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ABSTRACT. – We continue here our study [10–13] of the thermodynamic limit for various
models of Quantum Chemistry, this time focusing on the Hartree–Fock type models. For the
reduced Hartree–Fock models, we prove the existence of the thermodynamic limit for the energy
per unit volume. We also define a periodic problem associated to the Hartree–Fock model, and
prove that it is well-posed.

RÉSUMÉ. – Nous poursuivons dans cet article notre étude systématique [10–13] de la limi-
te thermodynamique de divers modèles issus de la Chimie Quantique Moléculaire, en nous
consacrant cette fois aux modèles de type Hartree–Fock. Pour le modèle de Hartree–Fock réduit,
nous prouvons que l’énergie par unité de volume a une limite thermodynamique, que nous
identifions. Nous définissons également un modèle périodique associé au modèle de Hartree–
Fock, et nous démontrons qu’il est bien posé.

1. Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree–
Fock type models, thereby continuing a long term work that we have begun in [11]
with a similar study in the setting of the Thomas–Fermi–von Weizsäcker type models.
The results we have obtained in that framework were summarized in [10]. The
thermodynamic limit problem for the Hartree type models has been studied in [13] and
announced in [12]. Those we shall obtain here have also been announced in [12]. We
refer the reader to [11] for a detailed introduction to these issues (see also [13], for a
summary).

Briefly speaking, the so-called thermodynamic limit problem consists in examining
the behaviour of models for a finite volume of matter when the volume under
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consideration goes to infinity. Since the energy is an extensive thermodynamic quantity,
it is expected that the energy per unit volume goes to a finite limit when the volume goes
to infinity. It is also expected that the function representing the state of the matter goes
also to a limit in some sense. The thermodynamic limit problem we study (that is, for
crystals and at zero temperature) may be stated as follows.

We consider a neutral molecule consisting of nuclei of unit charge (atomic units
will be adopted in all that follows), and which are located at pointsk = (k1, k2, k3) of
integral coordinates inR3; each nucleus therefore lies at the center of a cubic unit cell
Qk = {(x1, x2, x3) ∈ R3;−1

2 < xi − ki � 1
2, i = 1,2,3} (with the convention thatQ0

will be henceforth denoted byQ). The set of the positions of these nuclei is then a finite
subsetΛ of the set of all points of integral coordinates that isZ3 ⊂ R3. The union of
all cubic cells whose center is a point ofΛ is denoted byΓ (Λ); its volume is denoted
by |Λ|. Since each cell has unit volume and each nucleus is of unit charge,|Λ| is also
the number of nuclei and the total nuclear charge. It is important to note that, in all
that follows,Γ (Λ) may be viewed as a big box into which the molecule is confined.
(This claim may actually be checked rigorously; see Remark 3.2 in Section 3.1 below.)
This assumption is standard for statistical physicists, and is compulsory at positive
temperatures.

Suppose that forΛ ⊂ Z3 fixed, we have a well-posed model for the ground state of
the neutral molecule consisting of|Λ| electrons and|Λ| nuclei located at the points
of Λ. Let us denote byIΛ the ground state energy, and byρΛ the minimizing electronic
density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows:

(i) Does there exist a limit for the energy per unit volume1
|Λ| IΛ when |Λ| goes to

infinity?
(ii) Does the minimizing densityρΛ approach a limitρ∞ (in a sense to be made

precise later) when|Λ| goes to infinity?
(iii) Does the limit densityρ∞ have the same periodicity as the assumed periodicity

of the nuclei?
Let us precise now the scope of this article. We shall not deal here with the physical

background of this theoretical problem, and we would rather refer the reader to the
textbooks [6,55] and the articles [27,28]. The questions we tackle here are indeed close to
questions of interest in Solid State Physics, both for theoretical and numerical purposes.
For the sake of brevity, we shall not detail here the relationship between our work and
Solid State Physics. We only mention some references here, namely [23,42], and also
[2,6,9,40,43,48,49,57].

The purpose of our study is twofold: first, we want to check that the molecular model
under consideration does have the expected behaviour in the limit of large volumes;
second, we wish to set a limit problem that is well-posed mathematically and that can
be justified in the most possible rigorous way (in particular with a view to give a sound
ground for numerical simulations of the condensed phase).

The models we shall consider here, and which are described in Section 2 below, are
issued from Quantum Chemistry, and therefore, they are models that are only valid at
zero temperature. From the mathematical viewpoint, the thermodynamic limit problem



I. CATTO ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 687–760 689

has been extensively studied, in the zero temperature setting as well as in the setting of
strictly positive temperatures (see [11] or [13] for a brief historical survey). We shall
only mention the ground-breaking work [32] by Lieb and Simon on the thermodynamic
limit in the framework of the Thomas–Fermi theory (TF Theory for short). Indeed, this
work was at the origin of our own study [11] on the Thomas–Fermi–von Weizsäcker
model (TFW model for short), and has largely influenced our work.

In [11], we have proved that the three questions (i)–(ii)–(iii) of the thermodynamic
limit problem that we have raised above can be answered positively in the setting of the
TFW theory. We find it useful to briefly emphasize the fact that many of the concepts
and techniques that we have used in [11] (some of them being inherited from Lieb and
Simon, some others being introduced by us in order to treat the TFW case) will be useful
here. Taking benefit from the work by Lieb and Simon who had already defined the TF
periodic problem, the idea to introduce the periodic TFW problem was straightforward.
Our “only” contribution was therefore to prove that the TFW model does converge in
the thermodynamic limit to the guessed periodic model.

The Thomas–Fermi type models are derived from the so-called Density Functional
Theory. In this framework, the electronic ground state is determined globally by a single
function: the electronic density. In the Hartree model [13] and in the Hartree–Fock
model that we study now, the|Λ| electrons are described by|Λ| wave-functions, whose
number thus goes to infinity while passing to the thermodynamic limit. The analysis
of these models is therefore expected to be much more intricate than in the Thomas–
Fermi case. As a matter of fact, we have not been able to do in the Hartree–Fock setting
everything we did in the TFW setting; that is to prove the convergence of the energy per
unit volume in the thermodynamic limit. We shall see below that even the guess on the
periodic problem is not so obvious for the Hartree–Fock model. Consequently, the mere
definition of the limit problems turns out to be a substantial piece of the work. Actually,
it is worth emphasizing that the main obstacle we shall encounter comes from the lack
of convexity of the Hartree–Fock functional. Indeed, our study of the TFW model [11]
(as well as the TF model study by Lieb and Simon [32]) relies in a crucial way upon
the convexity of the energy functionals. For the very same lack of convexity, we have
not been able in [13] to prove the convergence of the energy per unit volume in the
thermodynamic limit for the Hartree model. We have only proved the convergence of
the energy per unit volume in the thermodynamic limit for a simplified Hartree model
(namely the restricted Hartree model), whose energy functional is convex. However, we
have proposed a periodic problem which is likely to be the Hartree model for crystals,
and we have proved that this periodic problem is mathematically well-posed.

Similarly, in the Hartree–Fock setting, we shall not be able to prove the convergence of
the energy per unit volume in the thermodynamic limit. We shall nevertheless prove the
convergence of the energy per unit volume in the thermodynamic limit for a simplified
Hartree–Fock model, whose energy functional is convex (namely the reduced Hartree–
Fock model, treated in Section 4).

As far as the Hartree–Fock model is concerned, we shall suggest a periodic problem
as a candidate for the thermodynamic limit (see Section 5). We shall prove that this
periodic problem is mathematically well-posed. By the way, it is worth emphasizing the
fact that the Euler–Lagrange equations that are derived from our periodic HF problem
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are already known in the Quantum Chemistry literature (see, for example, [42]), thereby
strengthening our conviction that our model is the correct one.

This paper is organized as follows. The forthcoming Section 2 is devoted to the
definition of the general setting we shall work in, and to the detailed presentation of
the results we shall establish. Section 3 collectsa priori estimates for the reduced
Hartree–Fock and the Hartree–Fock models and a detailed description of the so-called
Bloch waves (or Floquet) decomposition, which is a well-known tool by Solid State
physicists, and which will also play a great role in our study. Section 4 and Section 5
are concerned with the reduced Hartree–Fock and the Hartree–Fock model respectively.
The last section of this paper is devoted to various comments and extensions. We shall
also describe there some directions of current research.

2. General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this
article, namely the Hartree–Fock model, and one of its simplified form, the reduced
Hartree–Fock model. For the sake of brevity, we shall often abbreviate the names of
these models, and write simply the HF and RHF models, respectively.

We recall from the introduction that, for eachΛ, finite subset ofZ3⊂R3, we consider
the molecular system consisting of|Λ| nuclei of unit charge that are located at the points
of Λ and of|Λ| electrons. We shall henceforth denote by

VΛ(x)=
∑
k∈Λ

1

|x − k| , (2.1)

the attraction potential created by the nuclei on the electrons, and by

1

2
UΛ = 1

2

∑
m,n∈Λ
m
=n

1

|m− n| (2.2)

the self-repulsion of the nuclei.
As in [11], we shall also consider the case when the nuclei are not point nuclei but are

smeared nuclei. In that case, each Dirac mass located at a pointk of Λ is replaced by a
compactly supported smooth non-negative function of total mass one, typically denoted
by m(· − k), and “centered” at that point ofΛ. The regularity of the functionm does not
play a great role in the sequel, and therefore we shall assume without loss of generality
thatm is C∞. The potential (2.1) and the repulsion (2.2) are then respectively replaced
by

V m
Λ (x)=∑

k∈Λ
m �

1

|x − k| ,

1

2
Um

Λ =
1

2
D

(∑
k∈Λ

m(· + k),
∑
k∈Λ

m(· + k)

)
− 1

2
|Λ|D(m,m).
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In the above equation, we have as usual denoted byD(·, ·) the double integral defined as
follows

D(f,f )=
∫∫

R3×R3

f (x)f (y)

|x − y| dx dy.

It will be convenient to introduce in this setting the function

mΛ =
∑
k∈Λ

m(· − k).

In this setting of smeared nuclei, we shall also make use of the effective potentialΦΛ

defined for each electronic densityρΛ as follows

ΦΛ = (
mΛ − ρΛ

)
�

1

|x| .

We are now in position to introduce the molecular models we shall deal with.
The Hartree–Fock model, which is the most commonly used model in Quantum

Molecular Chemistry [41] can be written as follows

IHF
Λ = inf

{
EHF

Λ (K)+ 1

2
UΛ;K ∈KΛ

}
, (2.3)

where the set of minimizationKΛ consists of self-adjoint operatorsK on L2(R3) such
that

KΛ = {
0 � K � 1,TrK = |Λ|,Tr

[
(−�− VΛ)K

]
<+∞}

, (2.4)

with 1 denoting the identity onL2(R3). The energy functionalEHF
Λ in (2.3) is given by

EHF
Λ (K)= Tr

[
(−�− VΛ)K

]+ 1

2

∫∫
R3×R3

ρ(x, x) ρ(y, y)

|x − y| dx dy

− 1

2

∫∫
R3×R3

|ρ(x, y)|2
|x − y| dx dy, (2.5)

with ρ(·, ·) denoting the kernel of the Hilbert–Schmidt operatorK . Let us now define
the various quantities that appear in the above definition of the Hartree–Fock model.

The operatorK is the so-called (reduced) one-particle density matrix. From the
general theory of trace-class operators onL2(R3) (see, for example, [44]), any operator
K in KΛ admits a complete set of eigenfunctions(ϕn)n�1 in H 1(R3) associated to the
eigenvalues 0� λn � 1 (counted with multiplicity). Thus we may decomposeK along
such an eigenbasis ofL2(R3), in such a way that its Hilbert–Schmidt kernel may be
written as

ρ(x, y)=∑
n�1

λn ϕn(x)ϕ
∗
n(y).

Owing to the fact thatK is trace-class, the corresponding density is well-defined as a
non-negative function inL1(R3) throughρ(x, x)=∑

n�1λn |ϕn(x)|2, and TrK = |Λ| =
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∫
R3 ρ(x, x) dx =∑

n�1λn. Moreover, according to this spectral decomposition ofK , we
may give a sense to

Tr[−�K] =∑
n�1

λn

∫
R3

|∇ϕn(x)|2 dx, (2.6)

while

Tr[VΛK] =∑
n�1

λn

∫
R3

VΛ(x)|ϕn(x)|2 dx =
∫
R3

VΛ(x)ρ(x, x) dx.

It is a standard fact [30] that this formulation of the Hartree–Fock problem is
equivalent to the following one, which might be more familiar to the reader

IHF
Λ = inf

{
EHF

Λ (ϕ1; . . . ;ϕ|Λ|)+ 1

2
UΛ;ϕi ∈H 1(R3),

∫
R3

ϕiϕ
∗
j = δi,j ,1 � i, j � |Λ|

}
, (2.7)

EHF
Λ (ϕ1; . . . ;ϕ|Λ|)=

|Λ|∑
i=1

∫
R3

|∇ϕi |2−
∫
R3

VΛ(x)ρ(x) dx + 1

2

∫∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy

−1

2

∫∫
R3×R3

|ρ(x, y)|2
|x − y| dx dy, (2.8)

whereρ(x, y) =∑|Λ|
i=1ϕi(x)ϕi(y)

∗, ρ(x) = ρ(x, x) =∑|Λ|
i=1 |ϕi(x)|2. This equivalence

means that every minimizer of (2.3)–(2.5) is a projector with finite rank|Λ|. In this latter
formulation theϕi ’s are interpreted as the electronic wave-functions. Let us observe that
the formulation in terms of density matrices is more intrinsic, and therefore sometimes
more convenient to use than the second one. Indeed, for every unitary transformU

in C|Λ|, and for every orthonormal family(ϕi)1�i�|Λ| in H 1(R3) |Λ|, we obviously
haveEHF

Λ (U(ϕ1; . . . ;ϕ|Λ|)) = EHF
Λ (ϕ1; . . . ;ϕ|Λ|), while the density matrices that are

respectively associated toU(ϕ1; . . . ;ϕ|Λ|) and(ϕ1; . . . ;ϕ|Λ|) are the same.
It is of course straightforward to deduce from the point nuclei setting (2.3)–(2.5) the

analogous smeared nuclei setting for the HF problem; namely

I
m,HF
Λ = inf

{
Tr

[−�K
]+ 1

2
D(ρ −mΛ,ρ −mΛ)− |Λ|

2
D(m,m)

− 1

2

∫∫
R3×R3

|ρ(x, y)|2
|x − y| dx dy; K ∈KΛ

}
. (2.9)

We also remark that the equivalence with a standard form of the type (2.7)–(2.8)
obviously holds true.

As announced above, we shall also consider in the sequel the following simplified
form of the Hartree–Fock model; namely the reduced Hartree–Fock model:
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IRHF
Λ = inf

{
ERHF

Λ (K)+ 1

2
UΛ; K ∈KΛ

}
, (2.10)

ERHF
Λ (K)= Tr

[
(−�− VΛ)K

]+ 1

2
D(ρ,ρ) (2.11)

(whereKΛ is still defined by (2.4)), and respectively its analogous smeared nuclei model

I
m,RHF
Λ = inf

{
Tr

[−�K
]+ 1

2
D(ρ −mΛ,ρ −mΛ)

− 1

2
|Λ|D(m,m); K ∈KΛ

}
. (2.12)

In order to turn to the thermodynamic limit problemper se, it is now time to recall the
properties of the sequence of setsΛ that we shall consider. For the sake of completeness,
we recall here the following definition taken from [11] and [32].

DEFINITION 1. –We shall say that a sequence(Λi)i�1 of finite subsets ofZ3 goes to
infinity if the following two conditions hold:

(a) For any finite subsetA⊂ Z3, there existsi ∈N such that

∀j � i, A⊂Λj.

(b) If Λh is the set of points inR3 whose distance to∂Γ (Λ) is less thanh (> 0), then

lim
i→∞

|Λh
i |

|Λi| = 0, ∀h > 0.

Condition(b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence
for which the ‘boundary’ is negligible in front of the ‘interior’. A sequence of
large cubes typically satisfies the conditions of Definition 1. We shall only consider
henceforth so-calledVan Hove sequenceswhich are going to infinity in the sense of
the above definition. Occasionally, some additional conditions will also be required
(see Theorem 2.2). Following the notation of [32,11], we shall write henceforth
limΛ→∞ f (Λ) instead of limi→∞ f (Λi).

Before introducing the Hartree–Fock type periodic models, it is to be noticed that
a key-point for their definition is the understanding of laws of interactions between
periodically arranged particles. Indeed, owing to the long-range of the Coulomb
potential, the electrostatic potential created by the infinite lattice of nuclei cannot be
simply

∑
k∈Z3

1
|x−k| , since this series obviously does not make sense.

We first of all introduce the periodic potentialG that is uniquely defined by

−�G= 4π
(
−1+ ∑

y∈Z3

δ(· − y)

)
, (2.13)

and ∫
Q

G= 0, (2.14)
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with δ being the Dirac measure. Due to our choice of normalization (2.14) forG, we
also need to define the constant

M = lim
x→0

[
G(x)− 1

|x|
]
. (2.15)

We shall see in the sequel that this periodic potentialG (which is also the Green’s
function of the Laplacian with periodic conditions on the unit cell) is the interaction
electrostatic potential created by the periodic distribution of charges of nuclei. We denote

DG(f,f )=
∫∫

Q×Q

f (x)G(x − y)f (y) dx dy.

We also define

f (x)= 1

|x| −
∫
Q

dy

|x − y| ,

and then

fΛ(x)=
∑
k∈Λ

(
1

|x − k| −
∫
Q

dy

|x − k− y|
)
.

It is convenient to rewritefΛ as

fΛ = VΛ − χΓ (Λ) �
1

|x| ,

where, more generally, we shall denote byχΩ the characteristic function of the
domainΩ . Besides, it is proved in [32], and recalled in [11], that, whenQ is a cube,

|f (x)|� C

|x|4

almost everywhere onR3, for some positive constantC, and thatfΛ converges to the
periodic potentialG+ d, for some real constantd that is independent ofΛ, uniformly
on compact subsets ofR3 \ Z3. Moreover, for any compact subsetK of R3, fΛ −∑

k∈Λ∩K
1

|x−k| converges uniformly onK toG+d−∑
k∈Z3∩K

1
|x−k| (see [32]). Therefore,

we may noteworthy observe that the periodic potentialG which was previously defined
by (2.13) and (2.14) is also given by

G(x)= ∑
k∈Z3

(
1

|x − k| −
∫
Q

1

|x − y − k| dy
)
− d;

that is, the sum over the lattice points of the Coulomb potential created by a point charge
placed at the center of the unit cube, and which is screened, on each cell, by a uniform
background of negative unit charge. This screening effect which is commonly observed
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in thermodynamic limit issues (see [25–27,32,11,13]) is a consequence of the electrical
neutrality of the molecular systems under consideration.

Let us now turn to the periodic problems we want to define. We shall detail in
Section 3.2 below the reasons why we need to introduce the following set of operators,
which are aimed to become the analogues of the usual density matrices in the periodic
case.

DEFINITION 2. –LetQ� = [−π;+π [3, and, for everyξ in Q�,

L2
ξ (Q)= {

u ∈ L2
loc

(
R3);e−iξ ·xu is Q-periodic

}
.

