(t) \, dt \ge e^{-2t_{n+1}} \, \sigma_n^2 / (t_{n+1} - t_n)$$

$$\ge e^{-2t_{n+1}} \, \sigma_n^2 \, m_n / \pi \sim \sigma^2 \sqrt{1 - \sigma^2} / \pi \, r_n \quad (15)$$

quand $n\to\infty$. Comme $r_{n+1}-r_n$ a une lim inf >0 et une lim sup $<\infty$, il en est de même de r_n/n , et (15) prouve que l'intégrale $\int_0^\infty e^{-2t}\,\varphi_a'^2\left(t\right)dt$ diverge, ainsi que l'intégrale $\int_1^\infty f_a'^2\left(r\right)\,\frac{dr}{r}$ qui s'en déduit par le changement de variable $r=e^t$ (L'idée de considérer cette dernière intégrale et la formule (16) ci-dessous nous a été inspirée par la lecture du preprint [3], et nous remercions M. Brézis de nous l'avoir communiqué).

Enfin l'équation (1) peut encore s'écrire

$$f''(r) + f(r) - f^{3}(r) = q^{2} f(r)/r^{2} - f'(r)/r,$$

d'où

$$f_a^{\prime 2}(r) + f_a^2(r) - f_a^4(r)/2 = 2 q^2 \int f_a(r) f_a^{\prime}(r) \frac{dr}{r^2} - 2 \int f_a^{\prime 2}(r) \frac{dr}{r}.$$
 (16)

 f_a et f_a' étant bornés sur R_+ , la 1° intégrale indéfinie au 2° membre de (16) converge quand $r \to \infty$, et l'on vient de montrer que la 2° tend vers $+\infty$; alors le 1° membre tend vers $-\infty$, ce qui est absurde.

Remarque. – Le preprint [3] va beaucoup plus loin, puisqu'il donne pour $f_a(r)$ une évaluation asymptotique précise quand $r\to\infty$: il existe des constantes A>0 et B telles que

$$f_a(r) = \frac{A}{\sqrt{r}} \cos\left(r - \frac{3}{8} A^2 \ln r - B\right) + 0 (r^{-3/2} \ln r).$$

6. PREUVE DES REMARQUES COMPLÉMENTAIRES

D'après la 1^e partie du théorème, les solutions réelles définies sur un intervalle [0, R] figurent toutes parmi les f_a . Les remarques 1 et 3 résultent donc des comportements distincts des f_a , précisés par la 2^e partie.

Quant à la Remarque 2: on a vu, en prouvant la 2^e partie, que $f_a^{-1}(1)$ croit strictement et continûment de 0 à $+\infty$ quand a décroît de $+\infty$ à A, donc vaut R pour une valeur de a et une seule.

RÉFÉRENCES

- [1] H. Brézis, F. Merle, T. Rivière, Quantization effects for $-\Delta u = u(1-|u|^2)$ in \mathbb{R}^2 , à paraître.
- [2] P. HAGAN, Spiral waves in reaction diffusion equations, SIAM J. Applied Math., 42, 1982, p. 762-786.
- [3] X. CHEN, C. ELLIOIT, Q. TANG, Shooting method for vortex solutions of a complex valued Ginzburg-Landau equation, à paraître aux *Proc. Roy. Soc. Edinburgh*.
- [4] P. C. FIFE, L. A. PELETIER, On the location of defects in stationary solutions of the Ginzburg-Landau equation in \mathbb{R}^2 , à paraître au Quart. Applied Math.

(Manuscript received July 17, 1993; accepted September 30, 1993.)