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ABSTRACT. – The paper deals with the problem of minimizing a free discontinuity functional
under Dirichlet boundary conditions. An existence result was known so far forC1(∂�) boundary
dataû. We show here that the same result holds forû ∈ C0,µ(∂�) if µ > 1

2 and it cannot be
extended to cover the caseµ = 1

2. The proof is based on some geometric measure theoretic
properties, in part introduced here, which are proveda priori to hold for all the possible
minimizers.

RÉSUMÉ. – On savait que le minimum d’une fonctionnelle à discontinuité libre avec condition
de Dirichlet sur le bord était atteint quand la donnée de bordû estC1(∂�). Nous étendons
ce résultat à̂u ∈ C0,µ(∂�) si µ > 1

2 et montrons qu’il n’est plus vrai pourµ = 1
2. Pour cela,

nous démontrons des propriétés de théorie de la mesure géométriquea priori valides pour tout
minimiseur de la fonctionnelle.

Introduction

This paper is concerned with a Dirichlet boundary value problem involving a
Mumford–Shah functional or, more in general, a functional with “free discontinuities”,
which is usually studied with Neumann homogenous boundary data. Such functionals
can be seen as depending on two variables: a functionu and a closed setK which
contains the discontinuity points ofu. Each one of them can be easily determined in
an optimal way when the other one is given, so one can see these functionals as only
depending on the function variableu or on the set variableK and considering the other
one as implicitly defined.

The existence theory for minima of functionals with free discontinuities has been
made by E. De Giorgi and his collaborators in the following steps. A new functional
space, denoted by SBV, has been introduced in [10], then a compactness theorem and
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the subsequent existence of a function in SBV which minimizes the functional have been
proved by L. Ambrosio in [1] and [2] (see [3] for a more recent proof). A regularity result
is then needed in order to prove the closure (modulo a negligible set) of the set of discon-
tinuity points and it has been made by E. De Giorgi, M. Carriero and A. Leaci in [11].

An alternative approach, which uses the set variable and directly finds a closed
minimizer, has been proposed in [7] for the case of two dimensions (see [18] and,
more recently, [17] for arbitrary dimension). Such an approach works with somea priori
density estimates on the minimal sets, obtained by a technique calledExcision Method
in [18] which has been more recently extended to the case of a general dimension in [21].
The crucial assumption in order to apply such a method is the Hölder continuity ofu out
of a suitably small set. The density theorems obtained in this way allow the proof of some
semicontinuity results, with respect to the Hausdorff distance, which give the existence
directly in the class of closed subsets of�, by trivial compactness arguments.

The case of Dirichlet boundary conditions has been treated, following the SBV
approach, in [5] forC1 boundary conditions (the regularity of boundary data will be
always assumed with the possible exception of a closed(N − 1)-negligible set).

The theorems in this paper sharpen the result in [5], by showing that the Hölder
continuity of the boundary datum̂u is the really crucial assumption which makes the
difference between the existence of a closed minimizer or not. We shall make use of the
excision method in order to prove that ifû is Hölder continuous of exponentµ> 1

2 then
a boundary version of the density theorems holds and the semicontinuity properties with
respect to the Hausdorff distance and the subsequent existence theorem can be easily
deduced. On the other hand, we shall show with various counterexamples that, ifû is
only C1/2, even with an arbitrarily small norm, then the density estimates may be false
and even the existence of a closed minimizer may fail.

So the Dirichlet Problem seems to have a theoretical interest, because it shows that the
C1/2 regularity considered in the excision method has an intrinsic meaning, which does
not depend on the particular approach. Beside this, a more applicative perspective relies
on the study of boundary value problems originated from the mechanics of materials
which undergo fractures and have a prescribed deformation of the boundary.

1. Notation and main results

Let X be a subset ofRN , we shall denote byHα(X) the Hausdorff measure of
dimensionα and by|X| its Lebesgue measure. We shall denote by� an open smooth
bounded subset ofRN , by g a given measurable function from� in [0,1] and byû a
function defined on∂� with values in[0,1]. For any positive real numberµ � 1, let
||u||µ denote the Hölder (semi)norm of exponentµ of a real functionu (of course such
a norm will be assumed to be equal to+∞ if the function is not Hölder continuous) and
let C0,µ represent the space of Hölder continuous functions with exponentµ. We shall
denote bybK the measure of the unit ball ofR

K .
Let us consider the admissible pairs(u,K), whereK is any closed subset of� andu is

a function inH 1(�\K) such thatu= û on∂�\K . We shall deal with the minimization
of the functional

E(u,K) = J (u,K)+HN−1(K) (1.1)
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defined on the class of admissible pairs(u,K), whereJ (u,K) denotes the value of the
elliptic functional

J (u,K) =
∫

�\K
|∇u|2 +

∫
�\K

|g − u|2. (1.2)

If we fix K , we can determine a unique functionu = u(K, û) which minimizes the
functionalJ on the set� \K . The functionu(K, û) can be characterized as the unique
weak solution in� \K of the Euler–Lagrange equations




−�u+ u= g in � \K,
u= û on∂� \K,
∂u

∂n
= 0 onK.

(EL)

One can consider the functionu(K, û) almost everywhere defined on all of�. Indeed,
in order to minimizeE, we only need to take into account negligible values ofK , with
respect to Lebesgue measure, since in the other casesE(K) = +∞. By setting

Jû(K)= J
(
u(K, û),K

)= inf
u
J (u,K),

Eû(K)=E
(
u(K, û),K

)=HN−1(K)+ Jû(K),

we can regard the functionalsE andJ as only depending on the set variableK . We shall
use the notationJ (K), E(K), u(K) whenû is supposed to be fixed and we do not need
to emphasize its role. The letterc will stand for universal constants, unless differently
specified. When the letterc will be used to recall a particular constant, it will be affected
with the number of the equation where it is introduced. We shall introduce also constants
depending on some variables,c(�, û, cH ,‖u‖µ, . . .), and sometimes objects as� andû
will be considered fixed and not explicitely mentioned.

Let B be a ball ofRN , with radiusR, we setB̂ = B ∩ �. Under suitable regularity
assumptions on∂�, there exists a constantc0, depending onN and on the geometry of
∂�, such that for everyR � 1

HN−1(∂B̂)+ |B̂| � c0R
N−1. (1.3)

If K is a minimum ofE andu = u(K, û) then, for every measurable setA ⊂ �, the
following estimate (see [21, (1.2)]) holds withc = 1

∫
A

|∇u|2 +
∫
A

|g − u|2 +HN−1(K ∩A)� c
(
HN−1(∂A)+ |A|). (1.4)

If u is as above, by (1.4) and (1.3) we have in particular

∫
B̂

|∇u|2 �HN−1(∂B̂)+ |B̂| � c0R
N−1. (1.5)
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In the same way we also have from (1.4), for every minimalK ,

HN−1(K ∩ B̂)� HN−1(∂B̂)+ |B̂| � c0R
N−1 , (1.6)

if R � 1.
The main results in this paper can be summarized in the following statements.

THEOREM 1.1 (Uniform density property). –There exists a constantβ > 0, depend-
ing onµ, on theC0,µ norm ofû on ∂� ∩B and on the regularity of∂�, such that, ifK
is a minimum ofEû andB is a given ball centered at a point ofK , of radiusR � 1, with
û Hölder continuous on∂�∩B, with exponentµ> 1

2 , then

HN−1(B ∩K)� βRN−1. (1.7)

Theorem 1.1 is a corollary of some stronger results which will be formulated later
by recurring to the properties described in the next section. Moreover, Theorem 1.1,
as its corresponding inner version established in [21], also admits a weak formulation
which can be applied to the singular set of aSBV-minimum proving its closure (see [18,
Lemma 8.11]). Therefore an application of Ambrosio’s Compactness Theorem [3] leads
to the following result.

THEOREM 1.2. –If û is locally Hölder continuous with exponentµ > 1
2 out of a

closed setH with null (N − 1)-dimensional measure, then there exists a closed setK

which is minimal forEû.

We shall actually give a different proof of this result without using the weak approach,
but following the semicontinuity technique established in [17]. Furthermore, we will
show that these results are in some sense optimal and that theµ-Hölder continuity ofû,
with µ> 1

2, is the crucial ingredient for density results. Indeed, we shall devote a section
to the proof of the following three counterexamples. Let us remark that in the theorems
the conditionµ= 1

2 is not allowed.

COUNTEREXAMPLE 1.1. – For everyβ > 0 there existŝu Hölder continuous, with
exponent12 and norm||û|| 1

2
arbitrarily small, such that, ifK is a minimum ofEû, then

we can find a point ofK ∩ ∂� and a radiusR � 1 for which(1.7)does not hold.

COUNTEREXAMPLE 1.2. – For any open bounded smooth� ⊂ R
N and everyx̄ ∈

∂�, there existŝu Hölder continuous with exponent1
2 and of classC∞ on∂� \ {x̄}, such

that every closed minimumK ofEû, containingx̄, has zero density in̄x.

We can note that in the above case a closed minimal set always exists becauseû

satisfies the hypothesis of the existence Theorem 1.2, since it isC∞ out of the closed set
{x̄}, which clearly has null(N − 1)-dimensional measure. Counterexample 1.2 shows
that all these conditions, even if they assure the existence of a closed minimum, do not
permit to assure the density estimate. Of courseû cannot be locallyCµ for anyµ > 1

2,
in x̄. For the same reasonsK has nonzero density in all its other points.

COUNTEREXAMPLE 1.3. – There existŝu, Hölder continuous with exponent1
2 , such

thatEû(K) has no minimum in the class of closed subsets of�.
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Counterexample 1.3 shows that the existence Theorem 1.2 fails if we allowµ = 1
2,

even if we takeH = ∅ and we assume the regularity conditions globally on∂�.

2. Fine geometric properties of the singular set

In this section we shall introduce some geometric measure theoretic tools, which will
play a key role in the sequel. Before introducing the technical definitions, we briefly
remark some intuitive geometric facts. The role of the singular setK in this kind of
problems relies in allowing the functionu to make a jump (inside�) or to get free from
the constraint to agree with the boundary datum (on∂�). Then, if we take a ball centered
onK inside�, at a microscaleK will split the ball in two almost equal parts between
whichu makes a jump which is independent on the scale and so it is big with respect to
the radius of the ball. On the other side, if we take a ball centered on a point of a part of
K which, roughly speaking, runs along the boundary of�, at a microscale we can guess
that there exists a ballB centered onK , such that the set� ∩ B will essentially result
to be insulated byK with respect to∂�. Such a description acquires a deeper meaning
if one quantifies how low such a microscale should be, so we are led to formulate the
following definitions which are going to be settled in a general context.

Before the geometric definitions, we introduce the following property, whenu is a
L1

Loc function from a setX ⊂ R
N in R.

