
A general approach for

multiconfiguration methods
in quantum molecular chemistry

Claude LE BRIS

C.E.R.M.I.C.S., E.N.P.C. Central 2,
La Courtine, 93167 Noisy-le-Grand Cedex, France

, 

Centre de Mathematiques, URA-CNRS 169,
- Ecole Polytechnique, 91128 Palaiseau Cedex, France

Ann. Inst. Henri Poincaré,

Vol. I1, nO 4, 1994, p. 441-484 Analyse non linéaire

ABSTRACT. - We are concerned with a family of minimization problems
arising in Quantum Chemistry for the modelling of the ground state of a
molecule. We study the multiconfiguration methods, which are an extension
of the well known Hartree-Fock method. We propose a general approach
to prove the existence of the ground state in this framework. We apply our
approach to two particular cases.

Key words: Hartree-Fock type theories, variational methods.

RESUME. - Nous nous interessons a une classe de problemes de
minimisation issus de la chimie quantique. Nous etudions les methodes
multideterminants (ou multiconfigurations) de modelisation de Fetat

fondamental d’une molecule. Dans ce cadre, qui est une extension de
la theorie de Hartree-Fock, nous proposons une approche generale pour
prouver l’existence de Fetat fondamental. A titre d’ exemple, nous utilisons
cette approche pour l’ étude de deux cas particuliers.
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442 C. LE BRIS

I. INTRODUCTION

One of the most commonly used method for the modelling of the ground
state of a molecule is the well known Hartree-Fock method. Let us recall

that this method consists in an approximation of the much more complicated
following "exact" problem. In order to find the ground state of a molecule
with N electrons one solves the minimization problem

where HN is the purely Coulombic N-body Hamiltonian

with

and where La (R3~ ) is the subspace of L~ (R3N ) of antisymmetric
functions.

In the Hartree-Fock approximation, instead of considering all the

functions belonging to L~ (R3~ ), one only considers functions § of the
form

with wz e H1 (R3) satisfying 03C6i pj = 6jj.
Therefore one solves the easier problem
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Let us notice here that, for the sake of simplicity, we shall restrict

ourselves in this paper to real-valued functions. Of course, our arguments
hold, mutatis mutandis, for complex-valued functions. Besides, for the same
reason, we do not take the spin variable into account.
From the mathematical point of view, the Hartree-Fock approximation

has been studied in [1] and [2]. It turns out that when the total nuclear

charge Z = satisfies Z > N - 1, then every minimizing sequence

of the Hartree-Fock problem is relatively compact in (R3))N, and in
particular there exists a minimum of (1.5).

Unfortunately in many cases the single determinant Hartree-Fock

approximation is not adequate to describe properly the properties of the
molecule and chemists have to use some more sophisticated methods to
model the ground state. Among these methods stand the multiconfiguration
methods (See, for instance, [4] for chemical and numerical aspects). The
idea of these methods is to minimize over the set of wave functions which
are linear combinations of determinants

instead of a single determinant as in the Hartree-Fock method. The
associated minimization problem is the following

In addition, the cp~ appearing in (1.6) are supposed to satisfy some
constraints (orthogonality, fixed L~ norm,...), and the e~ are linked by
a constraint that ensures that J ~ ~ 2 = 1.

In order to put these methods on a sound mathematical ground, we intend
to study in this paper the following family of minimization problems that
we formulate somewhat vaguely:

Of course, the number of cpi that are involved, and the way the determinants
are built with the cp2 depend on the method that one considers.

For instance, we shall study in details in section III the following cases.

Example 1. - Completely orthogonal

11, n° 4-1994.



444 C. LE BRIS

The wave functions we consider are

with

We study the minimization problem with the coefficients (ck)okx fixed

and the global problem

Example 2. - Doubly excited configurations.
In this setting the wave functions are

with
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445MULTICONFIGURATION METHODS

and the minimization problems are

and

From the chemical point of view, the first one of these particular cases
may be thought of as a direct generalization of the Hartree-Fock method,
and the second one as a way to model a doubly excited configuration.
For further information on the chemical background of this family of
mathematical problems, we refer the reader to [3], [4] and [5], for instance...

For the family of problem (1.8), the first interesting question is the

existence of a minimum. Beyond this existence, it would be very useful,
essentially in order to obtain stability properties for numerical algorithms, to
know the behaviour of all minimizing sequences. Assuming the existence of
a minimum, a third question is of a great chemical interest: is the infimum
achieved for a single determinant function, and is the energy at a minimum
striclty less than the Hartree-Fock energy? We are going to give here a
general approach in order to answer these questions.

