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ABSTRACT. — The paper deals with the problem of minimizing a free discontinuity functional
under Dirichlet boundary conditions. An existence result was known so farfi@r2) boundary
datasi. We show here that the same result holdsifar CO*(9Q) if u > % and it cannot be
extended to cover the cage= % The proof is based on some geometric measure theoretic
properties, in part introduced here, which are progegriori to hold for all the possible

minimizers.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On savait que le minimum d’une fonctionnelle a discontinuité libre avec condition
de Dirichlet sur le bord était atteint quand la donnée de hoest C1(9$2). Nous étendons
ce résultat & e CO#(3Q) si u > 3 et montrons qu'il n’est plus vrai poyr = 3. Pour cela,
nous démontrons des propriétés de théorie de la mesure géomatpgoe valides pour tout

minimiseur de la fonctionnelle.
© 2001 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

I ntroduction

This paper is concerned with a Dirichlet boundary value problem involving a
Mumford—Shah functional or, more in general, a functional with “free discontinuities”,
which is usually studied with Neumann homogenous boundary data. Such functional.
can be seen as depending on two variables: a funetiamd a closed seK which
contains the discontinuity points af Each one of them can be easily determined in
an optimal way when the other one is given, so one can see these functionals as on
depending on the function variahleor on the set variabl& and considering the other
one as implicitly defined.

The existence theory for minima of functionals with free discontinuities has been
made by E. De Giorgi and his collaborators in the following steps. A new functional
space, denoted by SBV, has been introduced in [10], then a compactness theorem a
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the subsequent existence of a function in SBV which minimizes the functional have beel
proved by L. Ambrosio in [1] and [2] (see [3] for a more recent proof). A regularity result
is then needed in order to prove the closure (modulo a negligible set) of the set of discon
tinuity points and it has been made by E. De Giorgi, M. Carriero and A. Leaci in [11].

An alternative approach, which uses the set variable and directly finds a closec
minimizer, has been proposed in [7] for the case of two dimensions (see [18] and
more recently, [17] for arbitrary dimension). Such an approach works with aqrieri
density estimates on the minimal sets, obtained by a technique dakeidion Method
in [18] which has been more recently extended to the case of a general dimension in [21
The crucial assumption in order to apply such a method is the Holder continuitgutf
of a suitably small set. The density theorems obtained in this way allow the proof of some
semicontinuity results, with respect to the Hausdorff distance, which give the existence
directly in the class of closed subsetstafby trivial compactness arguments.

The case of Dirichlet boundary conditions has been treated, following the SBV
approach, in [5] forC! boundary conditions (the regularity of boundary data will be
always assumed with the possible exception of a clgaed 1)-negligible set).

The theorems in this paper sharpen the result in [5], by showing that the Holder
continuity of the boundary datur is the really crucial assumption which makes the
difference between the existence of a closed minimizer oiv®shall make use of the
excision method in order to prove thatiifis Holder continuous of exponept > % then
a boundary version of the density theorems holds and the semicontinuity properties witl
respect to the Hausdorff distance and the subsequent existence theorem can be ea:
deduced. On the other hand, we shall show with various counterexamples thas, if
only C%2, even with an arbitrarily small norm, then the density estimates may be false
and even the existence of a closed minimizer may fail.

So the Dirichlet Problem seems to have a theoretical interest, because it shows that tt
CY/? regularity considered in the excision method has an intrinsic meaning, which does
not depend on the particular approach. Beside this, a more applicative perspective relie
on the study of boundary value problems originated from the mechanics of materials
which undergo fractures and have a prescribed deformation of the boundary.

1. Notation and main results

Let X be a subset oR", we shall denote by+*(X) the Hausdorff measure of
dimensione and by|X| its Lebesgue measure. We shall denoteChgn open smooth
bounded subset &", by g a given measurable function frof in [0, 1] and by a
function defined ord2 with values in[0, 1]. For any positive real number < 1, let
llul|, denote the Holder (semi)norm of exponenof a real functioru (of course such
a norm will be assumed to be equaHtec if the function is not Holder continuous) and
let C%* represent the space of Holder continuous functions with expgnewte shall
denote bybx the measure of the unit ball &X.

Let us consider the admissible pairs K ), wherek is any closed subset 6f andu is
afunction inH(Q\ K) such thait = 71 ondQ \ K. We shall deal with the minimization
of the functional

Eu,K)=Ju, K)+H"YK) (1.1)
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defined on the class of admissible pais K), whereJ (u, K) denotes the value of the
elliptic functional

J(u, K) = / |Vu|? + / lg —ul’ (1.2)
Q\K Q\K
If we fix K, we can determine a unique functian= u(K, i) which minimizes the
functional J on the sef2 \ K. The functionu (K, &) can be characterized as the unique
weak solution in2 \ K of the Euler-Lagrange equations

—Aut+u=g InQ\K,
u=i onaQ\ K,

B]
—u:O onk.
on

(EL)

One can consider the function(K, iz) almost everywhere defined on all ©f Indeed,
in order to minimizeE, we only need to take into account negligible valuekofwith
respect to Lebesgue measure, since in the other éag€s= +oo. By setting

Ja(K) = J (u(K i), K) =inf J (u, K),

Ey(K) = E(u(K, i), K) =H " (K) + Jy(K),

we can regard the functionalsandJ as only depending on the set varialdle We shall
use the notatio/ (K), E(K), u(K) wheni is supposed to be fixed and we do not need
to emphasize its role. The letterwill stand for universal constants, unless differently
specified. When the letterwill be used to recall a particular constant, it will be affected
with the number of the equation where it is introduced. We shall introduce also constant:
depending on some variablegS2, i, ¢y, ||lull,, ...), and sometimes objects &sandi
will be considered fixed and not explicitely mentioned.

Let B be a ball ofRY, with radiusR, we setB = B N 2. Under suitable regularity
assumptions 0A<2, there exists a constang, depending oV and on the geometry of
0%2, such that for everg <1

HNLOB) + |B| < coRV 1. (1.3)

If K is a minimum of E andu = u(K, i) then, for every measurable sétC 2, the
following estimate (see [21, (1.2)]) holds with=1

/qu|2 + / lg —ul> + HV LK N A) <c(HVL@A) + |A]). (1.4)
A A
If u is as above, by (1.4) and (1.3) we have in particular

/ Va2 <HV0B) + |B| < coRV L. (1.5)

B
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In the same way we also have from (1.4), for every mini&ial
HYHK N B) <HYTN0B) + Bl <RV, (1.6)

if R<1.
The main results in this paper can be summarized in the following statements.

THEOREM 1.1 (Uniform density property). There exists a constagt> 0, depend-
ing on u, on theC%* norm ofii on 32 N B and on the regularity 0§<2, such that, ifK
is a minimum of£; and B is a given ball centered at a point &f, of radiusR < 1, with
i Holder continuous o2 N B, with exponenj > %, then

HYYBNK)>BRY L. (1.7)

Theorem 1.1 is a corollary of some stronger results which will be formulated later
by recurring to the properties described in the next section. Moreover, Theorem 1.1
as its corresponding inner version established in [21], also admits a weak formulatior
which can be applied to the singular set @RA\:minimum proving its closure (see [18,
Lemma 8.11]). Therefore an application of Ambrosio’s Compactness Theorem [3] leads
to the following result.

THEOREM 1.2. —If # is locally Hélder continuous with exponept > % out of a
closed setd with null (N — 1)-dimensional measure, then there exists a closedset
which is minimal forEj;.

We shall actually give a different proof of this result without using the weak approach,
but following the semicontinuity technique established in [17]. Furthermore, we will
show that these results are in some sense optimal and thathtidgder continuity ofiz,
with u > % is the crucial ingredient for density results. Indeed, we shall devote a section
to the proof of the following three counterexamples. Let us remark that in the theorems
the conditiony = § is not allowed.

COUNTEREXAMPLE 1.1. — For everyB > 0 there existsi Holder continuous, with
exponenl% and norm||z||: arbitrarily small, such that, ifK is a minimum of£;;, then
we can find a point ok N 92 and a radiusR < 1 for which (1.7)does not hold.

COUNTEREXAMPLE 1.2. — For any open bounded smoofh c RY and everyx
02, there existsi Holder continuous with exponeétand of clasgC>® onaQ2\ {x}, such
that every closed minimui of E;, containingx, has zero density if.

We can note that in the above case a closed minimal set always exists bécause
satisfies the hypothesis of the existence Theorem 1.2, sinc€ 4t isut of the closed set
{x}, which clearly has null N — 1)-dimensional measure. Counterexample 1.2 shows
that all these conditions, even if they assure the existence of a closed minimum, do nc
permit to assure the density estimate. Of coudrsannot be locallyC* for any u > 2,
in x. For the same reasois has nonzero density in all its other points.

