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ABSTRACT. – This paper is concerned with the problem of estimating the dimension, expected
to beN − 2, of the singular set of a minimizer of a functional with free discontinuities inN

dimensions. The best result already known, namely the(N − 1)-negligibility, is improved here.

RÉSUMÉ. – On s’attend à ce que la dimension de l’ensemble singulier d’un minimum d’une
fonctionnelle à discontinuité libre soitN − 2. Selon le meilleur résultat connu jusqu’à présent,
cet ensemble estN − 1 négligeable. Nous améliorons ce résultat.

Introduction

This paper is concerned with the regularity properties of a singularity setK

minimizing the Mumford–Shah functional. This functional was introduced in [18] and
we refer the reader to the literature on the subject (see the articles [1–3,6–11] and the
books [5,16]). We recall that a minimum of this functional is represented by a pair(u,K)

constituted by a function variableu and a set variableK . We deal with the problem of
establishing that the set of points whereK is not locally aC1 surface (the singularity set
of K) is small. It seems reasonable to expect that such a set is in general not empty and
has Hausdorff dimension(N − 2) but, as far as we know, this has not been proved. The
best result in this direction is due to L. Ambrosio, N. Fusco and D. Pallara [4] (and in
dimension two also indipendently by G. David in [8]) who show that the singularity set
of K is HN−1-negligible and this constitutes a first step in the above perspective. Such
a result is reached through a regularity technique which gives a monotonicity estimate
starting from suitable balls (in which the scaled flatness and the scaled Dirichlet integral
are smaller than a given threshold) and it is easy to check that almost every point inK is
the center of a good ball.

In this paper, by recovering the techniques exposed in [13] and thea priori estimates
of [20], we prove that every ball centered onK contains, at an estimable scale
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transition, a sub-ball in whichK is aC1 surface splitting approximatively the ball in
two hemispheres. On each one of the two hemispheres the oscillation (normalized with
respect to the scale) of the functionu is small and between them the (normalized)
jump of u is large. The regularity ofK is obtained through an application of the
monotonicity results of [4], whose initial hypotheses are assured by the previously
employed techniques. Such a result can be considered as a further step towards the
estimate of the dimension of the singular part ofK because it allows the application
of [10, Lemma 5.8] which in turn shows that such a dimension is strictly lower than
N − 1.

The results of this paper were announced at theMeeting on Differential Equations
and Calculus of Variationsheld at Isola d’Elba in October 1999. In such occasion we
knew from L. Ambrosio that an analogous result was obtained by S. Rigot [19] and that
it matches with the hypotheses of [10, Lemma 5.8].

1. Notation and main results

Let � ⊂ R
N be an open set and letg be a given measurable function from� in

[0,1]. In this paper we study some regularity properties concerning the minima of the
functional with free discontinuities

E(u,K) = J (u,K)+HN−1(K), (1.1)

whereJ (u,K) denotes the value of the elliptic functional

J (u,K) =
∫

�\K
|∇u|2 +

∫
�\K

|g − u|2 (1.2)

andHN−1(K) is the(N − 1)-dimensional Hausdorff measure ofK . An admissible pair
(u,K) is defined as a pair withu ∈ L1

loc(�) andK varying among the closed subsets
of �. WhenK is given, one can determine a unique functionu(K) which minimizes
J on the open set� \ K , therefore one can regard the functionalsE and J as only
depending on the set variableK . We shall study some regularity properties of the sets
K minimizing E. If K is a minimum ofE, u = u(K) andB ⊂ � is any ball of radius
R � 1, then (see [20])

∫
B

|∇u|2 +HN−1(K ∩B) � |B| +HN−1(∂B) � (N + 1)bNR
N−1, (1.3)

wherebk denotes the measure of the unit ball ofR
k. The regularity of an optimal setK

is expressed in terms of some geometric properties which we are going to introduce. Let
X ⊂ R

N be an open set andu ∈L1
loc(X) be a real function. For a given positive constant

c, the following weak summability condition states that the distributional gradient∇u,
extended by zero onRN \X, belongs to the Morrey SpaceL1,(2N−1)/2. WhenX ⊂ � and
u is a minimum of the Mumford–Shah functional, it trivially follows from (1.3) which
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actually implies that∇u ∈ L2,N−1. It is worth to remark that this is a weaker case of
L2N -summability.