We now consider families of operatorsKξ (ξ ∈Q�), which are self-adjoint onL2
ξ (Q),

and which enjoy the following properties, for almost everyξ ∈Q�.
(H2)′ 0 � Kξ � 1, with 1 being the identity onL2

ξ (Q);

(H3) the operatorsKξ have finite traces, and satisfy
∫
Q� TrL2

ξ
(Q)Kξ

dξ

(2π)3
= 1;

(H4) TrL2
ξ
(Q)[−�ξKξ ]<+∞ and

∫
Q� TrL2

ξ
(Q)

[−�ξKξ

]
dξ <+∞.

To every such family of operators is associated, in a unique way, a self-adjoint
operatorK in L2(R3), denoted byK = ∫

Q� Kξ
dξ

(2π)3
, such that

(H1) K commutes with the translations ofZ3;
(H2) 0� K � 1.

We denote byK the set of operatorsK = ∫
Q� Kξ

dξ

(2π)3
which satisfy the conditions(H1)–

(H4) (or equivalently(H2′), (H3) and (H4)), and we shall callK a periodic density
matrix.

In all that follows, we shall denote byρ(ξ, ·, ·) the Hilbert–Schmidt kernel ofKξ .
Owing to the fact thatKξ is a trace-class operator, we may give a sense toρ(ξ, x, x) as
aQ-periodic function inL1

loc(R
3), and to

ρ(x)=
∫
Q�

ρ(ξ, x, x)
dξ

(2π)3
. (2.16)

Moreover,ρ(x) is also aQ-periodic function inL1
loc(R

3), which will play the role of the
electronic density in crystals. Let us emphasize once more the fact that the definitions of
the various quantities appearing in the above definitions are made precise in Section 3.2
below, and, more specifically, in Proposition 3.2 therein.

With the help of the above definitions, we are now able to state the periodic
minimization problems associated to the above RHF and HF models. First, for the RHF
model (2.10)–(2.11), we set:

IRHF
per = inf

{
ERHF

per (K); K ∈K
}
, (2.17)

ERHF
per (K)=

∫
Q�

TrL2
ξ
(Q)

[−�Kξ

] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ) (2.18)
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with ρ being defined by (2.16). The analogous model in the smeared nuclei setting is
written

Im,RHF
per = inf

{
Em,RHF

per (K);K ∈K
}
, (2.19)

Em,RHF
per (K)=

∫
Q�

TrL2
ξ
(Q)

[−�Kξ

] dξ

(2π)3

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (2.20)

We shall prove in Section 4 the following results.

THEOREM 2.1 (Well-posedness of the RHF periodic problem). –The minimization
problem defined by(2.17) and (2.18) (respectively by(2.19) and (2.20)) admits a
minimum. In addition, the corresponding minimizing densityρ is unique and, thus,
shares the symmetries of the unit cube.

THEOREM 2.2 (Thermodynamic limit for the RHF energy). –We assume that the
Van Hove sequenceΛ satisfies

lim
Λ→∞

|Λh|
|Λ| Log|Λh| = 0, ∀h > 0, (2.21)

whereΛh is defined in Definition1. In addition, we assume that the unit cellQ of the
periodic lattice is a cube.

In the point nuclei case, we have

lim
Λ→∞

1

|Λ|I
RHF
Λ = IRHF

per +
M

2
,

where the constantM is defined by(2.15). Respectively, in the smeared nuclei case,
assuming in addition thatm shares the symmetries of the unit cubeQ, we have

lim
Λ→∞

1

|Λ|I
m,RHF
Λ = Im,RHF

per + M

2
,

where, this time, the constantM is defined by

M =
∫∫

Q×Q

m(x)m(y)

[
G(x − y)− 1

|x − y|
]
dx dy. (2.22)

Some comments are in order. The reader has remarked that some technical assump-
tions (Q is a cube, (2.21), andm has cubic symmetry) have been made in the above
theorem. We need these technical assumptions in Section 4, and more precisely in Sub-
section 4.3 to prove that the upper limit of1|Λ|I

RHF
Λ may be compared from above by

IRHF
per + M

2 . A technical assumption such as (2.21), that is satisfied by all Van Hove se-
quences except some very pathological ones, already appears in [11]. However, in [11],
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we manage to get rid of all these technical assumptions using another strategy of proof
for results like Theorem 2.2; namely the “energy via density” strategy. Here, such a
strategy, based upon the convergence of the minimizers, is out of reach. Of course we
believe they are not necessary here either. We believe there is room for improvement in
our proofs and some other strategy could allow one to do without these assumptions.
Unfortunately, we have not been able to do without them so far.

On the contrary, no additional assumption at all is necessary for the other results
stated in this work. In particular, the fact that the unit cell is a cube is not important for
Theorems 2.1 and 2.3. We shall not repeat this observation in the forthcoming sections,
but the reader should keep it in mind. For further comments, we refer the reader to
Section 6.

In view of the above theorem, and in view of calculations that will be detailed
in Sections 3 and 5 below, we find it natural to introduce the following periodic
minimization problem in the Hartree–Fock framework:

IHF
per = inf

{
EHF

per(K); K ∈K
}
, (2.23)

EHF
per(K)=

∫
Q�

TrL2
ξ
(Q)

[−�Kξ

] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ)− 1

2
Eexc(K), (2.24)

whereρ(x) is still defined by (2.16). Withρ(ξ ; ·, ·) being the Hilbert–Schmidt ofKξ ,
the Schwarz kernel ofK is given by ρ(x, y) = ∫

Q� ρ(ξ ;x, y) dξ

(2π)3
, and belongs to

L2(Q × R3) (at least ; see Proposition 3.2 in Section 3.2 below). For some reasons
which are made precise later in Section 5, the periodic exchange term−1

2Eexc(K) is then
defined by any of the following two equivalent quantities (see Lemma 5.1 in Section 5
below):

Eexc(K)=
∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy

=
∫∫∫∫
(Q�)2×Q2

ρ(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗(ξ ′, x, y) dx dy
dξ dξ ′

(2π)6
.

The interaction potentialW∞ is defined, for everyη andz in R3, by

W∞(η, z)= ∑
k∈Z3

eik·η

|z+ k| . (2.25)

The analogous problem in the smeared nuclei case reads

Im,HF
per = inf

{
Em,HF

per (K); K ∈K
}
, (2.26)

Em,HF
per (K)=

∫
Q�

TrL2
ξ
(Q)[−�Kξ ] dξ

(2π)3
+ 1

2
DG(ρ −m,ρ −m)
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− 1

2
Eexc(K)− 1

2
DG(m,m). (2.27)

For the Hartree–Fock model, we only have hints which indicate that the limit we suggest
above is the correct one. In order to prepare and stimulate future works on the subject, we
prove in Section 5 that the periodic Hartree–Fock problem is well-posed, in the following
sense.

THEOREM 2.3 (Well-posedness of the HF periodic problem). –The minimization
problem defined by(2.23) and (2.24) (respectively by(2.26) and (2.27)) admits a
minimum.

Moreover, we establish in Subsection 5.2 the following.

PROPOSITION 2.1. – We assume that the Van Hove sequenceΛ satisfies(2.21). In
addition, we assume that the unit cellQ is a cube, and that there exists a minimizer
K ∈K of IHF

per whose densityρ shares the symmetries of the unit cube. Then,

lim sup
Λ→∞

IHF
Λ

|Λ| � IHF
per +

M

2
, (2.28)

whereIHF
per is defined by(2.23)–(2.24).

Finally, we define the following useful functional transformation which is a particular
convex combination, and that we have already used in [11]. It will be again very efficient
in the present work in Subsection 4.1, by allowing to take advantage of the convexity of
the reduced Hartree–Fock functional, in order to compare from below the lower limit of
the energy per unit volume by the corresponding reduced Hartree–Fock periodic model.

DEFINITION 3. –For a given sequenceΛ and a sequenceρΛ of densities, we call the
∼ – transform ofρΛ and denote bỹρΛ the following sequence of functions

ρ̃Λ = 1

|Λ|
∑
k∈Λ

ρΛ(· + k).

We shall make use in the sequel of the following notation. IfH is a functional space,
we denote byHunif(R3) the space

Hunif
(
R3)= {

ψ ∈D′(R3);ψ ∈H(x +Q) ∀x ∈R3, sup
x∈R3

‖ψ‖H(x+Q) <∞
}
,

and

H 1
per(Q)= {

u ∈H 1
loc

(
R3), u periodic inxi, i = 1,2,3, of period 1

}
.

As announced in the introduction, the sequel of this paper is devoted to the proofs of the
above results.
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3. Preliminaries

3.1. A priori estimates for the reduced Hartree–Fock and the Hartree–Fock
models

We begin this section by recalling the existence results of minima for the Hartree–
Fock and the reduced Hartree–Fock models defined in Section 2 through the formula
(2.3)–(2.5) and (2.10)–(2.11) respectively. We shall only state the results and make the
proofs in the case of point nuclei; stating the analogues in the case of the smeared nuclei
brings no additional difficulty and the proofs are even easier in that case (see [11]).

In the Hartree–Fock setting, the existence of a minimizer for neutral molecules for the
standard Hartree–Fock model (2.7)–(2.8) has been proved by Lieb and Simon in [33] and
by Lions in [37]. Moreover, the equivalence between the standard Hartree–Fock model
(2.7)–(2.8) and the Hartree–Fock model stated in terms of density matrices (2.3)–(2.5)
(without restricting the minimization to projectors) is due to Lieb [30]. Lieb’s proof has
been simplified later by Bach [5]. A similar proof by Lions may also be found in [37]. In
the reduced Hartree–Fock setting (2.10)–(2.11), the existence of a minimizerKΛ ∈ KΛ

for neutral molecules is due to Solovej [52]. It is important to notice that, the energy
functional (2.11) is convex with respect to the density matrix. Moreover, thanks to the
strict convexity ofρ �→D(ρ,ρ) (this is standard) and of the convexity of the setK, any
minimizerKΛ of (2.10) leads to the same density which is uniquely defined (itdoes not
depend on the minimizerKΛ) (see [52]). Let us henceforth denote byρΛ(x) this density.

Let us now begin our study of the thermodynamic limit for these models with getting
bounds on the energy per unit volume.

LEMMA 3.1. – LetΛ be a Van Hove sequence, then1
|Λ|I

RHF
Λ and 1

|Λ|I
HF
Λ are bounded

independently ofΛ.

Proof. –Since the so-called exchange term−1
2

∫∫
R3×R3

|ρ(x;y)|2
|x−y| dx dy appearing in the

definition (2.5) ofEHF
Λ is non-positive, it is obvious, from (2.3)–(2.5) and (2.10)–(2.11)

that
1

|Λ|I
HF
Λ � 1

|Λ|I
RHF
Λ .

Thus in order to prove the above lemma, we shall first check that1
|Λ|I

RHF
Λ is bounded

from above, and then, that1|Λ|I
HF
Λ is bounded from below, with bounds that are

independent ofΛ.
Let us begin with the bound from above, which is simpler. Letϕ ∈ D(Q) with∫

Q ϕ2dx = 1. For eachk in Λ, we setϕk = ϕ(· − k). Then, the trace-class operator
K0

Λ whose Hilbert–Schmidt kernel is defined by
∑

k∈Λ ϕk(x) ϕ∗k (y) is clearly a test
function for IRHF

Λ , with the electronic density beingρ0
Λ =

∑
k∈Λ |ϕk|2. Arguing as in

[11], Chapter 3, Section 3.2 for the electrostatic terms, we check successively that

1

|Λ| Tr
[−�K0

Λ

]= ∫
Q

|∇ϕ|2,

and that
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lim
Λ→∞

1

|Λ|
(

1

2
UΛ−

∫
R3

VΛ ρΛ+ 1

2
D(ρΛ,ρΛ)

)
= M

2
−

∫
Q

Gρ + 1

2
DG(ρ,ρ).

Let us check now the lower bound for the Hartree–Fock energy per unit volume.
We first recall that, by virtue of the so-called Lieb–Thirring inequality [35] and its
generalization by Lions and Paul [39] to the case of general density matrices), there
exists a positive constantCLT, that isindependentof Λ, such that, for anyK in KΛ:

CLT

∫
R3

ρ5/3 � Tr[−�K]. (3.1)

On the other hand, the Lieb–Oxford inequality [31] gives a lower bound for the exchange
term in the following way. There exists a positive constantCLO that is independent ofΛ,
such that, for anyK in KΛ with densityρ

−CLO

∫
R3

ρ4/3 �−
∫∫

R3×R3

|ρ(x;y)|2
|x − y| dx dy. (3.2)

Whence, with the help of (3.1) and (3.2), the HF model may be compared from below
by a Thomas–Fermi–Dirac type model (see Lieb [29]), as follows:

EHF
Λ (K) � CLT

∫
R3

ρ5/3−
∫
R3

VΛ ρ + 1

2
D(ρ,ρ)−CLO

∫
R3

ρ4/3, (3.3)

for everyK ∈ KΛ. The proof of the lower bound for1|Λ|I
HF
Λ is then a consequence of

the results obtained by Lieb and Simon [32] and by the authors [11] for the Thomas–
Fermi type models. We first notice that, whenK lies in KΛ, because of the Lieb–
Thirring inequality (3.1), the corresponding electronic densityρ belongs to the set
{ρ � 0, ρ ∈ L5/3(R3), D(ρ,ρ) < +∞,

∫
R3 ρ = |Λ|}. In particular, with the help of

the Hölder inequality, and since 1� 4
3 � 5

3, we get

∫
R3

ρ4/3 �
(∫

R3

ρ5/3
)1/2 (∫

R3

ρ

)1/2

�
(∫

R3

ρ5/3
)1/2

|Λ|1/2. (3.4)

In addition, withfΛ = VΛ− χΓ (Λ) �
1
|x| , we recall from [11] that, for every 1� p < 3,

‖fΛ‖Lp(R3) � C |Λ|1/p. (3.5)

Whence, going back to (3.3),

EHF
Λ (K)+ UΛ

2

� CLT

∫
R3

ρ5/3−
∫
R3

fΛ ρ + 1

2
D(χΓ (Λ) − ρ,χΓ (Λ) − ρ)
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−CLO

∫
R3

ρ4/3+ UΛ

2
− 1

2
D(χΓ (Λ), χΓ (Λ))

� CLT

∫
R3

ρ5/3− ‖fΛ‖L5/2 ‖ρ‖L5/3 −CLO

(∫
R3

ρ5/3
)1/2

|Λ|1/2−C0|Λ| (3.6)

� CLT‖ρ‖5/3
L5/3 − |Λ|2/5 ‖ρ‖L5/3 −CLO‖ρ‖5/6

L5/3 |Λ|1/2−C0|Λ|, (3.7)

for everyK ∈KΛ, where, in addition to (3.4) and (3.5) – withp = 5
2, we have used the

following two facts:

−
∫
R3

VΛ ρ + 1

2
D(ρ,ρ)+ UΛ

2

=−
∫
R3

fΛ ρ + 1

2
D(χΓ (Λ) − ρ,χΓ (Λ) − ρ)+ UΛ

2
− 1

2
D(χΓ (Λ), χΓ (Λ)) ,

which follows from the definition offΛ, and

|UΛ−D(χΓ (Λ), χΓ (Λ))|� C0 |Λ|, (3.8)

for some positive constantC0 that is independent ofΛ [11]. From (3.7) and by setting
X= ‖ρ‖

L5/3

Λ3/5 , we finally obtain

1

|Λ|I
HF
Λ � CLTX

5/3−X−CLOX
5/6−C0, (3.9)

for any X � 0. The function ofX which appears in the right-hand side of the above
inequality is bounded from below by some constant (independent ofΛ) on the set
{X � 0}. This concludes the proof of the lemma.✷

From now on, we shall denote byKΛ a minimizer ofIRHF
Λ or IHF

Λ indiscriminately,
by ρΛ(·; ·) its kernel, and byρΛ = ρΛ(x;x) the corresponding electronic density. As a
corollary of Lemma 3.1 and its proof, we have the following:

PROPOSITION 3.1. – There exist positive constantsC that are independent ofΛ⊂ Z3

such that the following estimates hold:

1

|Λ| Tr[−�KΛ]� C; (3.10a)

1

|Λ|
∫
R3

|∇√ρΛ|2 � C; (3.10b)

1

|Λ|
∫
R3

ρ
5/3
Λ � C; (3.10c)

1

|Λ|
∫
R3

ρ
p
Λ � C, for every1 � p � 5

3
; (3.10d)
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1

|Λ|D(χΓ (Λ) − ρΛ,χΓ (Λ) − ρΛ) � C; and (3.10e)

0 � 1

|Λ|
∫∫

R3×R3

|ρΛ(x;y)|2
|x − y| dx dy � C. (3.10f)

Remark3.1. – The bound (3.10f) on the exchange term was postulated in the
chemistry literature (see [42]) but, to the best of our knowledge, it was not checked
rigorously so far except in the simplified framework of the free electron gas by
Friesecke [21]. This bound implies that the exchange term has to be asymptotically of the
same order as the volume occupied by the molecule, here|Λ|. In particular, the exchange
term exhibits an asymptotic behaviour in the thermodynamic limit which is completely
different from the one of the other electrostatic terms. (Note that each of them behave
separately like|Λ|5/3 while their sum globally behaves like|Λ| (see [11]).)

Proof of Proposition 3.1. –We argue only in the framework of the Hartree–Fock
model, the case of the reduced Hartree–Fock model being even easier to deal with. We
first show that (3.10c) holds. Indeed, on the one hand, we know, by Lemma 3.1, that the
energy per unit volume1

|Λ|I
HF
Λ is bounded from above by some constant independently

of Λ. While, on the other hand, by combining with (3.9) in the special case when
X= ‖ρΛ‖L5/3

Λ3/5 , and by using Jensen’s inequality, we obtain

C � 1

|Λ|I
HF
Λ � C1X

5/3−C2,

whereC, C1 andC2 are positive constants that are independent ofΛ. It is now easy to
deduce (3.10c). Hölder’s inequality together with (3.10c) yields (3.10d).

The inequality (3.10f) next follows with the help of the Lieb–Oxford inequality (3.2)
and (3.10d) – withp = 4

3. From (3.5) and (3.10c), and using Hölder’s inequality, we
deduce

1

|Λ|
∣∣∣∣
∫
R3

fΛ ρΛ

∣∣∣∣ � C. (3.11)

We then deduce (3.10e) by comparing (3.10c), (3.10f) and (3.11) with (3.6) and (3.8).
Collecting the previous bounds and comparing with the definition (2.5) ofEHF

Λ (KΛ), we
check that the last remaining term in the definition of the functional, namely Tr[−�KΛ],
is also of the order of|Λ|. This gives (3.10a).

We next observe that for everyK in KΛ, we have∫
R3

|∇√ρ|2 � Tr[−�K]. (3.12)

Indeed, letK ∈KΛ be given, that we decompose along an eigenbasis(ϕn)n�1 ∈H 1(R3)

as in Section 2. Thanks to (2.6), we check successively that:∫
R3

|∇√ρ|2=
∫
R3

∣∣∣∣∇
( ∑

n�1

λn |ϕn|2
)1/2∣∣∣∣

2



I. CATTO ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 687–760 703

=
∫
R3

ρ−1
3∑

i=1

∣∣∣∣14
∑
n�1

λn

(
ϕn · ∂ϕ

∗
n

∂xi

+ ϕ∗n ·
∂ϕn

∂xi

)∣∣∣∣
2

(3.13)

�
∫
R3

ρ−1
3∑

i=1

( ∑
n�1

λn |ϕn|
∣∣∣∣∂ϕn

∂xi

∣∣∣∣
)2

�
∫
R3

ρ−1
3∑

i=1

( ∑
n�1

λn |ϕn|2
) ( ∑

n�1

λn

∣∣∣∣∂ϕn

∂xi

∣∣∣∣
2)

(3.14)

=
∫
R3

∑
n�1

λn |∇ϕn|2= Tr[−�K]

with the help of the Cauchy–Schwarz inequality to obtain (3.14) and with the convention
that the quantities inside the integrals in the right-hand sides of (3.13) to (3.14) are zero
almost everywhere in the region whereρ itself vanishes. Finally, thanks to (3.12), (3.10b)
is a direct consequence of (3.10a). This concludes the proof of the proposition.✷

From these bounds on the energy per unit volume, we deduce as in [11,13], the
following two corollaries.