COUNTEREXAMPLE 1.3. — There exists, HOlder continuous with exponeét such
that E;(K) has no minimum in the class of closed subse®g.of
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Counterexample 1.3 shows that the existence Theorem 1.2 fails if we /allﬁv%,
even if we takeH = ¢ and we assume the regularity conditions globallypén

2. Finegeometric properties of the singular set

In this section we shall introduce some geometric measure theoretic tools, which will
play a key role in the sequel. Before introducing the technical definitions, we briefly
remark some intuitive geometric facts. The role of the singularksén this kind of
problems relies in allowing the functianto make a jump (insid€2) or to get free from
the constraint to agree with the boundary datumgg). Then, if we take a ball centered
on K inside 2, at a microscalek” will split the ball in two almost equal parts between
which u makes a jump which is independent on the scale and so it is big with respect tc
the radius of the ball. On the other side, if we take a ball centered on a point of a part o
K which, roughly speaking, runs along the boundarf2ofit a microscale we can guess
that there exists a baB centered orK, such that the se® N B will essentially result
to be insulated by with respect td 2. Such a description acquires a deeper meaning
if one quantifies how low such a microscale should be, so we are led to formulate the
following definitions which are going to be settled in a general context.

Before the geometric definitions, we introduce the following property, whéna
Lt function from a setx ¢ RY in R.

For every ball B c RY: /|Vu| < B < ulliyR7T, (WS)
B

whereR is the radius ofB and Vu is defined, in the sense of distributions, &n\K

and it is assumed to be extended by zero on the reRt*ofThis is an estimate oRWu

in Morrey Spaces. We are not using the usual notation of Morrey norm and the reade
is not required to be acquainted on Morrey spaces, since no result in this area is goin
to be employed here. Anyway, we are using the notafol;, in order to emphasize
that this is a weak case @@"-summability. WhemA c ©, K is a minimum ofE and
u=u(K), (WS) follows from (1.5) andu||3, can be easily estimated (see [21]).

Let ACRY, D c A and letK be a closed subset of. The following discussion
applies to the present context under the cheice Q andD = 9Q.

If B is a given ball contained i, of radiusR ande¢ is any given positive humber,
then we say thaB is e-split by K, if there exists a functiom : B — R, which satisfies
(WS) on B\ K, with |lu|5, = 1 and such thaB does not contain any subsBt for
which

1Bl > (3 +¢)|B| (2.8)
and

oscu < e 1RY?, (2.9)

B

whereosc; u = sup; u — inf 3 u. We will refer to any subseB satisfying (2.8) and (2.9)
asregion with ordinary oscillation. In other words, for evesysuch thatju| 3, =1, we
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can find a subset with ordinary oscillatid in a ball B if and only if B is nots-split.
Moreover, condition (WS) allows to show (see the next section)ithistocally Holder
continuous out ofK and so, on every-split ball the trace ofK must be remarkable,
if ¢ is sufficiently small with respect t0|u||3,)~*. Let B be any ball, not necessarily
contained inA, with radiusR. By denoting withp the supremum among the radii of
the e-split balls contained inB N A, then we shall call the ratio, = p/R bisection
factor. It represents the scale transition needed to reacisg@it ball in B; obviously
v, =Vv,(B, K, ¢).

DEFINITION 2.1. —We shall say thak satisfies the Bisection property when for every
¢ > Othere exister(¢) > 0 such that, for every balB centered orK , with radiusr < 1,
the lower estimate, (B, K, ¢) > «a(¢) holds.

Let B be a ball centered of, with radiusR, andn g be a disk ofB. Given¢ € np,
let L(¢) be the set of the segments contained in the cligrdf B perpendicular irt to
g and contained i N B\ K. Givene > 0, we set

ny={¢cenp|IleL@),H()>eR,IND#P}.

DEFINITION 2.2. —We defines-insulated byK the balls such that every diskg
satisfies the condition

HN (g < eHN ().

The geometric picture corresponding to ainsulated ball can be visualized by
thinking to a ballB centered oD = 92 in which almost every segment starting from
D N B meets the sek after a very short length, as shown in Fig. 1.

Also, for a given ballB with radiusR, we define thénsulation factorv; = v; (B, K, ¢)
as the ratio between the supremum among the radii oftiheulatedballs contained in
B andR.

Fig. 1. The setry is given by the projection of the segments of lengRt orthogonal tor g,
which start o2 and do not meek'. Such points 02 are nots-insulated byk .
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DEFINITION 2.3. —We shall say thaik satisfies the Insulation property when for
everye > 0 there existsx(¢) > 0 such that, for every balB centered ok, with radius
R <1, the lower estimate; (B, K, ¢) > «a(¢) holds.

Trivially such a property will never hold unlegé c D, because otherwise we fi
such thatB N D = @, which impliesy; = 0.

As we have remarked above, at a microscale the geometric characterizations ¢
the singular set are quite trivial. The meaning of such two properties consists in &
quantification, for givere > 0, of the scale transition needed to reachsasplit or &-
insulatedball inside a ballBg(x) centered in a point € K. This corresponds to get a
lower bound either om, or v;. Such a bound depends enbut it must be uniform with
respect taBr (x) for everyx € K and for everyrR < 1.

As far as only balls contained if2 are concerned, the bisection property is satisfied
for any minimal K of the functionalE. Indeed, this is just a matter of inner regularity
and it is proved in [21, Theorem 3]. The presence of boundary conditions is inessentia
in this case. We are led again to the former case when we deal with balls, not completel
contained in2, in which there are points of sufficiently inner toS2. This occurs, for
example, when the ball is centered at a point in whicimeetsd 2 with an appreciable
incidence angle. Otherwise, if this is not the case, we expect the insulation property wil
be satisfied by minimal set& when the boundary datui is suitably regular. So, in
conclusion, for any ball, at least one of the factogsandv; should be estimable. This
leads to formulate the followin@isection-Insulationproperty which seems to be the
natural regularity property expectable for the minimakof

DEFINITION 2.4.-We shall say thalk satisfies the Bisection-Insulation property
when for every > 0 there existsx(¢) > 0 such that, for every balB centered onk,
with radius R < 1, the lower estimatenax(v; (B, K, &), v,(B, K, ¢)) > a(¢) holds.

DEFINITION 2.5.—Given a ball B centered orkK, with a radiusR, we say that the
setK is e-concentrated omB, if the mean density & on B is bigger thanl — ¢, namely

HY YK NB)>A—e)by_1RV L

Therefore, given any baB (not necessarily contained #), with radiusR, we denote
by v. = v.(B, K, ¢) the concentration factgrthat is the ratio between the supremum
among the radii of the balls contained#on which K resultse-concentratecand R.

DEFINITION 2.6. —We shall say thaK satisfies the Concentration property when for
everye > 0 there existsx(e) > 0 such that, for every ball centered dn, with radius
R <1, itresultsv.(B, K, ¢) > a(e).

In these properties the threshoRI< 1 is merely conventional, a different choice
leads at most to a different value @fe¢). For this reason, in proving such properties,
one can work with balls with suitably small radius. Therefore, we limit ourself to show
the regularity properties, assumed in the proof of these estimates, are satisfied for bal
B with a suitably small radiusBisectionand Concentrationproperties are related.
More precisely, in [16] it is shown that for every> 0 there exists’ > 0 such that
ve(g, Q) = v, (), thereforeBisectionimplies Concentration
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Moreover, if D is a smooth closed manifold, one can trivially check that the same
relation also holds between andv; on small enough balls, namely on balls with radius
less or equal to a suitable constarit) < 1 which depends on and on the regularity
of D. Then alsolnsulation implies Concentration Combining the two facts we see
that for everys > 0 there existg’ > 0 such that.(e, 2) > sup(v,(¢'), p(e)v;(g')) SO
Concentratiorfollows by Bisection-Insulation

We recall that the concentration property has a meaningful application when we dea
with the Hausdorff measure of the limit with respect to the Hausdorff distance. Indeed,
with the notation introduced in this section, Propositions 10.10 and 10.14 of [18] can be
stated as follows. Lek,,, K be closed subsets &", such thatk,,— K by the Hausdorff
distanced and assume that a Vitali coverigjof K consisting of balls, can be found in
such a way that for every > 0 and for everyB ¢ B, liminf, v.(B, K,,, &) > a(s) > 0.

By [18, Proposition 10.10](K,)..y has a subsequence which satisfies uniformly the
concentration property. Consequently, by [18, Proposition 10.14], we have

HY LK) <liminf HY7Y(K,). (2.10)

We conclude the section by stating some further terminology, useful for situations which
are never going to happen for small balls in the case of a minkmaut will nevertheless
need to be considered in the forthcoming arguments. When &malR”" contains a too

big quantity ofK (with a threshold fixed ag -+ 1 times the measure of the corresponding
sphere, wherey is a suitable constant depending on the regularit@2pive shall call it
overfull, i.e. B is overfull if

HY"YK N B) > (co+ DHNL(BB). (2.11)

Analogously as before, given any bdlof radiusR, we define theverfullness factor
Vo as the ratio between the supremum among the radii of the overfull balls contained ir
B andR.

The chief aim of this paper relies in proving the Bisection-Insulation property which,
as we have just remarked, implies the Concentration property. This allows, in particular
to deduce Theorem 1.1 and to get Theorem 1.2 through semicontinuity technique
exposed in Section 5. The scale transition estimates, which constitute the Bisection
Insulation property, are instead directly provided by the Excision Method, developed
in [21], which will be introduced in Section 4. The differences of construction required
by this context, with respect to the inner case discussed in [21], will be treated in
Sections 7 and 8. The use of the Excision theorem to provide bisected-insulated ball
requires the knowledge of Holder continuity properties @ut of such balls. The proof
of such properties is the aim of the next section.