For every ball B ⊂ R
N :

∫
B

|∇u| � c|B| 2N−1
2N � ‖u‖∗

2NR
2N−1

2 , (WS)

whereR is the radius ofB. Now we are going to introduce some definitions which will
be employed in characterizing the local behavior of the setK . If u is any real function
defined on a subsetX of R

N , then oscXu will represent the oscillation ofu onX, that is
oscXu= supXu− infXu.

DEFINITION 1.1. –Let ε > 0 be given. A ballB of radiusR is said to beε-split by a
functionu :B → R if it does not contain any subsetB̃ such that

|B̃| �
(

1

2
+ ε

)
|B|, (1.4)

oscB̃u� ε−1R1/2. (1.5)

DEFINITION 1.2. –The ballB of radiusR is said to beε-split byK if there exists
u :B → R, satisfying(WS)with ‖u‖∗

2N = 1 onB \K , such thatB is ε-split byu.

Let B be a given ball with radiusR, for everyε > 0 we shall denote bySε(B) the set
of all closed subsetsK of B such thatB is ε-split by K . We put

sε(B) = inf
K∈Sε

HN−1(K ∩B), s(ε) = sε
(
B1),

whereB1 denotes the unitary ball ofRN , and

s0 = lim
ε→0

s(ε).

We note thats(ε) is a monotone decreasing function and that

s0 = sup
ε>0

s(ε) � bN−1. (1.6)

By rescaling, we can easily see that for everyR > 0

sε(B) = RN−1s(ε).

We shall say thatK satisfies theBisection Propertywhen for everyε > 0 there exists
α(ε) > 0 such that, for every ballB ⊂ � centered onK , with radiusR � 1, there exists
aε-split ballB ′ ⊂ B with a radiusr � α(ε). Given a ballB centered onK , with a radius
R, we say that the setK is ε-concentratedonB, if the mean density ofK onB is bigger
than 1− ε, namely

HN−1(K ∩B) > (1− ε)bN−1R
N−1. (1.7)
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We shall say thatK satisfies theConcentration Propertywhen for everyε > 0 there
existsα(ε) > 0 such that, for every ballB centered onK , with radiusR � 1, there
exists a ballB ′ ⊂ B with radiusr � α(ε) whereK is ε-concentrated. In [13] it has been
proved that the inequality in (1.6) is actually an equality. This is equivalent to say that
for everyε > 0 there existsδ such that, if the ballB is δ-split by the setK , thenK turns
out to beε-concentratedonB. In particular, this shows that theConcentration Property
follows from theBisection Property. Furthermore, from theConcentration Property, the
Uniform Density Propertytrivially follows, namely there exists a positive constantβ

such that, ifB is a given ball centered at a point ofK , of radiusR � 1, then

HN−1(B ∩K) � βRN−1. (1.8)

In the case of setsK which minimizeE, the bisection property is proved in [20]. Finally,
we introduce the following quantities which play a key role in studying the regularity of
the setK in the ballB = B(x, r) (see [4] and [5] for more details).

Scaled flatness

AK(B) = AK(x, r) = r−N−1 min
P∈A

∫
B∩K

d2(y,P )dHN−1,

whereA denotes the set of affine hyperplanes inR
N . AK(B) measures the scaled flatness

of K into the ballB.
Scaled tilt

TK(B,T ) = TK(x, r, T )= r1−N

∫
B∩K

‖Sy − T ‖2 dHN−1,

whereT is a given hyperplane ofRN and‖Sy − T ‖ denotes the Grassmann distance of
the approximate tangent spaceSy to K at y from T . It measures the oscillation ofSy in
B with respect to a given hyperplaneT .