COROLLARY 3.1 (Compactness). –For any Van Hove sequenceΛ, we have∫
Γ (Λ)c

ρΛ = o(|Λ|). (3.15)

Remark3.2. – The above corollary says that, asymptotically,|Λ| + o(|Λ|) electrons
lie in the “big box” Γ (Λ). With this result together with the fact that the Van Hove
condition allows to neglect the surface effects, it turns out that, at zero temperature,
any boundary condition for the wave functions or the electronic density on a big box
(like Neumann, Dirichlet or periodic boundary conditions) give rise to the same periodic
model after passing to the thermodynamic limit. This, of course, may be particularly
relevant for numerical computations.

Proof of Corollary 3.1. –This is a direct consequence of (3.10e) (see [11], Section 3
in Chapter 3). ✷

The second corollary makes use of the notion of∼-transform, introduced in [11] and
recalled in Definition 3 in Section 2.

COROLLARY 3.2. – For any Van Hove sequenceΛ, the sequence
√
ρ̃Λ is bounded in

H 1
unif(R

3), independently ofΛ. Moreover,

lim
Λ→∞

∫
Q

ρ̃Λ = 1. (3.16)

The above bounds oñρΛ, which are easily deduced by a convexity argument from the
definition of the∼-transform and from the bounds (3.10b) and (3.10d), will be useful
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while passing to the lower limit on the energy per unit volume for the reduced Hartree–
Fock model in Subsection 4.1.

Let us end this subsection by recalling the following result which asserts that the limit
of a sequence of∼-transforms is necessarily periodic. We skip its easy proof, for which
all arguments may be found in [11].

LEMMA 3.2. – LetΛ be a Van Hove sequence in the sense of Definition1. LetfΛ be
a sequence of function such that, either‖fΛ‖Lp

unif(R
3) � C or ‖fΛ‖Lp(R3) � C|Λ|1/p, for

somep ∈ [1,+∞] and some constantC that is independent ofΛ. Let us assume that̃fΛ

converges to somẽf , almost everywhere onR3, or weakly inLp
loc — when1� p <+∞,

or in L∞ − �weak — whenp =+∞. Then,f̃ is periodic.

In order to state rigorously the periodic models we shall consider below, we extend
in the forthcoming section the classical notion of one-particle density matrix used for
molecules to its analogue for crystals. This construction will allow us to set the RHF and
HF models for crystals in terms of such “periodic density matrices”. These new objects
are closely related to the so-called Bloch waves decomposition classically used in Solid
State Physics, as we shall see below.

3.2. Bloch waves decomposition

Let Q = [−1
2;+1

2[3 be the unit cube ofR3 centered at 0. We denote byQ� =
[−π;+π [3 the unit cell of the dual (or reciprocal) lattice associated toZ3. In full
generality, while working with a general periodic lattice (with unit cell still denoted
by Q), Q� is the so-called Brillouin zone associated to the dual lattice (see, for example,
[45, Section XIII-16]).

In the sequel, we shall denote byK a self-adjoint operator inL2(R3), which is aimed
at being the “periodic density matrix” we are looking for, and that enjoys the following
properties:

(H1) K commutes with the translations which leave the periodic latticeZ3 invariant;
namely

∀k ∈ Z3, τk K =Kτk,

with τk being defined by

τkϕ = ϕ(· + k)

for any functionϕ on R3.
(H2) 0� K � 1, in the sense of self-adjoint operators inL2(R3), with 1 being the

identity operator onL2(R3).
Because of (H1),K is not a compact operator. However, taking advantage of this

invariance property ofK , we shall be able to decomposeK into a continuous family of
compact, and even trace-class, operators, whose spectral decomposition is therefore very
simple. It is classical to study the spectral resolution ofK as an operator onL2(R3) with
the help of the so-called Bloch waves decomposition ofK which has been introduced
by Floquet [20] in the one dimensional case and by Bloch [7] in the general case. We
shall explain now the main ingredients of this method following mainly the formalism
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of Reed and Simon [45, Section XIII-16] together with the book by Conca, Planchard
and Vanninathan [16]. Among the wide literature which is devoted to the Bloch waves
decomposition (and some applications), we refer more specifically the reader to [2,15,
17–19,22,24,56].

The spirit of this decomposition is the following: We may construct a decomposition
of L2(R3) according to this invariance by translation. For this purpose, we define
H= L2(Q�;L2(Q)). Then, there is an isometryU betweenL2(R3) andH, the so-called
Floquet operator, defined byU :L2(R3)→H and

(Uϕ)ξ(x)=
∑
k∈Z3

e−ik · ξϕ(x + k), for a.e.ξ ∈Q�, x ∈Q, (3.17)

for anyϕ in the Schwartz classS(R3). One may check (see [45]) thatU is unitary from
L2(R3) ontoH and that the inverse ofU is U ∗ defined, for allξ �→ gξ in H, by:

(U ∗g)(x + k)=
∫
Q�

eik · ξgξ (x)
dξ

(2π)3
, (3.18)

for all k ∈ Z3, for a.e.x ∈Q. We write down explicitly the fact thatU is an isometry,
using (3.17) and (3.18), and we obtain the following identity

(ϕ;ψ)L2(R3) =
∫
Q�

(
(Uϕ)ξ ; (Uψ)ξ

)
L2(Q)

dξ

(2π)3
, (3.19)

for any functionsϕ andψ in L2(R3), from which we also infer that, in particular:

‖ϕ‖2
L2(R3) =

∫
Q�

‖(Uϕ)ξ‖2
L2(Q)

dξ

(2π)3
. (3.20)

Let us make a few comments on the definition (3.17). First of all, the expression
appearing in the right-hand side of (3.17) may be seen as a Fourier series expansion
with respect to theξ variable, and whose coefficients lie inL2(Q). Next, it is clear
from (3.17) that e−i x·ξ (Uϕ)ξ(x) is Q-periodic. Such functions are often called quasi-
periodic functions with quasi-momentumξ . They are known asBloch wavesin the Solid
State Physics literature. It is more convenient (and we shall always do it in the following)
to look at(Uϕ)ξ as a function lying inL2

ξ (Q), with

L2
ξ (Q)= {

ϕ ∈ L2
loc(R

3)/ϕ(x + k)= ei k·ξϕ(x),∀k ∈ Z3, for a.e.x ∈Q
}
,

or, equivalently,

L2
ξ (Q)= {

ϕ ∈L2
loc(R

3)/e−i ξ ·xϕ(x) is Q-periodic
}
.

It is clear from the second formulation, thatL2
ξ (Q), endowed with the usual Hilbert

scalar product onL2(Q), is a Hilbert space which is isomorphic toL2(Q).
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With the help of the isomorphismU betweenL2(R3) andH, we now return to the
spectral analysis of the operatorsK satisfying (H1) by following [45].

To the above decomposition of functions inL2(R3) into Bloch waves corresponds
a so-called direct integral decomposition ofK in the sense that there exists a unique
function ξ �→ Kξ in L∞(Q�;L(L2

ξ (Q))) (in that follows,L(X) denotes the space of
bounded linear operators from X into itself) such that, for any functionϕ in L2(R3) and
almost everyξ in Q�:

(UKϕ)ξ =Kξ (Uϕ)ξ . (3.21)

Moreover, we also have:

sup
ξ∈Q�

‖Kξ‖L(L2
ξ
(Q)) = ‖K‖L(L2(R3)). (3.22)

And we shall write

K =
∫
Q�

Kξ

dξ

(2π)3
(3.23)

in order to refer to the decomposition (3.21) ofK .
The spectral analysis ofK now reduces to the spectral analysis of the family of self-

adjoint operatorsKξ ∈ L(L2
ξ (Q)), the parameterξ varying in Q�. We now enter the

details of such a decomposition for a special class of operators satisfying (H1) and (H2)
which will appear below in the setting of the periodic reduced Hartree–Fock and the
periodic Hartree–Fock models.

From now on, let us denote byK an arbitrary self-adjoint operator satisfying (H1)
and (H2). We assume that there exists a kernel representation ofK of the form

Kϕ(x)=
∫
R3

ρ(x;y)ϕ(y) dy,

say for any functionϕ in S(R3), with ρ(·; ·) ∈ L2
loc(R

3 × R3). Note that (H1) is then
equivalently written

ρ(x + k;y + k)= ρ(x;y), for everyk ∈ Z3, a.e. onR3×R3, (3.24)

while the self-adjointness ofK simply reads

ρ∗(x;y)= ρ(y;x),
where z∗ denotes the complex conjugate ofz (∈ C). We shall now impose further
conditions on the kernelρ.

As a consequence of the definition and of the uniqueness of the decomposition (3.23)
of K , we deduce that each operatorKξ is self-adjoint [45]. Moreover, we have the
following

LEMMA 3.3. – LetK = ∫
Q� Kξ

dξ

(2π)3
. Then,(H2) is equivalent to:
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(H2)′ 0 � Kξ � 1 in the sense of self-adjoint operators inL(L2
ξ (Q)), and for almost

everyξ in Q�.

We are searching for operatorsK for which theKξ ’s are Hilbert–Schmidt, and more
specifically, we shall rely upon the following.

LEMMA 3.4. – Let K = ∫
Q� Kξ

dξ

(2π)3
. Then the following two properties are

equivalent:
(i)

ρ ∈L2(Q×R3)∩L2(R3×Q
)
. (3.25)

(ii) For almost everyξ in Q�, Kξ is a Hilbert–Schmidt operator with kernel
ρ(ξ ;x;y), andρ(ξ ;x;y) ∈L2(Q�;L2(Q×Q)).

Moreover, ifK satisfies(i) or (ii), we have

∫
Q�

dξ

(2π)3

∫∫
Q×Q

|ρ(ξ ;x;y)|2 dx dy =
∫∫

Q×R3

|ρ(x;y)|2 dx dy. (3.26)

In addition,ρ andρ(ξ ; ·; ·) are related as follows: For almost everyx andy in Q, and
ξ in Q�,

ρ(ξ ;x;y)= ∑
k∈Z3

e−ik·ξ ρ(x + k;y)= ∑
k∈Z3

e+ik·ξρ(x;y + k), (3.27)

hence

ρ(x;y)=
∫
Q�

ρ(ξ ;x;y) dξ

(2π)3
. (3.28)

Proof of Lemma 3.3. –The proof mimics that of (3.22), which may be found in [45,
Section XIII.16 ] (proof of Theorem XIII-83). We shall partially reproduce the argument
here for the sake of consistency.

In virtue of (3.22), and since (H2) implies in particular that

‖K‖L(L2(R3)) � 1,

it just remains to check thatKξ � 0 for almost everyξ ∈ Q� as soon asK � 0 (the
reverse implication being even easier to prove).

Following [45], we choose a dense subset{βk}k�1 of the unit sphere ofL2(Q), and
we take an arbitrary functionf � 0 in L1(Q�). We check now that, for everyk � 1,

∫
Q�

f (ξ)(Kξ βk;βk)L2(Q)

dξ

(2π)3
� 0.

Our claim will follow then immediately, since we already know that the(Kξ βk;βk)’s
belong toL∞(Q�). Let us first note that

√
f belongs toL2(Q�). Then, if we set

gk = U ∗(
√
f βk), gk ∈ L2(R3), and by using the definition (3.21) ofKξ together with

the definition (3.19) of the scalar product onH, we have
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∫
Q�

f (ξ)(Kξ βk;βk)L2(Q)

dξ

(2π)3
=

∫
Q�

(
Kξ

√
f (ξ)βk;

√
f (ξ)βk

)
L2(Q)

dξ

(2π)3

=
∫
Q�

(
Kξ (Ugk)ξ ; (Ugk)ξ

)
L2(Q)

dξ

(2π)3

=
∫
Q�

(
(UKgk)ξ ; (Ugk)ξ

)
L2(Q)

dξ

(2π)3

= (K gk;gk)L2(R3) � 0,

because of (H2). ✷
The proof of Lemma 3.4 is based upon the following result that we shall use several

times in the sequel:

LEMMA 3.5. – Let (un(ξ ; ·))n�1 be a Hilbert basis ofL2
ξ (Q) for almost everyξ in

Q�, such thatξ �→ un(ξ ; ·) (that we shall simply denote byun in the following) belongs
to H. Then, if we setϕn =U ∗un and, for everyp in Z3,

ϕn,p = τp ϕn =
∫
Q�

eip·ξun(ξ ;x) dξ

(2π)3
, (3.29)

the family(ϕn,p)n�1,p∈Z3 is a Hilbert basis ofL2(R3).

Remark3.3. – Before giving the proof of Lemma 3.5, and then the one of Lemma 3.4,
let us first note that such a basis exists. Indeed, if(un) is a given Hilbert basis ofL2(Q)

consisting ofQ-periodic functions(think, for example, ofun = e2iπn·x, n ∈ Z3), then
un(ξ ;x)= eiξ ·xun(x) provides the desired example.

Proof of Lemma 3.5. –Let (un)n ∈H and(ϕn,p)n,p be defined as in the statement of
the above lemma. We first show that the(ϕn,p)n�1,p∈Z3’s form an orthonormal family in
L2(R3). Indeed, letn,m � 1 and letp,q ∈ Z3. Then, using first the definition (3.19) of
the Hilbert scalar product onH, the definition (3.29) of(ϕ)n,p, next the orthonormality
of un(ξ ; ·) andum(ξ ; ·), and finally the fact that∫

Q�

eip·ξ
dξ

(2π)3
= δp,0,

for everyp ∈ Z3 (δ·,· being the Kronecker symbol), we have∫
R3

ϕn(x + p)ϕ∗m(x + q) dx =
∫
Q�

(
(Uϕn,p)ξ ; (Uϕm,q)ξ

)
L2

ξ
(Q)

dξ

(2π)3

=
∫
Q�

ei(p−q)·ξ dξ

(2π)3

∫
Q

un(ξ ;x) u∗m(ξ ;x) dx

= δn,m

∫
Q�

ei(p−q)·ξ dξ

(2π)3
= δn,m δp,q .
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We now check that the Parseval identity holds, thus proving our claim. Indeed, let
ψ ∈ L2(R3), then ∑

n�1

∑
p∈Z3

∣∣∣∣
∫
R3

ψ(x) ϕ∗n(x + p)dx

∣∣∣∣
2

=∑
n�1

∑
p∈Z3

∣∣∣∣
∫
Q�

(
(Uψ)ξ ; (Uϕn,p)ξ

)
L2

ξ
(Q)

dξ

(2π)3

∣∣∣∣
2

=∑
n�1

∑
p∈Z3

∫∫
Q�×Q�

eip·(ξ−ξ ′)((Uψ)ξ ;un(ξ ; ·))L2
ξ
(Q)

× (
(Uψ)ξ ′ ;un(ξ

′; ·))∗
L2

ξ ′ (Q)

dξ dξ ′

(2π)6

=∑
n�1

∫
Q�

dξ

(2π)3

∣∣∣∣
∫
Q

(Uψ)ξ(x) u
∗
n(ξ ;x) dx

∣∣∣∣
2

(3.30)

=
∫
Q�

‖(Uψ)ξ‖2
L2

ξ
(Q)

dξ

(2π)3
(3.31)

= ‖ψ‖2
L2(R3), (3.32)

where (3.30) follows from the Poisson formula, (3.31) from the Parseval identity, and
(3.32) from (3.20). ✷

We may turn now to the

Proof of Lemma 3.4. –Let (un)n and(ϕn,p)n,p be defined as in Lemma 3.5. With the
help of Lemma 3.5, and using first the Parseval identity inL2(R3), and then the definition
of ρ as the kernel ofK , we have∫∫

Q×R3

|ρ(x;y)|2 dx dy =
∫
Q

dx
∑
n�1

∑
p∈Z3

∣∣∣∣
∫
R3

ρ(x;y) ϕ∗n(y + p)dy

∣∣∣∣
2

=∑
n�1

∑
p∈Z3

‖Kϕn,p‖2
L2(Q)

=∑
n�1

‖Kϕn‖2
L2(R3) (3.33)

=∑
n�1

∫
Q�

‖Kξ un(ξ ; ·)‖2
L2(Q)

dξ

(2π)3
, (3.34)

where (3.33) comes from (H1), and (3.34) from the definitions ofKξ and of the scalar
product onH. From (3.34), we obtain in particular, that

∑
n�1 ‖Kξun(ξ ; ·)‖2

L2(Q)
is finite

for almost everyξ in Q� as soon as (3.25) holds true; this is precisely the definition ofKξ

as an Hilbert–Schmidt operator onL2
ξ (Q), whose kernelρ(ξ ; ·; ·) belongs toL2(Q×Q)

for almost everyξ in Q� (see, for example, [44]). Therefore, (ii) holds. If we go back to
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(3.34), we now have

∫
Q�

∑
n�1

‖Kξ un(ξ ; ·)‖2
L2(Q)

dξ

(2π)3
=

∫
Q�

dξ

(2π)3

∫∫
Q×Q

|ρ(ξ ;x;y)|2 dx dy,

whence (3.26). It is easily seen that the same proof gives in fact the proof of the converse
implication (ii)⇒ (i) since at each step of the proof we have argued by equivalence.

Let us now prove (3.27) and (3.28). For almost everyy fixed in Q, we know
from (3.25) thatρ(·;y) lies in L2(R3). Next, (3.27) and (3.28) are two equivalent
formulations of the claim thatρ(ξ ;x;y) is obtained by applying the transformationU
in x toρ(x;y). By the way, let us note that, because of (3.20), this claim provides another
proof of (3.26). Let us check that (3.27) holds. Letϕ be fixed, say inS(R3), we check
successively that

(UKϕ)ξ(x)=
∑
k∈Z3

e−ik·ξ (Kϕ)(x + k)

= ∑
k∈Z3

e−ik·ξ
∫
R3

ρ(x + k;y)ϕ(y) dy

= ∑
k∈Z3

e−ik·ξ
∫
R3

ρ∗(y;x + k)ϕ(y) dy

= ∑
k∈Z3

e−ik·ξ
∫
Q�

dξ ′

(2π)3

∫
Q

∑
l∈Z3

eil·ξ
′
ρ∗(y + l;x + k)(Uϕ)ξ ′(y) dy (3.35)

= ∑
k∈Z3

e−ik·ξ
∫
Q�

dξ ′

(2π)3

∫
Q

∑
l∈Z3

eil·ξ
′
ρ(x + k − l;y)(Uϕ)ξ ′(y) dy

= ∑
k∈Z3

e−ik·ξ
∫
Q�

dξ ′

(2π)3

∫
Q

eik·ξ
′ ∑
l∈Z3

e−il·ξ ′ρ(x + l;y)(Uϕ)ξ ′(y) dy

=
∫
Q

∑
k∈Z3

e−ik·ξρ(x + k;y)(Uϕ)ξ(y) dy (3.36)

=Kξ(Uϕ)ξ(x)=
∫
Q

ρ(ξ ;x;y)(Uϕ)ξ (y) dy,

with (3.19) to deduce (3.35), and the Poisson formula to obtain (3.36). This proves our
claim. ✷

We are now ready to state the definition of the admissible “periodic density matrices”
we shall work with.