3. Partial Holder continuity properties

The aim of this section is to show some partial Holder continuity properties in order
to apply the Excision method in Section 4 which generalizes [21, Theorem 4.6]. Given
and K as in the previous sectiom, € H(Q \ K), we are going to settle some local
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partial Holder continuity results for under assumption (WS), by modifying some
results of [21]. Therefore, we shall assume (WS) holds throughout this section with &
given value of|u||3,. In [21], given a ballB C €2, some estimates on a neighborhood

V of K N B, such thatu is Holder continuous orB \ V, are obtained. The essential
difference with the variant which we are going to establish relies in the circumstance that
in our caseB ¢ 2 and we shall check the Hélder continuity OR \ VYU (BNIR) of

a different functionu*, defined a on B\ V and asi on B N 3. Note that« andii may

be different ond2 N K. This means, roughly speaking, that we shall prove the Holder
continuity ofu according withiz. The Holder continuity of: would not be enough for

the application of the abstract approach developed in the last sections. More precisel
we shall prove the following statement.

THEOREM 3.1. — Given a ballB of suitably small radiusk, centered ire2, a closed
subsetk c Q and ¢ sufficiently small, there exist§ c B and a positive constant
c(e, 2), depending or and on€2, such that, for every : B — R which satisfiegWs),
one can find a positive constaryy, depending om, ||ul[3, ||12||%and ong2, such that

u* is Holder continuous with expone%ﬁtand normey on B\ V, (H1)
HYLOV) <cle, QHY YK N B), (H2)
V| < c(e, Q) sup(vy, vi, vo) RHY 1K N B), (H3)

wherev;, vy, v, are computed B, K, ¢).

The remaining part of this section is devoted to the proof of Theorem 3.1. We shall
come back to deal with the main course of the paper in the next section. Analogously
to the previous section, we shall make the constructioi dfy working in a general
context. So, letA be a subset dR” such that (1.3) holds witB = B N A and satisfying,
for some given constant;, the condition

For everyx, y in A there exists a balB c A of radiusr such that
d(x, B),d(y, B) < cgr < czd(x, y) (R)

and such that the convex hulls of the stsU B and{y} U B are contained im.

The constantsy and cx quantify the regularity ofA required in this section.
Specifically, the geometry of the sdtaffects the estimates by involving andcy in
the determination of the constants. Property (R) obviously holds in theAcas N B,
when is sufficiently smooth and the radidsof B is suitably small.

Let K be a closed subset df and letu : A — R be continuous ol \ K.LetD C A
andi : D — R such thati € C%Y2(D). We will assume that =i on D \ K. Let us
define

A

u onbD.

Now we are going to recall or to establish some notation which will be employed in the
following. For any given balB c R", A B will denote the ball with the same center®f

M*:{u onA\ D,
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and the radius multiplied by. MoreoverB’ = (ck + 1) B andB” = (2cg(cgr +2)+ 1) B.
Let us note thai3’ and B” depend orcg and so on the shape af. By [21, (6.13)] it
follows that if ¢ is sufficiently small andB is ¢-split, then the trace ok on B has a
measure greater than or equaldV~1(dB). This is the first requirement about the
smallness ot. From now on, we shall assume that- 0 has been consequently fixed
and it will not be always mentioned in the following notation. Furthermore we shall
assume to have taken< 1//cg + 1.

Let U be the union of the ball8’ corresponding to all the-split balls B contained in
A. By [21, Lemma 6.14] (the argument is reported in the first part of Lemma 3.1 below)
we get that every function which satisfies (WS) o \ K with ||u||5y = 1 is Holder
continuous with a norm which only dependsgnande, on A \ (U U K). Furthermore,
we can easily estimatd/| by a Vitali type argument. Indeed, by [18, Lemma 7.1] we
can take a family of disjoint ballﬂg, with B; e-split with radiusr; such that the balls
5B/ =5(cg + 1)B; coverU. Then, if (WS) holds,

UI<) 15(ck + DBil <ccr™ ) |Bil
i i
<cred rHNH0B)

< CRNCZ}’,‘HN_]'(K N B,)

1

<ere(supr) HNHK). (3.12)

If B isany ball, we can apply locally the above construction by considering onkythe
split balls which are contained iB”, getting a seUz. The same proof as before shows
thatu is Holder continuous oiB N A) \ (Uz U K) and (3.12) leads to the following
estimate.

|Up| < cvp(B")RHN Y (K N B"), (3.13)

where R denotes the radius & andv,(B”) is the bisection factor oB” (under our
choice ofK ande). Note that every point o/ belongs, by construction, to some other
ball having a bisection factor greater or equaldg + 1)~

Let B; be the set of the ball8 centered inA, such thatB” is overfull We put
Vi=Upep, B". If B ¢ B, (3.13) gives

|Ug| < c(co, cg)vp(B")|B|. (3.14)
Of course in the above estimate we can takel. ,
Let BB, be the set of the balls such that(B”) > 20(53_14). If B ¢ B1U B,, then (3.14)
implies
82
|UB|<E|B|- (3.15)

We setV, = g, B”. Note that ifx ¢ V> and B is any ball contained im such that
x € B, B cannot bes-split. Indeed, otherwise, setting, = (2cgx(cg +2) +1)"1B’, By
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must belong td3; sincev,(BY) = v, (B’) > +1 >e?2> ZC .Thenx € B'=B] C Va,
a contradiction. Thereford]/ c V> and, |fB is any ball contalned i, thenUy C V>.
Finally, we callB3 the set of the-insulatedballs and we se¥3 = |z, B- Now we calll
B the set of the ball8” obtained forB € B, U B, U B3 and we take, by Vitali Covering
Lemma (see [18, Lemma 7.14]) a set of disjoint b#ls B such that, setting

V=KU|[]J(BBNA), (3.16)
BeB
we have
(ViUVLUV3)NACV. (3.17)

We shall show tha¥ satisfies the properties required in Theorem 3.1. The following
lemma shows (H1).

LEMMA 3.1. — If u satisfies(WS), thenu* is Holder continuous orA \ V, with
exponent; and normey = cx (e, e, Ililly, lully).

Proof. —Of course, we can normalize and assume thafu||5, = 1. Let x and
ye(A\V)UD.If x andy € A\ V we can use the same proof of Lemma 6.14 in
[21], which we briefly recall, in order to computg,. Let us take a balB as in (R),
sincex € B’ andx ¢ V5, as we have already observetl cannot bes-split. SoB must
contain a region with ordinary oscillatiaB, for which (2.8) and (2.9) hold.

For a givene, we takeir < 1 and consider a sequence of balls given by the sets
{A"& + (1 — A")x}, for & € B. Since, for every natural, x € B, andx ¢ V5, then there
existsB, C By for which (2.8) and (2.9) hold. If we takke close enough to 1, for every
n we get by (2.8)B,_1N B, # @, so we can take, € B,_1 N B,. Thus we shall assume
A = A(e) be fixed as above and we shall regard it as a function. dflote that the
sequence,, converges tor. Let z be a given point of8. Then, by (2.9), (R) and by
the triangular inequality, sinceis not a singular point of, we obtain

lu(x) —u(z)| < e.d(x, y)?,

With ¢, = cf e 1 (A2) = ¢/ %e~1(1— 1Y2(¢)) L. By applying the same argument
to y instead ofx and from the triangular inequality, we get the desired estimate.

If x andy € D, then we just have to use the Holder continuityiof

Finally we consider the casec D andy € A\ V and we take the bal centered inx,
with radiusr = 2d(x, y). Sincey ¢ V,1U V,, thenB ¢ B, U B, and (3.15) holds. Moreover
y ¢ Up becausd/y C V,. Furthermore, since ¢ V3 and soB ¢ B3, we can fix a disk
g such thattN =1(zr§) > eHN~1(7r5). We consider the s&?; of the points; € 7§ such

that H*(C, N Up) > er. Since|Up| < §|B|, we deduce that("~1(P;) < SHN (mp).

By (WS) we have that
/ (/|Vu|) </|Vu|<rN—%.
o B

7p\P1
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So, we can find; € wj; \ P1 such thatfcz |Vu| < e71/r. Since¢ € wg, we can find
I € L(¢) satisfyingH*(I) > er and, since ¢ P1, we deduce that¢ Ug. Therefore, by
takingx’ € /N D andz €1\ Ug, we obtain:

| (x) —u* ()| < Jax) —a @]+ |[u* @) —u @)+ |[u* (@) — u*(y)|

<l sd(x, XYY+ / Vul + 2e,d(x, y)Y2
1

1
2

< (lilly +2e71 + 2c.)d (x, Y2,

which gives the estimate
* ~ -1 12 —1(q9 _ +41/2 -1
cg < ||M||2N(||M||%+28 +2cy e (1 A (8)) ) O

If B € ByU By, the inequalityX"~1(K N B") > ce*?HN~1(d B) trivially holds. If we
also assume thd® is a smooth(N — 1)-dimensional manifold (as in Theorem 3.1), then
the same property will also satisfied by aBy B3 and so by anyB € B.

In order to prove (H2) and (H3) we are going to estimate thelsetet d be the
supremum among the radii & < 5, then the following estimates hold.

V1<) BBl <cd ) HYH3B) < cde *HNH(K) (3.18)
BeB BeB
and
HYL@OV) < cePHVTHK). (3.19)

Theorem 3.1 follows by applying the above construction to the daseQ N B, (x)
andD = 02N B, (x), wherer is small enough for a given smoofh Fore small enough
we consider the sé as defined above. By Lemma 3.1 we can claim that (H1) holds
with a suitablecy, while Egs. (3.18) and (3.19) allow us to get (H2) and (H3) with a
suitablec(e, 2).