Let us now briefly explain the main new difficulty of this class of

problems (1.8), in particular compared to the Hartree-Fock problem, and
how we manage to overcome it.

A standard way to solve minimization problems like

is to associate to the problem (1.17) the analogous problem with a relaxed
constraint

and to prove that e = e’ (From the viewpoint of the concentration

compactness method (see [2]), this equality is related to the fact that

Vol. 11, n° 4-1994.
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the so-called problem at infinity is trivial). Then, one takes an arbitrary
minimizing sequence of (1.17). Under some reasonable assumptions on E
and J, it is bounded, and thus converges (weakly in up to an extraction

of a subsequence, to a certain § which is a minimum of (1.18). Then one
must prove that J (~) = 1, in which case § is a minimum of (1.17). For
this purpose, the- strategy is to study the solution § of the Euler-Lagrange
equation of the relaxed problem (1.18), and to prove that the Lagrange
multiplier do not vanish.

In problems like (1.8), the difficulty comes from the fact that the Euler-
Lagrange equation is in fact a n-dimensional system, while the Lagrange
multiplier is a matrix of multipliers. In the Hartree-Fock method, which is
the simplest method of the general form (1.8), this system can be drastically
simplified. Indeed, the relaxed problem is

where the inequality is in the sense of symmetric matrices. Now, thanks to
a crucial orthogonal invariance of the energy [if U is a unitary matrix, then

( U (cp j , - - - , ~pn)~ _ (~pl, - - - , one may always assume that
a minimum satisfies

and the Euler-Lagrange equations read

This allows to consider each as a solution of a single-function problem.
In other words, the vector-valued variational problem has split into n less
coupled scalar problems. Then one argues as in the scalar case: study the

second order condition and obtain a contradiction unless = 1 which

gives the desired result (see [2] and [1] ] for the details).
But when we consider setting involving more than a single determinant

function, the orthogonal invariance that makes life simpler does not hold
any longer and we have to cope with a "true" n-dimensional strongly
coupled system.
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The method we are going to present in this paper allows us to overcome
this difficulty.
The idea is to solve the minimization problem with completely vector-

valued arguments and to take benefit of the quadratic nature of the constraint
= 8ij. Our argument uses, as in [2] and [I], the fact that the

Hamiltonian associated to the second order condition has infinitely many
negative eigenvalues, and that this fact will force each of the cpi to be

of norm 1. Technically we have to develop a new approach which do
not require any invariance property of the energy. The point actually is

that we have to look at the second order condtion in some particular well
chosen direction which leads us to a contradiction, unless the constraint

cp3  1 is completely saturated. In the Hartree-Fock case, this

direction happens to be the one that is used in [2] and [1]. We shall detail
this method in section II.

In section III, we shall study both of the particular cases (1.9)-(1.10)-
(1.11)-(1.12) and (1.13)-(1.14)-(1.15)-(1.16) introduced above and prove
the following

THEOREM 1. - (i) Let K be an integer, and let co, - ~ ~ , c~ E R - ~ 0 ~
K

such that ~~ c~ = 1. We assume that the total nuclear charge Z = ~ z~
k=0

satisfies Z > N - 1. Then every minimizing sequence of the problem ( 1.11 )
is relatively compact in (R3))~ {~+~~, and in particular there exists
a minimum.

(ii) We have

Thus, when Z > N - 1, there exists a minimum: co = I, (c~l, - - - , 
minimum for the Hartree-Fock problem.

THEOREM 2. - (i) Let a, ~3 E R - ~ 0 ~ such that ~x2 + ~32 = 1. We

assume that the total nuclear charge Z = ~ z~ satisfies Z j N. Then
every minimizing sequence of the problem ( 1.15) is relatively compact in
(y (R3 ~ 1 N~-2 ~ and an particular there exists a minimum.

(ii) We assume Z > N. Then, we have

Vol. 11, n° 4-1994.
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Every minimizing sequence { a, cp 1, - - - , cpN+2 ) of the problem I is

relatively compact in ~- l, 1~ 2 x {H1 (R3 ) ~ P+~, and in particular there
exists a minimum. Because of ( 1-22) no minimum is of the form of a single
determinant.