For every ball B ⊂ R
N :
∫
B

|∇u| � c|B| 2N−1
2N � ‖u‖∗

2NR
2N−1

2 , (WS)

whereR is the radius ofB and∇u is defined, in the sense of distributions, on
◦
X \K

and it is assumed to be extended by zero on the rest ofR
N . This is an estimate on∇u

in Morrey Spaces. We are not using the usual notation of Morrey norm and the reader
is not required to be acquainted on Morrey spaces, since no result in this area is going
to be employed here. Anyway, we are using the notation‖u‖∗

2N in order to emphasize
that this is a weak case ofL2N -summability. WhenA ⊂ �, K is a minimum ofE and
u= u(K), (WS) follows from (1.5) and‖u‖∗

2N can be easily estimated (see [21]).
Let A ⊂ R

N , D ⊂ A and letK be a closed subset ofA. The following discussion
applies to the present context under the choiceA=� andD = ∂�.

If B is a given ball contained inA, of radiusR andε is any given positive number,
then we say thatB is ε-split by K , if there exists a functionu :B → R, which satisfies
(WS) onB \ K , with ‖u‖∗

2N = 1 and such thatB does not contain any subsetB̃ for
which

|B̃| � (1
2 + ε

)|B| (2.8)

and

osc
B̃

u� ε−1R1/2, (2.9)

whereoscB̃ u= supB̃ u− infB̃ u. We will refer to any subset̃B satisfying (2.8) and (2.9)
asregion with ordinary oscillation. In other words, for everyu such that‖u‖∗

2N = 1, we
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can find a subset with ordinary oscillatioñBu in a ballB if and only if B is notε-split.
Moreover, condition (WS) allows to show (see the next section) thatu is locally Hölder
continuous out ofK and so, on everyε-split ball the trace ofK must be remarkable,
if ε is sufficiently small with respect to(‖u‖∗

2N)
−1. Let B be any ball, not necessarily

contained inA, with radiusR. By denoting withρ the supremum among the radii of
the ε-split balls contained inB ∩ A, then we shall call the ratioνb = ρ/R bisection
factor. It represents the scale transition needed to reach aε-split ball in B; obviously
νb = νb(B,K, ε).

DEFINITION 2.1. –We shall say thatK satisfies the Bisection property when for every
ε > 0 there existsα(ε) > 0 such that, for every ballB centered onK , with radiusR � 1,
the lower estimateνb(B,K, ε)� α(ε) holds.

Let B be a ball centered onD, with radiusR, andπB be a disk ofB. Givenζ ∈ πB ,
letL(ζ ) be the set of the segments contained in the chordCζ of B perpendicular inζ to
πB and contained inA∩B \K . Givenε > 0, we set

πε
B = {

ζ ∈ πB | ∃ l ∈L(ζ ),H1(l) > εR, l ∩D �= ∅}.
DEFINITION 2.2. –We defineε-insulated byK the balls such that every diskπB

satisfies the condition

HN−1(πε
B

)
< εHN−1(πB).

The geometric picture corresponding to anε-insulated ball can be visualized by
thinking to a ballB centered onD = ∂� in which almost every segment starting from
D ∩B meets the setK after a very short length, as shown in Fig. 1.

Also, for a given ballB with radiusR, we define theinsulation factorνi = νi(B,K, ε)

as the ratio between the supremum among the radii of theε-insulatedballs contained in
B andR.

Fig. 1. The setπε
B is given by the projection of the segments of lenghtεR, orthogonal toπB ,

which start on∂� and do not meetK. Such points of∂� are notε-insulated byK.
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DEFINITION 2.3. –We shall say thatK satisfies the Insulation property when for
everyε > 0 there existsα(ε) > 0 such that, for every ballB centered onK , with radius
R � 1, the lower estimateνi(B,K, ε)� α(ε) holds.

Trivially such a property will never hold unlessK ⊂ D, because otherwise we fixB
such thatB ∩D = ∅, which impliesνi = 0.

As we have remarked above, at a microscale the geometric characterizations of
the singular set are quite trivial. The meaning of such two properties consists in a
quantification, for givenε > 0, of the scale transition needed to reach anε-split or ε-
insulatedball inside a ballBR(x) centered in a pointx ∈ K . This corresponds to get a
lower bound either onνb or νi . Such a bound depends onε, but it must be uniform with
respect toBR(x) for everyx ∈K and for everyR � 1.

As far as only balls contained in� are concerned, the bisection property is satisfied
for any minimalK of the functionalE. Indeed, this is just a matter of inner regularity
and it is proved in [21, Theorem 3]. The presence of boundary conditions is inessential
in this case. We are led again to the former case when we deal with balls, not completely
contained in�, in which there are points ofK sufficiently inner to�. This occurs, for
example, when the ball is centered at a point in whichK meets∂� with an appreciable
incidence angle. Otherwise, if this is not the case, we expect the insulation property will
be satisfied by minimal setsK when the boundary datum̂u is suitably regular. So, in
conclusion, for any ball, at least one of the factorsνb andνi should be estimable. This
leads to formulate the followingBisection-Insulationproperty which seems to be the
natural regularity property expectable for the minima ofE.

DEFINITION 2.4. –We shall say thatK satisfies the Bisection-Insulation property
when for everyε > 0 there existsα(ε) > 0 such that, for every ballB centered onK ,
with radiusR � 1, the lower estimatemax(νi(B,K, ε), νb(B,K, ε))� α(ε) holds.

DEFINITION 2.5. –Given a ballB centered onK , with a radiusR, we say that the
setK is ε-concentrated onB, if the mean density ofK onB is bigger than1−ε, namely

HN−1(K ∩B) > (1− ε)bN−1R
N−1.

Therefore, given any ballB (not necessarily contained inA), with radiusR, we denote
by νc = νc(B,K, ε) the concentration factor, that is the ratio between the supremum
among the radii of the balls contained inB on whichK resultsε-concentratedandR.

DEFINITION 2.6. –We shall say thatK satisfies the Concentration property when for
everyε > 0 there existsα(ε) > 0 such that, for every ball centered onK , with radius
R � 1, it resultsνc(B,K, ε)� α(ε).

In these properties the thresholdR � 1 is merely conventional, a different choice
leads at most to a different value ofα(ε). For this reason, in proving such properties,
one can work with balls with suitably small radius. Therefore, we limit ourself to show
the regularity properties, assumed in the proof of these estimates, are satisfied for balls
B with a suitably small radius.Bisectionand Concentrationproperties are related.
More precisely, in [16] it is shown that for everyε > 0 there existsε′ > 0 such that
νc(ε,�)� νb(ε

′), thereforeBisectionimpliesConcentration.



646 F.A. LOPS ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 639–673

Moreover, ifD is a smooth closed manifold, one can trivially check that the same
relation also holds betweenνc andνi on small enough balls, namely on balls with radius
less or equal to a suitable constantρ(ε) � 1 which depends onε and on the regularity
of D. Then alsoInsulation implies Concentration. Combining the two facts we see
that for everyε > 0 there existsε′ > 0 such thatνc(ε,�) � sup(νb(ε′), ρ(ε)νi(ε′)) so
Concentrationfollows by Bisection-Insulation.

We recall that the concentration property has a meaningful application when we deal
with the Hausdorff measure of the limit with respect to the Hausdorff distance. Indeed,
with the notation introduced in this section, Propositions 10.10 and 10.14 of [18] can be
stated as follows. LetKn,K be closed subsets ofR

N , such thatKn→K by the Hausdorff
distanced and assume that a Vitali coverinĝB of K consisting of balls, can be found in
such a way that for everyε > 0 and for everyB ∈ B̂, lim infn νc(B,Kn, ε) � α(ε) > 0.
By [18, Proposition 10.10],(Kn)n∈N has a subsequence which satisfies uniformly the
concentration property. Consequently, by [18, Proposition 10.14], we have

HN−1(K)� lim inf
n

HN−1(Kn). (2.10)

We conclude the section by stating some further terminology, useful for situations which
are never going to happen for small balls in the case of a minimalK , but will nevertheless
need to be considered in the forthcoming arguments. When a ballB ⊂ R

N contains a too
big quantity ofK (with a threshold fixed asc0+1 times the measure of the corresponding
sphere, wherec0 is a suitable constant depending on the regularity of�) we shall call it
overfull, i.e.B is overfull if

HN−1(K ∩B)� (c0 + 1)HN−1(∂B). (2.11)

Analogously as before, given any ballB of radiusR, we define theoverfullness factor
ν0 as the ratio between the supremum among the radii of the overfull balls contained in
B andR.

The chief aim of this paper relies in proving the Bisection-Insulation property which,
as we have just remarked, implies the Concentration property. This allows, in particular,
to deduce Theorem 1.1 and to get Theorem 1.2 through semicontinuity techniques
exposed in Section 5. The scale transition estimates, which constitute the Bisection-
Insulation property, are instead directly provided by the Excision Method, developed
in [21], which will be introduced in Section 4. The differences of construction required
by this context, with respect to the inner case discussed in [21], will be treated in
Sections 7 and 8. The use of the Excision theorem to provide bisected-insulated balls
requires the knowledge of Hölder continuity properties ofu out of such balls. The proof
of such properties is the aim of the next section.

3. Partial Hölder continuity properties

The aim of this section is to show some partial Hölder continuity properties in order
to apply the Excision method in Section 4 which generalizes [21, Theorem 4.6]. Givenu

andK as in the previous section,u ∈ H 1(� \ K), we are going to settle some local
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partial Hölder continuity results foru under assumption (WS), by modifying some
results of [21]. Therefore, we shall assume (WS) holds throughout this section with a
given value of‖u‖∗

2N . In [21], given a ballB ⊂ �, some estimates on a neighborhood
V of K ∩ B, such thatu is Hölder continuous onB \ V , are obtained. The essential
difference with the variant which we are going to establish relies in the circumstance that,
in our case,B �⊂� and we shall check the Hölder continuity on(B̂ \ V )∪ (B ∩ ∂�) of
a different functionu∗, defined asu on B̂ \V and aŝu onB ∩∂�. Note thatu andû may
be different on∂� ∩ K . This means, roughly speaking, that we shall prove the Hölder
continuity ofu according withû. The Hölder continuity ofu would not be enough for
the application of the abstract approach developed in the last sections. More precisely,
we shall prove the following statement.

THEOREM 3.1. – Given a ballB of suitably small radiusR, centered in�, a closed
subsetK ⊂ � and ε sufficiently small, there existsV ⊂ B̂ and a positive constant
c(ε,�), depending onε and on�, such that, for everyu : B̂ → R which satisfies(WS),
one can find a positive constantcH depending onε, ||u||∗2N , ||û|| 1

2
and on�, such that

u∗ is Hölder continuous with exponent1
2 and normcH on B̂ \ V, (H1)

HN−1(∂V )� c(ε,�)HN−1(K ∩B), (H2)

|V | � c(ε,�)sup(νb, νi, ν0)RHN−1(K ∩B), (H3)

whereνi, νb, νo are computed in(B,K, ε).