4. Boundary excision method and density estimates

The inner estimates of [21] are based on the fact that, under certain circumstance
one can modify a closed s&ton a ballB C 2 in such a way to maké& decrease. More
precisely, given a balB c €2, with suitably small radiu® < 1, centered at a poirit of
the discontinuity sek, the excision method works if is Holder continuous out of a
thin neighborhoodV of K N B, which means that conditions (V1), (V2), (V3) in [21],
which we are going to reformulate, hold with a suitably small value of the congtdnt
this paper we extend the approach to cover the Bagex2.

The new assumptions must be consistent with the former ones,¥hemB = @. If s
is any given positive number, in this section and in the last®@e will stand for B, (x).
We shall setr = HV~(B(R/2) N K). Since we shall allow the baB to be not entirely
contained inf2, the lower bound on the density &f will depend also on the regularity
properties ofo2. We shall require: to be Holder continuous out df ¢ € and to be
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consistent with the boundary datuin So, in order to reformulate (V1) we introduce,
according to the notation in the previous section, the funatiodefined as follows

M*:{u on(B\V)Ng,
i onBNI.

We shall assume that the Sétenjoys the following properties.

u* is Holder continuous with exponeétand normey, (V1)
HYLOV) < 0, (V2)
VI <aRo. (V3)

There existg: > % such thati = u* is Holder continuous

. (V4)
with exponent. and norme,,, onad2N B.

We remark that (V4) is meaningless wheft N B = ¢, this is the reason for it does
not appear in the inner version studied in [21], while (V1) can be restated as in [21]
when a2 N B = . Furthermore, it is worth to notice that the new assumptions (V1)
and (V4) are not merely technical devices employed to deal with the Dirichlet problem.
They represent the key regularity conditions underlying the present approach, as we she
show through suitable counterexamples.

In the last section we shall prove the following Excision Theorem, which can be
regarded as an extension of the inner version proved in [21, Theorem 4.6].

THEOREM 4.1 (Excision). —Letcy, c2, ¢, 1 be given. Then there exisis> 0 such
that, if K is a closed subset @t such that(V1), (V2), (V3) and (V4) hold witha < &,
then the trace ok on B(R) can be modified in order to obtain a new gét satisfying
Ei(K") < E;(K) — 10,

Let now K and B = Bg(x) be given withx € K andR < 1 and let us suppose that
. 1
E(K)=E;(K) <infE + 50- (4.20)

We assume thal is Holder continuous with exponept and norme, on 92 N B; in
particular, sinceR < 1, it results to be Holder continuous with exponénFurthermore,
let us assume that= u(K) satisfies (WS), so we are in a position to apply Theorem 3.1.
Under the additional assumption

HYN"YKNB)<co (4.21)

which states that{"~1(K N B) ando are of the same order of magnitude, (V1), (V2)
and (V3) can be immediately deduced from (H1), (H2) and (H3) of Theorem 3.1, by
takinga = c(g, ) max(vy, v;, vo). (V4) follows by the assumptions made dnWe call

a(¢e) the value of the threshold (multiplied by c(e, 2)~1) established in Theorem 4.1
corresponding to the constantg(e), c2(¢), ¢, andu founded by Theorem 3.1, which
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in turn gives them as function ef If max(vy, v;, vo) < a(¢) and therefore (V3) holds
with o < a(e), then by the excision theorem we get the existence of &Ssuch that
E(K") < E(K) — %o, which, by (4.20), leads to a contradiction, which shows that

max(vy, v;, vg) = a(e). (4.22)

This is the same to claim that there exists a Bk B; U B3, U B3 whose diametqr is
greater or equal tox (¢) R. If such a ballB € B1, then we can modifyf by addingd B”
to K and puttingy = const inside B”; by (2.11) this modification gives rise to a gain

E(K)— E(K') > (co+DH"2@B") — H¥"X(9B") — | B"|
>HY@B") > c(a(e)R)" (4.23)

If we also assume that
. N-1
E(K) <infE + C(4_23)(Ol(8)R) , (4.24)

we get an evident contradiction. Therefore, we deduce Bhatust belong td3, U B3
and this is equivalent to say that

max(vp, v;) = a(g). (4.25)

Since, ifK is a minimum, then (4.20), (4.24) are trivially satisfied, while condition (WS)
follows from (1.5), we can claim the following.

THEOREM 4.2 (Bisection-Insulation property). et be an open smooth bounded
subset ofRY. If & € CO*(3Q) with u > % and K is a minimum forE;, then the
Bisection-Insulation property holds.

By virtue of the results in Section 2, the following corollary is then trivially implied.

CoOROLLARY 4.3 (Uniform Concentration property). et Q@ be an open smooth
bounded subset &". If i € CO*(92) with u > % and K is a minimum forEj;, then
the Uniform Concentration property holds.

It is worth to notice that, since the concentration property is clearly stronger than
the density property, Theorem 1.1 is in turn a corollary of the last one. On the other
hand, as far as Theorem 1.1 is concerned, the extra assumption (4.21) is not a restrictic
since it can be forced by choosing a suitable scale as in [21, Section 7]. Finally, whenc
Theorem 1.1 is proved, (4.21) follows as a trivial consequence in view of (1.6) so the
previous results are established in the case of a minknalithout any restriction.

5. Semicontinuity properties and existence of a minimum

In [17] some lower semicontinuity properties @&f with respect to the Hausdorff
distance, have been shown. More precisely, a meaningful decomposition of the

discontinuity set was there introduced, nam&ly= K U K*, whereK = K \ K* and
K*, identified as thenoisepart of K, is defined as the set of points whefehas mean



F.A.LOPS ET AL./Ann. |. H. Poincaré — AN 18 (2001) 639-673 653

density less than a fixed small thresh@d, on some scale less or equal to one. By
using Theorem 4.1, instead of the inner version of the excision theorem, and by taking
advantage of the results stated in [17, Section 8], which allow to force (WS), we can
repeat the same arguments of [17] and show thai i,y iS @ minimizing sequence

for E, thenHN‘l(K;) — 0. Note that the closure 0¥1 U K stated in [17, Lemma 3.3]

is now replaced by the same property/fof U K U H, whereH is as in Theorem 1.2.
The assumption thal? is a closed negligible set makes the two facts applicable in the
same way (see [17, Remark 8.1]).

If K is the Hausdorff limit of(K,),cy, We can find a Vitali covering3 of K\H,
consisting of balls on whiclk has the smoothness required in the previous section,
namelyi € C%* with 1 > % By neglecting subsets & with arbitrarily small measure,
we can also assume thais the same for every ball i and||i||,, is uniformly bounded.
Then an application of the results in the previous section, instead of their inner versior
considered in [17], allow us to find for eveey> 0 a thresholdx(¢) such that for every
B € B we havev.(B, K,, €) > a(e) definitively. We can apply the results of Section 2,
Eg. (2.10) and give the following theorem.

THEOREM 5.1. —Let (K,),en be a minimizing sequence fdf. Then for alln the
decompositiork,, = K,, U K" holds withHN‘l(K,;") — 0 and, if K is the limit by the
Hausdorff distance of a subsequerig then

HN LK) <liminf KV YK, ).

Thus, as a simple corollary, we deduce the existence of a closed minknbynthe
compactness of the set of the closed subsef® ahd by the semicontinuity of with
respect to the weak convergence (see [17, Section 2] and [18, Lemma 13.6]).

Finally we can also get a boundary version of the Density Theorem for nonminimal
setsK [17, Section 5], which does not require the ball to be contained.in

THEOREM 5.2. — LetQ2 be an open smooth bounded subsé¥fand letii : 92 — R
be Holder continuous with exponemt> % and normc,,. For any given positive constant
a < 1, there exist two positive constargsand ¢* (which depend or, on the dimension
N, onpu, onc, and on the regularity of2) such that, for everk closed subset a®, for
everyR < 1 and for everyx € K, either one of the two following conditions is always
satisfied

(i) HN"H(K N B(x, R)) = BRV,

(i) HN YK N B(x,aR)) <c*(E;(K) —my),
wherem; = inf E;(K).

6. Counterexamples and optimality of the conditions

The counterexamples in this section will be given for the simple functidtal K) =
Jorx IVul?, for which the proofs of the existence theorems become easier. More
precisely, the existence theory and the estimates developed in the paper can
referred more in general to quasiminimal sets, see [4] for the definition, while the
counterexamples in this section will be given even under a full minimality assumption.



654 F.A.LOPS ET AL./ Ann. I. H. Poincaré — AN 18 (2001) 639-673

Therefore, we show that, even in this simpler case, the Holder continuity assumption:
oni cannot be weakened. L& be a smooth domain containedli?' .

LEMMA 6.1. — There existg > 0 such that, if(x, K) is a minimum forE and the
trace ofu on <2 is Holder continuous with exponeétand norm bigger tharm, then
K #40.

Proof. —If K =@ and (u, K) is a minimum, by Morrey Holder continuity theorem,
see [21, Theorem 6.1}, is Holder continuous with exponeétand norm smaller than
cllullsy, which is in turn estimated by (1.4).0

Now we state a weaker version of Counterexample 1.1, which shows that a bound ol
i in the C%Y/2 norm is not enough to determine a constant 0 such that (1.7) holds.