II. A GENERAL APPROACH

ILO. Notations and preliminaries

Throughout this paper, we shall use the following notations. We denote

by cp = { cp 1, - - - , E ( H 1 (R3))n. The matrix [03C6i 03C6j] is denoted

by M {cp) . Therefore the constraint

in the sense of the symmetric matrices reads

The energy £ (cp) is defined as

where ~ is a linear combination of determinants built with the cp2,

with 03C6i03C6j = 03B4ij. We may write ~(03C6), for 03C6 satisfying [03C6i03C6j] = 1 :

Since (2.1 ) holds, it is straightforward to see, using ( 1.2) and ( 1.3), that
~ (cp) formally reads

up to some multiplicative constants. In this formula, we denoted by

Beyond this formal representation (2.2), we can give the exact value of
~ (w) getting into the detail of ~. Indeed, for problems of the type (1.8),
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the wave function may be written in the following way

where the sum is taken over the set of applications P from { 1, ... , ~V }
to { 1, ~ ~ ~ , ?~ } (n is the number of functions cpi taken into account).
The values of the coefficients cp depend on the model one considers.
Thanks to the antisymmetry of cp one easily notices that cp = -cQ,

for P, Q satisfying

Using the definition (2.1) of ~ (cp); we may write, for cp such that
= 1,

In (2.5), we have

Indeed, the operators -A and V involve the position of one and only one
electron at a time (In quantum chemistry, they are called monoelectronic).
That is to say for instance

Thus the only terms that do not vanish in ~ -d~, ~ ~ r~ ~ are

those where each of the N - 1 remaining variables xj is the argument of
the same function cp2 in the left-hand side and in the right-hand side of the
bracket (we recall that the cpi are orthonormal). Therefore we only have
square terms. For instance,

The situation is a bit more complicated for the terms D ( cpi cp~ pi) .
The formula (2.5) is formal. In particular, if we do not say anything else, it
is not unique, because of the symmetries of D cp~ with respect
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to the indices (i, j, ~, l), We do not known much about the coefficients
cijkl because the family (1.8) is very large. However, one may make the
above representation unique by deciding

unless

in which case

where the sum is taken over P, Q satisfying the following condition

The reason why condition (2.6) holds is that the coulombic operator 
I

is bi-electronic: the position of two electrons is involved at a time. Therefore

the only non zero terms in ( (~ ) are those where each of the
N - 2 remaining variables ~~ is the argument of the same function cp2 (The
argument mimics the’ one we made above for -A). And this leads to (2.6).
We now turn to the derivatives of M {~p~ and
Both functions M {c,p~ and [ are C~ with respect to w.
For h = (hi , ... , hn ) E (H 1 (R~))" a variation at the neighbourhood

we denote respectively by M‘ ( cp ) - h, M" { ~p) - (h, h), and
~’ (~)-h,f~ {~p)-{h, h) their first and second derivatives evaluated on the
variation h.

Of course, we have
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We use (2.5) to compute ~" (cp) . (h, h):

where

IL l. Overview of our strategy of proof

For the family of problems (1.8), the difficulty is to show compactness
for the cp2. Indeed, the coefficients e~ appearing in (1.6) are supposed to
be linked by some constraint of the kind

and thus, without loss of generality, we may assume that they converge.
Furthermore, some considerations on the energy, and its comparison to
the Hartree-Fock energy for instance, often lead to 0 for all k

(see section III below for details on this point). Therefore we shall assume
throughout this section that the c~. are fixed, 0, and study the problem
(1.8) with ~p satisfying = 1, that is:

For such problems, it is standard to prove, using an argument based upon
the fact that the potential vanishes at infinity (see [2]), that the problem
(1.8) coincides with

Therefore, taking a minimizing sequence of (1.8), it is easy to see it is

bounded thus converges weakly in up to an extraction, to some w. We
then check that w is a minimum of (2.10). Proving = 1 amounts

to proving the existence of a minimum for (1.8) (then, in a last step,
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if it is necessary, one obtains the global minimum minimizing over the
coefficients c~).
We argue by contradiction and assume that M (cp) ~ 1, that is Rank

(1 - M (c,p)) > 1.

The first step (11.2) is to find some direction h for which the second

order condition at the minimum Sp of (2.10) yields

We shall see that a convenient choice for h is given by

only satisfies

Let us emphasize that this first step is basically built upon the quadratic
nature of the constraint M ( ~p) .
The second step (TI.3) consists in proving that (2.11 ) cannot hold.