Let K = ∫
Q� Kξ

dξ

(2π)3
be a self-adjoint operator inL2(R3) satisfying (H1). We shall

say thatK is an admissible periodic density matrixif K satisfies in addition to (H1) the
following properties (H2)–(H4):

(H2) 0� K � 1,
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(H3) for almost everyξ in Q�, Kξ is a trace-class operator onL2
ξ (Q), and

∫
Q�

TrL2
ξ
(Q)Kξ

dξ

(2π)3
= 1, (3.37)

(H4) for almost everyξ in Q�,−�ξ Kξ is a trace-class operator onL2
ξ (Q), and

∫
Q�

TrL2
ξ
(Q)[−�ξ Kξ ] dξ

(2π)3
<+∞, (3.38)

where−�ξ is a notation for the operator eiξ ·x(−�per)e−iξ ·x acting onL2
ξ (Q), and

with −�per denoting the Laplace operator associated to periodic boundary conditions
in Q. Actually, −�ξ is equivalently defined by−� = ∫

Q�−�ξ
dξ

(2π)3
according to the

definitions (3.21) and (3.23) of the Bloch waves decomposition (see [45]). The set of
all admissible periodic density matrices is denoted byK. We collect in the forthcoming
Proposition 3.2 various properties of the periodic density matrices inK, that have been
proved in the course of this section. But, before that, let us introduce some functional
spaces: For everyξ in Q�, and for every 1� p �+∞,

L
p
ξ (Q)= {

ϕ ∈L
p
loc

(
R3)/τkϕ = ei k·ξϕ,∀k ∈ Z3},

and

H 1
ξ (Q)= {

ϕ ∈H 1
loc

(
R3)/τkϕ = ei k·ξϕ,∀k ∈ Z3}.

PROPOSITION 3.2. – LetK belong toK. Then,
(i) K satisfies the equivalent properties given in Lemma3.4.

Letρ(ξ ; ·; ·) ∈ L2(Q�;Q×Q) denote the Hilbert–Schmidt kernel ofKξ .
(ii) For almost everyξ in Q�, there exists a complete set of eigenfunctions

(un(ξ ; ·))n�1 of Kξ in L2
ξ (Q) corresponding to the non-increasing sequence of

eigenvalues0 � λn(ξ) � 1 (counted with their multiplicity) such thatun(ξ ; ·) ∈
H 1

ξ (Q), ξ �→ un(ξ ; ·) ∈H, and such that

ρ(ξ ;x;y)=∑
n�1

λn(ξ) un(ξ ;x) u∗n(ξ ;y),

for almost everyξ in Q�.
(iii) For almost everyξ in Q�, x �→ ρ(ξ ;x;x) is periodic, non-negative, belongs to

L1
unif(Q), and may be written

ρ(ξ ;x;x)=∑
n�1

λn(ξ) |un(ξ ;x)|2 a.e. onQ.
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Hence,TrL2
ξ
(Q)Kξ = ∫

Q ρ(ξ ;x;x) dx. In addition, we may defineρ(x;x) by

ρ(x;x)=
∫
Q�

ρ(ξ ;x;x) dξ

(2π)3
, (3.39)

and ρ(x;x) is a Q-periodic, non-negative function inL1
unif(Q). And, we also

have ∫
Q�

TrL2
ξ
(Q)Kξ

dξ

(2π)3
=

∫
Q�

dξ

(2π)3

∫
Q

ρ(ξ ;x;x) dx

=
∫
Q�

∑
n�1

λn(ξ)
dξ

(2π)3

=
∫
Q

ρ(x;x) dx = 1. (3.40)

(iv) (H4) writes∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
=

∫
Q�

∑
n�1

λn(ξ)
dξ

(2π)3

∫
Q

|∇un(ξ ;x)|2 dx <+∞. (3.41)

Let us now turn to the thermodynamic limit problem for the RHF model.

4. The reduced Hartree–Fock model

This section is devoted to the proof of Theorem 2.2 which has been stated in Section 2.
It is organized as follows. We begin with the hardest part of the work in Subsection 4.1,
which consists in verifying that the lower limit of the energy per unit volume may be
bounded from below by the periodic RHF model. Subsection 4.2 is then devoted to the
proof of Theorem 2.1; that is of the well-posedness of the periodic RHF model. At last,
with a minimizer of this periodic model at hand, we are able to check in Subsection 4.3
that the upper limit of the energy per unit volume may be compared from above by the
periodic RHF model.

4.1. Lower limit of the energy per unit volume

In this section, we bound from below the lower limit of
IRHF
Λ

|Λ| as defined in (2.10)–
(2.11) by the energy of the periodic RHF model (2.17)–(2.18). For the sake of clarity, let
us recall here the definitions of these problems:

IRHF
Λ = inf

{
ERHF

Λ (K)+ 1

2
UΛ;K ∈KΛ

}
,

ERHF
Λ (K)= Tr

[
(−�− VΛ)K

]+ 1

2
D(ρ,ρ),

IRHF
per = inf

{
ERHF

per (K); K ∈K
}
,
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ERHF
per (K)=

∫
Q�

TrL2
ξ
(Q)

[−�Kξ

] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ),

where the meaning ofρ = ρ(x;x) is made precise in Proposition 3.2.
Of course, our argument will still applymutatis mutandis(this is even simpler) to the

smeared nuclei case (see (2.12), (2.19), (2.20)). We concentrate ourselves in the sequel
on the point nuclei case.

We shall use in a crucial way the fact that the RHF functionalERHF
Λ (K) is convex

with respect to the density matrixK , whenK belongs to the convex setKΛ, for any
Λ⊂ Z3. Indeed, this convexity property will allow us to use the∼-transform trick that
we have previously applied to the TFW model in [11]. Let us emphasize the fact that,
since we fail in obtaining local bounds on the electronic density in the RHF model (say,
for example,L∞ bounds onρΛ independent ofΛ), this is the only method among all the
methods presented in [11] which seems to go through to the RHF model.

The sequel of this subsection is devoted to the proof of the following

PROPOSITION 4.1. – LetΛ be a Van Hove sequence. Then,

lim inf
Λ→∞

IRHF
Λ

|Λ| � IRHF
per +

M

2
,

whereIRHF
per is defined by(2.17)–(2.18).

Proof. –From now on, we shall denote byKΛ a minimizer ofIRHF
Λ , by ρΛ(·; ·) its

Hilbert–Schmidt kernel and byρΛ = ρΛ(x;x) the (unique) corresponding electronic
density. In particular, using the fact thatKΛ admits a complete set of orthonormal
eigenfunctions(ψn)n�1 belonging toH 1(R3), associated to the eigenvalues 0� µn � 1
(counted with their multiplicity), we may write

ρΛ(x;y)=
∑
n�1

µnψn(x)ψ
∗
n (y) and ρΛ(x;x)=

∑
n�1

µn|ψn(x)|2,

where, here and in all that follows, we have on purpose omitted to mention the
dependence of theµn’s and of theψn’s on Λ, in order to simplify the notation. Let
us recall that

TrL2(R3)KΛ =
∑
n�1

µn

∫
R3

|ψn(x)|2 dx = |Λ|, (4.1)

and that

0 � TrL2(R3)[−�KΛ] =
∑
n�1

µn

∫
R3

|∇ψn|2dx � C |Λ|, (4.2)

thanks to (3.10a). Generally speaking, the idea of the strategy detailed below, and which
draws its inspiration from [11], is the following. We shall build a particular convex
combination from the operatorsKΛ, which is more or less a minimizing sequence of
IRHF
Λ , but which converges to a periodic density matrix, asΛ goes to infinity. Moreover,
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this periodic density matrix will turn to be a minimizer ofIRHF
per . By analogy with the

definition of the∼-transform for functions (see Definition 3 in Section 2), we set

K̃Λ = 1

|Λ|
∑
k∈Λ

τkKΛτ−k. (4.3)

Then, it is easy to check that̃KΛ belongs toKΛ, that the Hilbert–Schmidt kernel of̃KΛ

is

ρ̃Λ(x;y)= 1

|Λ|
∑
k∈Λ

ρΛ(x + k;y + k),

while ρ̃Λ(x;x) coincides with the usual∼-transform ofρΛ as introduced in [11].
In particular, K̃Λ also admits a complete set of orthonormal eigenfunctions(ϕn)n�1

belonging toH 1(R3), associated to the eigenvalues 0� λn � 1 (counted with their
multiplicity), and, therefore, we may write as forKΛ

ρ̃Λ(x;y)=
∑
n�1

λnϕn(x)ϕ
∗
n(y) and ρ̃Λ(x;x)=

∑
n�1

λn|ϕn(x)|2.

Of course, the analogues of (4.1) and (4.2) remain true forK̃Λ.
The proof is organized as follows. We first check that the sequenceK̃Λ defined by (4.3)

converges in a sense to be made precise later to some operatorK̃ belonging toK; that is,
to a periodic density matrix (Step 1). Moreover, using the two facts that

√
ρ̃Λ is bounded

in H 1
unif(R

3) (Corollary 3.2) and that its limit is necessarily periodic (Lemma 3.2), we
already infer that

√
ρ̃Λ converges weakly inH 1

loc(R
3), strongly inL

p
loc(R

3), for every
1� p < 6, and almost everywhere onR3 to

√
ρ̃, with ρ̃ beingQ-periodic, non-negative,

and such that
√
ρ̃ ∈H 1

per(Q). The second step, which is much more involved, consists in

verifying that the limit ρ̃ of the densityρ̃Λ associated toK̃Λ is also theQ-periodic
density which is associated to the periodic density matrixK̃ according to (3.39) in
Subsection 3.2, Proposition 3.2 – (iii) (Step 2). Finally, we bound from below the lower
limit of the energy per unit volume byERHF

per (K̃) (Step 3), thereby concluding the proof of
Proposition 4.1. Let us already say, at this stage, that thanks to the proof of the upper limit
(and thus of the limit), of the energy per unit volume we shall finally deduce thatK̃ is a
minimizer ofIRHF

per , and thereforẽρ is simplyρper, with ρper denoting the unique periodic
electronic density that corresponds to any minimizer ofIRHF

per . In particular, the whole
sequence

√
ρ̃Λ converges (and not only a subsequence), and its limit is independent of

the choice of the Van Hove sequenceΛ.

Step 1. –We first check that the sequencẽKΛ converges to some operator̃K
belonging to the set of periodic density matricesK, which is defined through properties
(H1)–(H4) in Subsection3.2 (equivalent to Definition2 in Section2).

Since the sequence of operatorsK̃Λ is bounded in operators norm, we may extract a
subsequence if necessary in such way thatK̃Λ converges to some bounded operatorK̃

in L2(R3) for the weak convergence of operators; that is

(K̃Λϕ;ψ)→ (K̃ϕ;ψ) asΛ→∞,
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for all ϕ andψ in L2(R3). In particular,K̃ is a self-adjoint operator inL2(R3) and
0� K̃ � 1. Therefore,K̃ enjoys (H2).

Let us check now that it also satisfies (H1); that is, let us prove that
(a) K̃ commutes with the translations which leaveZ3 invariant.
Let τ be such a translation. We fixϕ andψ in L2(R3), and we intend to prove that

([K̃, τ ]ϕ;ψ)
L2(R3)

= 0.

For this purpose, we make use of a standard argument of [11] which is based upon the
fact that the sequenceΛ is a Van Hove sequence. We just outline this argument here. We
have

[K̃Λ, τ ] = 1

|Λ|
( ∑

k∈Λ
τ−kKΛτkτ −

∑
k∈Λ

ττ−kKΛτk

)

= 1

|Λ|
( ∑

k∈τΛ\Λ
ττ−kKΛτk −

∑
k∈Λ\τΛ

ττ−kKΛτk

)
.

Hence ∣∣([K̃Λ, τ ]ϕ;ψ)L2(R3)

∣∣ � |Λ \ τΛ|
|Λ| ‖KΛ‖‖ϕ‖L2(R3)‖ψ‖L2(R3) = o(1)

asΛ goes to infinity. As the left-hand side converges to([K̃, τ ]ϕ;ψ)L2(R3), this shows
the expected invariance.

According to the results and the notation of Section 3.2, we may writeK̃ =∫
Q� K̃ξ

dξ

(2π)3
with K̃ξ being a self-adjoint operator inL2

ξ (Q) such that 0� K̃ξ � 1, for
almost everyξ in Q�.

Having checked that (H1) and (H2) are satisfied byK̃ , we next want to verify that̃K
satisfies (H3). Namely, we now want to check that,

(b) for almost everyξ in Q�, the operatorK̃ξ has a finite trace onL2
ξ (Q), and

∫
Q�

TrL2
ξ
(Q)K̃ξ

dξ

(2π)3
= 1.

According to Lemma 3.5 in Subsection 3.2, we denote by(un(ξ ; ·))n�1 an arbitrary
Hilbert basis ofL2

ξ (Q) for almost everyξ in Q�, and byϕn,p = τ−p ϕn the corresponding

Hilbert basis ofL2(R3). (Note that in fact, sinceK and theK̃ξ ’s are non-negative, it
would be sufficient to make the following argument forone given basis – see [44].)
Then, we check successively that:

1= 1

|Λ|TrL2(R3)KΛ = 1

|Λ|
∑
n�1

∑
p∈Z3

(KΛϕn,p;ϕn,p)

� 1

|Λ|
∑
n�1

∑
p∈Λ

(KΛϕn,p;ϕn,p)=
∑
n�1

1

|Λ|
∑
p∈Λ

(τpKΛτ−p · ϕn;ϕn)

=∑
n�1

(K̃Λϕn;ϕn), (4.4)
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the inequality in the above string of equalities coming from the positiveness ofK . Then,
because of the weak convergence ofK̃Λ to K̃ , (K̃Λϕn;ϕn) converges to(K̃ϕn;ϕn), for
everyn � 1, asΛ goes to infinity. Now, sincẽKΛ � 0, we know that the terms of the
series appearing in the right-hand side of (4.4) are all non-negative. We may then appeal
to the discrete version of the Fatou lemma to infer that

∑
n�1(K̃ϕn;ϕn) <+∞, and that

lim inf
Λ→∞

∑
n�1

(K̃Λϕn;ϕn) �
∑
n�1

(K̃ϕn;ϕn).

Owing to the definitions (3.21) of the notatioñK = ∫
Q� K̃ξ

dξ

(2π)3
and (3.19) of the scalar

product onH, we have

∑
n�1

(K̃ϕn;ϕn)=
∑
n�1

∫
Q�

(
(UK̃ϕn)ξ ; (Uϕn)ξ

)
L2(Q)

dξ

(2π)3

=∑
n�1

∫
Q�

(
K̃ξun(ξ ; ·);un(ξ ; ·))L2(Q)

dξ

(2π)3

=
∫
Q�

∑
n�1

(
K̃ξun(ξ ; ·);un(ξ ; ·))L2(Q)

dξ

(2π)3

=
∫
Q�

TrL2
ξ
(Q)K̃ξ

dξ

(2π)3
.

In particular, collecting with the above string of inequalities, we already know that, for
almost everyξ in Q�, K̃ξ is a trace-class operator onL2

ξ (Q) and that

∫
Q�

TrL2
ξ
(Q)K̃ξ

dξ

(2π)3
� 1. (4.5)

Moreover, denoting bỹρ(ξ ;x;y), the Hilbert–Schmidt kernel of̃Kξ , we may give a
sense tõρ(ξ ;x;x) as a non-negative periodic function inL1(Q), such that TrL2

ξ
(Q)K̃ξ =∫

Q ρ̃(ξ ;x;x) dx. In addition, thanks to (4.5), we may associate toK̃ , the non-negative

Q-periodic densityρ
K̃

, which is defined byρ
K̃
(x;x) = ∫

Q� ρ̃(ξ ;x;x) dξ

(2π)3
, and which

belongs toL1(Q). In order to conclude the proof of (H3), it remains to show that

∫
Q�

TrL2
ξ
(Q)K̃ξ

dξ

(2π)3
= 1. (4.6)

To prove this claim we shall actually prove in Step 2 below that

ρ̃(x)= ρ
K̃
(x;x)=

∫
Q�

ρ̃(ξ ;x;x) dξ

(2π)3
(4.7)
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for almost everyx in Q, whereρ̃ is the limit of ρ̃Λ. Whence (4.6), thanks to (3.16) in
Corollary 3.2.

Admitting (4.7), for a while, we now claim that̃K satisfies (H4) i.e. that
(c) for almost everyξ in Q�,−�ξ K̃ξ is a trace-class operator onL2

ξ (Q), such that

∫
Q�

TrL2
ξ
(Q)[−�ξ K̃ξ ] dξ

(2π)3
<+∞, (4.8)

by proving that

lim inf
Λ→∞

1

|Λ| TrL2(R3)[−�KΛ]�
∫
Q�

TrL2
ξ
(Q)[−�ξ K̃ξ ] dξ

(2π)3
. (4.9)

The proof of (4.9) follows the same lines as the proof of (4.5). Indeed, let(un(ξ ; ·))n�1

andϕn,p = τ−p ϕn be defined as before, with the additional assumptions that(un(ξ ; ·))n�1

∈H 1
ξ (Q) for almost everyξ in Q�, and that theϕn,p ’s belong toH 1(R3). Then, for the

same reasons as before, we find

1

|Λ| TrL2(R3)[−�KΛ] = 1

|Λ|
∑
n�1

∑
p∈Z3

(
KΛ (−�)1/2ϕn,p; (−�)1/2ϕn,p

)

�
∑
n�1

(
K̃Λ (−�)1/2ϕn; (−�)1/2ϕn

)
.

Then, thanks to the weak convergence ofK̃Λ to K̃ , we have, for everyn � 1,

lim
Λ→∞

(
K̃Λ(−�)1/2ϕn; (−�)1/2ϕn

)
= (

K̃(−�)1/2ϕn; (−�)1/2ϕn

)= (
(−�)1/2 K̃(−�)1/2ϕn;ϕn

)
.

Moreover, Fatou’s lemma still applies since, on the one hand, for everyΛ andn, we
get ((−�)1/2 K̃Λ(−�)1/2ϕn;ϕn) � 0; while, on the other hand, we know from (3.10a)
in Proposition 3.1, that1|Λ| TrL2(R3)[−�KΛ] is bounded independently ofΛ. Therefore,
passing to the lower limit asΛ goes to infinity in the above inequalities, we get first that∑

n�1

(−�K̃ϕn;ϕn) <+∞,

and next, that

lim inf
Λ→∞

1

|Λ| TrL2(R3)[−�KΛ]

� lim inf
Λ→∞

∑
n�1

(
(−�)1/2 K̃Λ(−�)1/2ϕn;ϕn

)

�
∑
n�1

(
K̃ (−�)1/2ϕn; (−�)1/2ϕn

)

=
∫
Q�

∑
n�1

(
K̃ξ (−�ξ)

1/2un(ξ ; ·); (−�ξ)
1/2un(ξ ; ·))L2(Q)

dξ

(2π)3
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=
∫
Q�

TrL2
ξ
(Q)[−�ξK̃ξ ] dξ

(2π)3
,

since

(−�)1/2=
∫
Q�

(−�ξ)
1/2 dξ

(2π)3
.