COUNTEREXAMPLE 6.1. — There exists a constaiM > 0 such that, for every > 0
there exists: satisfying||ﬁ||% < M and, such that, ifu, K) is a minimum of£;;, then we
can find a point oK and a radiusR < 1 for which (1.7) does not hold.

Proof. —Let x € 32. We fix a functionv € C§° with ||v||% > ¢, spherically symmetric
aroundx. For all . > 0, we consider the scaled functiop, such thaﬂ|vk||% is constant
with respect ta., i.e. vy (x) = AY2v (A 1x).

For everyr we consider the minimum problen®() with boundary valuéi, = vy, .
If K, is a solution of ¢,), then we have

HYHK) < min E(u, K)< E(0,S;,) <c AV, (6.26)

ulago\k =

where S, = {x € 9Q | i, (x) # 0}. By Lemma 6.1 we have th&; # @. Let x € K,
andp > 0. If the density estimate (1.7), for some positgeand.x, holds andB,, is a
ball centered inc, we have thattV—1(K;) > Bp™~1, which combined with (6.26) gives
o0 < cA. So, whenh is suitably small, (1.7) cannot hold for evepy< 1. Note that, as
A — 0 we have that, ||, for all i > % goes to infinity. O

Remark6.1. — Since for alih. > 0 we haveii; € C*, there exists a density constant
B, > 0. Forallu > % l#, 1, is not bounded and we have thgt — 0. However, for
everyx ¢ S,, a constantg > 0 such that (1.7) holds fop < d(x, S;) can be found
thanks to the local character of (V4). Then the above arguments still imglyA. By
the arbitrariness of € K, we deduce thak; is contained in &A)-neighborhood oF; .

In the previous example we have kqpﬁtn% bounded, but we have fixed it large
enough in order to dedudg, # ¢ as a consequence of Lemma 6.1. One can still wonder
if a small enough bound oﬂuﬁku% could replace (V4). To answer (negatively) such
a question, we shall now establish a more technical variant of the above constructiol
which will allow us to takel|i; || as small as we want. In order to avoid useless details,
we shall now work in two dimensions and we takein such a way that its boundary
contains a segment.

LEMMA 6.2. — There exists a Holder continuous functi@nd 2 — R, with exponent
%, which is not the trace of any function #*(<2). The measure of the support of such a
function can be taken arbitrarily small.
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We note that for such a function, the Hélder norm of expo@nan be also taken
arbitrarily small, by multiplying it for a small constant.

Proof. —~We shall take a segmerf c 92 on which we shall define a Holder
continuous functionf,, with exponent% such that, for every continuous extension
on a neighborhoodV of S, which isC* out of the segment, it results

L/Wm2:+w. (6.27)
w

Such a function will be taken to be zero at the endpoints @nd so, extended by
zero on the rest o2, will give the desired functior. The segmen§ can be taken of
arbitrarily small length and it becom§g, 2], under a suitable frame. So the function will
be defined on0, 1] with f,,(0) = 0 and extended by reflection ¢8, 2], i.e. we shall
take foo (1) = foo(2 — 1) for ¢t € [1, 2]. This function will be obtained as the uniform
limit of the sequence of mappings we are going to define. For every positive integer
n let S, denote the set of the closed subintervals obtained by divigng] in 4"
equal parts. Letfy be the identity function defined dif, 1], then||fo||% =1. Let f1
be the function which is linear on each intervalSp and takes the valueg (0) = 0,
i3 =3, 13 =1, f1(®) =} and f1(1) = 1. Next we pass to a functioy} obtained
by replacing the linear pieces gi on the intervals inS;, with scaled copies of; in
such a way to keep the previous values in the points, 6, 2 and 1. So, or0, ] we
have f>(x) = 3 f1(4x), on[3, 31 fo(x) = 5+ 3 fu(4(x — 7)) and so on.

Then we iterate the construction by substituting the linear piecg¢s ar the intervals
in S, with a suitable scaled copy gf and so on. In such a way we get a sequence of
functions( f,,).en With the following properties:

(a) Foreveryn e N: |f/|=2" a.e.

(b) Foreveryn e N: || f, — futallLe = 2—1+1

(c) Foreveryn € N: on everyl € S,, f, is linear and has an oscillation equal tg'2

(d) If n >m andI € S,,, thenf,(I) = f,,(I).

(e) If I €S,, then|f,_,| =2""! on the first half off.

Now, we claim that the sequend¢,),cy is bounded inC%Y?. Indeed, givenx, y €
[0, 1], there exists: such that 14! < d(x, y) < 1/4". Sox andy belong at most to
two contiguous subintervals ifi;. So by (c), ifn = ii:

1 /1
1200 = i < 551 = || =z S 4V ). (6.28)

2n—1
The same estimate also holds iok 7 by (d). If n < n, by (a) we have

Ifn(x)_fn(y)| < |fn(x)_fn(y)|
Vdxy) T dx,y)

So for everyn € N: ||fn||% < 4. By (b) (fi)aen is @ Cauchy sequence in the uniform
norm. Therefor€ f,),n cOnverges to a functiom,, in the uniform metric. The function

, 1
VA y) <suplfiVAGY) < 5y <1
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f~ is Holder continuous too, since it is the limit of functions which are bounded
in c%1/2,

For a fixedn e N let I € S, and letx andy be two points on the first half of, s.t.
lx —y| = 4,7—£1. The increment off,.; can be easily evaluated by (e) and this is clearly
left invariant if we increase the exponent. So we have in the limit

1
| foo (X) = foe(M)| = TR (6.29)

Now, let u be any continuous extension ¢f, such that it isC* in a neighborhood of
S. We consider an equilateral triangle whose sides have Ieﬂbithand one of them,
denoted by, is contained in the first half of a fixete S,. Let P be the union of the
remaining two sides of the triangle, then, by (6.29), the incrementasf L is 2—1+1 S0

! < < 2
s < [ 1vul< [ [19ul
P P

1
; </|W|2.
P

By allowing all the position of. on the first half off , we can take the triangle contained

in a rectangleR;, which has a side equal tb and the other one of Iengt@;{%. By
integrating the previous inequality we have

1 1J/3 3
2
2 [ Vil i3 = (6.30)
Rp

1/2 1/2

1
1/2 2
P <</|W|> Va.
P

therefore

Let now R be a rectangle with a side equal§@nd the other one of leng .4511. Since
R contains 4 rectanglesR, for every! € S,, we deduce from (6.30),

3
25 Y "
R/|Vu| >3

This shows thatVu|? cannot be integrable because of the absolute continuity of the
Lebesgue integral and because the Lebesgue measRrienils to zero as — co. O

Proof of Counterexample 1.1.l-et & be the function introduced in the proof of the
above lemma as an extension of the functfgnand, letiz,, be the analogous extension
of the functionsf,,. For everyn € N, let u,, be the solution of the Dirichlet problem

—Au,=0 ing,
u, =i, onoaq.

We can observe that,),cy is not bounded inH1(Q); if it were bounded it would
contain a weakly converging subsequence to a funatienH(2). Such a function
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would be an extention of.,, which contradicts Lemma 6.2. For everylet E, = E;
for u = u,, and K, be a closed minimum of the functional,; it exists, becausg, is a
Lipschitz mapping. We claim thd,, # ¢, otherwise:

while
E,(K,) =minE, < E,(S) = H"71(9).
So K, # ¢ definitively and

HNHK,) < Ef(Ky) < Eq(S) =HVHS). (6.31)

Finally, for a fixed radiuso > 0 and for everyg > 0 the density estimate cannot hold
sinceS can be taken of arbitrarily small measurex

To the aim of proving Counterexample 1.2, we shall now work in arbitrary dimension
N and, for the sake of simplicity, we shall assume th& has a flat partS. Let
¢:R — [0, 1] a C* function, such that for every < 0 ¢(x) = 0 and for everyx > 1
¢(x) = 1. We takep such that1|<p||% is big enough to apply Lemma 6.1. Lebe a point
in the inner part of§ on Q2. Letr > ¢ > 0 be such thaB,, (x) N a2 is contained inS.

We consider the function : 9Q — [0, 1] defined as (x) = /ep (e 2(r +& —d(x, X))).
We note tha1|w||% does not depend anandr.

LEMMA 6.3. —Let

¢y, =INfE_,

Co < c\/ErN_l, (6.32)
r

wherec depends on the dimension

then

Proof. -We shall estimate the functional in an admissible gairH). We take H
equal to the trace od<2 of the annulusB, ;. z(x) \ B.(x), SO

HY Y H) =crV 2 /fer. (6.33)

Then we takev: Q2 — R such thatv(x) = /ep((re) Y2(r + /er — d(x, %))) and we
note that:

/ |Vv|2 <crVN Y er
Q

which, with (6.33), implies (6.32). O

Let (e,)nen @nd(r,),en be two decreasing real positive sequences such that
0] snrn_l — 0;

e 1
(i) ruy1+ /Enrilnr1 < 3a-
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For every naturah we shall takes,r 1 small enough. For every € N, we denote
by w,:92 — [0, 1] the function correspondlng t® for e = ¢, andr =r,. Then for
everyn € N we consider the minimum problem with boundary datim= 3>""_,o;,
we denote byE, the functionalE;, and we sein, =infx E,(K). For everyn e N we
denote(v,, H,) the pair corresponding t@, H) of the proof of Lemma 6.32, far = ¢,
andr =r,. Leti e N. We denote byB; the ball centered at with radiusr; 4 ,/¢;7;.