The remaining part of this section is devoted to the proof of Theorem 3.1. We shall
come back to deal with the main course of the paper in the next section. Analogously
to the previous section, we shall make the construction ofV by working in a general
context. So, letA be a subset ofRN such that (1.3) holds witĥB =B ∩A and satisfying,
for some given constantcR , the condition

For everyx, y in A there exists a ballB ⊂A of radiusr such that

d(x,B), d(y,B) � cRr � c2
Rd(x, y) (R)

and such that the convex hulls of the sets{x} ∪B and{y} ∪B are contained inA.

The constantsc0 and cR quantify the regularity ofA required in this section.
Specifically, the geometry of the setA affects the estimates by involvingc0 andcR in
the determination of the constants. Property (R) obviously holds in the caseA=�∩B,
when� is sufficiently smooth and the radiusR of B is suitably small.

LetK be a closed subset ofA and letu :A→ R be continuous onA \K . LetD ⊂A

and û :D → R such thatû ∈ C0,1/2(D). We will assume thatu = û on D \ K . Let us
define

u∗ =
{
u onA \D,
û onD.

Now we are going to recall or to establish some notation which will be employed in the
following. For any given ballB ⊂ R

N , λB will denote the ball with the same center ofB
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and the radius multiplied byλ. MoreoverB ′ = (cR +1)B andB ′′ = (2cR(cR +2)+1)B.
Let us note thatB ′ andB ′′ depend oncR and so on the shape ofA. By [21, (6.13)] it
follows that if ε is sufficiently small andB is ε-split, then the trace ofK on B has a
measure greater than or equal tocHN−1(∂B). This is the first requirement about the
smallness ofε. From now on, we shall assume thatε > 0 has been consequently fixed
and it will not be always mentioned in the following notation. Furthermore we shall
assume to have takenε < 1/

√
cR + 1.

LetU be the union of the ballsB ′ corresponding to all theε-split ballsB contained in
A. By [21, Lemma 6.14] (the argument is reported in the first part of Lemma 3.1 below)
we get that every functionu which satisfies (WS) onA \K with ||u||∗2N = 1 is Hölder
continuous with a norm which only depends oncR andε, onA \ (U ∪K). Furthermore,
we can easily estimate|U | by a Vitali type argument. Indeed, by [18, Lemma 7.1] we
can take a family of disjoint ballsB

′
i , with Bi ε-split with radiusri such that the balls

5B ′
i = 5(cR + 1)Bi coverU . Then, if (WS) holds,

|U | �∑
i

|5(cR + 1)Bi | � ccR
N
∑
i

|Bi|

� cR
Nc
∑
i

riHN−1(∂Bi)

� cR
Nc
∑
i

riHN−1(K ∩Bi)

� cR
Nc(sup

i

ri)HN−1(K). (3.12)

If B is any ball, we can apply locally the above construction by considering only theε-
split balls which are contained inB ′′, getting a setUB . The same proof as before shows
that u is Hölder continuous on(B ∩ A) \ (UB ∪ K) and (3.12) leads to the following
estimate.

|UB | � cνb(B
′′)RHN−1(K ∩B ′′), (3.13)

whereR denotes the radius ofB andνb(B ′′) is the bisection factor ofB ′′ (under our
choice ofK andε). Note that every point ofUB belongs, by construction, to some other
ball having a bisection factor greater or equal to(cR + 1)−1.

Let B1 be the set of the ballsB centered inA, such thatB ′′ is overfull. We put
V1 =⋃

B∈B1
B ′′. If B /∈ B1, (3.13) gives

|UB | � c(c0, cR)νb(B
′′)|B|. (3.14)

Of course in the above estimate we can takec � 1.
Let B2 be the set of the balls such thatνb(B ′′) � ε2

2c(3.14)
. If B /∈ B1 ∪ B2, then (3.14)

implies

|UB | � ε2

2
|B|. (3.15)

We setV2 = ⋃
B∈B2

B ′′. Note that ifx /∈ V2 andB is any ball contained inA such that
x ∈ B ′, B cannot beε-split. Indeed, otherwise, settingB1 = (2cR(cR + 2)+ 1)−1B ′, B1
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must belong toB2 sinceνb(B ′′
1)= νb(B

′)� 1
cR+1 � ε2 � ε2

2c(3.14)
. Thenx ∈ B ′ = B ′′

1 ⊂ V2,
a contradiction. Therefore,U ⊂ V2 and, ifB is any ball contained inA, thenUB ⊂ V2.
Finally, we callB3 the set of theε-insulatedballs and we setV3 =⋃

B∈B3
B. Now we call

B the set of the ballsB ′′ obtained forB ∈ B1 ∪B2 ∪ B3 and we take, by Vitali Covering
Lemma (see [18, Lemma 7.14]) a set of disjoint ballsB̃ ⊂ B such that, setting

V =K ∪ ⋃
B∈B̃

(5B ∩A), (3.16)

we have

(V1 ∪ V2 ∪ V3)∩A⊂ V. (3.17)

We shall show thatV satisfies the properties required in Theorem 3.1. The following
lemma shows (H1).

LEMMA 3.1. – If u satisfies(WS), then u∗ is Hölder continuous onA \ V , with
exponent12 and normcH = cH (ε, cR, ||û|| 1

2
, ||u||∗2N).

Proof. –Of course, we can normalizeu and assume that||u||∗2N = 1. Let x and
y ∈ (A \ V ) ∪ D. If x and y ∈ A \ V we can use the same proof of Lemma 6.14 in
[21], which we briefly recall, in order to computecH . Let us take a ballB as in (R),
sincex ∈ B ′ andx /∈ V2, as we have already observed,B cannot beε-split. SoB must
contain a region with ordinary oscillatioñB, for which (2.8) and (2.9) hold.

For a givenε, we takeλ < 1 and consider a sequence of ballsBn given by the sets
{λnξ + (1 − λn)x}, for ξ ∈ B. Since, for every naturaln, x ∈ B ′

n andx /∈ V2, then there
existsB̃n ⊂ B ′

n for which (2.8) and (2.9) hold. If we takeλ close enough to 1, for every
n we get by (2.8),B̃n−1 ∩ B̃n �= ∅, so we can takezn ∈ B̃n−1 ∩ B̃n. Thus we shall assume
λ = λ(ε) be fixed as above and we shall regard it as a function ofε. Note that the
sequencezn converges tox. Let z be a given point ofB̃. Then, by (2.9), (R) and by
the triangular inequality, sincex is not a singular point ofu, we obtain

∣∣u(x)− u(z)
∣∣� c∗d(x, y)1/2,

with c∗ = c
1/2
R ε−1∑+∞

i=0 (λ
1/2)i = c

1/2
R ε−1(1−λ1/2(ε))−1. By applying the same argument

to y instead ofx and from the triangular inequality, we get the desired estimate.
If x andy ∈D, then we just have to use the Hölder continuity ofû.
Finally we consider the casex ∈D andy ∈A\V and we take the ballB centered inx,

with radiusr = 2d(x, y). Sincey /∈ V1∪V2, thenB /∈ B1∪B2 and (3.15) holds. Moreover
y /∈ UB becauseUB ⊂ V2. Furthermore, sincex /∈ V3 and soB /∈ B3, we can fix a disk
πB such thatHN−1(πε

B)� εHN−1(πB). We consider the setP1 of the pointsζ ∈ πε
B such

thatH1(Cζ ∩UB) � εr . Since|UB | � ε2

2 |B|, we deduce thatHN−1(P1) � ε
2HN−1(πB).

By (WS) we have that

∫
πε
B
\P1

(∫
Cζ

|∇u|
)

�
∫
B

|∇u| � rN− 1
2 .
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So, we can findζ ∈ πε
B \ P1 such that

∫
Cζ

|∇u| � ε−1√r . Sinceζ ∈ πε
B , we can find

l ∈ L(ζ ) satisfyingH1(l)� εr and, sinceζ /∈ P1, we deduce thatl �⊂ UB . Therefore, by
takingx′ ∈ l ∩D andz ∈ l \UB , we obtain:∣∣u∗(x)− u∗(y)

∣∣� ∣∣û(x)− û(x′)
∣∣+ ∣∣u∗(x′)− u∗(z)

∣∣+ ∣∣u∗(z)− u∗(y)
∣∣

� ‖û‖ 1
2
d(x, x′)1/2 +

∫
l

|∇u| + 2c∗d(x, y)1/2

�
(‖û‖ 1

2
+ 2ε−1 + 2c∗

)
d(x, y)1/2,

which gives the estimate

cH � ‖u‖∗
2N

(‖û‖ 1
2
+ 2ε−1 + 2c1/2

R ε−1(1− λ1/2(ε)
)−1)

. ✷
If B ∈ B1 ∪ B2, the inequalityHN−1(K ∩ B ′′) � cε2HN−1(∂B) trivially holds. If we

also assume thatD is a smooth(N − 1)-dimensional manifold (as in Theorem 3.1), then
the same property will also satisfied by anyB ∈ B3 and so by anyB ∈ B.

In order to prove (H2) and (H3) we are going to estimate the setV . Let d be the
supremum among the radii ofB ∈ B̃, then the following estimates hold.

|V | � ∑
B∈B̃

|5B| � cd
∑
B∈B̃

HN−1(∂B)� cdε−2HN−1(K) (3.18)

and

HN−1(∂V )� cε−2HN−1(K). (3.19)

Theorem 3.1 follows by applying the above construction to the caseA = � ∩ Br(x̄)

andD = ∂�∩Br(x̄), wherer is small enough for a given smooth�. Forε small enough
we consider the setV as defined above. By Lemma 3.1 we can claim that (H1) holds
with a suitablecH , while Eqs. (3.18) and (3.19) allow us to get (H2) and (H3) with a
suitablec(ε,�).

4. Boundary excision method and density estimates

The inner estimates of [21] are based on the fact that, under certain circumstances,
one can modify a closed setK on a ballB ⊂� in such a way to makeE decrease. More
precisely, given a ballB ⊂�, with suitably small radiusR � 1, centered at a point̄x of
the discontinuity setK , the excision method works ifu is Hölder continuous out of a
thin neighborhoodV of K ∩ B, which means that conditions (V1), (V2), (V3) in [21],
which we are going to reformulate, hold with a suitably small value of the constantα. In
this paper we extend the approach to cover the caseB �⊂�.

The new assumptions must be consistent with the former ones, when∂�∩B = ∅. If s
is any given positive number, in this section and in the last oneB(s) will stand forBs(x̄).
We shall setσ = HN−1(B(R/2)∩K). Since we shall allow the ballB to be not entirely
contained in�, the lower bound on the density ofK will depend also on the regularity
properties of∂�. We shall requireu to be Hölder continuous out ofV ⊂ � and to be
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consistent with the boundary datum̂u. So, in order to reformulate (V1) we introduce,
according to the notation in the previous section, the functionu∗ defined as follows

u∗ =
{
u on (B \ V )∩�,
û onB ∩ ∂�.