For this step, we need to take benefit of the particular form (2.2) of
the energy, and to make an assumption on the total nuclear charge Z. In
the paragraph 11.3, we shall only give the formal scheme of the argument,
and explain how it must be applied to any problem of the family (1.8).
Of course, the argument will be detailed in each particular case we study
here (see section III).

Roughly speaking, the contradiction comes from the fact that ?~ (w)
cannot be positive on such a class of h, because it is too often negative
(Think of the Hartree-Fock case, where the Hamiltonian has infinitely
many negative eigenvalues). In order to reach the contradiction, we shall
build some appropriate spherically symmetric functions fi, use a scaling
argument, and prove that, if Z is large enough, the corresponding h [with
(2.11)] satisfies

The argument we make here is an extension of the proof of lemma II.I
and II.3 in [2].
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11.2 First step: Construction of h such that E" ~cp~ - (h.h) > 0
Let us write a small perturbation of the constraint M in the neighbourhood

of cp.

Because of the quadratic nature of M, there is no term of order larger
than 2 in the Taylor series, and we have obviously

We now fix an arbitrary f = (fl, ..., f~) E (H~ (R3))n such that

and we define

We claim that, for these h, (2.14) yields

Indeed, let us first notice that 1 - M (c,p) is well defined, as the square
root of the symmetric positive matrix 1 - Moreover, since the

( f 2 ) 1in are an orthonormal family, and since we have assumed from
the beginning that Rank (1 - M ( ~p ) ) >_ 1, the set of h defined by (2.16)
is not trivial.

In view of (2.15), (2.16) and (2.7), we have

since i = 0, and

Vol. 1 I , n° 4-1994.
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Therefore (2.14) yields

in the sense of symmetric matrices, as soon 1. That is (2.17).
It follows from (2.17) that, for 2, cp + t h satisfies

by definition of the minimum 03C6 on the set M  1. Hence £’ (03C6). h = 0 and

This concludes step 1.

11.3. Second step: Reaching a contradiction

We now turn to the heart of our proof. Whereas the previous step was
based on the quadratic nature of the constraint li~ (cp), this one is based
on the properties of the energy £ (c,o) = (HN ~, ~ ~ . Since this step is long
and crucial, we first give an outline of it.

In the paragraph II.3.1, we are going to compute ~" (c.p) . (h, h) for
some arbitrary h given by h = B/1 2014 M (~p) f. Then we shall scale h

[i. e. change h into 03C3-(3/2) h 2014 )] and evaluate ~" (03C6).(h03C3, h03C3,
In the paragraph 11.3.2., we shall prove that the n quantities

satisfy

In (2.18) we recall that ~c~, and are respectively given by (2.5)
and (2.9), and we denote by ai~ = 1 - M From (2.19) we shall
deduce a fortiori

In order to prove (2.19), we shall argue by contradiction and assume
that some of the Ai, say is strictly negative. Following the idea of
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P. L. Lions in the proof of lemma 11.1 in [2], we shall then find some 7o
large enough, and build some convenient family of spherically symmetric

f n ) , such that both following facts hold. On the one hand

because, when a tends to infinity, ~" ( c,p~ ~ behaves like

and we shall show that this quantity is negative in this case.
On the other hand

in view of step 1. This will lead to a contradiction and thus proves (2.19)
and (2.20).

In the paragraph II.3.3, we shall see that (2.20) implies the following
inequality

We shall then explain why (2.21 ) cannot hold when Z is large enough. That
is to say we shall prove the existence of some Zc depending only on the
parameters of the model and of the number of electrons, such that, if Z >_ Zc
then (2.21 ) cannot hold, thus our assumption Rank ( 1- M ( ~p) ~ > 1 is false,
thus M ( c,p) = 1 and there exist a minimum for (1.8). In this section we shall
give an upper bound to Zc for the general case (1.8). But let us recall what
we announced in II.I. This step remains a bit formal; we only give here
the general scheme of the argument, and explain what makes it work. The
argument has to be detailed in each particular case. In each of the examples
we shall treat in section III, a much better value of Zc will be found.

11.3.1.

We take an arbitrary f = ( f1, ~ ~ ~ , such that f f ~ f~ = and put

Vol. 11, n° 4-1994.
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(2.8) yields

with in particular (we shall see below why it suffices to compute this

particular coefficient)

We now scale the functions f i , that is to say we change each fz i into

fiu = 03C3-(3/2) f i - where a > 0 will be chosen later on. (2.22) reads

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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If we now assume that the (fi) 1in have compact supports and that these
supports are disjoints, (2.24) may be simplified into

IL3.2.