Hence (4.8) and (4.9).
We turn now to the proof of (4.7) (thereby proving (4.6)); that is, the fact that

Step 2. –The limit ofρ̃Λ, ρ̃, and the periodic density associated toK̃ , which is defined
byρ

K̃
= ∫

Q� ρ̃(ξ ;x;x) dξ

(2π)3
, coincide.

We are first looking for
(a)A priori estimates oñρΛ(x;y).
SinceK2

Λ � KΛ, we have

ρΛ(x) �
∫
R3

ρΛ(x;y)ρΛ(y;x) dy =
∫
R3

|ρΛ(x;y)|2 dy (4.10)

almost everywhere onR3. Thanks to (4.10), we first check that

ρ̃Λ(x) �
∫
R3

|ρ̃Λ(x;y)|2 dy, (4.11)

which in particular implies that

ρ̃Λ(x;y) is bounded inL2(Q×R3)∩L2(R3×Q) (4.12)

independently ofΛ, for ρ̃Λ(x) is bounded inL1(Q). Indeed, because of (4.10), we check
successively that

ρ̃Λ(x)= 1

|Λ|
∑
k∈Λ

ρΛ(x + k;x + k)

� 1

|Λ|
∑
k∈Λ

∫
R3

|ρΛ(x + k;y)|2 dy

= 1

|Λ|
∑
k∈Λ

∫
R3

|ρΛ(x + k;y + k)|2dy

�
∫
R3

|ρ̃Λ(x;y)|2 dy,

by convexity. We prove now that

ρ̃Λ(x;y) is bounded inL2
x

(
Q;H 1

y (R
3)

)∩L2
y

(
Q;H 1

x (R
3)

)
(4.13)
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independently ofΛ, or, more precisely, that

∫
Q

dy

∫
R3

∣∣(1−�)1/2
x ρ̃Λ(x;y)

∣∣2
dx � C, (4.14)

whereC denotes here and below a positive constant that is independent ofΛ. We
emphasize the fact that, in the following, we shall use the notation(1− �)1/2

x ρ̃Λ(·, ·)
for the Schwartz kernel of the operator(1− �)1/2K̃Λ, which is also

∑
n�1λn[(1 −

�)1/2ϕn](·) ϕ∗n(·). Indeed, we have

∫
Q

dy

∫
R3

|(1−�)1/2
x ρ̃Λ(x;y)|2 dx

=
∫
Q

dy

∫
R3

∣∣∣∣ 1

|Λ|
∑
k∈Λ

(1−�)1/2
x ρΛ(x + k;y + k)

∣∣∣∣
2

dx

� 1

|Λ|
∑
k∈Λ

∫
Q

dy

∫
R3

∣∣(1−�)1/2
x ρΛ(x + k;y + k)

∣∣2 dx
= 1

|Λ|
∫

Γ (Λ)

dy

∫
R3

∣∣(1−�)1/2
x ρΛ(x;y)

∣∣2
dx

� 1

|Λ|
∫
R3

dy

∫
R3

∣∣(1−�)1/2
x ρΛ(x;y)

∣∣2
dx

= 1

|Λ|
∫∫

R3×R3

∣∣∣∣∑
n�1

µn

[
(1−�)1/2ψn

]
(x)ψ∗

n (y)

∣∣∣∣
2

dx dy

= 1

|Λ|
∫
R3

∑
n�1

µ2
n

∣∣(1−�)1/2ψn(x)
∣∣2dx

� 1

|Λ| TrL2(R3)[(1−�)KΛ].

The first inequality is deduced by a convexity argument, and the last one comes from
(4.1), (4.2) and the fact that 0� µn � 1. Finally, we conclude with the help of (3.10a)
in Proposition 3.1. An easy consequence of (4.13) is thatρ̃Λ(x;y) is bounded in
H 1

unif(R
3×R3). Thus, up to a subsequence, it converges to some functionρ̄(x;y) weakly

in H 1
loc(R

3×R3), strongly inLp
loc(R

3×R3), for every 1� p < 3 (by the Rellich theorem
for bounded domains ofR6), and almost everywhere onR6. Actually, because of the
weak convergence of̃KΛ to K̃ , ρ̄(x;y) is nothing butρ̃(x;y), the Schwartz kernel of
K̃ . Note that, in particular, we obtain from (4.12) (respectively (4.14)) that, up to a
further subsequence,̃ρΛ(x;y) (respectively(1− �)1/2

x ρ̃Λ(x;y)) converges tõρ(x;y)
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(respectively(1−�)1/2
x ρ̃(x;y)) weakly inL2(Qx ×R3

y). Therefore, we have

∫
Q

dx

∫
R3

|ρ̃(x;y)|2 dy <+∞,

and ∫
Q

dy

∫
R3

∣∣(1−�)1/2
x ρ̃(x;y)∣∣2

dx <+∞.

The first bound provides another proof of the fact thatK̃ξ is Hilbert–Schmidt onL2
ξ (Q)

for almost everyξ ∈Q�, with kernelρ̃(ξ ;x;y), and thatρ̃(x;y) = ∫
Q� ρ̃(ξ ;x;y) dξ

(2π)3
,

by using Lemma 3.4.
Our next step now consists in showing that

(1−�)1/2
x ρ̃Λ(x + y, y) is bounded inL∞x

(
R3;L1

y(Q)
)
. (4.15)

This claim will be a consequence of the following two bounds. First, sinceρ̃Λ is bounded
in L1

unif(R
3), we clearly have

sup
t∈R3

∑
n�1

λn

∫
t+Q

|ϕn(x)|2 dx � C. (4.16)

Next, we now prove that

sup
t∈R3

∑
n�1

λn

∫
t+Q

∣∣(1−�)1/2ϕn(x)
∣∣2 � C. (4.17)

Indeed, using the fact that the self-adjoint operators(1 − �)1/2KΛ(1 − �)1/2 and
(1−�)1/2K̃Λ(1−�)1/2 are positive and trace-class with Hilbert–Schmidt kernels being
respectively defined by

∑
n�1µn[(1−�)1/2ψn](x)[(1−�)1/2ψn]∗(y) and

∑
n�1λn[(1−

�)1/2ϕn](x)[(1−�)1/2ϕn]∗(y), we may observe that

∑
n�1

λn

∣∣(1−�)1/2ϕn(x)
∣∣2= 1

|Λ|
∑
n�1

µn

∣∣(1−�)1/2ψn(x + k)
∣∣2,

almost everywhere onR3, thanks to the definition of̃KΛ. Therefore, for everyt in R3,∑
n�1

λn

∫
t+Q

∣∣(1−�)1/2ϕn(x)
∣∣2
dx

= 1

|Λ|
∑
n�1

µn

∫
t+Γ (Λ)

∣∣(1−�)1/2ψn(x)
∣∣2 dx

� 1

|Λ|
∑
n�1

µn

∫
R3

∣∣(1−�)1/2ψn(x)
∣∣2
dx
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� C
1

|Λ| Tr[(1−�)KΛ]� C,

because of (3.10a). Let us now prove (4.15). For almost everyx in R3, and by a repeated
use of the Cauchy–Schwarz inequality, we obtain∫

Q

∣∣(1−�)1/2
x ρ̃Λ(x + y, y)

∣∣ dy
=

∫
Q

∣∣∣∣∑
n�1

λn

[
(1−�)1/2ϕn

]
(x + y)ϕ∗n(y)

∣∣∣∣dy

�
∫
Q

( ∑
n�1

λn

∣∣(1−�)1/2ϕn(x + y)
∣∣2

)1/2 ( ∑
n�1

λn |ϕn(y)|2
)1/2

dy

�
(∫

Q

∑
n�1

λn

∣∣(1−�)1/2ϕn(x + y)
∣∣2 dy)1/2(∫

Q

∑
n�1

λn |ϕn(y)|2 dy
)1/2

,

and (4.15) follows, thanks to (4.16) and (4.17).
At this stage, we observe that in particular (4.14) yields

(1−�)1/2
x ρ̃Λ(x + y, y) is bounded inL2

x

(
R3;L2

y(Q)
)
. (4.18)

Therefore, by a standard interpolation argument,

(1−�)1/2
x ρ̃Λ(x + y, y) is bounded inLp

x

(
R3;Lp′

y (Q)
)
, (4.19)

with 1
p
+ 1

p′ = 1, and for every 2� p � +∞. In particular, extracting a further

subsequence if necessary, we may assume that(1− �)1/2
x ρ̃Λ(x + y, y) converges to

(1−�)1/2
x ρ̃(x + y, y) weakly inLp

x (R
3;Lp′

y (Q)), for every 2� p <+∞.
(b) Proof of (4.7).
Let θ be a continuous real-valued function, which is compactly supported in the unit

cubeQ, and let us denoteθΛ =∑
k∈Λ θ(· − k). (Note thatθΛ has compact support in

Γ (Λ).) Then, on the one hand, we have

1

|Λ|TrL2(R3)[KΛ θΛ] = 1

|Λ|
∫
R3

ρΛ θΛ =
∫
Q

ρ̃Λ θ,

and, thus,

lim
Λ→∞

1

|Λ|TrL2(R3)[KΛ θΛ] =
∫
Q

ρ̃(x) θ(x) dx. (4.20)

On the other hand, we now prove that

lim
Λ→∞

1

|Λ|TrL2(R3)[KΛ θΛ] =
∫
Q

dx

∫
Q�

ρ̃(ξ ;x;x) θ(x) dξ

(2π)3
. (4.21)
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Sinceθ is arbitrary, comparing (4.20) and (4.21) completes the proof of (4.7). We now
prove (4.21), and we begin with recalling that the self-adjoint operator(1−�)1/2KΛ(1−
�)1/2 is Hilbert–Schmidt (and even trace-class) onL2(R3), with kernel(1−�)1/2

x (1−
�)1/2

y ρΛ(x, y) = ∑
n�1µn[(1 − �)1/2ψn](x) [(1 − �)1/2ψn]∗(y), for TrL2(R3)[(1 −

�)KΛ]
<+∞. Besides, due to the fact thatθΛ is a continuous function with compact support,
it is a known fact that the self-adjoint operator(1− �)−1/2θΛ(1− �)−1/2 is Hilbert–
Schmidt onL2(R3), whose kernel is denoted byΘΛ(x, y). With these observations, we
write

TrL2(R3)[KΛ θΛ]
= TrL2(R3)

[
(1−�)1/2KΛ(1−�)1/2 (1−�)−1/2θΛ(1−�)−1/2]

=
∫∫

R3×R3

[
(1−�)1/2

x (1−�)1/2
y ρΛ(x, y)

]
ΘΛ(x, y) dx dy

=∑
n�1

µn

∫
R3

dx
[
(1−�)1/2ψn

]
(x)

( ∫
R3

ΘΛ(x, y)
[
(1−�)1/2ψn

]∗
(y) dy

)
(4.22)

thanks to Fubini’s theorem. We shall now use the explicit form of the Hilbert–Schmidt
kernel of(1−�)−1/2θΛ(1−�)−1/2. Indeed, recalling that, by definition of(1−�)−1/2,
F[(1−�)−1/2ϕ](x)= (1+ |x|2)−1/2Fϕ(x) (whereF denotes the Fourier transform), it
is not difficult to verify that, ifϕ is, say, in the Schwartz class, we have

(1−�)−1/2ϕ =G1 � ϕ, (4.23)

where G1 is a function inL1(R3) whose Fourier transform is simply the function
(1+ |x|2)−1/2 (∈ Lp(R3), for every 3< p � +∞). The functionG1 is a special kind
of Bessel functions, and, from [53], for example, we know thatG1 is a non-negative
radially symmetric function, such that

G1(x) � C1 exp
(
−1

2
|x|

)
, for |x| large enough,

and

G1(x)= C2
1

|x|2 + o
(

1

|x|2
)
, as|x| → 0,

for some positive constantsC1 andC2. In particular,G1 actually belongs toL3/2,∞(R3)∩
Lp(R3), for every 1� p < 3

2.
Therefore, for any continuous functionϑ with, say, a compact support, the Schwartz

kernel of(1−�)−1/2ϑ(1−�)−1/2 may be written as
∫

R3 G1(x − z)ϑ(z)G1(z− y) dz.
Then, by definition ofΘΛ,∫

R3

ΘΛ(x, y)
[
(1−�)1/2ψn

]∗
(y) dy

= (1−�)−1/2θΛ(1−�)−1/2([(1−�)1/2ψn

]∗)
(x)
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= (1−�)−1/2(θΛ ψ∗
n )=G1 � (θΛ ψ∗

n ).

Thus, using Fubini’s theorem again,

∑
n�1

µn

∫
R3

dx
[
(1−�)1/2ψn

]
(x)

( ∫
R3

ΘΛ(x, y)
[
(1−�)1/2ψn

]∗
(y) dy

)

=
∫∫

R3×R3

G1(x − y)θΛ(y)

( ∑
n�1

µn

[
(1−�)1/2ψn

]
(x)ψ∗

n (y)

)
dx dy

=
∫∫

R3×R3

G1(x − y)θΛ(y)(1−�)1/2
x ρΛ(x, y) dx dy.

Therefore, we deduce, comparing with (4.22),

1

|Λ| TrL2(R3)[KΛ θΛ]

= 1

|Λ|
∫∫

R3×R3

G1(x − y)θΛ(y)(1−�)1/2
x ρΛ(x, y) dx dy

= 1

|Λ|
∫

Γ (Λ)

dy

∫
R3

G1(x − y)θΛ(y)(1−�)1/2
x ρΛ(x, y) dx

= 1

|Λ|
∑
k∈Λ

∫
Q

dy

∫
R3

G1(x − k − y)θ(y)(1−�)1/2
x ρΛ(x, y + k) dx

= 1

|Λ|
∑
k∈Λ

∫
Q

dy

∫
R3

G1(x − y)θ(y)(1−�)1/2
x ρΛ(x + k, y + k) dx

=
∫
Q

dy

∫
R3

G1(x − y)θ(y)(1−�)1/2
x ρ̃Λ(x, y) dx

=
∫
Q

dy

∫
R3

G1(x)θ(y)(1−�)1/2
x ρ̃Λ(x + y, y) dx.

We now make use of the two facts that(1 − �)1/2
x ρ̃Λ(x + y, y) converges to(1 −

�)1/2
x ρ̃(x + y, y), weakly in, sayL4

x(R
3;L4/3

y (Q)), and thatG(x) θ(y) belongs to
L4/3

x (R3)×L4
y(Q). Therefore,

lim
Λ→∞

1

|Λ| TrL2(R3)[KΛ θΛ] =
∫
Q

dy

∫
R3

G1(x)θ(y)(1−�)1/2
x ρ̃(x + y, y) dx

=
∫
Q

dy

∫
R3

G1(x − y)θ(y)(1−�)1/2
x ρ̃(x, y) dx

=
∫
Q

dx

∫
Q�

θ(x) ρ̃(ξ ;x;x) dξ

(2π)3
.
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Indeed, we first observe that the self-adjoint operator(1−�)−1/2 is bounded onL2(R3)

and commutes with the group of the translations ofZ3. Therefore, we may apply the
abstract Bloch wave decomposition (that is explained in Section 3.2) to(1− �)−1/2,
and we have(1−�)−1/2 = ∫

Q�(1−�)
−1/2
ξ

dξ

(2π)3
, with the operator(1−�)

−1/2
ξ being

defined by(
U(1−�)−1/2ϕ

)
ξ
(x)= (1−�)

−1/2
ξ (Uϕ)ξ =

∫
Q

Gξ(x − y)(Uϕ)ξ (y) dy

thanks to (4.23), for everyϕ in L2(R3), and for almost everyx in Q andξ in Q�, and
where, according to (4.23),

Gξ(t)=
∑
k∈Z3

e−i k·ξG1(t + k).

(Note that, from the definition of(−�)ξ , (1− �)
−1/2
ξ = (1− �ξ)

−1/2.) Finally, we
conclude as follows∫

Q

dy

∫
R3

G1(x − y)θ(y)(1−�)1/2
x ρ̃(x, y) dx

=
∫
Q

θ(y) dy

∫
Q

dx

∫
Q�

Gξ(x − y)
[
(1−�ξ)

1/2
x ρ̃

]
(ξ ;x;y) dξ

(2π)3

=
∫
Q

θ(y) dy
∑
n�1

∫∫
Q×Q�

Gξ(x − y)λn(ξ)
[
(1−�)

1/2
ξ un(ξ, x)

]
u∗n(ξ, y)

dξ dx

(2π)3

=∑
n�1

∫∫
Q×Q�

θ(y)λn(ξ) u
∗
n(ξ, y)

(∫
Q

Gξ(x − y)(1−�)
1/2
ξ un(ξ, x) dx

)
dξ dy

(2π)3

=
∫
Q

θ(y) dy
∑
n�1

∫
Q�

λn(ξ) |un(ξ, y)|2 dξ

(2π)3

=
∫
Q

θ(y) dy

∫
Q�

ρ̃(ξ ;y;y) dξ

(2π)3
.

This completes the proof of (4.21).
The kinetic energy term being settled with (4.9), we now turn to

Step 3. –Lower limit of the sum of the electrostatic terms. Conclusion.

We shall first rewrite the sum of electrostatic terms in a more convenient (and
equivalent) manner which has been introduced in [11, Section 3.4]. We shall only sketch
the argument and refer the reader to [11] for more details. The electrostatic terms in the
energy are the following

−TrL2(R3)

[
VΛKΛ

]+ 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ

=−
∫
R3

VΛρΛ + 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ. (4.24)
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Denoting byfΛ(x)=∑
k∈Λ(

1
|x−k| −

∫
Q

dy

|x−k−y|)= VΛ − χΓ (Λ) �
1
|x| , we rewrite the sum

of the electrostatic terms as follows

1

2

∑
z∈Λ

lim
x→z
x 
=z

[
fΛ(x)− 1

|x − z|
]
+ 1

2

∫
Γ (Λ)

fΛ

−
∫

Γ (Λ)

fΛ ρΛ + 1

2
D(χΓ (Λ) − ρΛ,χΓ (Λ) − ρΛ). (4.25)

We next remark (see [11, Chapter 2]) that we have

lim
Λ→∞

1

|Λ|
∑
z∈Λ

lim
x→z
x 
=z

[
fΛ(x)− 1

|x − z|
]
= lim

Λ→∞ lim
x→0
x 
=0

[
f̃Λ(x)− 1

|x|
]
=M + d, (4.26)

whered is some constant which is related to our choice of normalization for the potential
G and which is defined in [11]. In addition, we have

lim
Λ→∞

1

|Λ|
∫

Γ (Λ)

fΛ = lim
Λ→∞

∫
Q

f̃Λ =
∫
Q

(G+ d)= d, (4.27)

and

lim
Λ→∞

1

|Λ|
∫
R3

fΛ ρΛ = d +
∫
Q

G(y) ρ̃(y) dy. (4.28)

Therefore, if we prove that

lim inf
Λ→∞

1

|Λ|D(χΓ (Λ) − ρΛ,χΓ (Λ) − ρΛ) � DG(ρ̃, ρ̃ ), (4.29)

we shall easily deduce from (4.26), (4.27), (4.28), and the formulation (4.25) of the sum
of the electrostatic terms (4.24) that

lim inf
Λ→∞

1

|Λ|
(
−Tr

[
VΛKΛ

]+ 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ

)

�−
∫
Q

G(y) ρ̃(y) dy + 1

2
DG(ρ̃, ρ̃ )+ M

2
. (4.30)

We now prove (4.29). Let us definegΛ = (χΓ (Λ) − ρΛ) �
1
|x| . It is a standard fact that

1

|Λ|D(χΓ (Λ) − ρΛ,χΓ (Λ) − ρΛ)= 1

|Λ|
∫
R3

|∇gΛ|2 �
∫
Q

|∇g̃Λ|2. (4.31)

From the bound (3.10e) in Proposition 3.1, we deduce∫
Q

|∇g̃Λ|2 � C,
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whereg̃Λ is defined, as usual, bỹgΛ = 1
|Λ|

∑
k∈Λ gΛ(· + k). Thus,∇g̃Λ is bounded in

L2
unif(R

3)3 independently ofΛ. Therefore, extracting a subsequence if necessary, we
may assume that there existsh̃ in L2

unif(R
3)3, such that∇g̃Λ converges tõh ∈L2

unif(R
3)3,

for the weak convergence inL2
loc(R

3)3, and curlh̃ = 0, in the sense of distributions.
Moreover, from Poincaré’s theorem, there existsg̃ in D′(R3) (which is uniquely defined,
up to a constant), such that̃h = ∇g̃, still in the sense of distributions. In addition,
sinceg̃Λ satisfies

−�g̃Λ =−div(∇g̃Λ)= 4π
[
χ̃Γ (Λ) − ρ̃Λ

]
,

we deduce that̃g is a solution to

−div(∇g̃ )=−�g̃ = 4π [1− ρ̃ ], (4.32)

in D′(R3) (see [11]). With (4.31), we obtain

lim inf
Λ→∞

1

|Λ|D(χΓ (Λ) − ρΛ,χΓ (Λ) − ρΛ) �
∫
Q

|∇g̃|2.