We shall assume that the setV enjoys the following properties.

u∗ is Hölder continuous with exponent1
2 and normcH , (V1)

HN−1(∂V )� c2σ, (V2)

|V | � αRσ. (V3)

There existsµ> 1
2 such that̂u= u∗ is Hölder continuous

with exponentµ and normcµ, on ∂�∩B.
(V4)

We remark that (V4) is meaningless when∂� ∩ B = ∅, this is the reason for it does
not appear in the inner version studied in [21], while (V1) can be restated as in [21]
when ∂� ∩ B = ∅. Furthermore, it is worth to notice that the new assumptions (V1)
and (V4) are not merely technical devices employed to deal with the Dirichlet problem.
They represent the key regularity conditions underlying the present approach, as we shall
show through suitable counterexamples.

In the last section we shall prove the following Excision Theorem, which can be
regarded as an extension of the inner version proved in [21, Theorem 4.6].

THEOREM 4.1 (Excision). –Let cH , c2, cµ,µ be given. Then there existsᾱ > 0 such
that, ifK is a closed subset of� such that(V1), (V2), (V3) and(V4) hold withα � ᾱ,
then the trace ofK on B̂(R) can be modified in order to obtain a new setK ′ satisfying
Eû(K

′) < Eû(K)− 1
2σ .

Let nowK andB = BR(x) be given withx ∈K andR � 1 and let us suppose that

E(K)=Eû(K) < infE + 1

2
σ. (4.20)

We assume that̂u is Hölder continuous with exponentµ and normcµ on ∂� ∩B; in
particular, sinceR � 1, it results to be Hölder continuous with exponent1

2. Furthermore,
let us assume thatu= u(K) satisfies (WS), so we are in a position to apply Theorem 3.1.
Under the additional assumption

HN−1(K ∩B)� cσ (4.21)

which states thatHN−1(K ∩ B) andσ are of the same order of magnitude, (V1), (V2)
and (V3) can be immediately deduced from (H1), (H2) and (H3) of Theorem 3.1, by
takingα = c(ε,�)max(νb, νi, ν0). (V4) follows by the assumptions made onû. We call
α(ε) the value of the threshold̄α (multiplied by c(ε,�)−1) established in Theorem 4.1
corresponding to the constantscH (ε), c2(ε), cµ andµ founded by Theorem 3.1, which
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in turn gives them as function ofε. If max(νb, νi, ν0) � α(ε) and therefore (V3) holds
with α � α(ε), then by the excision theorem we get the existence of a setK ′ such that
E(K ′) < E(K)− 1

2σ , which, by (4.20), leads to a contradiction, which shows that

max(νb, νi, ν0)� α(ε). (4.22)

This is the same to claim that there exists a ballB ∈ B1 ∪ B2 ∪ B3 whose diameter is
greater or equal tocα(ε)R. If such a ballB ∈ B1, then we can modifyE by adding∂B̂ ′′
toK and puttingu= const. insideB ′′; by (2.11) this modification gives rise to a gain

E(K)−E(K ′)� (c0 + 1)HN−1(∂B ′′)−HN−1(∂B̂ ′′)− |B̂ ′′|
�HN−1(∂B ′′)� c

(
α(ε)R

)N−1
. (4.23)

If we also assume that

E(K) < infE + c(4.23)
(
α(ε)R

)N−1
, (4.24)

we get an evident contradiction. Therefore, we deduce thatB must belong toB2 ∪ B3

and this is equivalent to say that

max(νb, νi)� α(ε). (4.25)

Since, ifK is a minimum, then (4.20), (4.24) are trivially satisfied, while condition (WS)
follows from (1.5), we can claim the following.

THEOREM 4.2 (Bisection-Insulation property). –Let� be an open smooth bounded
subset ofRN . If û ∈ C0,µ(∂�) with µ > 1

2 and K is a minimum forEû, then the
Bisection-Insulation property holds.

By virtue of the results in Section 2, the following corollary is then trivially implied.

COROLLARY 4.3 (Uniform Concentration property). –Let � be an open smooth
bounded subset ofRN . If û ∈ C0,µ(∂�) with µ > 1

2 andK is a minimum forEû, then
the Uniform Concentration property holds.

It is worth to notice that, since the concentration property is clearly stronger than
the density property, Theorem 1.1 is in turn a corollary of the last one. On the other
hand, as far as Theorem 1.1 is concerned, the extra assumption (4.21) is not a restriction
since it can be forced by choosing a suitable scale as in [21, Section 7]. Finally, whence
Theorem 1.1 is proved, (4.21) follows as a trivial consequence in view of (1.6) so the
previous results are established in the case of a minimalK , without any restriction.

5. Semicontinuity properties and existence of a minimum

In [17] some lower semicontinuity properties ofE with respect to the Hausdorff
distance, have been shown. More precisely, a meaningful decomposition of the
discontinuity set was there introduced, namelyK = K̃ ∪K∗, whereK̃ = K \ K∗ and
K∗, identified as thenoisepart ofK , is defined as the set of points whereK has mean
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density less than a fixed small thresholdβ∗, on some scale less or equal to one. By
using Theorem 4.1, instead of the inner version of the excision theorem, and by taking
advantage of the results stated in [17, Section 8], which allow to force (WS), we can
repeat the same arguments of [17] and show that, if(Kn)n∈N is a minimizing sequence
for E, thenHN−1(K∗

n)→ 0. Note that the closure ofM ∪K stated in [17, Lemma 3.3]
is now replaced by the same property ofM ∪K ∪ H , whereH is as in Theorem 1.2.
The assumption thatH is a closed negligible set makes the two facts applicable in the
same way (see [17, Remark 8.1]).

If K is the Hausdorff limit of(K̃n)n∈N, we can find a Vitali coveringB of K\H ,
consisting of balls on whicĥu has the smoothness required in the previous section,
namelyû ∈ C0,µ with µ> 1

2. By neglecting subsets ofK with arbitrarily small measure,
we can also assume thatµ is the same for every ball inB and||û||µ is uniformly bounded.
Then an application of the results in the previous section, instead of their inner version
considered in [17], allow us to find for everyε > 0 a thresholdα(ε) such that for every
B ∈ B we haveνc(B, K̃n, ε) � α(ε) definitively. We can apply the results of Section 2,
Eq. (2.10) and give the following theorem.

THEOREM 5.1. –Let (Kn)n∈N be a minimizing sequence forE. Then for alln the
decompositionKn = K̃n ∪ K∗

n holds withHN−1(K∗
n) → 0 and, ifK is the limit by the

Hausdorff distance of a subsequenceK̃in then

HN−1(K)� lim inf
n

HN−1(K̃in).

Thus, as a simple corollary, we deduce the existence of a closed minimumK by the
compactness of the set of the closed subsets of� and by the semicontinuity ofJ with
respect to the weak convergence (see [17, Section 2] and [18, Lemma 13.6]).

Finally we can also get a boundary version of the Density Theorem for nonminimal
setsK [17, Section 5], which does not require the ball to be contained in�.

THEOREM 5.2. – Let� be an open smooth bounded subset ofR
N and letû : ∂�→ R

be Hölder continuous with exponentµ> 1
2 and normcµ. For any given positive constant

α < 1, there exist two positive constantsβ andc∗ (which depend onα, on the dimension
N , onµ, oncµ and on the regularity of�) such that, for everyK closed subset of�, for
everyR � 1 and for everyx ∈ K , either one of the two following conditions is always
satisfied:

(i) HN−1(K ∩B(x,R))� βRN−1,
(ii) HN−1(K ∩B(x,αR)) < c∗(Eû(K)−mû),

wheremû = infEû(K).

6. Counterexamples and optimality of the conditions

The counterexamples in this section will be given for the simple functionalJ (u,K)=∫
�\K |∇u|2, for which the proofs of the existence theorems become easier. More

precisely, the existence theory and the estimates developed in the paper can be
referred more in general to quasiminimal sets, see [4] for the definition, while the
counterexamples in this section will be given even under a full minimality assumption.
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Therefore, we show that, even in this simpler case, the Hölder continuity assumptions
on û cannot be weakened. Let� be a smooth domain contained inR

N .

LEMMA 6.1. – There existsc > 0 such that, if(u,K) is a minimum forE and the
trace ofu on ∂� is Hölder continuous with exponent1

2 and norm bigger thanc, then
K �= ∅.

Proof. –If K = ∅ and (u,K) is a minimum, by Morrey Hölder continuity theorem,
see [21, Theorem 6.1],u is Hölder continuous with exponent1

2 and norm smaller than
c‖u‖∗

2N , which is in turn estimated by (1.4).✷
Now we state a weaker version of Counterexample 1.1, which shows that a bound on

û in theC0,1/2 norm is not enough to determine a constantβ > 0 such that (1.7) holds.

COUNTEREXAMPLE 6.1. – There exists a constantM > 0 such that, for everyβ > 0
there existŝu satisfying‖û‖ 1

2
�M and, such that, if(u,K) is a minimum ofEû, then we

can find a point ofK and a radiusR � 1 for which(1.7)does not hold.

Proof. –Let x̄ ∈ ∂�. We fix a functionv ∈C∞
0 with ‖v‖ 1

2
� c, spherically symmetric

aroundx̄. For allλ > 0, we consider the scaled functionvλ, such that‖vλ‖ 1
2

is constant

with respect toλ, i.e.vλ(x) = λ1/2v(λ−1x).
For everyλ we consider the minimum problem (Pλ) with boundary valuêuλ = vλ|∂� .

If Kλ is a solution of (Pλ), then we have

HN−1(Kλ)� min
u|∂�\K=ûλ

E(u,K)�E
(
0, Sλ

)
� c λN−1, (6.26)

whereSλ = {x ∈ ∂� | ûλ(x) �= 0}. By Lemma 6.1 we have thatKλ �= ∅. Let x ∈ Kλ

andρ > 0. If the density estimate (1.7), for some positiveβ andx, holds andBρ is a
ball centered inx, we have thatHN−1(Kλ)� βρN−1, which combined with (6.26) gives
ρ � cλ. So, whenλ is suitably small, (1.7) cannot hold for everyρ � 1. Note that, as
λ→ 0 we have that‖ûλ‖µ, for all µ> 1

2, goes to infinity. ✷
Remark6.1. – Since for allλ > 0 we haveûλ ∈ C∞, there exists a density constant

βλ > 0. For allµ > 1
2, ‖ûλ‖µ is not bounded and we have thatβλ → 0. However, for

every x /∈ Sλ, a constantβ > 0 such that (1.7) holds forρ � d(x, Sλ) can be found
thanks to the local character of (V4). Then the above arguments still implyρ � cλ. By
the arbitrariness ofx ∈Kλ, we deduce thatKλ is contained in a(cλ)-neighborhood ofSλ.

In the previous example we have kept‖û‖ 1
2

bounded, but we have fixed it large
enough in order to deduceKλ �= ∅ as a consequence of Lemma 6.1. One can still wonder
if a small enough bound on‖ûλ‖ 1

2
could replace (V4). To answer (negatively) such

a question, we shall now establish a more technical variant of the above construction
which will allow us to take‖ûλ‖ 1

2
as small as we want. In order to avoid useless details,

we shall now work in two dimensions and we take� in such a way that its boundary
contains a segment.