We now turn to the proof of (2.19), that is

As mentioned above, we argue by contradiction and assume A 1  0. We

are going to build some particular family . Let

_

For 1  i  n, we take a function f satisfying the following conditions

In particular, the family satisfies

Vol. 11, n° 4-1994.
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We now set

We claim that

where the remainder o { 2014 ) does not depend on the choice of the 
but only on R (i.e. on the Az), and on the 

Let us assume for the moment that (2.29) holds and conclude the proof
of (2.19).
We first check that the right-hand side of (2.29) is negative for a large.

Indeed, we have 
v f21 |x| ~ 2 t/ 

f l = 2 because f 2 
is su pp orted on the

annulus I 2 and f2i 2 _ 1 /* 1 1 for 2 _ i  n because, forannulus [1, 2], and / ~ _ R + 1 / ~ = - for 2 ~ z ~ ~ because, 
for

y ~~ R+1 ~/ 2 
~ ~

such ~ ~ i is supported outside the ball of radius R + 1. Therefore

in view of (2.26).

Using (2.29), we fix some ao large enough such that

and we emphasize that ao does not depend on the choice of the ( f 2 ) 1 in
but only on their norms and on R. For this ao, using a trivial dimension
argument (In an infinite dimension space, the intersection of a ball and any
given vectorial subspace of finite codimension has infinite dimension), we
are able to choose satisfying (2.27) and

In other words,
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Hence the conditions (2.13) are satisfied by and we may apply the
result of step 1 to We obtain

This gives the desired contradiction, thus (2.19) holds. And of course

(2.20) follows.
There remains to prove (2.29)
We go back to the expression (2.24) E" h~.) which may be

simplified for our ~f2 into (2.25) that is

In order to prove (2.29), we are going to look at each term of the right-hand
side and study its behaviour when 03C3 goes to infinity. The idea is, roughly
speaking, that, if m is a bounded measure, then f d ) behaves like
-- 1 / nz / r-F? thus the right-hand side of (2.25) behaves like~7 7 ~x~ 

We first show that

For this purpose, we remark that

Vol. 11, n° 4-1994.
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using Newton’s theorem, and denoting by (’) the spherical average.
Now, we notice that

almost everywhere when a goes to infinity, thus, from Lebesgue’s theorem,
we obtain

Moreover, we may bound the rest as follows

using the fact that fi i is supported 1. This shows (2.31) with a

remainder o ( 2014 ) that does not depend on the choice of i .

Following the same argument, one can show

as soon as a > max 
We now deal with

Arguing as in the proof of lemma 11.3 in [2], and using the fact that the f~
have their supports between the spheres of radius 1 and p = (n - 1) R -f- 2,
one can see that each term D pj , may be bounded as follows

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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With (2.31), (2.32), (2.33), we obtain, for a > 

where the constant C only depends on the parameters of the model and on
the This yields (2.29), and thus concludes the proof of (2.19)-(2.20).

11.3.3

Let us detail (2.20)

Now we remark that by definition of aij = we have

where we have = L c~ > 0, because there is at least one
P/~a; P (a)=k

appropriate P.

Moreover, we have assumed that Rank (1 - M (cp)) >_ 1, thus at least
one of the pk satisfyies 1 - ~ cp~ > 0. It follows that

Vol. 11, n° 4-1994.
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Therefore, with (2.20), we obtain

where we recall the value of the coefficients

In the second assertion, it is possible, as we have seen in 11.0, to take

for

We shall reach a contradiction as soon as we shall be able to give
conditions that imply that (2.34) cannot hold.
We claim that this may be made with a condition of the kind

where Zc depends on the number of electrons N, and on the coefficients
e~ of the model.

Indeed, in (2.34) we may bound the integrals r by

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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on the one hand, because 1 - M(~) ~ 0, and, on the other hand, because
of Cauchy-Schwarz inequality.

Thus, considering the particular value (2.35) of the coefficients of the
model, we may bound the right hand side of (2.34), and obtain some
critical value Zc

Why does such a Zc exist?
This is not obvious a priori since one could imagine a situation where

the denominator of (2.34) tends to vanish.
We are going to see that Zc exists and that we may find a general upper

bound to it:

where we recall that n is the number of functions cp2 involved.