Scaled Dirichlet integral

Du(B)= D(x, r) = r1−N

∫
B

|∇u|2 dy.

Let ε > 0, the closedε-neighborhood of the setX ⊂ R
N is

X(ε) = {
x ∈ R

N | d(x,X) � ε
}
.

We shall denote byd(A,B) the Hausdorff distance between the setsA andB. In the
sequel we show how the bisection and concentration properties can be improved as stated
in the following theorem which represents the main result of this paper.

THEOREM 1.1. – For everyε > 0 there existsα(ε) such that, for everyB(x,R)⊂ �

with x ∈ K andR � 1 there exists a ballB ′ = B(y, r) ⊂ B(x,R) with radiusr � α(ε)

such that the following properties hold:
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(1) B ′ is ε-split.
(2) |r1−NHN−1(K ∩B ′)− bN−1|< ε.
(3) AK(B

′) < ε.
(4) There exists a hyperplaneP through the center ofB ′ such thatTK(B

′,P ) < ε.
(5) r−1d(K,P ) < ε, whereP is as above.
(6) Du(B

′) < ε.
(7) The setK ∩B ′ is aC1,1/4 surface containing the centery and dividingB ′ in two

partsH1 andH2.
(8) For i = 1,2: oscHi

u < ε
√
r .

(9) The jump ofu betweenH1 andH2 is greater thanε−1√r .

The properties stated in the above theorem, excepted (7), are obtained through a fine
application of the results of [13], by showing that the bisection property can be employed
in such a way to get balls contained in the main ball, which areε-split and enjoy suitable
minimality conditions. Property (7) is obtained from the former ones as an immediate
consequence of the regularity techniques of [4], which can be applied thanks to the
properties(3) and(6). Moreover, by fixing a suitable value ofε, we have the following
result.

COROLLARY 1.2. – There existsα > 0 such that for everyB(x,R) ⊂ � with x ∈ K

andR � 1 there exists a ballB ′ = B(y, r) ⊂ B(x,R), with radiusr � αR such that the
setS = K ∩B ′ is aC1,1/4 surface containingy.

2. Proof of the results

In [13] it is shown that, given a positive constantε′ > 0, one can determine two other
constantst , n ∈ N, which permit to state, for any positiveδ, the minimality condition

For everyδ-split ballB ′ ⊂ B of radiusr � tnR :
R1−NHN−1(K) �

(
1+ ε′

2

)
r1−NHN−1(K ∩B ′).

(Mδ)

Let ε be a given positive number. In [13] it is proved that one can subsequently determine
another positive constantε′(ε), which allows to write(Mδ) in a form which depends on
ε, in such a way to have the following statement [13, Corollary 6.1].

LEMMA 2.1. – For everyε, δ1, c0 > 0, there existsδ2 > 0 such that, ifB is δ2-split by
K , satisfies(Mδ1) andHN−1(K ∩B) � c0R

N−1, thenAK(B) < ε.

Since for the setsK minimizing the Mumford–Shah functional the condition onc0 is
satisfied, by (1.3), whenc0 = (N +1)bN , for all the minimal setsK we have in particular
the following statement.

LEMMA 2.2. – For everyε, δ1 > 0, there existsδ2 = I (δ1) such that, ifB is δ2-split
byK and satisfies(Mδ1), thenAK(B) < ε.

An iterated version of the above result will allow us to get free from Condition(Mδ1),
by passing to a suitable sub-ballB ′ under a scale transition which can be estimated.
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LEMMA 2.3. – For everyε > 0 there existsα(ε) > 0 such that every ballB ⊂ �,
centered onK , with radiusR � 1, contains a ballB ′ centered onK , ε-split, with radius
r � α(ε)R such thatAK(B

′) < ε.