LEMMA 6.2. – There exists a Hölder continuous functionû : ∂�→ R, with exponent
1
2, which is not the trace of any function inH 1(�). The measure of the support of such a
function can be taken arbitrarily small.
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We note that for such a function, the Hölder norm of exponent1
2 can be also taken

arbitrarily small, by multiplying it for a small constant.

Proof. –We shall take a segmentS ⊂ ∂� on which we shall define a Hölder
continuous functionf∞ with exponent1

2 such that, for every continuous extensionu,
on a neighborhoodW of S, which isC1 out of the segment, it results

∫
W

|∇u|2 = +∞. (6.27)

Such a function will be taken to be zero at the endpoints ofS and so, extended by
zero on the rest of∂�, will give the desired function̂u. The segmentS can be taken of
arbitrarily small length and it becomes[0,2], under a suitable frame. So the function will
be defined on[0,1] with f∞(0) = 0 and extended by reflection on[0,2], i.e. we shall
takef∞(t) = f∞(2 − t) for t ∈ [1,2]. This function will be obtained as the uniform
limit of the sequence of mappings we are going to define. For every positive integer
n let Sn denote the set of the closed subintervals obtained by dividing[0,1] in 4n

equal parts. Letf0 be the identity function defined on[0,1], then ||f0|| 1
2

= 1. Let f1

be the function which is linear on each interval inS1 and takes the valuesf1(0) = 0,
f1(

1
4) = 1

2, f1(
1
2) = 1, f1(

3
4) = 1

2 andf1(1) = 1. Next we pass to a functionf2 obtained
by replacing the linear pieces off1 on the intervals inS1, with scaled copies off1 in
such a way to keep the previous values in the points 0,1

4, 1
2, 3

4 and 1. So, on[0, 1
4] we

havef2(x) = 1
2f1(4x), on [1

4,
1
2] f2(x) = 1

2 + 1
2f1(4(x − 1

4)) and so on.
Then we iterate the construction by substituting the linear pieces off2 on the intervals

in S2 with a suitable scaled copy off1 and so on. In such a way we get a sequence of
functions(fn)n∈N with the following properties:

(a) For everyn ∈ N: |f ′
n| = 2n a.e.

(b) For everyn ∈ N: ‖fn − fn+1‖L∞ = 1
2n+1 .

(c) For everyn ∈ N: on everyI ∈ Sn, fn is linear and has an oscillation equal to 2−n.
(d) If n�m andI ∈ Sm, thenfn(I )= fm(I ).
(e) If I ∈ Sn, then|f ′

n+1| = 2n+1 on the first half ofI .
Now, we claim that the sequence(fn)n∈N is bounded inC0,1/2. Indeed, givenx, y ∈
[0,1], there exists̄n such that 1/4n̄+1 � d(x, y) � 1/4n̄. Sox andy belong at most to
two contiguous subintervals inSn̄. So by (c), ifn= n̄:

∣∣fn(x)− fn(y)
∣∣� 1

2n̄−1
=
√

1

4n̄−1
� 4

√
d(x, y). (6.28)

The same estimate also holds forn� n̄ by (d). If n� n̄, by (a) we have

|fn(x)− fn(y)|√
d(x, y)

� |fn(x)− fn(y)|
d(x, y)

√
d(x, y) � sup|f ′

n|
√
d(x, y) � 1

2n̄−n
� 1.

So for everyn ∈ N: ‖fn‖ 1
2

� 4. By (b) (fn)n∈N is a Cauchy sequence in the uniform
norm. Therefore(fn)n∈N converges to a functionf∞ in the uniform metric. The function
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f∞ is Hölder continuous too, since it is the limit of functions which are bounded
in C0,1/2.

For a fixedn ∈ N let I ∈ Sn and letx andy be two points on the first half ofI , s.t.
|x − y| = 1

4n+1 . The increment offn+1 can be easily evaluated by (e) and this is clearly
left invariant if we increase the exponent. So we have in the limit

∣∣f∞(x)− f∞(y)
∣∣= 1

2n+1
. (6.29)

Now, let u be any continuous extension off∞ such that it isC1 in a neighborhood of
S. We consider an equilateral triangle whose sides have length1

4n+1 , and one of them,
denoted byL, is contained in the first half of a fixedI ∈ Sn. Let P be the union of the
remaining two sides of the triangle, then, by (6.29), the increment ofu onL is 1

2n+1 , so

1

2n+1
�
∫
P

|∇u| �
(∫

P

|∇u|2
)1/2

|P |1/2 �
(∫

P

|∇u|2
)1/2√

2
1

2n+1
,

therefore
1

2
�
∫
P

|∇u|2.

By allowing all the position ofL on the first half ofI , we can take the triangle contained
in a rectangleRI , which has a side equal toI and the other one of length

√
3

2·4n+1 . By
integrating the previous inequality we have

2
∫
RI

|∇u|2 � 1

4n+1

1

2

√
3

2
=

√
3

4n+2
. (6.30)

Let nowR be a rectangle with a side equal toS and the other one of length
√

3
2·4n+1 . Since

R contains 4n rectanglesRI for everyI ∈ Sn, we deduce from (6.30),

∫
R

|∇u|2 �
√

3

32
.

This shows that|∇u|2 cannot be integrable because of the absolute continuity of the
Lebesgue integral and because the Lebesgue measure ofR tends to zero asn→ ∞. ✷

Proof of Counterexample 1.1. –Let û be the function introduced in the proof of the
above lemma as an extension of the functionf∞ and, letûn be the analogous extension
of the functionsfn. For everyn ∈ N, let un be the solution of the Dirichlet problem{−�un = 0 in�,

un = ûn on ∂�.

We can observe that(un)n∈N is not bounded inH 1(�); if it were bounded it would
contain a weakly converging subsequence to a functionu ∈ H 1(�). Such a function



F.A. LOPS ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 639–673 657

would be an extention off∞, which contradicts Lemma 6.2. For everyn let En = Eû

for û= ûn andKn be a closed minimum of the functionalEn; it exists, becausêun is a
Lipschitz mapping. We claim thatKn �= ∅, otherwise:

En(∅)= J (un)→ +∞
while

En(Kn)= minEn �En(S)= HN−1(S).

SoKn �= ∅ definitively and

HN−1(Kn)�En(Kn)�En(S)= HN−1(S). (6.31)

Finally, for a fixed radiusρ > 0 and for everyβ > 0 the density estimate cannot hold
sinceS can be taken of arbitrarily small measure.✷

To the aim of proving Counterexample 1.2, we shall now work in arbitrary dimension
N and, for the sake of simplicity, we shall assume that∂� has a flat partS. Let
ϕ :R → [0,1] aC∞ function, such that for everyx � 0 ϕ(x) = 0 and for everyx � 1
ϕ(x)= 1. We takeϕ such that‖ϕ‖ 1

2
is big enough to apply Lemma 6.1. Letx̄ be a point

in the inner part ofS on ∂�. Let r � ε > 0 be such thatB2r(x̄) ∩ ∂� is contained inS.
We consider the functionω : ∂�→ [0,1] defined asω(x)= √

εϕ(ε−1(r+ε−d(x, x̄))).
We note that‖ω‖ 1

2
does not depend onε andr .

LEMMA 6.3. –Let

cω = inf E
ω
,

then

cω � c

√
ε

r
rN−1, (6.32)

wherec depends on the dimensionN .

Proof. –We shall estimate the functional in an admissible pair(v,H). We takeH
equal to the trace on∂� of the annulusBr+√

εr(x̄) \Br(x̄), so

HN−1(H)= crN−2√εr. (6.33)

Then we takev :� → R such thatv(x) = √
εϕ((rε)−1/2(r + √

εr − d(x, x̄))) and we
note that: ∫

�

|∇v|2 � c rN−1r−1√εr

which, with (6.33), implies (6.32). ✷
Let (εn)n∈N and(rn)n∈N be two decreasing real positive sequences such that
(i) εnr

−1
n → 0;

(ii) rn+1 + √
εn+1rn+1 <

1
2rn.
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For every naturaln we shall takeεnr−1
n small enough. For everyn ∈ N, we denote

by ωn : ∂� → [0,1] the function corresponding toω for ε = εn and r = rn. Then for
everyn ∈ N we consider the minimum problem with boundary datumûn =∑n

j=0ωj ,
we denote byEn the functionalEûn and we setmn = infK En(K). For everyn ∈ N we
denote(vn,Hn) the pair corresponding to(v,H) of the proof of Lemma 6.32, forε = εn
andr = rn. Let i ∈ N. We denote byBi the ball centered at̄x with radiusri + √

εiri .
We shall obtain the function̂u in Counterexample 1.2 as the limit ofûn. To the aim

of proving the desired properties, we need to establish several lemmas. We begin by
showing some estimates which imply that the minimum levelmi converge.

LEMMA 6.4. – LetK be a closed subset of� such that

Ei(K)−mi �NbNr
N−1
i+1 , (6.34)

then

Ei+1(K ∪Hi+1)�Ei(K)+ c 4

√
εi+1

ri+1
rN−1
i+1 . (6.35)

Proof. –Let u= u(K, ûi). We note that

∫
Bi+1

|∇u|2 � 2HN−1(∂Bri+1). (6.36)

Indeed if (6.36) does not hold, we can consider the admissible pair(u′,K ′) such that
K ′ = K ∪ (∂Bri+1 ∩ �), u′ = const onBri+1 ∩ � and u′ = u on � \ Bri+1. We can
observe that, since, asεir

−1
i → 0, HN−1(∂Bi ∩ �) is equal toN

2 bNr
N−1
i , modulo an

infinitesimum of higher order, so

HN−1(∂Bi ∩�)<NbNr
N−1
i . (6.37)

Therefore, by (6.34) and (6.37) we have:

Ei(u
′,K ′) < Ei(K)+NbNr

N−1
i+1 −

∫
Bi+1

|∇u|2 <Ei(K)−NbNr
N−1
i+1 �mi,

which leads to a contradiction and proves (6.36). By (6.36), with similar estimates to
those used in the proof of Lemma 6.32, since(u+ vi+1,K ∪Hi+1) is an admissible pair
for Ei+1, we have:

Ei+1(K ∪Hi+1)�Ei+1(u+ vi+1,K ∪Hi+1)

�Ei(K)+
∫
�

|∇vi+1|2 +HN−1(Hi+1)+ 2

√√√√ ∫
Bi+1

|∇u|2
√√√√∫

�

|∇vi+1|2

�Ei(K)+ c

√
εi+1

ri+1
rN−1
i+1 + c 4

√
εi+1

ri+1
rN−1
i+1 . ✷
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Now we shall give some simple variants of Lemma 6.4. Letû∞ =∑∞
i=0ωi . We denote

byE∞ the functionalEû∞ andm∞ = infK E∞(K). LetHi∞ =⋃∞
j=i Hj ∪ {x̄}.