Actually, we shall also see that we may improve (2.37) with

where a (n) is the number of integrals 03C6i 03C6j which do not vanish. Of

course, Q (n)  n2, and the case Q (n) = n2 may occur a priori. However,
in some cases where one can use some orthogonal invariance, and thus

assume without loss of generality that some of ’Pj, i f. j are zero,
(2.38) may be much better than (2.37).

Before giving the proof of (2.37), let us study the situation where one

may assume / cpi pj = 0 for i 7~ j. Of course, this case is not very

interesting since it is precisely the case for which our approach is not

necessary. However we believe it illuminates the nature of (2.34), and
helps to understand why (2.34) cannot hold any longer for Z large enough.
To some extent, this is the best case one may find: the critical value Zc
is small.

We claim that, in this particular case,

Indeed, if = 0 for i ~ j, (2.34) reads

Vol. 11, n° 4-1994.
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Now, with (2.5) and the expression of Cijkl, we have

where the sum is taken over PQ satifying

That is to say

where the sum is taken over P satisfying

Therefore

Then (2.40) yields

since 03C62k ~ 1. And we obtain a contradiction as soon as Z >n- 1.

We now come back to the general case and’ to the proof of (2.37)-(2.38).
We are going to bound the coefficients c~~ ~l .
Let us first deal with One can see that, since (2.6) holds, we have
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Therefore

On the other hand, for m =1= j, we may bound the coefficient as follows

Thus, using successively (2.36) and Cauchy-Schwarz inequality,

Vol. 11, n ° 4-1994.
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With (2.34), (2.41), and (2.42), we obtain

and reach therefore a contradiction as soon as Z > ( 2 n - 1 ) n a ( n ) ,
whence we deduce (2.38), and (2.37).

Let us make a few comments on (2.37).
Of course, though it shows the existence of a critical value Zc (and gives

an upper bound of it) whatever the problem (1.8) may be, (2.37) [and (2.39)
to a less extent] is not very satisfactory.

There are two main reasons.

First, it depends on the number n of functions cpi involved, which may
be much larger than the number N of electrons. Secondly, it depends on
n at the fourth order, and, for physical reasons in particular, a growth of
order 1 is expected [For this second point, (2.39) is much better since it

depends on nI and n > N, but we must use an extra hypothesis]. But let
us recall that our point in this section is just to prove that (2.34) necessarily
leads to a contradiction for Z large enough. As far as the exact value of
the critical Z is concerned, there is room for improvement in the above
argument, because we did not specify any further property of the general
problem (1.8). In the next section, taking benefit of the particular form
of each example we study, and using (2.36) in a more accurate way, we
shall considerably improve (2.37)-(2.38). For our examples, we shall see
Zc = N - 1 [with n = ~ (.N~ + 1)] and Zc == N (with n = N + 2).
Unfortunately we are not able to improve (2.37) in the general case.

Let us now conclude this section with a few remarks.

Remarks. - 1) It may be interesting to see what our approach means on
the classical Hartree-Fock case. Thanks to the above mentioned orthogonal
invariance, we may always assume that cp2 cp~ = 0 for 2 7~ j. Thus the
matrix 1 --~ M ( c.p) is diagonal. Assuming that Rank (1 - M (c,,o)) > 1 is

assuming that at least of the 03C6i satisfies ( / 1 2014 > 0.

The choice (2.12) of the direction h is actually.

B J /
Once more we observe that the vector-valued problem has degenerated into
n scalar problems. The direcfion hj is the one that is classically used to
reach a contradiction.
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In this direction, we obtain (2.34)-(2.35), which may be written in the
Hartree-Fock case

because we have here

where we denoted by ~ (P) the signature of the permutation P.
Therefore, as soon as Z > N - 1 we obtain the desired contradiction.

This is what we expected.
Of course, we could also have ignored the orthogonal invariance and

obtain the same result. In the next section, when we treat the case of K + 1

orthogonal determinants, the case K = 0 is actually the Hartree-Fock case,
and we shall obtain also Z > N - 1.

2) In step 2, one can remark that we did not use the particular form of the
potential created by the nucleii, but only the fact that is was a convolution
with some bounded measure ( zk 8xk) with total mass Z.

A straightforward extension of our work is to consider the case of

smeared nucleii.

