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ABSTRACT. — This paper is concerned with the problem of estimating the dimension, expected
to be N — 2, of the singular set of a minimizer of a functional with free discontinuitie®/in
dimensions. The best result already known, namely Me- 1)-negligibility, is improved here.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On s’attend a ce que la dimension de I'ensemble singulier d’'un minimum d’une
fonctionnelle a discontinuité libre saN — 2. Selon le meilleur résultat connu jusqu’a présent,
cet ensemble et — 1 négligeable. Nous améliorons ce résultat.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

I ntroduction

This paper is concerned with the regularity properties of a singularity Kset
minimizing the Mumford—Shah functional. This functional was introduced in [18] and
we refer the reader to the literature on the subject (see the articles [1-3,6—11] and th
books [5,16]). We recall that a minimum of this functional is represented by g&pdir)
constituted by a function variable and a set variabl&. We deal with the problem of
establishing that the set of points whekds not locally aC* surface (the singularity set
of K) is small. It seems reasonable to expect that such a set is in general not empty ar
has Hausdorff dimensiofv — 2) but, as far as we know, this has not been proved. The
best result in this direction is due to L. Ambrosio, N. Fusco and D. Pallara [4] (and in
dimension two also indipendently by G. David in [8]) who show that the singularity set
of K is H"~1-negligible and this constitutes a first step in the above perspective. Such
a result is reached through a regularity technique which gives a monotonicity estimate
starting from suitable balls (in which the scaled flatness and the scaled Dirichlet integra
are smaller than a given threshold) and it is easy to check that almost every pKifg in
the center of a good ball.

In this paper, by recovering the techniques exposed in [13] and phi®ri estimates
of [20], we prove that every ball centered dt contains, at an estimable scale
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transition, a sub-ball in whiclk is a C* surface splitting approximatively the ball in
two hemispheres. On each one of the two hemispheres the oscillation (normalized witl
respect to the scale) of the functionis small and between them the (normalized)
jump of u is large. The regularity ofK is obtained through an application of the
monotonicity results of [4], whose initial hypotheses are assured by the previously
employed techniques. Such a result can be considered as a further step towards t
estimate of the dimension of the singular partkfbecause it allows the application

of [10, Lemma 5.8] which in turn shows that such a dimension is strictly lower than
N —1.

The results of this paper were announced athNfeeting on Differential Equations
and Calculus of Variation$eld at Isola d’Elba in October 1999. In such occasion we
knew from L. Ambrosio that an analogous result was obtained by S. Rigot [19] and that
it matches with the hypotheses of [10, Lemma 5.8].

1. Notation and main results

Let @ c RY be an open set and lgt be a given measurable function frofa in
[0, 1]. In this paper we study some regularity properties concerning the minima of the
functional with free discontinuities

E(u,K)=Ju, K)+H"Y(K), (1.1)

whereJ (u, K) denotes the value of the elliptic functional

J(u,K) = / |Vu|? 4 / lg — ul? (1.2)

Q\K Q\K

andHV~1(K) is the(N — 1)-dimensional Hausdorff measure &f An admissible pair
(u, K) is defined as a pair with € L} .(Q) and K varying among the closed subsets
of Q. WhenK is given, one can determine a unique functioik) which minimizes

J on the open seR2 \ K, therefore one can regard the functionalsand J as only
depending on the set variabke. We shall study some regularity properties of the sets
K minimizing E. If K is a minimum ofE, u = u(K) and B C Q2 is any ball of radius

R < 1, then (see [20])

/ Vul? + HYNK N B) < B+ HY Y 0B) < (N + Dby RV, (L.3)
B

whereb, denotes the measure of the unit ballR¥f. The regularity of an optimal se&

is expressed in terms of some geometric properties which we are going to introduce. Le
X C RY be an open set ande L} (X) be areal function. For a given positive constant

¢, the following weak summability condition states that the distributional gradient
extended by zero oR" \ X, belongs to the Morrey Spade-?¥~1/2, WhenX c Q and

u is a minimum of the Mumford—Shah functional, it trivially follows from (1.3) which
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actually implies thatvu € L>V~1, It is worth to remark that this is a weaker case of
L2N-summability.