LEMMA 6.5. – If K is a closed subset of� which satisfies(6.34), then

E∞
(
K ∪Hi+1

∞
)
�Ei(K)+ c 4

√
εi+1

ri+1
rN−1
i+1 . (6.38)

Proof. –Let u = u(K, ûi). We note that the supportsHi of ∇vi are disjoint, so by
Pitagora’s theorem

∫
�

∣∣∣∣∣
∞∑
j=i

∇vj

∣∣∣∣∣
2

=
∞∑
j=i

∫
�

|∇vj |2 � c

∞∑
j=i

√
εj

rj
rN−1
j = c

√
εi

ri
rN−1
i . (6.39)

Finally, by the same computation as in Lemma 6.4 and by (6.39), we have

E∞
(
K ∪Hi+1

∞
)
�E∞

(
u+

∞∑
j=i+1

vj ,K ∪Hi+1
∞

)
�Ei(u,K)+ c 4

√
εi+1

ri+1
rN−1
i+1 . ✷

LEMMA 6.6. – If K is a closed subset of� such that:

Ei+1(K)−mi+1 �NbNr
N−1
i+1 , (6.40)

then

Ei(K ∪Hi+1)�Ei+1(K)+ c 4

√
εi+1

ri+1
rN−1
i+1 . (6.41)

Proof. –The proof of this lemma is analogous to the proof of Lemma 6.4, it is only
sufficient to estimate the functionalEi in the admissible pair(u−vi+1,K∪Hi+1), where
u= u(K, ûi+1). ✷

In the same way of Lemma 6.5 we have, by lemma 6.6, the following lemma:

LEMMA 6.7. –If K is a closed subset of� which satisfies

E∞(K)−m∞ �NbNr
N−1
i+1 , (6.42)

then

Ei

(
K ∪Hi+1

∞
)
�E∞(K)+ c 4

√
εi+1

ri+1
rN−1
i+1 . (6.43)

By Lemmas 6.4 and 6.6 we deduce:

COROLLARY 6.1. –

|mi+1 −mi| � c 4

√
εi+1

ri+1
rN−1
i+1 . (6.44)
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By Lemmas 6.5 and 6.7:

COROLLARY 6.2. –

|mi −m∞| � c 4

√
εi+1

ri+1
rN−1
i+1 . (6.45)

For everyi ∈ N we consider the following condition

Ei(K)−mi � 5

√
εi+1

ri+1
rN−1
i+1 . (ni)

LEMMA 6.8. –If K satisfies(ni), thenK ∪Hi verifies(ni−1).

Proof. –By Lemma 6.6 and Corollary 6.1, we have

Ei−1(K ∪Hi)�Ei(K)+ c 4

√
εi

ri
rN−1
i �mi + c 4

√
εi

ri
rN−1
i �mi−1 + c 4

√
εi

ri
rN−1
i .

By taking all the termsεi/ri small enough we deduce(ni−1). ✷
In the following we shall apply Theorem 5.2, since we shall make use of the density

results for nonminimal sets in order to estimate inductively the density ofK onBri
2
, if

K satisfies(ni).

LEMMA 6.9. –For everyi ∈ N, if K satisfies(ni), we have:

HN−1(K ∩Bri
2
)� c 5

√
εi+1

ri+1
rN−1
i+1 . (6.46)

Proof. –If i > 0, we have from Lemma 6.8 that(K ∪ Hi) verifies (ni−1). So, by
induction we can assume the thesis fori − 1. Then, by Lemma 6.8, we have:

HN−1(K ∩Bri )� HN−1((K ∪Hi)∩B2ri

)
� c 5

√
εi

ri
rN−1
i < β(2ri )

N−1,

whereβ is the density constant of Theorem 5.2. Ifi = 0, the same conclusion follows
from Lemma 6.3 which implies

HN−1(K ∩Br0)�HN−1(K) �E0(K)�m0 + 5

√
ε0

r0
rN−1

0

= cω0 + 5

√
ε0

r0
rN−1

0 � c

√
ε0

r0
rN−1

0 + 5

√
ε0

r0
rN−1

0 .
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This implies, by Theorem 5.2 and (ni),

HN−1(K ∩Bri ) < c
(
Ei(K)−mi

)
< c 5

√
εi+1

ri+1
rN−1
i+1 . ✷

The next lemma is a simple consequence of Lemma 6.7 and Corollary 6.2.

LEMMA 6.10. –LetK be a minimum ofE∞, then for everyi ∈ N the setK ∪Hi+1∞
satisfies(ni).

The following lemma allows us to takêu= û∞ in Counterexample 1.2.

LEMMA 6.11. –The functionû∞ is Hölder continuous with exponent1
2.

Proof. –Let x, y ∈ ∂� be given. Leti(x) = sup{i ∈ N | x ∈ Bi} and, analogously,
i(y) = sup{i ∈ N | y ∈ Bi}. If i(x) = i(y) we have two cases:

(1) i(x) = i(y) = k, then

∣∣û∞(x)− û∞(y)
∣∣= ∣∣ωk(x)−ωk(y)

∣∣� ‖ϕ‖ 1
2

√
d(x, y);

(2) i(x) = i(y) = ∞, thenx = y = x̄ so û∞(x) = û∞(y).
If i(x) �= i(y), since we may always assumek = i(x) < i(y), then we havex ∈

Bk \Bk+1 andy ∈ Bk+1. Now, if d(x, y) � 1
2rk+1, then,

∣∣û∞(x)− û∞(y)
∣∣= ∣∣ωk+1(x)−ωk+1(y)

∣∣� ‖ϕ‖ 1
2

√
d(x, y);

otherwise, forh= k or h= k + 1 we haved(x, y) � 1
2rh and then by (ii),

|û∞(x)− û∞(y)|√
d(x, y)

�
∞∑
i=h

√
εi

(
1

2
rh

)−1/2

= c. ✷
Proof of Counterexample 1.2. –Let K be a closed minimum ofE∞. For everyi,

a local application of Lemma 6.1, made possible by our choice ofϕ, shows that
Bri (x̄) ∩K �= ∅, so x̄ ∈K = K . For everyρ > 0, we takei ∈ N such thatri+1

2 � ρ � ri
2 .

Then by Lemma 6.9 and by Lemma 6.10 we find

HN−1(Bρ(x̄)∩K)

ρN−1
�

HN−1(B ri
2
(x̄)∩ (K ∪Hi+1∞ ))

(ri+1/2)N−1
� c2N−1 5

√
εi+1

ri+1
.

By (i) we have that the density ofK in x̄ is zero. ✷
In the last counterexample we are going to show that the conditionµ > 1

2 is also
necessary for Theorem 1.2. We shall denote byc∗ the same constantc appearing in
Lemma 6.1.

Proof of Counterexample 1.3. –Let û0 :B → [0,2c∗], with B = B1(0), be aC∞
0 (B)

function, such that̂u0(0) = 2c∗. Let (xn)n∈N be a dense sequence in∂� and let(λn)n∈N
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be a decreasing sequence such thatλ0 = 1 and for everyi > 0 λi+1 = λi
cλ(i+1)2 , wherecλ

is a suitable constant.
For everyk ∈ N we defineûk(x) =∑∞

n=k ûλn(x), whereûλn(x) = λ1/2
n û0 (λ−1(x −

xn)+ xn). Note that for alln, there existyn ∈ ∂� such thatd(xn, yn)= λn and∣∣ûλn(xn)− ûλn(yn)
∣∣= 2c∗√d(xn, yn). (6.47)

Let nowx, y ∈ ∂�. For everym ∈ N such thatd(x, y) � λm we have:

m−1∑
i=0

∣∣ûλi (x)− ûλi (y)
∣∣� m−1∑

i=0

sup|∇ûλi |d(x, y)

�
m−1∑
i=0

sup|∇û0|(λi)−1/2
√
λm
√
d(x, y)

� sup|∇û0|
(
m

√
λm√
λm−1

)√
d(x, y)

� 1√
cλ

sup|∇û0|
√
d(x, y), (6.48)

and for everym ∈ N such thatd(x, y) � λm
∞∑

i=m+1

∣∣ûλi (x)− ûλi (y)
∣∣� ∞∑

i=m+1

oscûλi

�
∞∑

i=m+1

√
λi oscû0 � oscû0

∞∑
i=m+1

√
λi√
λm

√
d(x, y)

�
√
cλ√

cλ − 1
oscû0

√
d(x, y). (6.49)

By summing (6.48) and (6.49) we have that for everyx, y ∈ ∂� and for everyn, m ∈ N,
n�m such thatd(x, y) = λm,

∣∣(ûn − ûλm)(x)− (ûn − ûλm)(y)
∣∣�(sup|∇û0|√

cλ
+

√
cλ oscû0√
cλ − 1

)√
d(x, y). (6.50)

We choosec∗ such that(
1√
cλ

sup|∇û0| +
√
cλ√

cλ − 1
oscû0

)
� c∗.

We claim that for everyk ∈ N ûk is Hölder continuous, as one easily sees from (6.48)
and (6.49).

Moreover, by (6.47) and (6.50), for everyn, k ∈ N, k � n we have∣∣ûk(xn)− ûk(yn)
∣∣� ∣∣ûλn(xn)− ûλn(yn)

∣∣− ∣∣(ûk − ûλn)(xn)− (ûk − ûλn)(yn)
∣∣

� 2c∗√d(xn, yn)− c∗√d(xn, yn)

= c∗√d(xn, yn). (6.51)
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For everyk ∈ N, we consider in� the minimum problem with boundary datum̂uk . If K
is a closed minimum ofE, by applying locally Lemma 6.1, sincêuk satisfies (6.51), we
have that for everyn ∈ N, n� k:

K ∩Bλn(xn) �= ∅.
Thus, since(xn)n∈N is dense in∂�, we have that∂�⊂K . On the other side

inf(Eûk )�Eûk (∅)� ‖ûk‖2
H1 =

∥∥∥∥∥
∞∑
n=k

ûλn

∥∥∥∥∥
2

H1

�
( ∞∑

n=k

‖ûλn‖H1

)2

= ‖û0‖2
H1

( ∞∑
n=k

λn
N−1

2

)2

. (6.52)

Consequently, by (6.52), fork large, inf(Eûk ) is smaller thanHN−1(∂�), a contradic-
tion. ✷

7. Hölder continuity properties of solutions to (EL)

To prove Theorem 4.1, we need some preliminary results about the Hölder continuity
of the solutions to the differential equation in (EL), on̂B with Hölder continuous
boundary data. We introduce the notationSe = ∂� ∩ B andSi = ∂B ∩ � (thus∂B̂ =
Si ∪ Se), di(x) = d(x, Si), de(x)= d(x, Se) andd = min(de, di).