Now, we notice that we already know another solution to (4.32), namely

ḡ(x)=
∫
Q

G(x − y)
(
1− ρ̃(y)

)
dy =−

∫
Q

G(x − y)ρ̃(y) dy, (4.33)

thanks to the normalization (2.14) onG. The functionḡ is periodic and satisfies∫
Q

|∇ḡ|2=
∫
Q

−�ḡ · ḡ =DG(ρ̃, ρ̃ ),

thanks to (4.32), for
∫
Q ḡ = 0. We are going to show that

∫
Q

|∇g̃|2 �
∫
Q

|∇ḡ|2. (4.34)

For this purpose, we first remark that∂1g̃ − ∂1ḡ (where∂1 denotes the first derivative
with respect to the first coordinatex1 of R3) is an harmonic function, for̃g andḡ are two
solutions to the same Laplace equation (4.32).

Now, both ∂1g̃ (as the limit of∂1g̃Λ) and ∂1ḡ (by construction, see (4.33)) are in
L2

unif(R
3). Therefore,∂1g̃− ∂1ḡ is an harmonic function which belongs toL2

unif(R
3), and

thus is a constant, that we denote bya1 (use for instance the mean-value inequality). The
same argument applies to the first derivatives with respect to the coordinatesx2 andx3.
Hence we obtain

g̃− ḡ = a · x + b,

wherea = (a1, a2, a3) andb are two fixed vectors ofR3. It follows from this equality,
that
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Q

|∇g̃|2=
∫
Q

|∇(ḡ + a · x + b)|2

=
∫
Q

|∇ḡ|2+
∫
Q

|a|2+ 2
∫
Q

a · ∇ḡ

=
∫
Q

|∇ḡ|2+
∫
Q

|a|2

�
∫
Q

|∇ḡ|2,

since ∫
Q

a · ∇ḡ = a ·
∫
Q

∇ḡ = 0

because of the periodicity of̄g. The inequality (4.34) follows, from which we deduce
easily (4.29) and (4.30).

At this stage, we collect (4.9) with (4.30) to obtain

lim inf
Λ→∞

IRHF
Λ

|Λ| = lim inf
Λ→∞

1

|Λ|
(

TrL2(R3)

[
(−�− VΛ)KΛ

]+ 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ

)

�
∫
Q�

TrL2
ξ
(Q)[−�ξ K̃ξ ] dξ

(2π)3
−

∫
Q

Gρ̃ + 1

2
DG(ρ̃, ρ̃ )+ M

2

=ERHF
per (K̃)+ M

2

� IRHF
per +

M

2
. (4.35)

This concludes the proof of Proposition 4.1.✷
Before turning to the study of the upper limit of the energy per unit volume, we can

anticipate a little bit and assume that we have already proven

IRHF
per +

M

2
� lim sup

Λ→∞
1

|Λ|I
RHF
Λ , (4.36)

which will be the purpose of Proposition 4.2 below. It will follow from the comparison
of (4.35) and (4.36) that all equalities in these strings of inequalities (4.9), (4.30), (4.35),
(4.36) are indeed equalities. In particular, we shall recover

lim
Λ→∞

1

|Λ| TrL2(R3)[−�KΛ] =
∫
Q�

TrL2
ξ
(Q)[−�ξ K̃ξ ] dξ

(2π)3
, (4.37)

and we shall also obtain that̃K is a minimizer ofIRHF
per .

In order to prove that the upper limit behaves in the expected way, we shall make use
of the minimizer of (2.17) (it is notstricto sensunecessary, as we might use an almost
minimizer). Therefore, we devote the next section to the study of problem (2.17), and
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in particular to the proof of Theorem 2.1. We shall come back to the proof of the upper
limit (4.36), and thus conclude the proof of Theorem 2.2, in Subsection 4.3.

4.2. The periodic RHF problem

We begin this section with the proof of Theorem 2.1, that we recall here for the
convenience of the reader.

THEOREM 2.1 (Well-posedness of the RHF periodic model). –The minimization
problem defined by(2.17)–(2.18), i.e.

IRHF
per = inf

{
ERHF

per (K); K ∈K
}
,

ERHF
per (K)=

∫
Q�

TrL2
ξ
(Q)

[−�ξKξ

] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ)

(respectively in the smeared nuclei case by Eqs.(2.19)–(2.20)in Section2) admits a
minimum. In addition, the minimizing densityρ(x;x) is unique and, thus, shares the
symmetries of the unique cube.

Before we begin with the proof, let us at once remark that the argument we are going
to make will be also useful in the Hartree–Fock case for the proof of Theorem 2.3 in
Section 5 below. As the reduced Hartree–Fock model is convex, another strategy than the
one we shall use below could have been chosen. However, we have chosen on purpose
a strategy of proof that will be also valid for the non-convex Hartree–Fock model. This
will simplify our task in Section 5. Let us also remark that we only do the proof in the
point nuclei case, and that adapting our argument to the smeared nuclei case (2.19)–
(2.20) is straightforward. Let us also mention at this stage that some of our arguments
are similar to those used by Lieb, Solovej and Yngvason in [34], where a close problem
is studied.

Proof of Theorem 2.1. –Let us consider a minimizing sequenceKn for the min-
imization problem (2.17)–(2.18). For eachn, the operatorKn may be decomposed
into operatorsKn

ξ . We denote byρn(ξ, x, y) the kernel ofKn
ξ , and by ρn(x, y) =∫

Q� ρn(ξ, x, y)
dξ

(2π)3
the Schwartz kernel ofKn, according to Lemma 3.4. More precisely,

we have, in view of Proposition 3.2,

ρn(ξ, x, y)=
∑
p�1

λ(n)
p (ξ) u(n)

p (ξ, x) u(n)
p (ξ, y)∗.

In the right-hand side, the indexn, referring to the index in the minimizing sequence
Kn, has been put into parentheses in order to avoid ambiguity with powers ofup. Since,
in addition,Kn

ξ is trace-class onL2
ξ (Q), we may also define

ρn(ξ, x, x)=
∑
p�1

λ(n)
p (ξ)

∣∣u(n)
p (ξ, x)

∣∣2,
which is a non-negative, periodic function inL1(Q), such that TrL2

ξ
(Q)K

n
ξ

= ∫
Q ρn(ξ, x, x) dx. Moreover, let us recall from Proposition 3.2, that the densityρ(x;x)
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which appears in the definition (2.18) of the energy functional is also a non-negative pe-
riodic function inL1(Q) (at least) defined byρ(x;x) = ∫

Q� ρn(ξ, x, x)
dξ

(2π)3
. Our first

step consists in finding some bounds, independent ofn, on the operatorsKn and on the
functionsρn(·, ·) andρn(ξ, ·, ·).

Step 1. –A priori estimates on the minimizing sequence.

First of all, we remark that the following bound holds obviously

0� Kn
ξ � 1,

for almost everyξ in Q�, which comes straightforwardly from Lemma 3.3. In view of
the decomposition of the operatorsKn

ξ along their eigenbasis, let us rewrite the kinetic
energy term:

∫
Q�

TrL2
ξ (Q)

[−�ξK
n
ξ

]
dξ =

∫
Q�

∑
p�1

λ(n)
p (ξ)

∫
Q

|∇u(n)
p (ξ, x)|2dx dξ. (4.38)

Next, we remark that the constraint of charge 1, namely

∫
Q�

TrL2
ξ
(Q)K

n
ξ

dξ

(2π)3
= 1

may also be written as∫
Q�

dξ

(2π)3

∫
Q

ρn(ξ ;x;x) dx =
∫
Q�

∑
p�1

λ(n)
p (ξ)

dξ

(2π)3
=

∫
Q

ρn(x;x) dx = 1. (4.39)

Another consequence of this constraint is∫
Q�

dξ

(2π)3

∫∫
Q×Q

|ρn(ξ, x, y)|2dx dy

=
∫
Q�

∑
p�1

∑
q�1

λ(n)
p (ξ)λ(n)

q (ξ)

∣∣∣∣
∫
Q

u(n)
p (ξ, x)u(n)

q (ξ, x)∗ dx
∣∣∣∣
2

dξ

(2π)3

=
∫
Q�

∑
p�1

∑
q�1

λ(n)
p (ξ)λ(n)

q (ξ) δp,q

dξ

(2π)3

=
∫
Q�

∑
p�1

∣∣λ(n)
p (ξ)

∣∣2 dξ

(2π)3

�
∫
Q�

∑
p�1

λ(n)
p (ξ)

dξ

(2π)3
= 1,

whence

ρn(ξ, x, y) is bounded inL2(Q� ×Q×Q), (4.40)
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or, equivalently, because of (3.26) in Lemma 3.4,

ρn(x, y) is bounded inL2(Q×R3). (4.41)

(Note that actuallyρn(x, y) is bounded inL2
unif(R

3;L2(R3)), thanks to the translation
invariance.) We are now going to work on the energy functional. Owing to the convexity
of the functionf �→ ∫

Q |∇
√
f |2, and because of (4.39), we have

∫
Q

∣∣∇√ρn(x, x)
∣∣2
dx =

∫
Q

∣∣∣∣∇
(∫

Q�

∑
p�1

λ(n)
p (ξ)

∣∣u(n)
p (ξ, x)

∣∣2 dξ

(2π)3

)1/2∣∣∣∣
2

dx

�
∫∫

Q×Q�

∑
p�1

λ(n)
p (ξ)

∣∣∇|u(n)
p (ξ, x)|∣∣2 dx dξ

(2π)3

�
∫∫

Q×Q�

∑
p�1

λ(n)
p (ξ)

∣∣∇u(n)
p (ξ, x)

∣∣2 dx dξ

(2π)3

=
∫
Q�

TrL2
ξ
(Q)

[−�ξK
n
ξ

] dξ

(2π)3
, (4.42)

the second inequality being true since|∇|f ||� |∇f | for any complex-valued function
f . Let us now observe that

∣∣∣∣
∫
Q

G(x)ρn(x, x) dx

∣∣∣∣ �C‖G‖L2(Q)‖ρn‖3/4
L1(Q)

‖ρn‖1/4
L3(Q)

�C‖G‖L2(Q)‖√ρn‖1/2
H1(Q)

�C‖G‖L2(Q)

(
1+ ‖∇√ρn‖2

L2(Q)

)1/4
(4.43)

sinceG is L2 on Q (it has only a singularity like1
|x| ) and‖ρn‖L1(Q) = 1, and whereC

denotes here and below some positive constant that is independent ofn. Inserting (4.42)
and (4.43) into the definition (2.18) of the energy, and noticing that1

2DG(·, ·) � 0, we
obtain that we have, for the minimizing sequenceKn ,

√
ρn(x, x) is bounded inH 1(Q), and thus inLp(Q), 1� p � 6. (4.44)

This can also be expressed by stating that

∫
Q�

TrL2
ξ
(Q)

[−�ξK
n
ξ

]
dξ =

∫∫
Q×Q�

∑
p�1

λ(n)
p (ξ)

∣∣∇u(n)
p (ξ, y)

∣∣2 dx dξ (4.45)

is bounded independently ofn.
Using the Cauchy–Schwarz inequality as follows
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|ρn(x, y)| =
∣∣∣∣
∫
Q�

∑
p�1

λ(n)
p (ξ)u(n)

p (ξ, x)u(n)
p (ξ, y)∗

dξ

(2π)3

∣∣∣∣
�

(∫
Q�

∑
p�1

λ(n)
p (ξ)

∣∣u(n)
p (ξ, x)

∣∣2 dξ

(2π)3

)1/2

×
(∫

Q�

∑
p�1

λ(n)
p (ξ)

∣∣u(n)
p (ξ, y)

∣∣2 dξ

(2π)3

)1/2

=√
ρn(x, x)

√
ρn(y, y), (4.46)

we obtain a direct corollary of the bound (4.44):

ρn(x, y) is bounded inLp(Q×Q), 1 � p � 6. (4.47)

Another corollary of these bounds is obtained by using the convexity of the function
f �→ ∫∫

Q×Q� |∇√f |2dx dξ , it is

√
ρn(ξ, x, x) is bounded inL2(Q�;H 1(Q)

)
. (4.48)

Finally, a very useful bound is obtained from (4.45) by using the Lieb–Thirring
inequality in this setting. (This is an easy adaptation of the Lieb–Thirring inequality in
the periodic case given in the Appendix of [54] for finite-rank projectors together with
the results of [39] for its extension to general density matrices.) We have, for almost
everyξ ∈Q�, ∫

Q

ρn(ξ, x, x)
5/3dx � C0 TrL2

ξ (Q)

[
(1−�ξ)K

n
ξ

]
,

for some constantC0, which may be chosen independently ofξ , sinceξ lies in a bounded
subset ofR3, and therefore by integration onQ� (since the left-hand side lies inL1(Q�)),

∫
Q�

dξ

(2π)3

∫
Q

ρn(ξ, x, x)
5/3dx � C

∫
Q�

TrL2
ξ
(Q)

[
(1−�)ξK

n
ξ

] dξ

(2π)3
.

This shows that

ρn(ξ, x, x) is bounded inL5/3(Q�×Q), (4.49)

and concludes our first step, devoted to thea priori bounds on the sequenceKn.

Step 2. –Passing to the limit in the constraint.

Let us first remark that, in view of the bound (4.40), we may assume without loss
of generality that the sequenceρn(ξ, x, y) converges weakly inL2(Q� × Q × Q) to
someρ∞(ξ, x, y). According to the formal decomposition given in [45], and recalled
in Section 3.2, we may now define a self-adjoint operatorK∞ on L2(R3), by K∞ =∫
Q� K

∞
ξ

dξ

(2π)3
, whereK∞

ξ is the Hilbert–Schmidt operator onL2
ξ (Q) whose kernel is
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the functionρ∞(ξ, x, y). Another way to state the weak convergence ofρn to ρ∞ is
to say that for almostξ ∈ Q�, and for any self-adjoint operatorL on L2(R3), such
thatL= ∫

Q� Lξ
dξ

(2π)3
, where the operatorsLξ are Hilbert–Schmidt operators onL2

ξ (Q),

whose kernelsL(ξ, x, y) belong toL2(Q�;L2(Q×Q)), we have

lim
n→+∞

∫
Q�

TrL2
ξ
(Q)[Kn

ξ ·L∗ξ ]
dξ

(2π)3
=

∫
Q�

TrL2
ξ
(Q)[K∞

ξ ·L∗ξ ]
dξ

(2π)3
. (4.50)

Clearly, the operatorsK∞
ξ satisfy 0� K∞

ξ � 1, and thus 0� K∞ � 1.
A second consequence of the bounds of Step 1 comes from (4.44). Again, we may

always assume that the sequence
√
ρn(x, x) converges weakly inH 1

per(Q), strongly
in Lp(Q), 1 � p < 6, and almost everywhere onR3, to some function

√
ρ̄∞(x, x) ∈

H 1
per(Q).
A third consequence of the bounds of Step 1 is deduced from (4.49): We may

suppose that the sequence of (non-negative) functionsρn(ξ, x, x) converges weakly
in L5/3(Q� × Q) to some (non-negative) function that we denote for the moment by
ρ̄∞(ξ, x, x).

Let us first prove that
∫
Q� ρ̄∞(ξ, x, x) dξ

(2π)3
= ρ̄∞(x, x). For this purpose, we note

that the weak convergence inL5/3(Q� ×Q) implies in particular that, for any function
v ∈ L5/2(Q),

lim
n→+∞

∫
Q�

dξ

(2π)3

∫
Q

ρn(ξ, x, x)v(x) dx =
∫
Q�

dξ

(2π)3

∫
Q

ρ̄∞(ξ, x, x)v(x) dx.

Now, the left-hand side is also given by

lim
n→+∞

∫
Q

(∫
Q�

ρn(ξ, x, x)
dξ

(2π)3

)
v(x) dx = lim

n→+∞

∫
Q

ρn(x, x) v(x) dx,

and thus by

lim
n→+∞

∫
Q

ρn(x, x) v(x) dx =
∫
Q

ρ̄∞(x, x)v(x) dx.

Therefore, we have ∫
Q�

ρ̄∞(ξ, x, x)
dξ

(2π)3
= ρ̄∞(x, x). (4.51)

At this stage, we do not knowa priori that ρ∞(ξ, x, x) = ρ̄∞(ξ, x, x), but we shall
prove this claim below in Step 3.

Let us now turn to the proof of the fact that the operatorK∞ necessarily satisfies the
constraint: ∫

Q�

TrL2
ξ
(Q)K

∞
ξ

dξ

(2π)3
= 1. (4.52)
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The difficulty to deduce (4.52), from the convergence (4.50) and the fact that the above
constraint is satisfied for alln, is of course that we cannot takeL as being the identity
operator in (4.50), for the identity is not a Hilbert–Schmidt operator. In order to conclude,
we shall need to use the bound on the kinetic energy term. We argue as follows.