We shall obtain the function in Counterexample 1.2 as the limit 8. To the aim
of proving the desired properties, we need to establish several lemmas. We begin b
showing some estimates which imply that the minimum levetonverge.

LEMMA 6.4. — Let K be a closed subset 6f such that

EI(K) - NbNrH_l s (634)

Eiy1(K U Hiy) < Ef(K) + ¢ r’*i PNk (6.35)
i+

Proof. —Letu = u(K, u;). We note that

then

/ Vul? < 2HV13B,,.,). (6.36)
l+l

Indeed if (6.36) does not hold, we can consider the admissible(gaiK’) such that
K'=KU(dB,,,NQ), u =const onB,,, N Q andu’ =u on Q\ B,,,. We can
observe that, since, asr; * — 0, HV"1(3B; N Q) is equal toybyr~, modulo an
infinitesimum of higher order, so

HN OB, N Q) < NbyrN L. (6.37)

Therefore, by (6.34) and (6.37) we have:

E;' ,K') < E{(K)+ NbyrN ' — /|Vu|2<E(K) Nbyrlt <my,

Biy1

which leads to a contradiction and proves (6.36). By (6.36), with similar estimates to
those used in the proof of Lemma 6.32, sitige- v; 1, K U H; ;1) is an admissible pair
for E; 1, we have:

Ei1(KUH; 1) <Ei1(u+vip1, KUH; )

E<K>+/|Vv,+1| FHY N (H ) 42 /|Vu|2 /|Vvl~+1|2
Bit1 Q
SE(K) + e [T e SN
riy1 ¥iy1
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Now we shall give some simple variants of Lemma 6.4.iLet= Y 2, w;. We denote
by E. the functionalE; , andm., = infx Eo(K). Let HS, =52, H; U {x}.

LEMMA 6.5.—If K is a closed subset ¢ which satisfie§6.34) then

Eoo(K U HFY) < E(K) + e 22N (6.38)
Fit1

Proof. —Let u = u(K, ;). We note that the supporid; of Vv; are disjoint, so by

Pitagora’s theorem
o o < &;
ZZ/|VU]'|2<CZ r—]_rjl-v_l:q/r—friN_l. (6.39)
j=i g j=i V1 !

/oo
Q 'J=

Finally, by the same computation as in Lemma 6.4 and by (6.39), we have

00 le
EOO(KUHéng)SEOO<M+ Z Uj,KUH£1><Ei(M=K)+C A llyl—ll' U
Tiv1

j=i+l

LEMMA 6.6. — If K is a closed subset @t such that

Eit1(K) —mi1 < NbN’”lH, (6.40)
then
&
E{(K U Hyp) < Epa(K) +cf 2Nt (6.41)
riq1

Proof. —The proof of this lemma is analogous to the proof of Lemma 6.4, it is only
sufficient to estimate the functiona} in the admissible paifu — v; 11, K U H; 1), where
u=u(K,tiz1). O

In the same way of Lemma 6.5 we have, by lemma 6.6, the following lemma:
LEMMA 6.7.—If K is a closed subset & which satisfies

Eno(K) — oy < Nbyr3h, (6.42)
then
E;(K UHTY) < Ey(K) + o 222N (6.43)
Fit1

By Lemmas 6.4 and 6.6 we deduce:

4 G+l N1
miy1—m;| <cy Fiiq - (6.44)
rit1

COROLLARY 6.1. —
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By Lemmas 6.5 and 6.7:

Eivl N-1
m; —meo| <y riia. (6.45)
Fit1

For everyi € N we consider the following condition

Eit1 -1
Ei(K)—m; < r’ 1r{il : (n:)
i+

LEMMA 6.8. —If K satisfies(n;), thenK U H; verifies(n;_).

COROLLARY 6.2. —

Proof. -By Lemma 6.6 and Corollary 6.1, we have

E; E; E;
Ei1(KUH) <E(K) +cf =rf 7 <mi + el =rY P <mig + e =L
ri ri ri

By taking all the termsg; /r; small enough we dedude;_1). O

In the following we shall apply Theorem 5.2, since we shall make use of the density
results for nonminimal sets in order to estimate inductively the densify oh By, if
K satisfieq(n;).

LEMMA 6.9. —For everyi e N, if K satisfies(n;), we have

HN=YK N By) < e SN (6.46)
2 Tig1

Proof. —If i > 0, we have from Lemma 6.8 thaK U H;) verifies @;_1). So, by
induction we can assume the thesisifer 1. Then, by Lemma 6.8, we have:

HY K N B,) SHN (K UH) O Ba) < e rl < panm 2,
T

o
1

whereg is the density constant of Theorem 5.2; K= 0, the same conclusion follows
from Lemma 6.3 which implies

&
HY"NK N B,)) <HYHK) < Eo(K) < mo+ v/ 2

ro
€0 N— €0 N— €0 N_
:cw0+15/—rév lgc“—ré\’ 1+15/—rév 1
ro ro ro
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This implies, by Theorem 5.2 and,{,

& _
'HN_l(KﬂB,,.)<c(E,-(K)—m,~) <cS rﬁrﬁll' O
\ ri+

The next lemma is a simple consequence of Lemma 6.7 and Corollary 6.2.

LEMMA 6.10. —Let K be a minimum of,, then for every € N the setk U ngl
satisfies(n;).

The following lemma allows us to take= i, in Counterexample 1.2.
LEMMA 6.11. —The functioni,, is Holder continuous with exponeét
Proof. —Let x, y € Q2 be given. Leti(x) = sup{i € N | x € B;} and, analogously,
i(y) =sudi e N|ye B;}. If i(x) =i(y) we have two cases:
(1) i(x) =i(y) =k, then
|l (X) — lloo ()] = |k (x) — i (¥)] < lelly vVd(x, y);
(2) i(x) =i(y) =00, thenx = y =X SOl oo (X) = lioo(y).

If i(x) #i(y), since we may always assunke=i(x) < i(y), then we havex e
By \ Biy1 andy € Byyq. Now, if d(x, y) < 3riq, then,

[0 () — oo (¥)| = [@k+1(%) — @2 ] < Nlelly Vd(x, y);

otherwise, for = k or h = k + 1 we haved(x, y) > 3r;, and then by (ii),

00 1 —-1/2
) =c. Od

moo(x) - ﬁoo(y)l
%d(x,y) <§\/§<§rh

Proof of Counterexample 1.2.l-et K be a closed minimum of,,. For everyi,
a local application of Lemma 6.1, made possible by our choice,06hows that
B, (X) NK # ¥, sox € K = K. For everyp > 0, we takei € N such that# < p < 4.
Then by Lemma 6.9 and by Lemma 6.10 we find

WY B, NK) M By @O KVHLY) e
pN-1 B (riy1/2)N1 h ity

By (i) we have that the density & in x is zero. O

In the last counterexample we are going to show that the conolcitien% is also
necessary for Theorem 1.2. We shall denotecbyhe same constant appearing in
Lemma6.1.

Proof of Counterexample 1.3.l-et iig: B — [0, 2c¢*], with B = B1(0), be aCg°(B)
function, such thafig(0) = 2c¢*. Let (x,),en be a dense sequencedft® and let(),),en
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be a decreasing sequence such that 1 and for every > 0 ;1 = wherec;,
is a suitable constant.
For everyk € N we definedi; (x) = >°°, ii;, (x), whered;, (x) = AY24y (27 1(x —

x,) + x,). Note that for allz, there existy, € 92 such thati(x,, y,) = A, and

|ﬁkn (xn) - ’:\l)u,, (yn)| =2c* V d(xnv yn) (647)

Let nowx, y € 9Q2. For everym € N such thati(x, y) < A, we have:

Ai
o.(i+1)2’

m—1 m—1

S i, ) — i, ()| < S sup| Vi, ld(x, y)

i=0 i=0

m—1
<> sup|Viiol (4) Y2/ h Vd(x, )
=0

< sup|Viig| (m %) NZICR))

1
< —=sup|Viig|v/d(x, y), (6.48)
NVADS

and for everym € N such thatd(x, y) > A,

s o0
D iy () =i, (M| < ) osciy,

i=m+1 i=m+1
> VA > Yt
< \; 0SCiig < 0SCiig =\/d(x,y)
i=m+1 iZmi1 Y m
A ~
< 0scCiig\/d(x, y). 6.49
T -1 ovd(x,y) (6.49)

By summing (6.48) and (6.49) we have that for every € 92 and for everyr, m € N,
n < m such thatd(x, y) = A,

o ,
o = )0 ~ Gy~ ) )] < (PP + “j_zl’iCZ°)\/d(x,y). (6.50)

We choose* such that

0SCilg

1 J/
(— sup|Vig| + < fi ) <.
JCa Je —1

We claim that for every € N 7, is Holder continuous, as one easily sees from (6.48)
and (6.49).
Moreover, by (6.47) and (6.50), for evetyk € N, k <n we have
‘ﬁk(xn) - ﬁk(yn)‘ P |’2)L,, (xn) - ﬁkn (yn)‘ - |(’2k - ﬁkn)(xn) - (ﬁk - ﬁx,,)()’n)‘
2 ZC* \/d(xna yn) - C* \/d(xna yn)

=c"d(x,, yn). (6.51)
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For everyk € N, we consider irf2 the minimum problem with boundary datuiyp. If K
is a closed minimum of, by applying locally Lemma 6.1, singg satisfies (6.51), we
have that for every e N, n > k:
K N B, (x,) # 0.
Thus, since€x,),cx IS dense iMm, we have thab2 ¢ K. On the other side

0o 2
>,
n=k

inf(Eq,) < Eq, () < [l =

H1
2

o0 2 o0
A~ A~ N-1
< (znuxn ||H1> _ nuou§,1<zxn z ) | 6.52)
n=k n=k

Consequently, by (6.52), fdr large, infE;,) is smaller tharttV~1(3<2), a contradic-
tion. O

7. Holder continuity properties of solutionsto (EL)

To prove Theorem 4.1, we need some preliminary results about the Holder continuity
of the solutions to the differential equation in (EL), dh with Holder continuous
boundary data. We introduce the notati§h= 922 N B and S’ = 9B N Q (thusdB =
S'U S, di(x) =d(x, S, d.(x) =d(x, S°) andd = min(d,, d;).