We make the followingregularity assumptionon ∂�. For everyx̄ ∈ ∂�, we have
� ⊂ Cx̄ , where, roughly speaking,Cx̄ is a cone with vertex̄x and amplitudeπ + 2δ.
More precisely, this means that,after settingx̄ = 0 and under a suitable choice of the
first axis, for everyx ∈�, it results

x1 � −δ

2
|x|. (Rδ)

The constantδ > 0 will be assumed sufficiently small depending onµ. We remark that,
in the case� is convex the above regularity property is trivially satisfied for everyδ.

Let v be a real function defined on̂B, such that
(i) v is Hölder continuous with exponentµ> 1

2 onSe and normcµ,

(ii) v is Hölder continuous with exponent1
2 on ∂B̂ and normcH ,

(iii) ∀x ∈ B̂: |�v(x)| � R−3/2.
The aim of this section consists in proving the following estimate concerning a

functionv satisfying (i), (ii) and (iii).

THEOREM 7.1. – If (Rδ) holds withδ < 1−µ

N−1 then, for everyδ(N − 1) < β < 1
2 ,

∣∣∇v(x)
∣∣� c

(
di(x)

−1/2 + de(x)
µ−1 + di(x)

β−1/2de(x)
−β
)
. (7.53)

For the proof of the theorem, we shall take advantage of the two following lemmas
which estimate the oscillation ofv near a point of the boundary.



664 F.A. LOPS ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 639–673

LEMMA 7.1. – Lety ∈ ∂B̂, then

∀s > 0: osc
B̂R∩B(y,s)

v � cs1/2. (7.54)

Proof. –Let y ∈ ∂B̂. We can assume, without any restriction,y = 0 andv(0) = 0.
Moreover, we can take a coordinate system such that(Rδ) holds. We are going to
introduce a functionw, defined onB̂, such that

(a) |v| �w on ∂B̂, (b) �w � −|�v| on B̂, (7.55)

and so

−�(w − |v|)� 0.

Then, by the maximum principle we can say thatw − |v| � 0 on the whole ofB̂. Thus,
the oscillation ofv onB(s) will be controlled by the oscillation ofw onB(s), then

osc
B̂R∩B(y,s)

v � 2 sup
B̂R∩B(y,s)

w. (7.56)

We shall show that a functionw as above is given, for a suitable value of the constant
c̄0 � 0, by setting

w(x)= cH
(|x|1/2 + c̄0(x1 + δ|x|)1/2).

Such an equality, combined with (7.56), will produce the thesis. In order to conclude the
proof, we just have to show thatw satisfies (7.55). Condition (7.55(a)) is easily verified
sincev ∈ C0,1/2(∂B̂), with normcH , x1 + δ|x| � 0 andc̄0 � 0.

For (7.55(b)) we need to estimate�w. Since we shall need similar computations also
in the next lemma, we shall work more in general with the function

w0(x) = c̄
(|x|τ + c̄0(x1 + δ|x|)τ ),

with τ < 1− δ(N − 1), which will give the required information forτ = 1
2. By an easy

computation,

c̄−1�w0(x)= τ(τ +N − 2)|x|τ−2

+ c̄0τ(x1 + δ|x|)τ−2
[
(τ − 1)

(
1+ 2δ

x1

|x| + δ2
)

+ δ(N − 1)
(
x1

|x| + δ

)]
.

Now, since( x1
|x| + δ)� (1+ 2δ x1

|x| + δ2), (x1 + δ|x|)τ−2 � (1+ δ)τ−2|x|τ−2, δ < 1−τ
N−1, i.e.

(τ − 1+ δ(N − 1)) � 0, and 2x1 < δ|x|, we get

�w0(x) � c̄τ
(
N + τ − 2+ c̄0(1+ δ)τ−2(τ − 1+ δ(N − 1)

))|x|τ−2. (7.57)

Therefore, by taking in (7.57)

c̄0 = (2−N − τ)− 4(c̄τ )−1

(1+ δ)τ−2(τ − 1+ δ(N − 1))
> 0,
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we obtain

�w0 � −4|x|τ−2 � −Rτ−2,

since|x| � 2R. For c̄ = cH andτ = 1
2 we estimate�w and so we obtain (7.55(b)).✷

In the case of the points of the exterior boundarySe we can also produce the following
estimate.

LEMMA 7.2. – Lety ∈ Se, then∀s > 0

osc
B̂R∩B(y,s)

v � c
(
cµs

µ + cH
(
di(y)

)β− 1
2 s1−β

)
, (7.58)

wherec = c(β,µ, δ).

Proof. –The proof involves the same arguments employed to prove the previous
lemma, so, after settinḡdi = di(y), we perform the same change of variables as before in
order to have (Rδ) for everyx ∈ B̂. The only variant relies on the choice of the function
w(x) which, in the present case, is given by the sumw1 +w2, where

w1(x)= cµ
(|x|µ + c̄1(x1 + δ|x|)µ),

w2(x)= cH (d̄i)
β−1/2(|x|1−β + c̄2(x1 + δ|x|)1−β

)
.

Now,w1 andw2 are positive functions, moreover|v| �w1 onSe, from (i) and|v| �w2

onSi , from (ii). So, by combining the last two inequalities, we get (7.55(a)). We remark
that eitherw1 andw2 are particular cases ofw0, obtained forτ = µ andτ = 1−β. Thus,
by taking

c̄1 = 2−N − τ

(1+ δ)τ−2(τ − 1+ δ(N − 1))
> 0,

for τ = µ, we obtain�w1 � 0, while by takingc̄2 as we have takenc0 in the previous
proof, we get, forτ = 1− β

�w2 � −4(d̄i)
β− 1

2 |x|τ−2 � −R− 3
2 ,

since bothd̄i and|x| are less or equal to 2R. By combining the last two inequalities with
(iii), (7.55b) is proved. ✷

Proof of Theorem 7.1. –Let ϕ be a spherically symmetric mollifier with a support
contained in the unitary ball. We consider the rescaled functionsϕλ, normalized inL1,
defined as the functions which sendx in λ−Nϕ(λ−1x), for λ > 0.

Firstly we recall that by a standard calculation, ifψ is any symmetric mollifier, then

v = v ∗ψ −�v ∗ nψ, (7.59)

where, by introducing the real function̄ψ such that, for everyx ∈ R
N ψ̄(|x|) = ψ(x),

we have set

nψ(x)=
∞∫

|x|

1

NbN(N − 2)

(
1

|x|N−2
− 1

ρN−2

)
ψ̄(ρ)dρ.
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We can estimate∇nψ as follows,

∣∣∇nψ(x)
∣∣=

∣∣∣∣∣
∞∫

|x|

1

NbN |x|N−1
ψ̄(ρ)dρ

∣∣∣∣∣� 1

NbN |x|N−1
. (7.60)

By differentiating (7.59) we have

∇v = v ∗ ∇ψ −�v ∗ ∇nψ. (7.61)

Let x ∈ B̂R be given. We takeλ= d(x), then forψ = ϕλ, since suppϕλ ⊂ Bλ(0), from
(7.60) we have‖∇nϕλ‖L1 � λ and by (iii) we get

∣∣�v ∗ ∇nϕλ(x)
∣∣� ‖∇nϕλ‖L1‖�v‖L∞ � CR−3/2d � CR−1/2 � cdi

−1/2. (7.62)

In order to estimate the first term in (7.61) we distinguish two cases:
(a) If 2de(x) � di(x) we haveλ = de(x) and we can fixy ∈ Se such thatd(x, y) =

de(x) = λ. By the triangular inequality12di(x) � di(y). By Lemma 7.2 we have
the estimate

∣∣v ∗ ∇ϕλ(x)
∣∣� 1

2
‖∇ϕλ‖L1 osc

B̂R∩B2λ(y)

v

� 1

2
λ−1‖∇ϕ‖L1c

(
cµ(2λ)

µ + cH
(
di(y)

)β− 1
2 (2λ)1−β

)
� c
(
cµλ

µ−1 + cH
(
di(x)

)β− 1
2λ−β

)
.

Sinceλ= de(x), we get

∣∣v ∗ ∇ϕλ(x)
∣∣� c

(
cµ
(
de(x)

)µ−1 + cH
(
di(x)

)β− 1
2
(
de(x)

)−β)
. (7.63)

(b) If 2de(x) > di(x) we haveλ � 1
2di(x) and fixy ∈ Si such thatd(x, y) = di(x) �

2λ. Thus, in the same way as the previous case, by Lemma 7.1, we get

∣∣v ∗ ∇ϕλ(x)
∣∣� 1

2
‖∇ϕλ‖L1 osc

B̂R∩B3λ(y)

v

� c
1

2
λ−1‖∇ϕ‖L1(3λ)1/2 � ccH

(
di(x)

)−1/2
. (7.64)

By combining (7.62), (7.63) and (7.64), we can deduce (7.53) from (7.61).✷
A simpler variant of Theorem 7.1, involving only Lemma 7.1, allows to show that

|∇v(x)| � ccH
(
d(x)

)−1/2
, (7.65)

from which, in the case of a regular boundary, we deducev ∈C0,1/2(B̂R) with a constant
of the same order ofcH .
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We shall apply the above estimates to cases in which the conditionR � 1 holds.
Therefore (iii) will be satisfied whenever|�v(x)| � 1 and this is the case for the
solutions to (EL). Moreover, whenR � 1 it happens thatdi(x) � 2, so, by increasing
the value of the constant in (7.53), we can put it in the homogeneous form

|∇v| � c
(
di

− 1
2 + di

1
2−µde

µ−1 + di
β− 1

2de
−β
)

which, by takingβ = 1−µ> δ(N − 1), becomes

|∇v| � c
∑
τ

di
−τ de

τ− 1
2 , (7.66)

whereτ takes the values12 andµ− 1
2. Then

|∇v|2 � c
∑
τ

di
−τ de

τ−1, (7.67)

whereτ takes the values 1,µ and 2µ− 1.

8. Proof of the excision theorem

In this section we shall prove Theorem 4.1, so we are in the situation described in the
beginning of Section 4; we shall takēx = 0. Let us begin with some comments about
conditions (V1–V4) listed therein. In [21] it is shown that conditions (V2) and (V3) are
equivalent to ask the existence of a finite decomposition ofV , consisting in a family of
piecewise regular open sets(Vj)j enjoying the properties:

∑
j

HN−1(∂Vj )� c2σ, (V2′)

sup
j

(diamVj)� αR. (V3′)

Moreover, the arguments in [21] allow us to fix a finite coveringB of V , made by balls
Bi , with radiusri � αR. In [21, Section 2] it is shown that, thanks to the properties of
V , we can takeBi with small radius and such that the sum of the(N − 1)-dimensional
measures of their boundaries is of the order of the measure of∂V .