For every ball B c RY: /|W|<c|3|% <lulzyR¥Z . (WS)
B

whereR is the radius ofB. Now we are going to introduce some definitions which will
be employed in characterizing the local behavior of thekself u is any real function
defined on a subsef of RY, then osgu will represent the oscillation af on X, that is
0SCyu = supyu — infxu.

DEFINITION 1.1. -Lete > O be given. A balls of radiusR is said to bes-split by a
functionu : B — R if it does not contain any subsstsuch that

|B| > (%+e>|3|, (1.4)

osGu < e 1RYZ (1.5)

DEFINITION 1.2. —The ball B of radius R is said to bes-split by K if there exists
u: B — R, satisfying(WS) with ||u||5y, =1 o0n B\ K, such thatB is e-split byu.

Let B be a given ball with radiu®, for everye > 0 we shall denote b, (B) the set
of all closed subset& of B such thatB is e-split by K. We put

s:(B) = inf HN YK NB),  s(e)=s.(BY,

whereB*! denotes the unitary ball &, and
= lim .
so= lIn OS(E)
We note thak(¢) is a monotone decreasing function and that

so=Sups(e) < by_1. (16)

e>0

By rescaling, we can easily see that for ev&ry- 0
s¢(B) = RV Ls(e).

We shall say thak satisfies th@isection Propertyvhen for everye > 0 there exists
a(e) > 0 such that, for every bal C Q2 centered ork, with radiusR < 1, there exists
ae-split ball B ¢ B with a radiusr > «a(g). Given a ballB centered ork, with a radius
R, we say that the séX is e-concentratedn B, if the mean density oK on B is bigger
than 1— ¢, namely

HY"YKNB)>(1—¢e)by_1RL. (1.7)
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We shall say thak satisfies theConcentration Propertywhen for everye > 0 there
existsa(e) > 0 such that, for every balB centered onkK, with radiusR < 1, there
exists a ballB’ c B with radiusr > a(¢) whereK is e-concentratedin [13] it has been
proved that the inequality in (1.6) is actually an equality. This is equivalent to say that
for everye > 0 there exist$ such that, if the balB is §-split by the setk, thenK turns

out to bes-concentratedn B. In particular, this shows that tl@oncentration Property
follows from theBisection Property. Furthermore, from t@®ncentration Propertythe
Uniform Density Propertytrivially follows, namely there exists a positive constaht
such that, ifB is a given ball centered at a point &f, of radiusR < 1, then

HYN"YBNK)>pRY . (1.8)

In the case of set&” which minimizeE, the bisection property is proved in [20]. Finally,
we introduce the following quantities which play a key role in studying the regularity of
the setK in the ballB = B(x, r) (see [4] and [5] for more details).

Scaled flatness

Ax(B) = Ax(x,r) =r~V " min / a(y, PydH L,
(S
BNK

whereA denotes the set of affine hyperplane®ih. Ak (B) measures the scaled flatness
of K into the ballB.
Scaled tilt

Tx(B, T)=Txx,r,T)=r" / IS, — T|I2dHN 1,

BNK

whereT is a given hyperplane d&&" and||S, — T || denotes the Grassmann distance of
the approximate tangent spaggto K aty from 7. It measures the oscillation f; in
B with respect to a given hyperplafie

Scaled Dirichlet integral

D,(B) =D(x,r) :rl—N/|Vu|2dy.
B

Lete > 0, the closed-neighborhood of the sef c R" is
X(e)={xeR" |d(x,X) <&}

We shall denote byl(A, B) the Hausdorff distance between the sétand B. In the
sequel we show how the bisection and concentration properties can be improved as stat
in the following theorem which represents the main result of this paper.

THEOREM 1.1. — For everye > 0 there existsx(¢) such that, for evernB(x, R) C
with x € K and R < 1 there exists a balB’ = B(y,r) C B(x, R) with radiusr > «(¢)
such that the following properties hold
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(1) B’ ise-split.

(2) [r"NHN YK NB') —by_1| <.

(3) Ax(B) <e.