(mk is bounded measure). 
’

The argument will be the same, and the condition on Z arising at the
end of step will be replaced by

for a certain constant C depending on N, and on the model.
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lil TWO EXAMPLES

111.1. Linear combination of completely orthogonal determinants

We fix N > 3 (N is the number of electrons, see the remark at the
end of this paragraph for the case N = 2), and K > 0 (K + 1 is the

number of determinants).
A natural idea in order to extend the Hartree-Fock model is to study the

problem (1.11)-(1.12), that we recall here

We denote by

for cp as in (3.1).
For N >_ 3, it is easy to see that we have

where we recall that is given by

Indeed, since 03C6i 03C6j = any term of the kind
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is zero for i ~ j . In such terms, since HN is at most bi-electronic and

~V > 3, there always remain at least one integral of the kind cpi cp~ with
i ~ j ; and this integral is zero.

It follows from (3.2) that

Therefore, the general problem (3.1) [or (1.12)] is of no chemical interest
(as far as the energy is concerned).
However, as far as we known, the problem (1.11), that is

where (co, ~ ~ ~ , cK) is given such that

has never been considered from the mathematical point of view.
Of course, I {co, ~ ~ ~ , c~) > but the question of the existence of

a minimum was open. In this paragraph, we answer this question, proving
theorem 1, that we mentioned in the introduction.

Let us give now its proof.
Proof of theorem l. - Of course, point (it) is a straightforward

consequence of (3.2). The difficulty is point (i).
We take a minimizing sequence of (1.11). By classical arguments (see II.2

in [2] and use the fact that none of the ck vanishes), this sequence is bounded
in ( H 1 ( R3 ) ) N ~ ~ + 1 > , thus converges in up to an extraction, to a
certain cp, which is a minimum of the problem
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And we obtain a problem contained in the general framework of section

II. We mimic the argument we made there.
We have (3.2):

To compute the second derivative, we only have to sum up the second

derivatives of the Hartree-Fock energy. We take h as in (2.12). The terms

that give the behaviour of ~" (Sp) - (hu, hu) for 03C3 large are

where we recall our notation aij == M 

Therefore (2.34) takes the particular form

i. e.
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In terms of the coefficients ~c2 and introduced in section II in
formulae (2.5)-(2.8), we have

and

It follows from (3.4)-(3.5)-(3.6) that

Now, using (2.36), we have, for i ~ j,
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Thus (3.7) yields

If we assume

we reach a contradiction, and thus we prove (i) of theorem 1. ~
Remarks. - 1) From the beginning of this paragraph, we have assumed

N > 3. It has been useful in the computation of the energy (3.2).
The case N = 2 is special, because in that case there exists triangle

terms of the kind

for i ~ j . The situation is therefore rather different. The case of two

determinants for N = 2 is actually a particular case of the case studied
in next paragraph. We shall see there that the condition on Z is Z > 2,
and not Z > 1 as one should have expected if this case were close to
the one studied here.

2) The case K = 0 is the Hartree-Fock case.

3) Let us point out that we do not know if any minimum of the problem
(1.12) is of the form

In other words, it might be possible (even if it is unlikely), as far as we
know, to find two minima for the Hartree-Fock problem (/?i, ... , and

--, such that

and then any
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111.2. Doubly excited configuration

A major drawback of the previous example is that there is no coupling
of two different determinants for the energy. Therefore, one does not really
see the interest of our approach.
We choose here to study what we may call a strongly coupled problem.

This is (1.15)-(1.16):
is a minimum for (1.12).

For this problem, one may see, after a tedious computation, that

We claim that, for Z > N - 1, (3.9) implies

Indeed, if we take ( cp 1, ~ ~ ~ , the minimum for the Hartree-

Fock problem, we claim that we may choose cpN+1 and pN+2 in

Vect (c.p1, ..., such that, for instance,

Let us argue by contradiction, and assume that (cpl, cp2) being given such
that ~p1 = 1, = 1, cp2 = 0, we have
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Therefore, there exists (a, ,~3, ~) such that

By multiplying successively this equation by p2, we obtain

where we denote by

In terms of ~2 ~ we have

for all x E R3, and 03C63 ~ Vect (pi , 03C62)|. Thus there exists two functions
a (x) and j3 (x) such that
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Changing x into y and vice-versa, we obtain another equation that we
substract to the above equation. This yields

This implies that

And of course we reach a contradiction because this yields, for all x E R3,

Therefore we may take

We now take

and send £ to 0 in (3.9). We get
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Whence we deduce (3.10).

(3.10) shows the interest of the model. As a step towards the study of

problem (3.8), we introduce in a classical way the problem (1.15) at (a, (3)
fixed. We are going to prove in this paragraph Theorem 2, that we stated
in the introduction.