Proof. –Givenε > 0, we fixε′ as above described. Letm ∈ N such that(1+ ε′
2 )

m−1 >

(N + 1)bNs(ε)−1. We define a sequenceδ1, δ2, . . . , δm by takingδ1 = ε, δ2 = I (δ1) as
given by Lemma 2.2 and, in general,δi = I (δi−1), whereI is as defined in Lemma 2.2
andi = 2, . . . ,m. By virtue of [20, Theorem 3 (Bisection Property)] we can claim that
there exists a constantβ = β(δm) such that, ifB is as in the thesis, we can find a
ball Bm ⊂ B of radiusrm � βR, δm-split by K . If such a ball satisfies(Mδm−1), then
AK(Bm) < ε. Otherwise, we can takeBm−1 ⊂ Bm, with a radiusrm−1 > tnrm, δm−1-split
by K and such that

r1−N
m−1HN−1(K ∩Bm−1) �

(
1+ ε′

2

)−1

r1−N
m HN−1(K ∩Bm).

If the new ballBm−1 satisfies(Mδm−2), we stop. Otherwise, we can takeBm−2 ⊂ Bm−1,
with a radiusrm−2 > tnrm−1, δm−2-split byK and such that

r1−N
m−2HN−1(K ∩Bm−2)�

(
1+ ε′

2

)−1

r1−N
m−1HN−1(K ∩Bm−1)

�
(

1+ ε′

2

)−2

r1−N
m HN−1(K ∩Bm).

Then we iterate this process as far as we do not find a ballBi , i � 2, which enjoys
(Mδi−1). We claim that this process cannot reachi = 1. Indeed, at every step we have

r1−N
i HN−1(K ∩Bi)�

(
1+ ε′

2

)i−m

r1−N
m HN−1(K ∩Bm).

So, if we could leti = 1, we should find

r1−N
1 HN−1(K ∩B1)�

(
1+ ε′

2

)1−m

r1−N
m HN−1(K ∩Bm)

<

(
1+ ε′

2

)1−m

(N + 1)bN < s(ε),

a contradiction sinceB1 is found to beε-split. The contradiction shows the claim and
so we can take asB ′ the last ballBi given by the iteration process withi � 2, which
is δi-split, has a radiusr = ri � tn(m−2)rm � tn(m−2)βR and enjoys(Mδi−1). So the
property AK(B

′) < ε follows by Lemma 2.2, sinceδi = I (δi−1), and we can finally
takeα(ε)= tn(m−2)β(δm). ✷

LEMMA 2.4. – The ballB ′ found in the previous lemma can be also taken in such a
way that there exists a hyperplaneP such that

K ∩B ′ ⊂ P(εr). (2.9)
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Proof. –Let β be the density constant appearing in (1.8). We can apply the previous
lemma in such a way to get aβ( ε2)

N+1-split ballB ′′, such thatAK(B
′′) < β( ε2)

N+1 and
with a radius greater or equal toα(β( ε2)

N+1)R. The estimate onAK(B
′′) means that

there exists a hyperplaneP such that

AK(B
′′) = r−N−1

∫
B ′′∩K

d2(y,P )dHN−1(y) < β

(
ε

2

)N+1

. (2.10)

Now we take asB ′ the ball with the same center ofB ′′ and radiusr = (1 − ε
2)r

′′ and
we claim thatK ∩ B ′ ⊂ P(εr). Indeed, otherwise, we can findx ∈ K ∩ B ′ such that
d(x,P ) > εr and thereforeB(x, ε

2r) ⊂ B ′′. By using (1.8) we find
∫

B ′′∩K
d2(y,P )dHN−1(y)�

∫
B(x, ε2r)∩K

d2(y,P )dHN−1(y)