We make the followingregularity assumptioron 9<2. For everyx € 42, we have
Q C C;, where, roughly speaking;; is a cone with vertext and amplituder + 25.

More precisely, this means thatfter settingx = 0 and under a suitable choice of the
first axis, for every € €, it results

1)
x12—§|x|. (RS)

The constané > 0 will be assumed sufficiently small dependingonWe remark that,
in the case? is convex the above regularity property is trivially satisfied for eviery

Letv be a real function defined aB, such that

(i) v is Holder continuous with exponept > % on S¢ and norne,,,

(i) v is Holder continuous with exponeéton 3B and normey,,

(i) Vx € B: |Av(x)| < R732.

The aim of this section consists in proving the following estimate concerning a
function v satisfying (i), (ii) and (iii).

THEOREM 7.1. — If (R;) holds withs < ~=% then, for evens(N — 1) < g < 1,
(Vu)| < e(di(x) ™2+ d, ()"t 4+ d; (x)PY2d, (x)7P). (7.53)

For the proof of the theorem, we shall take advantage of the two following lemmas
which estimate the oscillation efnear a point of the boundary.
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LEMMA 7.1.—Lety € 3B, then

Vs >0: o0sc v< cst/?. (7.54)
BrNB(y,s)

Proof. —Let y € dB. We can assume, without any restriction= 0 andv(0) = 0.
Moreover, we can take a coordinate system such (Rg} holds. We are going to
introduce a functionw, defined onB, such that

(@ |v|]<w ondB, (b)) Aw<—|Av| onB, (7.55)

and so
—A(w —|v|) = 0.

Then, by the maximum principle we can say that- [v| > 0 on the whole of3. Thus,
the oscillation ofv on B(s) will be controlled by the oscillation ofy on B(s), then

_0sC v<2 sup w. (7.56)
BRNB(y,s) BrNB(y,s)

We shall show that a functiow as above is given, for a suitable value of the constant
co = 0, by setting

w(x) = cp (|x]Y2 4 Go(xq + 8|x)Y?).

Such an equality, combined with (7.56), will produce the thesis. In order to conclude the
proof, we just have to show that satisfies (7.55). Condition (7.55(a)) is easily verified
sincev € C%Y2(3 B), with normey, x1 + 8|x| > 0 andéo > 0.

For (7.55(b)) we need to estimatav. Since we shall need similar computations also
in the next lemma, we shall work more in general with the function

wo(x) = ¢ (|x|" 4 Co(x1 +8|x)7),

with T <1 —8(N — 1), which will give the required information for = % By an easy
computation,

cTAwo(x) =1t(r + N — 2)|x|*?

+ Cot(x1 + 8|x)T2 [(r -1 <1+ z(slx—ll +52> +8(N — 1)<|x—1| +3)}
X X
Now, since(: +6) < (1+ 257 +82), (1 +8IxD)T2 > (1+8) 2 xT 2, 5 < 5, e,
(t—14+8(N —1)) <0, and 2; < §|x|, we get

Awo(x) KET(N +7—2+G0(L+8)"2(t — 14+ 8(N — 1)) |x|" 2 (7.57)
Therefore, by taking in (7.57)

(2—N—1)—4(t) !

S At 2 —1rsN—1) > >

Co
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we obtain
Awo < —4Ix|" 2 < —R"2,
since|x| < 2R. For¢ = cy andt = % we estimateAw and so we obtain (7.55(b)).O

In the case of the points of the exterior boundsifyve can also produce the following
estimate.

LEMMA 7.2.—Lety € S¢, thenVs >0

_1
~osc v<c(eus” +cen (d,-(y))ﬁ 2517P), (7.58)
BRrNB(y,s)

wherec = c(8, u, ).

Proof. —The proof involves the same arguments employed to prove the previous
lemma, so, after settingi = d;(y), we perform the same change of variables as before in
order to have (R for everyx € B. The only variant relies on the choice of the function
w(x) which, in the present case, is given by the sumt+ w,, where

w1(x) = ¢, (|x]" + ¢1(x1 + 81xD™),

wa(x) = cx (d)P 2 (Ix[VF 4 Ea(xa 4 81x)F7F).
Now, w, andw, are positive functions, moreovar| < w1 on S¢, from (i) and|v| < w»
on S’, from (ii). So, by combining the last two inequalities, we get (7.55(a)). We remark
that eitherw; andw, are particular cases afy, obtained forr = u andt =1— 8. Thus,
by taking

2—N-—71
= >0,
(14+8)™2(t —14+8(N — 1))

for T = u, we obtainAw; < 0, while by takingc, as we have takeny in the previous
proof, we get, for =1— 8

€1

Awp < —4(d)P 2 |x|"2 < —R73,
since bothi; and|x| are less or equal to 2By combining the last two inequalities with
(i), (7.55b) is proved. O

Proof of Theorem 7.1. ket ¢ be a spherically symmetric mollifier with a support
contained in the unitary ball. We consider the rescaled functignsormalized inL?,
defined as the functions which sendn A=Y ¢ (1 1x), for A > 0.

Firstly we recall that by a standard calculationyifis any symmetric mollifier, then

V=v%xY — Avkny, (7.59)

where, by introducing the real functiap such that, for everyt € RV ¥ (|x]) = ¥ (x),
we have set

71 1 1 Voo
”‘”(x)_l/l NbN(N—2)<|x|N—2 B pN—Z)W) 8
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We can estimat&n,, as follows,

|Vny (x)| =

T i} 1
S — do| < ———. 7.60
/ Ny -1V P 0| S i (7.60)

By differentiating (7.59) we have
Vv=v*Vyy — Av * Vn,. (7.61)

Letx € By be given. We take = d(x), then fory = ¢, , since supg; C B, (0), from
(7.60) we have|Vn,, ||+ < A and by (iii) we get

|Av % Vi, (x)| < |Vag, [ 1llAv]ie < CR¥2d < CRY2 < cd; Y2, (7.62)

In order to estimate the first term in (7.61) we distinguish two cases:
(@) If 2d,(x) < d;(x) we haver = d,.(x) and we can fixy € S¢ such thatd(x, y) =
d,(x) = A. By the triangular inequalit)%d,- (x) <d;(y). By Lemma 7.2 we have
the estimate

1
v Ve (x)]| < §||V<PA||L1 _0sC v
BrNB (y)
1 _1
<A IVe (@) + cn(d, ) 20

< el e (di ()P 20P).
Sincer =d, (x), we get
v Ve (0)] < ey (de(x))“_1 +cu (di (x))ﬁ_% (de(x))_ﬁ). (7.63)

(b) If 2d.(x) > d;(x) we haver > %di(x) and fixy € §' such thatd(x, y) =d;(x) <
2). Thus, in the same way as the previous case, by Lemma 7.1, we get

1
v Vo, ()] <= Veslls osC v
2 BrNBsz;, (y)

~1/2

1
< cérﬂwmm(sx)”z < ey (di(x)) (7.64)

By combining (7.62), (7.63) and (7.64), we can deduce (7.53) from (7.61).

A simpler variant of Theorem 7.1, involving only Lemma 7.1, allows to show that

V()| < cey (d(x) 2, (7.65)

from which, in the case of a regular boundary, we dedueeC®/ 2(}EA?_R) with a constant
of the same order afy.
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We shall apply the above estimates to cases in which the conditighl holds.
Therefore (iii) will be satisfied whenevgr\v(x)| < 1 and this is the case for the
solutions to (EL). Moreover, wher < 1 it happens that; (x) < 2, so, by increasing
the value of the constant in (7.53), we can put it in the homogeneous form

Vol < o(d; 2 +di24d 1+ diP~2d,F)
which, by taking8 =1— 1 > §(N — 1), becomes

Vol <Y did, (7.66)

wherer takes the valueg andu — 3. Then

Vo2 <ed dird, (7.67)
wheret takes the values 14 and 2u— 1.