Proof of theorem 2. - (i) Let ( cpl , ~ ~ - , be a minimizing sequence
of (1.15).
We are first going to prove that ( cp 1, ~ - ~ , ~PN+2 ) n is bounded in

(R3))N+2. .
For this purpose, we notice that

thus, by Cauchy-Schwarz inequality,

Therefore

It follows from the definition of the energy (3.9) and from the above

inequality that
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where we remark that each term of the right-hand side is bounded below by

We now come back to our minimizing sequence ( cp 1, - - - , ~+2)~. .
(3.11) and the remark above show that the sequences for

1  ~  N + 2 are bounded in Therefore they weakly converge
(up to an extraction) to some 
We claim that w = ( cp 1, - - - , pN+2 ) satisfies

It suffices to prove that

For this purpose, we study each term of (3.9).

The terms / |~ 03C6i|2 and  V cp2 are standard, and we have

Besides, since positive definite quadratic forms are non-increasing under
weak limits (see [1] ] and reference therein), and since
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we have

N, N + 1, N + 2.
We remark now that

where

Therefore, for the same reason as above, this term is non-increasing under
weak limits.

It follows that

Thus cp is a minimum of the problem with relaxed constraints.
We closely follow the general scheme given in section II.
Let us first look at the second derivative of (3.9). The second derivative

of the Hartree-Fock energy being well known, the only on standard term
comes from

In the analogue formula of (2.34), this term gives rise to the following
contribution
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Gathering with the terms coming from the Hartree-Fock energies, we

obtain the particular form of (2.34):

We claim that
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Indeed, by Cauchy-Schwarz inequality we have

Using now (2.36), we obtain

To obtain (3.13) from (3.14), we use the following technical lemma whose

proof is postponed until the end of our argument.

It follows from (3.13) that (3.12) implies
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and, as soon as Z > N, we obtain a contradiction.

Actually, we can do a little better, because if Z = N we also reach
a contradiction.

Indeed, in this case, (3.15) implies / ~02 = 1 for all 1 _ i  N - 2.

Moreover, (3.13) and (3.14) are equalities and one can see that this can only
occur if the cpi, TV 2014 1 ~ i  N + 2 are colinear (case of equality in Cauchy-
Schwarz inequalities), and this leads first to pN-i = pN = pN+i = 

and then to / pf = 1 for all z, which cannot hold.

To conclude the proof of (i), there remains to prove the lemma above.
Since (2 - a) (2 - b) _ ab for a + b > 2, we have

Now, it is straighforward to see that

and
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And one can remark that the equality only occurs on the line a + b = 2.

(ii) Let (a, /3, cpl, ~ ~ ~ , pN+2)n be a minimizing sequence of the global
problem.

It is clear that we may assume without loss of generality that an and
f3n converge to some a, f3 such that a2 + f32 = 1. Proving that neither a
nor f3 vanishes amounts to proving (ii).
We argue by contradiction and assume that, for instance, /3 = 0 and

a = 1.

(3.11) shows that the sequences an (1  z _ N) , and f3n ( 1 
i  N - 2, i = N ~- 2j are bounded, thus weakly convergent
in It follows that weakly converges to cpi for 1 _ i  N, and
Qn cpi, n weakly converges to 0 for i = N + 1, N + 2 (because, for such i,

v v

We are going to see, passing to the weak limit in (3.9), that this implies

which contradicts (3.10). The point is to pass to the weak limit in the term

because we do not know that pN+2, n are weakly convergent.
We argue as follows. We clearly have
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since is weakly convergent for 1 _ i _ ~V, and

because all the terms D((~, (~J - are

nonnegative. There remains to study the term

We introduce

and we claim it is weakly convergent in R~ (R~). Indeed, the first term
is easy, and, for the second, we remark that the sequences and

are bounded in L~ (R~) and 0. Thus ( -201420142014, is03C6N+2,n are bounded in L2(R3) and 03B2n ~ 0. Thus 1 |x-y|03C8n,03C8n~ is
nonincreasing under the weak limit. That is to say
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Therefore, gathering (3.17), (3.18) and (3.19), we pass to the weak limit
in (3.9) and we obtain (3.16).

This contradicts (3.10), thus neither a nor /3 vanishes. Therefore the
sequence (cpl, - - - , is actually a minimizing sequence of 1 (cx, j3)
and we apply the result of (i). 0
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