�
(
ε

2
r

)2

HN−1
(
K ∩B

(
x,

ε

2
r

))
� β

(
ε

2
r

)N+1

,

in contradiction to (2.10). ✷
We briefly recall some arguments discussed in [13], which we are going to use in

a simpler context. LetP be as in the previous lemma, givenε > 0 we take the two
disksD1 andD2, obtained by cuttingB ′ with the two hyperplanes parallel toP and
distantε from P , labeled so thatHN−1(D1) � HN−1(D2). Letp1 denote the orthogonal
projection onto the hyperplane containingD1. Thus, the ballB ′ comes out divided in
three regions, namely the set enclosed betweenD1 andD2, which will be calledFε and
the remaining two regionsE1 andE2. By Lemma 2.4,K ∩ (E1 ∪E2) = ∅ follows, so by
Morrey’s Hölder continuity theorem [17, Theorem 3.5.2] we know that the oscillation
of u on each setEi is bounded byc

√
r , wherec is a universal constant. Therefore, the

ε-splitness ofB ′ implies that fori = 1,2 we have from (1.4)

|Ei | <
(

1

2
+ ε

)
|B ′|

and so the distance of the centerx0 of B ′ from D2 is at most of the order ofεr and then,
by the arbitrariness ofε, we can also assume thatd(x0,P ) � εr . Moreover, the splitness
of B ′ and the bound on the oscillation on each setEi imply that, in any way we take two
pointsxi ∈Ei , we get

∣∣u(x1)− u(x2)
∣∣ � ε−1

2

√
r. (2.11)

Let A = D1 \ p1(K ∩ B ′) anda = r1−NHN−1(A) . By a trivial application of Fubini
Theorem we get the following statement.

LEMMA 2.5. – There exists a positive constantc only depending onN , such that,
with the above introduced notation, we havea � cε3.
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Proof. –By applying Fubini Theorem, we can find a chordC orthogonal toP which
does not intersectK and intersects the disksDi , such that

∫
C

|∇u|2 �
(
HN−1(A)

)−1
∫
B ′

|∇u|2 �
(
arN−1)−1

(N + 1)bNr
N−1 = a−1c. (2.12)

Let {xi} = C ∩Di . By (2.11), (2.12) and by Hölder Inequality, we have

ε−1

2

√
r �

∣∣u(x1)− u(x2)
∣∣ �

∫
C∩Fε

|∇u| � √
2εr

(∫
C

|∇u|2
)1/2

�
√

2εra−1c,

from which the thesis easily follows.✷
Thus, if we setD = P ∩ B ′ and we denote byp the orthogonal projection ontoD,

since the difference betweenHN−1(D) andHN−1(D1) is at most of the order ofε2, we
also get the following conclusion.

LEMMA 2.6. – If B ′ is as in Lemma2.4andε is sufficiently small, then

HN−1(D \ p(K ∩B ′)
)
< εrN−1.

A first consequence of Lemma 2.4 is the following.

LEMMA 2.7. – The ballB ′ found in Lemma2.3can be also taken in such a way that
there exists a hyperplaneP such that

r−1d(K ∩B ′,P ∩B ′) < ε. (2.13)

MoreoverB ′ can be also taken centered onK andP can be taken through the center
of B ′.

The following result is a straightforward consequence of the semicontinuity of the
functional with respect to the set variableK . The proof is an easy consequence of the
results in [14], which can be applied under a normalization which sendsB into the
unitary ball by a scaling operation. This is a particular case of a more general theorem
which will be stated in [15] asPatching Theorem. For the sake of completeness, we
sketch the proof of this particular case for which most of the technical devices employed
in [15] are not needed and we refer the reader to [15] for more details which are missed
or not fully developed in the following proof.