8. Proof of the excision theorem

In this section we shall prove Theorem 4.1, so we are in the situation described in the
beginning of Section 4; we shall take= 0. Let us begin with some comments about
conditions (V1-V4) listed therein. In [21] it is shown that conditions (V2) and (V3) are
equivalent to ask the existence of a finite decompositioli afonsisting in a family of
piecewise regular open setg;) ; enjoying the properties:

> HY N OV) < a0, (V2)

j
supdiamV;) < aR. (V3)
j

Moreover, the arguments in [21] allow us to fix a finite coverfhgf V, made by balls
B;, with radiusr; < «R. In [21, Section 2] it is shown that, thanks to the properties of
V', we can takeB; with small radius and such that the sum of i — 1)-dimensional
measures of their boundaries is of the order of the measwr® of

We recall the notation used in [21] and we introduce some new one due to the possibl
presence of< in the ball. LetK be a given closed subset ©f, u = u(K). Let V be
a neighborhood of the sé(R) N K and (V;); a decomposition of’ such that (V1),
(V2), (V3) and (V4) hold. In the following computations we shall not assume Khist
a minimum, nevertheless we shall ask that (1.4) holds with2 for every subseft of
Q, such that

(KN B(R/2)) C AC B(R). (8.68)

Thus the results of this section will depend by the last hypothesis, therefore in order tc
employ them in the proof of Theorem 4.1, we shall provide to force such a condition.
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A simple consequence of (1.4) (note that (8.68) holdsAfes V), (V2), andR < 1is

/|Vu|2 <HNLOV) + VI < (e + a)o. (8.69)
Vv

By employing Hdélder Inequality, (V3) and (8.69) we deduce:

ﬁ/ww <Va(ca+ a)Ro. (8.70)
%

Let us denote byi a Holder continuous extension [14, 2.10.44], with nariand with
exponent%, of u* to B(R) and by a truncation of: by two constants such that= u*,
where the last one is defined, and

oscit < cyvV2R. (8.71)

B(R)
Note that (see [15]} € HX(B(R) \ K) and that
VuVii < |Vul?. (8.72)

For every positives < R we denote bys (s) and S¢(s) the termsS’ and S¢ introduced
in Section 7 forB = B(s). Moreover we set

V(s) =V NB(s)
and we also set, for every exponent
Vi(s) = V; N B(s).
Let v, be the solution of the Dirichlet problem

{—Avs +u, =g inB), (8.73)
vy =1 onadB(s).

We proved in Section 7 that, is Hélder continuous with exponeétand normccy (see
(7.65) and the following considerations) and that (7.66) and (7.67) hold £ov,.

We introduce the notatiod; (x) = d(x, S'(s)), d.(x) = d(x, S°(s)). Since the
center of the ballB(s) is x = 0, thend, ;(x) > s — |x]|, If [x| <s. We putdg(x) =
d(x,9Q2) <d,(x) so, under mild regularity assumptions 8, for every O< 7 < 1
with ¢; = ¢(z, ), we obtain

[datde< Y [edator e
/ .

i B
N+t-1 N-1
gzcrri *r gcr(supri)rzri
i ! i

<c(@xR)o. (8.74)
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Now, for all s € [R/2, R] we define an “excised seK; and an “excised functioni,.
In this perspective we consider the sets

To(s) =S'(s)NV,
Ti(s) = S'(s —/aR) NV,

To(s) =0V N (B(s) \ B(s — ﬁR)).
Then we define the “cut set”

T(s) =To(s) U Ta(s) U Ta(s),

the “cushion set”

U(s)=V(s)\ B(s — VaR)
and the “excised set”

Ky = (K\B(s)) UT(s).
Finally we can set

v ONB(s)\ U(s),

0 onU(s).
We notice thais, belongs to the set of admissible functions forsince it satisfies the
boundary condition. In general # u(Kj).

The crucial step in the proof of the main excision theorem relies on comparing
f,f/Z(J(us) — J(u))ds with Ro. So we shall essentially have to show that some terms,
which will be employed to the aim of estimating that integral, are much smallerRban
whene is small. As in [21], we prefer to start by showing in a systematical way some
of such inequalities and, finally, we shall combine them in order to prove the theorem.
So, lets € [R/2, R] be given and let us begin by taking € aV;(s) such that

u onQ\ B(s),
:{

@ = oG] = min [ = v)()|

and putc; = (i1 — vy)(x;). Then, for allx € 0V;(s)

| — vy)(x) — ;| < min(agic)(ﬁ —vy), 2|(t — vs) (x)])

< (,9se (@ —v))" (2~ v (8.75)

for every O< A < 1. Sincei — v, is Holder continuous, then for everye 0V;(s) we
have

s (x) Y2 < dy (1) V2 e — v ()] (8.76)
so by (7.66) and (8.76) we get, for some positive constant c,

Vo, (0)] <> i — v, TPy o (x) 772, (8.77)
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where r varies in the sefl, 2u — 1} (note the change of variable). For every by
(8.75) withA = 7, (8.77) and by the divergence theorem, we can establish the following
estimate

. vy .
/(u—vs>5< /|u—vs—c,-||ws|+ /c,-|Avs|

Vi (s) 0) Vis)
< [l v el X = w7 V)
aV;(s) T
<y | (080 — ) d; ()2 41V (8.78)
T avis)

Fubini Theorem and (V2 allow us to deduce

[2( [ sute)s

R/2 J aVi(s)

R
. d
<CZZ</ o5 — vy)) /<s—|;|>f/2+'vf'>

x|

<2, /<aR)’/2R1‘% +1V|

LA
<)) RaPHNTHOV) + V] < Ro. (8.79)
T

Moreover, for every G< T < 1, by Holder Inequality and (8.74), we get

R

/|W| (/(s ) g () ds) dr

Vv [x]

1/2 1/2
Rl_?cr</|Vu|2> (/dg(x)f 1)

< Rl_%c,ﬁ\/(aR)fa < Ro. (8.80)

Finally, by Fubini Theorem, (7.66), (8.76) and (8.80), we obtain the estimate

R R
Ré (V(/g) [Vul |Vvs|> ds < /</|W| IVvslds> dx
Z/'V“'</“—|xl> Fo(x) 7 ds)

x|

< Ro. (8.81)
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Now we are in a position to prove the excision theorem. 4@ = J (uy) — J (1)
be the increment of the integral part of the functional under the excision operation, we
shall estimatef,f/Z(S(s) ds <« Ro. To this aim, we shall employ the computation in the
beginning of the proof of the [21, Lemma 4.1] to estimé{e). Indeed, since both
andu, satisfy the elliptic equations (EL) and (8.73)= i on B(s) \ V andii = v, on
3B(s), then (see [21] for more information) we have that

d(vs +u)
Jé(s)\v(vs) - Jé(‘g)\v(u) = / T(lxi — V).

AV (s)
Therefore we can split the terth(u,) — J (1) as follows:

J(us) - J(M) = Jé(s)\v(vs) - Jé(s)\v(u) + JV(S)(uS) - ‘]V(S)(M)
=31(s) + 82(s) + 33(s) + da(s) + 5(s),

where
v, . ou _
51(s) = / @—v),  ba(s) = / T G Ty ),
on on
AV (s) aV(s)
ou . _ ou
53(s) = / M@G—i)y,  Sals)=— / o s
on on
T1(s) aV(s)

I5(s) = Jy (s (uy).
We remark that in the above calculations we have used the conditioim whereu = i.
LEMMA 8.1.— If V is thin enough and1.4) holds forA = V and A = B, then we

have
R
/ 5(s) ds < Ro. (8.82)
R/2
Proof. —Fori =1 the estimate is (8.79). Foe 2 and i= 3, the computations of [21]

remain unchanged. Let us evaluate the addenduni foe”4 by using the divergence
theorem.

$4)= [ (—duv = VuTu) <|VI+ [ [Vul [V, (8.83)

V(s) V(s)
and the desired inequality follows from (8.81). Finally foe 5, sinceu; = 0 on the
cushion seU (s), by (7.67) and (8.74), we get, fartaking the same values of (7.67),

85(s) = / |Vvs|2+/|vs—g|2

V()\U () V(s)

<Y [ s 1V
Ty

<X [(Var) a4 1V
Ty
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<D (VaR) (@R)o +|V], (8.84)
SO we can conclude
R
/ d5(s) ds < Ro. O (8.85)
R/2

Proof of Theorem 4.1. ket us distinguish two cases. If there exists a subset
such that (8.68) holds and (1.4) does not hold, then we proceed as follows. Firstly
by continuity we can assumg C B(s) for s < R, then we can take aK’ the set
(K\ A)UOJA. Letu’ be the function defined as follows

o fu on@\ 4,
10 onA,

and note that the negation of (1.4) implies
EA(K) > 2(HYH(3A) + |A)). (8.86)
Then we have
E(K)Y<EW, K
SEK) +H @A) + [ g =l — Ea(K)
A

<E(K)—%EA(K)<E(K)—%G, (8.87)

sinces < HY (K N A) < E4(K). So, in this case the theorem is proved. Otherwise,
if (1.4) holds for everyA satisfying (8.68), we have all the assumptions needed in this
section and so we can apply Lemma 8.1. Let us also remark that

R
/ HN_l(T(s)) ds < 2|V| + +acaRo < Ro,
R/2

therefore we can find € [R/2, R] such that

3(s) +HNHT(5)) <

N[ Q

Now let us takeK’ = K, for such a value of, then
E(K")=E(K,) < E(uy, Ky) = J (us) + H'H(K,)
<JW) +8(s) +HVHK) + HY (T () — HYNH(K N B(s))
<J ) +8) +HYHK) +HYHT(9) —o

<E(K)—%. 0 (8.88)
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