For all n, and for almost allξ ∈ Q�, we know thatKn
ξ and−�ξK

n
ξ are trace-class

operators onL2
ξ (Q). In particular, this implies that the operator(1−�)

1/2
ξ Kn

ξ (1−�)
1/2
ξ

is also trace-class (thus, in particular, Hilbert–Schmidt). In addition, since we have a
bound, derived from (4.45) and (4.38),∫

Q�

TrL2
ξ
(Q)

[
(1−�)

1/2
ξ Kn

ξ (1−�)
1/2
ξ

]
dξ =

∫
Q�

TrL2
ξ
(Q)

[
(1−�)ξK

n
ξ

]
dξ � C,

we may assume, extracting a subsequence if necessary, that the sequence of operators∫
Q�(1 − �)

1/2
ξ Kn

ξ (1 − �)
1/2
ξ

dξ

(2π)3
converges in the sense of (4.50), and its limit is

necessarily
∫
Q�(1−�)

1/2
ξ K∞

ξ (1−�)
1/2
ξ

dξ

(2π)3
. Testing this weak convergence with the

operatorsLξ = (1−�)−1
ξ , which are Hilbert–Schmidt onL2

ξ (Q), we obtain

lim
n→+∞

∫
Q�

TrL2
ξ
(Q)

[
(1−�)

1/2
ξ Kn

ξ (1−�)
1/2
ξ (1−�)−1

ξ

]
dξ

=
∫
Q�

TrL2
ξ
(Q)

[
(1−�)

1/2
ξ K∞

ξ (1−�)
1/2
ξ (1−�)−1

ξ

]
dξ ;

that is

lim
n→+∞

∫
Q�

TrL2
ξ
(Q)K

n
ξ dξ =

∫
Q�

TrL2
ξ
(Q)K

∞
ξ dξ.

Therefore, as
∫
Q� TrL2

ξ
(Q)K

n
ξ

dξ

(2π)3
= 1 for all n, we deduce that the operatorK∞ satisfies

the constraint.

Step 3. –Passing to the limit in the energy.

A simple argument, using the operator(1−�) and Fatou’s lemma allows one to show,
arguing as in the proof of Proposition 4.1, and making use of Step 2, that

lim inf
n→+∞

[
1+

∫
Q�

TrL2
ξ
(Q)

[−�ξK
n
ξ

]
dξ

]

= lim inf
n→+∞

∫
Q�

TrL2
ξ
(Q)

[
(1−�ξ)K

n
ξ

]
dξ

� lim
n→+∞

∫
Q�

TrL2
ξ
(Q)

[
(1−�ξ)K

∞
ξ

] dξ

(2π)3

= 1+
∫
Q�

TrL2
ξ
(Q)

[−�ξK
∞
ξ

] dξ

(2π)3
,

and, therefore, that
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lim inf
n→+∞

∫
Q�

TrL2
ξ
(Q)

[−�ξK
n
ξ

] dξ

(2π)3
�

∫
Q�

TrL2
ξ
(Q)

[−�ξK
∞
ξ

] dξ

(2π)3
. (4.53)

Next, a standard argument on the sequenceρn(x, x), whose square root converges in
H 1

per(Q), shows that

lim
n→+∞

[
−

∫
Q

G(x)ρn(x, x) dx + 1

2
DG

(
ρn(x, x), ρn(x, x)

)]

=−
∫
Q

G(x)ρ̄∞(x, x) dx + 1

2
DG

(
ρ̄∞(x, x), ρ̄∞(x, x)

)
. (4.54)

It is then clear that (4.53) along with (4.54) will suffice to establish the existence of a
minimizer for the periodic RHF model, provided we are able to show that, for almost
everyξ ∈Q� andx ∈Q,

ρ̄∞(ξ, x, x)= ρ∞(ξ, x, x). (4.55)

We finally prove this fact. For this purpose, we choose an arbitrary functionθ(ξ, x) ∈
L∞(Q� ×Q), and define the Hilbert–Schmidt operators

Lξ = (1−�)
−1/2
ξ θ(ξ, ·)(1−�)

−1/2
ξ .

Using the convergence (4.50) for the sequence of operators(1−�)
1/2
ξ Kn

ξ (1−�)
1/2
ξ , we

have

lim
n→+∞

∫
Q�

TrL2
ξ
(Q)

[
(1−�)

1/2
ξ Kn

ξ (1−�)
1/2
ξ (1−�)

−1/2
ξ θ(ξ, ·)(1−�)

−1/2
ξ

]
dξ

=
∫
Q�

TrL2
ξ
(Q)

[
(1−�)

1/2
ξ K∞

ξ (1−�)
1/2
ξ (1−�)

−1/2
ξ θ(ξ, ·)(1−�)

−1/2
ξ

]
dξ.

This may also read

lim
n→+∞

∫∫
Q�×Q

ρn(ξ, x, x)θ(ξ, x) dx dξ =
∫∫

Q�×Q

ρ∞(ξ, x, x)θ(ξ, x) dx dξ.

But, on the other hand, we know that the sequence of functionsρn(ξ, x, x) converges
weakly inL5/3(Q�×Q) to ρ̄∞(ξ, x, x), thus we also have

lim
n→+∞

∫∫
Q�×Q

ρn(ξ, x, x)θ(ξ, x) dx dξ =
∫∫

Q�×Q

ρ̄∞(ξ, x, x)θ(ξ, x) dx dξ.

This shows equality (4.55), and concludes the proof of the existence of a minimum. We
now show the uniqueness of the periodic densityρ(x;x). The argument is an adaptation
of a similar claim in [34]. Assume that there exist two minimizersK1 andK2 in K of
IRHF

per . Denoting byρ1 andρ2 their respective density, it is easily checked that

ERHF
per (K)= 1

2
ERHF

per (K1)+ 1

2
ERHF

per (K2)− 1

8
DG(ρ1− ρ2, ρ1− ρ2)

= IRHF
per −

1

8
DG(ρ1− ρ2, ρ1− ρ2).
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We thus haveDG(ρ1− ρ2, ρ1− ρ2)= 0. Now, sinceG, ρ1 andρ2 are periodic, we may
rewriteDG(ρ1− ρ2, ρ1− ρ2) with the help of the Fourier coefficients ofρ1− ρ2 andG.
Since the Fourier series expansion ofG writes (see [32])

G(x)= 1

π

∑
n∈Z3\{0}

1

|n|2 e2iπ n·x,

we observe thatDG(ρ1 − ρ2, ρ1 − ρ2) = 0 if and only if ρ1 − ρ2 is constant. But,∫
Q ρ1 − ρ2 = 0, henceρ1 = ρ2. In particular, in the above proof, the whole sequence√
ρn(x;x) converges to

√
ρ∞(x;x) and not only a subsequence.✷

Before concluding this section, let us write down the Euler–Lagrange equations
satisfied by a minimizerK of IRHF

per . Using the decomposition ofK in K along an
eigenbasis of eachKξ , when ξ describesQ�, we may reformulate the minimization
problemIRHF

per in the following way:IRHF
per is obtained by minimizing∫

Q�

∑
n�1

λn(ξ)

∫
Q

(∣∣∇un(ξ, x)
∣∣2−G(x)|un(ξ, x)|2) dx dξ

(2π)3

+ 1

2

∫∫
Q�×Q�

dξ dξ ′

(2π)6

∑
n,m�1

λn(ξ)λm(ξ
′)

∫∫
Q×Q

|un(ξ, x)|2G(x − y)|um(ξ
′, y)|2 dx dy

subject to the constraints




∫
Q�

∑
n�1

λn(ξ)
dξ

(2π)3
= 1,

0� λn(ξ) � 1, for all n � 1, and for almost allξ ∈Q�,∫
Q

un(ξ, x)u
∗
m(ξ, x) dx = δn,m, for almost allξ ∈Q�.

(4.56)

The Euler–Lagrange equations satisfied by a minimizerK of IRHF
per can then be easily

written. They exhibit the Lagrange multipliersπ , µ0
n(ξ), µ1

n(ξ), εnm(ξ), respectively
associated to the constraints of (4.56). More precisely, we obtain, for almost everyξ in
Q�, and for everyn � 1,




−�un(ξ, ·)−Gun(ξ, ·)+
∑
m�1

λm(ξ)(um(ξ, ·)2χQ �G)un(ξ, ·)

= ∑
m�1

εnm(ξ)um(ξ, ·), a.e. onQ,

∫
Q

(∣∣∇ un(ξ, x)
∣∣2−G(x)|un(ξ, x)|2)dx

+ ∑
m�1

λm(ξ)
(
um(ξ, ·)2χQ �G

)
un(ξ, ·)

= µ0
n(ξ)+µ1

n(ξ)+ π.

(4.57)
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SinceERHF
per (K) is independent of the choice of an eigenbasis forKξ , we may assume

without loss of generality that the hermitian matrix with entriesεnm(ξ) is diagonal, for
almost everyξ in Q�; in other words, the right-hand side term

∑
m�1 εnm(ξ)um(ξ, ·) in

the first equation of (4.57) may be replaced byεn(ξ)un(ξ, ·). Moreover, owing to the
fact that the Lagrange multipliersµ0

n(ξ) andµ1
n(ξ) are respectively associated to the

constraints 0� λn(ξ) andλn(ξ) � 1, they satisfy, for alln � 1 and for almost everyξ in
Q�,

µ0
n(ξ)

{= 0, if λn(ξ) > 0,
� 0, if λn(ξ)= 0,

(4.58a)

µ1
n(ξ)

{= 0, if λn(ξ) < 1,
� 0, if λn(ξ)= 1.

(4.58b)

We now applyun(ξ, ·) to the first equation of (4.57), next integrate overQ, and, finally,
insert the result into the second equation of (4.57), to obtain, using (4.58a) and (4.58b),




λn(ξ)= 0 �⇒ εn(ξ) � π,

0< λn(ξ) < 1 �⇒ εn(ξ)= π,

λn(ξ)= 1 �⇒ εn(ξ) � π.

(4.59)

4.3. Upper limit of the energy per unit volume and conclusion

In order to conclude the proof of Theorem 2.2, we now prove the

PROPOSITION 4.2. – We assume that the Van Hove sequenceΛ satisfies(2.21), and
that the unit cellQ is a cube. Then,

lim sup
Λ→∞

IRHF
Λ

|Λ| � IRHF
per +

M

2
, (4.60)

whereIRHF
per is defined by(2.17)–(2.18).

Remark4.1. – As stated in Theorem 2.2, the same result holds true in the smeared
nuclei case, if we assume moreover thatm shares the symmetries of the unit cubeQ,
and defineM in a convenient way.

As a corollary of Proposition 4.1 and Proposition 4.2 (and the slight modifications
which are necessary to treat the smeared nuclei case), we shall obtain Theorem 2.2.

Proof of Proposition 4.2. –Let us denote byK a minimizer of the periodic RHF
problem. As usual, we may decomposeK into operatorsKξ (ξ ∈ Q�), whose kernels
ρ(ξ, x, y) may be written as

ρ(ξ, x, y)=∑
n�1

λn(ξ)un(ξ, x)un(ξ, y)
∗.
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We denote

ρ(x, y)=
∫
Q�

ρ(ξ, x, y)
dξ

(2π)3
.

Let nowΛ be fixed. We build a cut-off functionχΛ ∈ D(R3) satisfying the following
properties: 


0 � χΛ � 1;
χΛ ≡ 1, on {x ∈ Γ (Λ); d(x, ∂Γ (Λ)) � 2};
χΛ ≡ 0, onΓ (Λ)c.

In addition, we chooseχΛ in such a way that it also satisfies∫
R3

χ2
Λ(x)ρ(x;x) dx = |Λ| + o(|Λ|).

We next consider the operatorKΛ onL2(R3) whose kernel is

ρΛ(x, y)= χΛ(x)ρ(x, y)χΛ(y). (4.61)

A simple computation shows that

(KΛψ;ψ)L2(R3) =
(
K(χΛψ); (χΛψ)

)
L2(R3)

,

and therefore we have 0� KΛ � 1. The choice ofχΛ ensures also that TrL2(R3)KΛ =
|Λ| + o(|Λ|) � |Λ|.

We now compute the RHF energy ofKΛ.
SinceρΛ(x;x)= χ2

Λ(x)ρ(x;x), it is a simple matter, arguing as in [11] and using the
periodicity ofρ(x;x), to show that the electrostatic terms

−
∫
R3

VΛρΛ+ 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ

behave like

|Λ|
[
−

∫
Q

Gρ + 1

2
DG(ρ,ρ)+ M

2

]
,

asΛ goes to infinity. This is precisely where we need the assumption (2.21), the fact
thatQ is a cube, and thatρ(x;x) shares the symmetries of the unit cube. Both facts play
a fundamental role – see the details in [11]. Therefore, we concentrate ourselves on the
behaviour of the kinetic energy term. We intend to prove that

lim
Λ→∞

1

|Λ| TrL2(R3)[−�KΛ] =
∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
(4.62)

which will of course conclude the proof of Proposition 4.2.
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Let us denote by(ϕm)m�1 an Hilbertian basis ofL2(R3). We begin with

−�KΛϕm=−�

(∫
R3

ρΛ(x, y)ϕm(y) dy

)

=
∫
R3

−�
(
ρ(x, y)χΛ(x)

)
χΛ(y)ϕm(y) dy

=−
∫∫

R3×Q�

∑
n�1

λn(ξ)�
(
un(ξ, x)χΛ(x)

)
un(ξ, y)

∗χΛ(y)ϕm(y)
dy dξ

(2π)3
.

Hence,

(−�KΛϕm;ϕm)L2(R3)

=
∫∫

R3×Q�

∑
n�1

λn(ξ)

[∫
R3

−�
(
un(ξ, x)χΛ(x)

)
ϕ∗m(x) dx

]
un(ξ, y)

∗χΛ(y)ϕm(y)
dy dξ

(2π)3
.

Summing up next inm, we obtain∑
m�1

(−�KΛϕm;ϕm)L2(R3)

=
∫
R3

dy

∫
Q�

∑
n�1

λn(ξ)un(ξ, y)
∗χΛ(y)

× ∑
m�1

[∫
R3

−�
(
un(ξ, x)χΛ(x)

)
ϕ∗m(x) dx

]
ϕm(y)

dξ

(2π)3

=
∫
R3

dy

∫
Q�

∑
n�1

λn(ξ)un(ξ, y)
∗χΛ(y)−�

(
un(ξ, y)χΛ(y)

) dξ

(2π)3

=
∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
R3

un(ξ, y)
∗χΛ(y)−�

(
un(ξ, y)χΛ(y)

)
dy

=
∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
R3

∣∣∇(
un(ξ, y)χΛ(y)

)∣∣2dy.
We have therefore obtained

TrL2(R3)[−�KΛ] =
∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
R3

∣∣∇(
un(ξ, x)χΛ(x)

)∣∣2 dx. (4.63)

We now remark that∫
R3

∣∣∇(
un(ξ, x)χΛ(x)

)∣∣2dx
=

∫
R3

∣∣χΛ(x)∇(
un(ξ, x)

)+ un(ξ, x)∇χΛ(x)
∣∣2
dx
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=
∫
R3

|χΛ(x)|2
∣∣∇(

un(ξ, x)
)∣∣2+ ∫

R3

|un(ξ, x)|2|∇χΛ(x)|2 dx

+ 2
∫
R3

χΛ(x)u
∗
n(ξ, x)∇un(ξ, x) · ∇χΛ(x) dx.

Each of the three integrals in the right-hand side may be restricted onΓ (Λ), for χΛ

vanishes outside this domain. In addition, the third integral may be restricted on the
“boundary”∂Λ= {x ∈ Γ (Λ);d(x; ∂Γ (Λ)) � 2} of Γ (Λ), as∇χΛ ≡ 0 in the “interior”
Γ (Λ) \ ∂Λ of Γ (Λ). Therefore, we have

∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
R3

∣∣∇(
un(ξ, x)χΛ(x)

)∣∣2dx = I 1
Λ + I 2

Λ + 2I 3
Λ, (4.64)

whereI 1
Λ, I 2

Λ, I 3
Λ denote respectively

I 1
Λ=

∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)
∑
k∈Λ

∫
Q

|χΛ(x + k)|2∣∣∇(
un(ξ, x + k)

)∣∣2 dx,
I 2
Λ=

∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)
∑
k∈Λ

∫
Q

|un(ξ, x + k)|2∣∣∇χΛ(x + k)
∣∣2 dx,

I 3
Λ=

∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
∂Λ

χΛ(x)u
∗
n(ξ, x)∇un(ξ, x) · ∇χΛ(x) dx.

AsΛ is a Van Hove sequence, we expect that the integrals over the “boundary” ofΓ (Λ)

are negligible with respect to|Λ|, or, in other words, that only the integrals over the
“interior” of Γ (Λ) play a role in identifying the limit per unit volume. Indeed, it is easy
to see, by a standard argument that we have already used in [11] and that is based upon
the properties ofχΛ and ofun(ξ, ·), that

I 1
Λ= |Λ|

∫
Q�

dξ

(2π)3

∑
n�1

λn(ξ)

∫
Q

|∇(un(ξ, x))|2dx + o
(|Λ|)

= |Λ|
∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
+ o

(|Λ|), (4.65)

and

I 2
Λ = o

(|Λ|) ∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
. (4.66)

Finally, we may boundI 3
Λ as follows

|I 3
Λ|� o

(|Λ|) ∫
Q�

∑
n�1

λn(ξ)

(∫
Q

∣∣∇(
un(ξ, x)

)∣∣2)1/2(∫
Q

|un(ξ, x)|2
)1/2

dξ
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� o
(|Λ|) ∫

Q�

(∑
n�1

λn(ξ)

∫
Q

∣∣∇(
un(ξ, x)

)∣∣2 dx)1/2( ∑
n�1

λn(ξ)

∫
Q

|un(ξ, x)|2dx
)1/2

dξ

� o
(|Λ|)(∫

Q�

∑
n�1

λn(ξ)

∫
Q

∣∣∇(
un(ξ, x)

)∣∣2dx dξ

)1/2

×
(∫

Q�

∑
n�1

λn(ξ)

∫
Q

|un(ξ, x)|2dx dξ

)1/2

= o
(|Λ|)(∫

Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3

)1/2

, (4.67)

by a repeated use of the Cauchy–Schwarz inequality. Inserting (4.65), (4.66), (4.67) into
(4.64), next in (4.63), we obtain

TrL2(R3)[−�KΛ] = |Λ|
∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
+ o

(|Λ|),
which shows (4.62) and concludes the proof of the proposition.✷

5. The Hartree–Fock model

Let us first of all recall the Hartree–Fock model (2.3)–(2.4)–(2.5) introduced in
Section 2:

IHF
Λ = inf

{
EHF

Λ (K)+ 1

2
UΛ; K ∈KΛ

}
,

where the set of minimization is

KΛ = {
0� K � 1, TrK = |Λ|, Tr

[
(−�− VΛ)K

]
<+∞}

,

and the energy functional writes

EHF
Λ (K)=Tr

[
(−�− VΛ)K

]+ 1

2

∫∫
R3×R3

ρ(x, x)ρ(y, y)

|x − y| dx dy

− 1

2

∫∫
R3×R3

|ρ(x, y)|2
|x − y| dx dy,

whereρ(x;y) is the Hilbert–Schmidt kernel ofK . As is well-known, this functional
is not convex, and therefore we expect the thermodynamic limit problem to be much
more difficult than in the reduced Hartree–Fock setting. In this latter case, we have
used in a fundamental way the convexity of the energy functional through the use of
the∼-transform. Here, for the Hartree–Fock case, this is not possible any more. Let
us at once say that this is the main reason why we are not able to prove a result on



I. CATTO ET AL. / Ann. I. H. Poincaré – AN 18 (2001) 687–760 741

the convergence of the Hartree–Fock energy per unit volume in the thermodynamic
limit, and why we cannot establish the analogue of Theorem 2.2. Nevertheless, in this
section, we shall (a) give some formal computations in order to justify our guess on
the periodic Hartree–Fock problem (2.23)–(2.24)–(2.25) that should be obtained in the
thermodynamic limit, (b) show that this periodic problem is well-posed mathematically
(Theorem 2.3 in Subsection 5.1 below), and, finally, (c) check that the upper limit of the
Hartree–Fock energy per unit volume may at least be compared from above by the HF
periodic problem (Proposition 2.1 in Subsection 5.2).