LEMMA 2.8. – For everyε > 0 there existδ > 0 and R0 > 0 such that, ifK is a
minimum ofE, if B = B(x,R)⊂ � is such thatR �R0, andP is a hyperplane through
the center ofB such thatR−1d(K ∩ B,P ∩ B) � δ, then, setB ′ = B(x,R/2), there
exists a real functionv which is harmonic onB ′ \ P and such that

R1−N

∫
B ′

|∇u− ∇v|2 < ε, (2.14)
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R1−N

∣∣∣∣HN−1(K ∩B ′)−
(
R

2

)N−1

bN−1

∣∣∣∣ < ε. (2.15)

Proof. –Assume by contradiction that the statement is false and take(Kn)n∈N such
that, after a normalization givingR = 1, d(Kn ∩ B,P ∩ B) → 0. For every naturaln,
let un = u(Kn), thenun ⇀ u and∇un ⇀ ∇u in L2(B), moreover it is easy to see that
∇un converges to∇u uniformly on the compact subsets ofB \P . By the semicontinuity
properties in [14], we have

21−NbN−1 � lim inf
n

HN−1(Kn ∩B ′).

If 21−NbN−1 < lim supnHN−1(Kn ∩ B ′) or if ∇un does not converge to∇u in B ′, then
by adding toKn, for a suitably smalla > 0, the set

A= {
x ∈ ∂B ′ | d(x,P ) < a

}
,

we get, for largen,

|u− un| � a, |∇un − ∇u| � a

in ∂B ′ \ A. Let ϕn be a harmonic extension ofu − un from ∂B ′ \ A on B ′, such that
‖∇ϕn‖L2 is small. The substitution ofKn ∩B ′ by (P ∩B ′)∪A and ofun by u− ϕn, for
largen, turns out to be convenient. The same argument proves thatu is harmonic. ✷

A remarkable consequence of the previous lemma is the following statement, which
allows the possibility to takeB ′ with a small scaled Dirichlet integral.

LEMMA 2.9. – For everyε > 0, we can take the ballB ′ in Lemmas2.3 and 2.7 in
such a way to have

Du(B
′) < ε, (2.16)

r1−N
∣∣HN−1(K ∩B ′)− rN−1bN−1

∣∣ < ε. (2.17)

Proof. –(2.17) can be trivially obtained by replacingε in Lemmas 2.3 and 2.7 by the
constantδ correspondently given by Lemma 2.8 and by lowering by a factor1

2 the radius
of B ′. The subharmonicity of|∇v|2, wherev is as in Lemma 2.8, allows on the other
side the proof of (2.16). Indeed, we takeλ < 1 and we consider the ballBλ having the
same center ofB ′ and radiusλr . Forλ = ε1/N(NbN)

−1, we have

(λr)1−N

∫
Bλ

|∇v|2 dy � (λr)1−NλN
∫
B ′

|∇v|2 dy � λNbN < ε1/N . (2.18)

Since from (2.14) we also have

(λr)1−N

∫
Bλ

|∇u− ∇v|2 dy � λ1−Nr1−N

∫
B ′

|∇u− ∇v|2 dy � ε
1−N
N (NbN)

N−1ε,
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from (2.18) we haveDu(Bλ) � cε1/N which, by the arbitrariness ofε, proves the
assertion. The other properties stated in Lemmas 2.3 and 2.8 are clearly preserved with
the help of (2.11) when we pass fromB ′ toBλ, provided we takeδ sufficiently small. ✷

The results stated above enable us to prove the main theorem of this paper.

Proof of Theorem 1.1. –Let ε > 0, K be a minimum ofE andB = B(x,R) with
x ∈ K andR � 1. Statements (1) and (3) follow by takingB ′ as given by Lemma 2.3;
(2) and (6) follow from Lemma 2.9. By applying Lemma 2.7 we get assertion (5). By
comparing (2) and Lemma 2.6 we deduce (4). Statement (7) follows by the application,
allowed by (3) and (6), of the arguments of [4]. Finally, (8) follows by statement (6) and
by the Hölder continuity of the functionu on both the hemispheres in which the ball is
divided and (9) follows by (2.11) and by the arbitrariness ofε. ✷
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