(4) There exists a hyperplane through the center oB’ such thatT x (B’, P) < «¢.

(5) r~Yd(K, P) < &, whereP is as above.

(6) D,(B) <.

(7) The setk N B’ is aCYY/4 surface containing the centerand dividing B’ in two
parts H; and H;.

(8) Fori =1,2: 0SGu < &4/r.

(9) The jump ofs betweenH; and H, is greater thare=1,/7.

The properties stated in the above theorem, excepted (7), are obtained through a fir
application of the results of [13], by showing that the bisection property can be employec
in such a way to get balls contained in the main ball, whicheagplit and enjoy suitable
minimality conditions. Property (7) is obtained from the former ones as an immediate
consequence of the regularity techniques of [4], which can be applied thanks to the
properties(3) and(6). Moreover, by fixing a suitable value ef we have the following
result.

COROLLARY 1.2. — There exists > 0 such that for evenB(x, R) C Q withx € K
and R < 1there exists a balB’ = B(y,r) C B(x, R), with radiusr > o R such that the
setS = K N B’ is aCY/* surface containing.

2. Proof of theresults

In [13] it is shown that, given a positive constant- 0, one can determine two other
constants, n € N, which permit to state, for any positive the minimality condition

For everys-split ball B’ ¢ B of radiusr > " R:

/ (Mé)
RNHN LK) < (1 + %)rl_NHN_l(K nB).

Lete be a given positive number. In [13] it is proved that one can subsequently determine
another positive constant(e), which allows to write(Ms) in a form which depends on
g, iIn such a way to have the following statement [13, Corollary 6.1].

LEMMA 2.1.— For everye, 81, cg > 0, there exists, > 0 such that, ifB is §,-split by
K, satisfiesM;,) and HY~1(K N B) < coRY 71, thenAk (B) < e.

Since for the set¥ minimizing the Mumford—Shah functional the condition @yis
satisfied, by (1.3), whety = (N + 1)by, for all the minimal setX we have in particular
the following statement.

LEMMA 2.2. — For everye, 8; > 0, there exists, = I(81) such that, ifB is §,-split
by K and satisfiegMs,), thenAg (B) < ¢.

An iterated version of the above result will allow us to get free from Conditiy) ),
by passing to a suitable sub-b&|l under a scale transition which can be estimated.
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LEMMA 2.3. — For everye > 0O there existax(¢) > 0 such that every balB C €,
centered orK, with radiusR < 1, contains a ballB’ centered ok, e-split, with radius
r > a(e)R such thatAg (B') < &.

Proof. —Givene > 0, we fixe’ as above described. Lete N such that(1+ %)’"—1 >
(N + Dbys(e)~t. We define a sequendg, 6o, ..., 8,, by takings, = ¢, 8, = I(6,) as
given by Lemma 2.2 and, in generdl,= 1(5;_1), whereI is as defined in Lemma 2.2
andi =2, ..., m. By virtue of [20, Theorem 3 (Bisection Property)] we can claim that
there exists a constamt = B(5,,) such that, if B is as in the thesis, we can find a
ball B,, C B of radiusr,, > BR, é,-split by K. If such a ball satisfiesM;, ,), then
A (B,) < e. Otherwise, we can takB,,_1 C B,,, with a radius,,,_1 > t"r,,, 8,,_1-Split
by K and such that

-1

i
PV HN YK N Byy) < (1 + %) rENEVL(K O B,).

If the new ball B,,_; satisfies(M;, ,), we stop. Otherwise, we can talg,_, C B,,_1,
with a radiusr,,_» > t"r,,_1, 8,_2-Split by K and such that

/

-1
re AHY YK N Byo2) < <1+ %) rE N HN YK N By-1)

/N —2
< <1+ %) rENHNYK N B,,).
Then we iterate this process as far as we do not find a®all > 2, which enjoys
(M;, ;). We claim that this process cannot reach 1. Indeed, at every step we have

/

VRN K N B) < (1 + %) ro"HYTHK 0 By).