We recall the notation used in [21] and we introduce some new one due to the possible
presence of∂� in the ball. LetK be a given closed subset of�, u = u(K). Let V be
a neighborhood of the setB(R) ∩ K and (Vj )j a decomposition ofV such that (V1),
(V2′), (V3′) and (V4) hold. In the following computations we shall not assume thatK is
a minimum, nevertheless we shall ask that (1.4) holds withc = 2 for every subsetA of
�, such that (

K ∩B(R/2)
)⊂A⊂ B(R). (8.68)

Thus the results of this section will depend by the last hypothesis, therefore in order to
employ them in the proof of Theorem 4.1, we shall provide to force such a condition.
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A simple consequence of (1.4) (note that (8.68) holds forA= V ), (V2), andR � 1 is

∫
V

|∇u|2 � HN−1(∂V )+ |V | � (c2 + α)σ. (8.69)

By employing Hölder Inequality, (V3) and (8.69) we deduce:

√
R

∫
V

|∇u| �√
α(c2 + α)Rσ. (8.70)

Let us denote bỹu a Hölder continuous extension [14, 2.10.44], with normc1 and with
exponent12, of u∗ to B̂(R) and byū a truncation ofu by two constants such thatū= u∗,
where the last one is defined, and

osc
B̂(R)

ū� cH
√

2R. (8.71)

Note that (see [15])̄u ∈H 1(B̂(R) \K) and that

∇u∇ū� |∇u|2. (8.72)

For every positives < R we denote bySi(s) andSe(s) the termsSi andSe introduced
in Section 7 forB̂ = B̂(s). Moreover we set

V (s)= V ∩B(s)

and we also set, for every exponentj ,

Vj(s) = Vj ∩B(s).

Let vs be the solution of the Dirichlet problem
{−�vs + vs = g in B̂(s),
vs = ũ on ∂B̂(s).

(8.73)

We proved in Section 7 thatvs is Hölder continuous with exponent1
2 and normccH (see

(7.65) and the following considerations) and that (7.66) and (7.67) hold forv = vs .
We introduce the notationdi,s(x) = d(x, Si(s)), de,s(x) = d(x, Se(s)). Since the

center of the ballB(s) is x̄ = 0, thendi,s (x) � s − |x|, if |x| � s. We put d�(x) =
d(x, ∂�) � de,s(x) so, under mild regularity assumptions on∂�, for every 0< τ < 1
with cτ = c(τ,�), we obtain∫

V

d�(x)
τ−1 dx �

∑
i

∫
Bi

cτ d�(x)
τ−1 dx

�
∑
i

cτ r
N+τ−1
i � cτ (sup

i

ri)
τ
∑
i

rN−1
i

� cτ (αR)
τσ. (8.74)
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Now, for all s ∈ [R/2,R] we define an “excised set”Ks and an “excised function”us .
In this perspective we consider the sets

T0(s)= Si(s)∩ V,

T1(s)= Si(s − √
αR)∩ V,

T2(s) = ∂V ∩ (B(s) \B(s − √
αR)

)
.

Then we define the “cut set”

T (s)= T0(s)∪ T1(s)∪ T2(s),

the “cushion set”

U(s)= V (s) \B(s − √
αR
)

and the “excised set”

Ks = (
K\B(s))∪ T (s).

Finally we can set

us =


u on� \B(s),
vs onB(s) \U(s),
0 onU(s).

We notice thatus belongs to the set of admissible functions forE, since it satisfies the
boundary condition. In generalus �= u(Ks).

The crucial step in the proof of the main excision theorem relies on comparing∫ R
R/2(J (us) − J (u))ds with Rσ . So we shall essentially have to show that some terms,

which will be employed to the aim of estimating that integral, are much smaller thanRσ ,
whenα is small. As in [21], we prefer to start by showing in a systematical way some
of such inequalities and, finally, we shall combine them in order to prove the theorem.
So, lets ∈ [R/2,R] be given and let us begin by takingxj ∈ ∂Vj (s) such that∣∣(ũ− vs)(xj )

∣∣= min
x∈∂Vj (s)

∣∣(ũ− vs)(x)
∣∣

and putcj = (ũ− vs)(xj ). Then, for allx ∈ ∂Vj (s)∣∣(ũ− vs)(x)− cj
∣∣� min

(
osc
∂Vj (s)

(ũ− vs),2|(ũ− vs)(x)|)
�
(

osc
∂Vj (s)

(ũ− vs)
)λ(

2|(ũ− vs)(x)|)1−λ
, (8.75)

for every 0� λ � 1. Sinceũ − vs is Hölder continuous, then for everyx ∈ ∂Vj (s) we
have

de,s(x)
−1/2 � d�(x)

−1/2 � c
∣∣(ũ− vs)(x)

∣∣−1
, (8.76)

so by (7.66) and (8.76) we get, for some positive constant c,

∣∣∇vs(x)
∣∣� c

∑
τ

|ũ− vs |(τ−1)di,s (x)
−τ/2, (8.77)
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whereτ varies in the set{1,2µ − 1} (note the change of variable). For everyτ , by
(8.75) withλ= τ , (8.77) and by the divergence theorem, we can establish the following
estimate∫

∂Vj (s)

(ũ− vs)
∂vs

∂n
�

∫
∂Vj (s)

|ũ− vs − cj ||∇vs | +
∫

Vj (s)

cj |�vs |

�
∫

∂Vj (s)

|ũ− vs − cj |c
∑
τ

|ũ− vs |(τ−1)di,s (x)
−τ/2 + |Vj |

� c
∑
τ

∫
∂Vj (s)

(
osc
∂Vj

(ũ− vs)
)τ
di,s (x)

−τ/2 + |Vj |. (8.78)

Fubini Theorem and (V2′) allow us to deduce

R∫
R/2

∑
j

( ∫
∂Vj (s)

(ũ− vs)
∂vs

∂n

)
ds

� c
∑
τ

∑
j

( ∫
∂Vj

(
osc
∂Vj

(ũ− vs)
)τ R∫

|x|

ds

(s − |x|)τ/2 + |Vj |
)

� c
∑
τ

∑
j

∫
∂Vj

(αR)τ/2R1− τ
2 + |V |

� c
∑
τ

∑
j

Rατ/2HN−1(∂Vj )+ |V | �Rσ. (8.79)

Moreover, for every 0< τ < 1, by Hölder Inequality and (8.74), we get

∫
V

|∇u|
( R∫

|x|
(s − |x|)−τ/2d�(x)

τ−1
2 ds

)
dx

� R1− τ
2 cτ

(∫
V

|∇u|2
)1/2(∫

V

d�(x)
τ−1
)1/2

� R1− τ
2 cτ

√
σ
√
(αR)τσ � Rσ. (8.80)

Finally, by Fubini Theorem, (7.66), (8.76) and (8.80), we obtain the estimate

R∫
R/2

( ∫
V (s)

|∇u| |∇vs |
)

ds �
∫
V

( R∫
|x|

|∇u| |∇vs |ds
)

dx

�
∑
τ

∫
V

|∇u|
( R∫

|x|
(s − |x|)− τ

2d�(x)
τ−1

2 ds

)
dx

�Rσ. (8.81)
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Now we are in a position to prove the excision theorem. Letδ(s) = J (us) − J (u)

be the increment of the integral part of the functional under the excision operation, we
shall estimate

∫ R
R/2 δ(s)ds � Rσ . To this aim, we shall employ the computation in the

beginning of the proof of the [21, Lemma 4.1] to estimateδ(s). Indeed, since bothu
andvs satisfy the elliptic equations (EL) and (8.73),u = ũ on B̂(s) \ V and ũ = vs on
∂B̂(s), then (see [21] for more information) we have that

JB̂(s)\V (vs)− JB̂(s)\V (u)=
∫

∂V (s)

∂(vs + u)

∂n
(ũ− vs).

Therefore we can split the termJ (us)− J (u) as follows:

J (us)− J (u)= JB̂(s)\V (vs)− JB̂(s)\V (u)+ JV (s)(us)− JV (s)(u)

= δ1(s)+ δ2(s)+ δ3(s)+ δ4(s)+ δ5(s),

where

δ1(s)=
∫

∂V (s)

∂vs

∂n
(ũ− vs), δ2(s) =

∫
∂V (s)

∂u

∂n
ū− JV (s)(u),

δ3(s)=
∫

T1(s)

∂u

∂n
(ũ− ū), δ4(s)= −

∫
∂V (s)

∂u

∂n
vs,

δ5(s)= JV (s)(us).

We remark that in the above calculations we have used the conditionu= ū whereu= ũ.

LEMMA 8.1. – If V is thin enough and(1.4) holds forA = V andA = B̂, then we
have

R∫
R/2

δ(s)ds �Rσ. (8.82)

Proof. –For i = 1 the estimate is (8.79). Fori = 2 and i= 3, the computations of [21]
remain unchanged. Let us evaluate the addendum fori = 4 by using the divergence
theorem.

δ4(s) =
∫

V (s)

(−�u vs − ∇u∇vs)� |V | +
∫

V (s)

|∇u| |∇vs | (8.83)

and the desired inequality follows from (8.81). Finally fori = 5, sinceus = 0 on the
cushion setU(s), by (7.67) and (8.74), we get, forτ taking the same values of (7.67),

δ5(s)=
∫

V (s)\U(s)

|∇vs |2 +
∫

V (s)

|vs − g|2

�
∑
τ

∫
V

di,s (x)
−τ de,s(x)

τ−1 + |V |

�
∑
τ

∫
V

(√
αR
)−τ

d�(x)
τ−1 + |V |
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�
∑
τ

(√
αR
)−τ

(αR)τσ + |V |, (8.84)

so we can conclude
R∫

R/2

δ5(s)ds �Rσ. ✷ (8.85)

Proof of Theorem 4.1. –Let us distinguish two cases. If there exists a subsetA

such that (8.68) holds and (1.4) does not hold, then we proceed as follows. Firstly,
by continuity we can assumeA ⊂ B(s) for s < R, then we can take asK ′ the set
(K \A)∪ ∂A. Let u′ be the function defined as follows

u′ =
{
u on� \A,
0 onA,

and note that the negation of (1.4) implies

EA(K) > 2
(
HN−1(∂A)+ |A|). (8.86)

Then we have

E(K ′)�E(u′,K ′)

�E(K)+HN−1(∂A)+
∫
A

|g − u|2 −EA(K)

�E(K)− 1

2
EA(K) �E(K)− 1

2
σ, (8.87)

sinceσ � HN−1(K ∩ A) � EA(K). So, in this case the theorem is proved. Otherwise,
if (1.4) holds for everyA satisfying (8.68), we have all the assumptions needed in this
section and so we can apply Lemma 8.1. Let us also remark that

R∫
R/2

HN−1(T (s))ds � 2|V | + √
αc2Rσ �Rσ,

therefore we can finds ∈ [R/2,R] such that

δ(s)+HN−1(T (s))� σ

2
.

Now let us takeK ′ =Ks for such a value ofs, then

E(K ′)=E(Ks)�E(us,Ks)= J (us)+HN−1(Ks)

� J (u)+ δ(s)+HN−1(K)+HN−1(T (s))−HN−1(K ∩B(s)
)

� J (u)+ δ(s)+HN−1(K)+HN−1(T (s))− σ

�E(K)− σ

2
. ✷ (8.88)
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