So, if we could let = 1, we should find

/

1-m
riNHN YK N By) < (1 + %) r=NHN-Y(K N B,,)

/ 1-m
< <1+ %) (N + Dby < s(e),

a contradiction sinceB; is found to bes-split. The contradiction shows the claim and
so we can take aB’ the last ballB; given by the iteration process with> 2, which

is &;-split, has a radius: = r; > "™, > "™=2BR and enjoys(M;,_,). So the
property Ax (B’) < ¢ follows by Lemma 2.2, sincé; = 1(5;,_1), and we can finally
takea(e) = """ B(8,). O

LEMMA 2.4.— The ball B’ found in the previous lemma can be also taken in such a
way that there exists a hyperplaiesuch that

KN B C P(er). (2.9)
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Proof. —Let B be the density constant appearing in (1.8). We can apply the previous
lemma in such a way to getf(5)"**-split ball B”, such thatAx (B”) < (5)"*! and
with a radius greater or equal to(ﬁ(g)N*l)R. The estimate o\ g (B”) means that
there exists a hyperplan® such that

e N+1
Ag(B"y=rN"1 / dz(y,P)dHN_l(y)<ﬂ<§> . (2.10)

B"NK

Now we take asB’ the ball with the same center &” and radius- = (1 — 5)r” and
we claim thatK N B’ C P(er). Indeed, otherwise, we can finde K N B’ such that
d(x, P) > er and thereforeB(x, 5r) C B”. By using (1.8) we find

/dz(y,deN—l(y» / d(y, P)dH " L(y)

B'NK B(x,%r)ﬁK
= 2r xa 2r = 2r )

We briefly recall some arguments discussed in [13], which we are going to use in
a simpler context. Le? be as in the previous lemma, given> 0 we take the two
disks D1 and D,, obtained by cuttings’ with the two hyperplanes parallel t8 and
distante from P, labeled so thatt"~1(D;) < HY~1(D,). Let p; denote the orthogonal
projection onto the hyperplane containifyy. Thus, the ballB’ comes out divided in
three regions, namely the set enclosed betweeand D,, which will be calledF, and
the remaining two regiong&; andE,. By Lemma 2.4K N (E1 U E,) = ( follows, so by
Morrey’s Holder continuity theorem [17, Theorem 3.5.2] we know that the oscillation
of u on each sek; is bounded by ./r, wherec is a universal constant. Therefore, the
e-splitness ofB” implies that fori = 1, 2 we have from (1.4)

in contradiction to (2.10). O

1
IE| < (§+s)|B/|

and so the distance of the centgrof B’ from D, is at most of the order ofr and then,
by the arbitrariness of, we can also assume thétxg, P) < er. Moreover, the splithess
of B” and the bound on the oscillation on each Beimply that, in any way we take two
pointsx; € E;, we get

-1

lu(xe) — uxp)| = %ﬁ. (2.11)

Let A= D;\ pi(K N B’) anda = r*"NHN¥-1(A) . By a trivial application of Fubini
Theorem we get the following statement.

LEMMA 2.5.— There exists a positive constaftonly depending oV, such that,
with the above introduced notation, we have ce2.
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Proof. —By applying Fubini Theorem, we can find a chatdorthogonal toP which
does not intersedt and intersects the disk3;, such that

/qu|2 < (HN—l(A))‘l/ Vul2 < @V N N+ Dbyr¥t=a"te. (2.12)
C B’

Let{x;} = C N D;. By (2.11), (2.12) and by Hélder Inequality, we have

_1 1/2
Er<ut) —ut)| < [ 1Vul <V2er( [ [Vu?) < ~2era—c,
2

C

CNFg

from which the thesis easily follows.O

Thus, if we setD = P N B’ and we denote by the orthogonal projection ontD,
since the difference betweéd"~1(D) andH"~1(D,) is at most of the order of?, we
also get the following conclusion.

LEMMA 2.6.—If B’ is as in Lemma2.4and¢ is sufficiently small, then
HY"Y(D\ p(KNB)) <er 2.

A first consequence of Lemma 2.4 is the following.

LEMMA 2.7.— The ballB’ found in Lemma&.3 can be also taken in such a way that
there exists a hyperplan such that

r{d(KNB,PNB)<e. (2.13)

Moreover B’ can be also taken centered @&hand P can be taken through the center
of B'.

The following result is a straightforward consequence of the semicontinuity of the
functional with respect to the set variabte The proof is an easy consequence of the
results in [14], which can be applied under a normalization which séhdsto the
unitary ball by a scaling operation. This is a particular case of a more general theoren
which will be stated in [15] a$atching TheoremFor the sake of completeness, we
sketch the proof of this particular case for which most of the technical devices employec
in [15] are not needed and we refer the reader to [15] for more details which are misse«
or not fully developed in the following proof.

LEMMA 2.8.— For everye > 0O there exists > 0 and Ry > 0 such that, ifK is a
minimum ofE, if B = B(x, R) C Q is such thatR < Ry, and P is a hyperplane through
the center ofB such thatR—*d(K N B, P N B) < §, then, setB’ = B(x, R/2), there
exists a real function which is harmonic orB’ \ P and such that

Rl_N/ |Vu — V| <, (2.14)

B’
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R N-1
R H""YKNB) - (—) by_1| <e. (2.15)

2
Proof. —Assume by contradiction that the statement is false and (&k,cy such
that, after a normalization giving@ = 1, d(K, N B, P N B) — 0. For every naturat,
let u, = u(K,), thenu, — u andVu,, — Vu in L?(B), moreover it is easy to see that
Vu, converges t6/u uniformly on the compact subsets Bf\ P. By the semicontinuity
properties in [14], we have

2" Vpy_1 <liminf HY"Y(K, N B)).

If 22-¥by_4 < limsup, H¥~1(K, N B’) or if Vu, does not converge t&u in B’, then
by adding tokK,,, for a suitably smalk > 0, the set

A={x€9dB'|d(x, P)<a},

we get, for larges,
|u_un|<aa |Vun_VM|<a

in 3B’ \ A. Let ¢, be a harmonic extension af — u, from 0B’ \ A on B’, such that
Ve, |2 is small. The substitution ok, N B’ by (P N B") U A and ofu,, by u — ¢, for
largen, turns out to be convenient. The same argument proves tisdtarmonic. O

A remarkable consequence of the previous lemma is the following statement, whick
allows the possibility to také’ with a small scaled Dirichlet integral.

LEMMA 2.9.— For everye > 0, we can take the balB’ in Lemmas2.3and 2.7 in
such a way to have

D.(B) <&, (2.16)

PN HN YK N B — Ny | <6 (2.17)

Proof. —(2.17) can be trivially obtained by replacimagn Lemmas 2.3 and 2.7 by the
constan® correspondently given by Lemma 2.8 and by lowering by a fa%‘thle radius
of B’. The subharmonicity ofVv|?, wherev is as in Lemma 2.8, allows on the other
side the proof of (2.16). Indeed, we take< 1 and we consider the baft, having the
same center oB’ and radiusir. Fori = ¢V (Nby)~1, we have

(kr)l_N/ |Vv|?dy < (xr)l—NxN/Wdey <ANby < ¥V, (2.18)
B/

B;.

Since from (2.14) we also have

()N / |Vu — Vo|?dy < ATVN / IVu — Vol2dy <e'% (Nby)V e,
B, B’
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from (2.18) we haveD,(B;) < ce¥/V which, by the arbitrariness of, proves the
assertion. The other properties stated in Lemmas 2.3 and 2.8 are clearly preserved wi
the help of (2.11) when we pass fraBito B, provided we také sufficiently small. O

The results stated above enable us to prove the main theorem of this paper.

Proof of Theorem 1.1. ket ¢ > 0, K be a minimum ofE and B = B(x, R) with
x € K andR < 1. Statements (1) and (3) follow by taki®) as given by Lemma 2.3;
(2) and (6) follow from Lemma 2.9. By applying Lemma 2.7 we get assertion (5). By
comparing (2) and Lemma 2.6 we deduce (4). Statement (7) follows by the application
allowed by (3) and (6), of the arguments of [4]. Finally, (8) follows by statement (6) and
by the Holder continuity of the function on both the hemispheres in which the ball is
divided and (9) follows by (2.11) and by the arbitrariness.of O
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