Let us begin with some formal computations on the Hartree–Fock energy of a
minimizerKΛ of IHF

Λ whenΛ goes to infinity.
We postulate that the sequence of operatorsKΛ converges to some self-adjoint

operatorK that commutes with the translation ofZ3, and that belongs toK. By saying
so, the main assumption we do is the following one: We postulate that the density
ρΛ(x, x) asymptotically behaves like aQ-periodic densityρ(x, x). We emphasize this
is anassumption, and that we only have the intuition that it is true. The lack of convexity
of the Hartree–Fock model has prevented us so far toprovethis postulate.

In view of the results we have obtained on the reduced Hartree–Fock model, it is then
reasonable to believe that in the energy (2.5) of a minimizerKΛ of (2.3)–(2.4)–(2.5)

EHF
Λ (KΛ)=Tr

[
(−�− VΛ)KΛ

]+ 1

2

∫∫
R3×R3

ρΛ(x, x)ρΛ(y, y)

|x − y| dx dy

− 1

2

∫∫
R3×R3

|ρΛ(x, y)|2
|x − y| dx dy,

the first three terms globally behave like|Λ|(ERHF
per (K)+ M

2 ).
Therefore, it remains to understand, at least formally, the behaviour of the so-called

exchange term−1
2

∫∫
R3×R3

|ρΛ(x,y)|2
|x−y| dx dy. For this purpose, let us replace the density

matrix ρΛ(x, y) by a matrix of the formχΛ(x)ρ(x, y)χΛ(y) mimicking the argument
we have made above to determine the upper limit of the RHF model. The functionχΛ is
a cut-off function, which has all the good properties the reader may think of, and which
are recalled in the proof of Proposition 2.1 below. Then, we establish, still in the course
of Proposition 2.1 in Subsection 5.2 below, that

lim
Λ→∞

1

|Λ|
∫∫

R3×R3

|ρΛ(x, y)|2
|x − y| dx dy =

∫∫
Q×R3

|ρ(x, y)|2
|x − y| dx dy.

Moreover, the quantity which appears in the right-hand side of the above equality makes
sense thanks to the following

LEMMA 5.1. – For anyK in K, we have

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy <+∞,

and
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∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy (5.1a)

=
∫∫∫∫
(Q�)2×Q2

ρ(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗(ξ ′, x, y) dx dy
dξ dξ ′

(2π)6
, (5.1b)

where the potentialW∞ is given by(2.25)in Section2; that is

W∞(η, z)= ∑
k∈Z3

eik·η

|z+ k| .

The proof of this lemma is given below.
The above argument justifies, at least formally, the introduction of the periodic

problem (2.23)–(2.24)–(2.25), that we recall now:

IHF
per = inf

{
EHF

per(K); K ∈K
}
,

EHF
per(K)=

∫
Q�

TrL2
ξ
(Q)

[−�ξKξ

] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ)− 1

2
Eexc(K),

where we denote byEexc(K) any of the two equivalent formulations (5.1a) and (5.1b) of
the periodic exchange term. Before proving in the forthcoming subsection that the HF
periodic problem is well-posed, we now give the proof of Lemma 5.1.

Proof of Lemma 5.1. –We split the exchange term into two terms in the following way∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy =

∫
Q

dx

∫
|x−y|�1

|ρ(x, y)|2
|x − y| dy +

∫
Q

dx

∫
|x−y|�1

|ρ(x, y)|2
|x − y| dy.

For the second term, we clearly have∫
Q

dx

∫
|x−y|�1

|ρ(x, y)|2
|x − y| dy �

∫
Q

dx

∫
R3

|ρ(x, y)|2 dy <+∞.

Now, let us concentrate on the first term. Since we may prove like in (4.46) that
|ρ(x, y)|2 � ρ(x;x)ρ(y;y), almost everywhere onR3×R3, we may write∫

Q

dx

∫
|x−y|�1

|ρ(x, y)|2
|x − y| dy �

∫
Q

dx

∫
|x−y|�1

ρ(x;x)ρ(y;y)
|x − y| dy

�
∫∫

(Q+B1)×(Q+B1)

ρ(x;x)ρ(y;y)
|x − y| dx dy

�C ‖ρ‖2
L6/5(Q+B1)

�C ‖ρ‖2
L

6/5
unif(R

3)
<+∞,
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sinceρ lies in H 1
unif(R

3). We now check the equivalence of the two formulations (5.1a)
and (5.1b), which follows from the following string of equalities:∫∫

Q×R3

|ρ(x, y)|2
|x − y| dx dy

=
∫∫

Q×R3

1

|x − y| dx dy

∫∫
Q�×Q�

ρ(ξ, x, y)ρ∗(ξ ′, x, y)
dξ dξ ′

(2π)6

=
∫∫∫∫
Q2×(Q�)2

∑
k∈Z3

1

|x − y − k|ρ(ξ, x, y + k)ρ∗(ξ ′, x, y + k) dx dy
dξ dξ ′

(2π)6

=
∫∫∫∫
Q2×(Q�)2

ρ(ξ, x, y)ρ∗(ξ ′, x, y)
∑
k∈Z3

e−i(ξ−ξ ′)·k

|x − y − k| dx dy
dξ dξ ′

(2π)6

=
∫∫∫∫
Q2×(Q�)2

ρ(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗(ξ ′, x, y) dx dy
dξ dξ ′

(2π)6
,

where we have used the properties of periodicity of the functionsρ(ξ, x, y) with respect
to y, and the definition (2.25) ofW∞.

The proof of Lemma 5.1 is complete.✷
This section is organized as follows. We first prove in Subsection 5.1 that the periodic

HF problem is well-posed. Next, in Subsection 5.2, we check that we may compare from
above the Hartree–Fock energy per unit volume with this periodic problem, by using a
minimizer ofIHF

per .

5.1. The periodic HF problem

This section is devoted to the proof of Theorem 2.3, that we recall here for the
convenience of the reader.

THEOREM 2.3 (Well-posedness of the HF periodic problem). –The minimization
problem defined by(2.23) and (2.24) (respectively by(2.26) and (2.27)) admits a
minimum.

We shall provide two different proofs of this claim. The first one makes use of
regularity properties of the potentialW(η, z) given by (2.25), and which appears when
one writes the exchange terms according to the Bloch waves decomposition. The second
one, which is also the shortest one, is based upon the formulation (5.1a) of the exchange
term.

First proof of Theorem 2.3. –In order to check that the minimization problem (2.23)–
(2.24)–(2.25) is well-posed, we now prove that, given an arbitrary sequence of operators
Kn (∈K) such thatEHF

per(Kn) goes toIHF
per , asn goes to infinity, this sequence converges,

up to an extraction of a subsequence, to some operatorK (∈K) that satisfiesEHF
per(K)=

IHF
per . For this purpose, we shall heavily rely upon the proof of Theorem 2.1. But, first
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of all, we begin our proof with a careful study of the properties of regularity of the
interaction potentialW∞ and consequently of the properties of the exchange term.

Step 1. –Decomposition of the exchange potential.

We first remark that the function eiη·xW∞(η, x) isQ-periodic with respect tox whenη
is fixed. Indeed,j ∈ Z3 being fixed, we have

eiη·(x+j)W∞(η, x + j)= eiη·x eiη·j
∑
k∈Z3

eik·η

|x + j + k|

= eiη·x
∑
m∈Z3

eim·η

|x +m| = eiη·xW∞(η, x),

for almost all (η, x) ∈ Q� × Q. We may therefore decompose eiη·xW∞(η,

x) into its Fourier series:

eiη·xW∞(η, x)= ∑
m∈Z3

am(η)e2iπm·x,

with coefficientsam(η) given by

am(η)=
∫
Q

eiη·xW∞(η, x)e−2iπm·x dx

=
∫
Q

ei(η−2πm)·x ∑
k∈Z3

eik·η

|x + k| dx

= ∑
k∈Z3

∫
Q

ei(η−2πm)·(x+k) 1

|x + k| dx

=
∫
R3

ei(η−2πm)·y 1

|y| dy =
4π

|η− 2πm|2 ,

for almost allη ∈Q�. Hence, we have

W∞(η, x)= 4π e−iη·x ∑
m∈Z3

e2iπm·x

|η− 2πm|2 . (5.2)

It is easily deduced from this expression that, withx being fixed inQ, the function
defined byW∞(η, x) − 4π e−iη·x

|η|2 is continuous with respect toη ∈ Q�, and even to
η ∈ (1+ ε)Q (ε > 0, small enough), and satisfies

lim
η→0

(
W∞(η, x)− 4π

e−iη·x

|η|2
)
= ∑

m∈Z3\{0}

e2iπm·x

π |m|2 =G(x).
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Since we have isolated the singularity inη, let us now examine the singularity inx. Let
us then consider

f (η, x)=W∞(η, x)− e−iη·xG(x)− 4π
e−iη·x

|η|2 . (5.3)

We now check thatf (η, x) is in L∞(Q�×Q), and even inL∞((1+ ε)Q�× (1+ ε)Q).
From (5.2) and the Fourier series expansion ofG, we obtain

f (η, x)= 4π e−iη·x ∑
m∈Z3\{0}

e2iπm·x
(

1

|η− 2πm|2 −
1

|2πm|2
)

= 4π e−iη·x ∑
m∈Z3\{0}

e2iπm·x 4π η ·m− |η|2
|η− 2πm|2 |2πm|2 . (5.4)

It is obvious from the last equality that, at fixedη, eiη·xf (η, x) isQ-periodic with respect
to x, and that

‖f (η, ·)‖2
L2(Q) � C

∑
m∈Z3\{0}

1+ |m|2
|η− 2πm|4|2πm|4 ,

for some positive constant which is independent ofη ∈ (1+ ε)Q�; in other words, for
anyε > 0 small enough,

‖f (η, ·)‖2
L2(Q) ∈L∞

(
(1+ ε)Q�

)
. (5.5)

With η being still fixed in(1+ ε)Q�, it is clear from (5.3) that

−�xf (η, x)= 4π
∑

k∈Z3\{0}

(
e−ik·η − 1

)
δk(x),

and thusf (η, x) is harmonic in(1+ ε)Q. With the help of the mean-value property, we
finally obtain for everyx in Q,

|f (η, x)|�
∫

x+εQ

|f (η, y)|dy � C ‖f (η, ·)‖1/2
L2(Q)

,

and we conclude since the right-hand side in the above inequality lies inL∞(Q�) thanks
to (5.5).

Next, we remark that the exchange term involves the functionW∞(ξ − ξ ′, x −
y) with ξ and ξ ′ varying in Q�, and x and y varying in Q. Therefore, we need
some information onW∞(η, x) on 2Q� × 2Q = [−2π,+2π [3×[−1,+1[3. In a
straightforward way, for almost allη ∈ [−2π,+2π [3, x ∈ [−1,+1[3, we obtain from
(5.3) the decomposition

W∞(η, x)=W∞(η, x)− ∑
k∈Z3,|k|∞�1

1

|x + k|
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− 4π e−iη·x ∑
m∈Z3,|m|∞�1

e2iπm·x

|η− 2πm|2 , (5.6)

with |x|∞ = max(|x1|, |x2|, |x3|), and whereW∞(η, x) belongs toL∞(2Q� × 2Q),
owing in particular to the fact thatG(x)−∑

k∈Z3,|k|∞�1
1

|x+k| is bounded in 2Q� × 2Q.

Step 2. –A priori estimates.

Using the decomposition (5.6), let us now show that thea priori estimates that have
been established in Step 1 of the proof of Theorem 2.1 also hold true here.

Since some estimates only depend on the constraints and not on the energy functional,
it is easy to see that the following bounds of the RHF setting are also valid here:




ρn(ξ, x, y) is bounded inL2(Q� ×Q×Q),

ρn(x, y) is bounded inL2(Q×R3),

ρn(x, x) is bounded inL1(Q).

(5.7)

Next, we are going to estimate the exchange term by splitting it into three terms
according to the decomposition (5.6). First, we have∣∣∣∣

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗n(ξ
′, x, y) dx dy dξ dξ ′

∣∣∣∣
� ‖W∞‖L∞

∫∫∫∫
Q2×(Q�)2

|ρn(ξ, x, y)| |ρ∗n(ξ ′, x, y)|dx dy dξ dξ ′

� ‖W∞‖L∞|Q�|
∫∫∫

Q2×Q�

|ρn(ξ, x, y)|2dx dy dξ � C, (5.8)

by the Cauchy–Schwarz inequality and (5.7), whereC denotes here and below various
positive constants that are independent ofn.
Next, we treat for instance the term:∣∣∣∣

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)
1

|x − y|ρ
∗
n(ξ

′, x, y)
dξ dξ ′

(2π)6
dx dy

∣∣∣∣
=

∫∫
Q×Q

|ρn(x, y)|2
|x − y| dx dy �

∫∫
Q×Q

ρn(x, x)ρn(y, y)

|x − y| dx dy, (5.9)

since we recall that, by the discrete and next the continuous Cauchy–Schwarz inequality,
we have

|ρn(x, y)| =
∣∣∣∣
∫
Q�

∑
n�1

λn(ξ)un(ξ, x)u
∗
n(ξ, y)

dξ

(2π)3

∣∣∣∣
�

∫
Q�

( ∑
n�1

λn(ξ)|un(ξ, x)|2
)1/2( ∑

n�1

λn(ξ)|un(ξ, y)|2
)1/2

dξ

(2π)3
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�
(∫

Q�

∑
n�1

λn(ξ)|un(ξ, x)|2 dξ

(2π)3

)1/2(∫
Q�

∑
n�1

λn(ξ)|un(ξ, y)|2 dξ

(2π)3

)1/2

�
√

ρn(x, x)
√

ρn(y, y).

Thus, we have in (5.9)∣∣∣∣
∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)
1

|x − y|ρ
∗
n(ξ

′, x, y) dx dy
dξ dξ ′

(2π)6

∣∣∣∣
�

∫
Q

ρn(x, x)

(
ρn(·, ·)χQ �

1

|x|
)
dx

� C

∥∥∥∥ 1

|x|
∥∥∥∥
L3,∞

‖ρn(x, x)‖2
L6/5(Q)

� C

∥∥∥∥ 1

|x|
∥∥∥∥
L3,∞

‖ρn(x, x)‖3/2
L1(Q)

‖ρn(x, x)‖1/2
L3(Q)

using Young’s and then Hölder’s inequality. Next, using the Sobolev embeddings and
(5.7), we obtain∣∣∣∣

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)
1

|x − y|ρ
∗
n(ξ

′, x, y)
dξ dξ ′

(2π)6
dx dy

∣∣∣∣
� C

∥∥∥∥ 1

|x|
∥∥∥∥
L3,∞

‖ρn(x, x)‖3/2
L1(Q)

∥∥√
ρn(x, x)

∥∥
H1(Q)

� C

∥∥∥∥ 1

|x|
∥∥∥∥
L3,∞

‖ρn(x, x)‖3/2
L1(Q)

(
1+ ∥∥∇√

ρn(x, x)
∥∥
L2(Q)

)1/2
. (5.10)

Finally, we treat the contribution of the third term in (5.6), namely∣∣∣∣
∫∫∫∫

Q2×(Q�)2

ρn(ξ, x, y)
e−i(ξ−ξ ′)·(x−y)

|ξ − ξ ′|2 ρ∗n(ξ
′, x, y)

dξ dξ ′

(2π)6
dx dy

∣∣∣∣
�

∫∫
Q×Q

∥∥∥∥
(
|ρn(·, x, y)| �Q�

1

|ξ |2
)
|ρn(·, x, y)|

∥∥∥∥
L1(Q�)

dx dy,

where, here and below, we shall use the notationf �Q� g(ξ)= ∫
Q� f (ξ − ξ ′) g(ξ ′) dξ ′

(2π)3
.

By the Young and the Hölder inequalities, we have, withx andy being fixed,∥∥∥∥
(
|ρn(·, x, y)| �Q�

1

|ξ |2
)
|ρn(·, x, y)|

∥∥∥∥
L1(Q�)

�
∥∥∥∥|ρn(·, x, y)| �Q�

1

|ξ |2
∥∥∥∥
L2(Q�)

∥∥ρn(·, x, y)
∥∥
L2(Q�)

�
∥∥∥∥ 1

|ξ |2
∥∥∥∥
L1(Q�)

∥∥ρn(·, x, y)
∥∥2
L2(Q�)

.

Therefore,
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∣∣∣∣
∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)
e−i(ξ−ξ ′)·(x−y)

|ξ − ξ ′|2 ρ∗n(ξ
′, x, y)

dξ dξ ′

(2π)6
dx dy

∣∣∣∣
�

∥∥∥∥ 1

|ξ |2
∥∥∥∥
L1(Q�)

∫∫
Q×Q

‖ρn(·, x, y)‖2
L2(Q�) dx dy

=
∥∥∥∥ 1

|ξ |2
∥∥∥∥
L1(Q�)

∥∥ρn(ξ, x, y)
∥∥2
L2(Q�×Q2)

� C, (5.11)

in view of (5.7). We now collect (5.8), (5.10), and (5.11), and estimate the exchange term
as follows ∣∣∣∣

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗n(ξ
′, x, y)

dξ dξ ′

(2π)6
dx dy

∣∣∣∣
� C +C

∥∥∇√
ρn(x, x)

∥∥
L2(Q)

. (5.12)

It now remains to copy the proof of Theorem 2.1: The kinetic energy term is bounded
from below by ‖∇√ρn(x, x)‖2

L2(Q)
, and therefore the fact that the energy of the

minimizing sequence converges to the infimum implies that‖∇√ρn(x, x)‖L2(Q) is
bounded. Consequently, all the bounds shown in the RHF setting still hold here:



√
ρn(x, x) is bounded inH 1(Q), thus inLp(Q), 1� p � 6,

ρn(x, y) is bounded inLp(Q×Q), 1� p � 6,√
ρn(ξ, x, x) is bounded inL2(Q�;H 1(Q)),

ρn(ξ, x, x) is bounded inL5/3(Q�×Q),

(5.13)

and each of the four terms of the energy (2.24) is bounded independently ofn. As a
consequence of (5.13), we show the following bound that will be useful in Step 3:

ρn(x, y) is bounded inH 1(Q×Q). (5.14)

Indeed, we have

|∇xρn(x, y)| =
∣∣∣∣
∫
Q�

∑
m�1

λm(ξ)∇xum(ξ, x)u
∗
m(ξ, y)

dξ

(2π)3

∣∣∣∣
�

∫
Q�

( ∑
m�1

λm(ξ)|∇xum(ξ, x)|2
)1/2( ∑

m�1

λm(ξ)|um(ξ, y)|2
)1/2

dξ

(2π)3

�
(∫

Q�

∑
m�1

λm(ξ)|∇xum(ξ, x)|2 dξ

(2π)3

)1/2

×
(∫

Q�

∑
m�1

λm(ξ)|um(ξ, y)|2 dξ

(2π)3

)1/2

.

Hence,
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Q×Q

|∇xρn(x, y)|2 dx dy

�
∫∫

Q×Q�

∑
m�1

λm(ξ)|∇xum(ξ, x)|2 dx dξ

(2π)3

∫∫
Q×Q�

∑
m�1

λm(ξ)|um(ξ, y)|2 dy dξ

(2π)3

=
∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
‖ρn(x, x)‖L1(Q) � C.

This yields (5.14).

Step 3. –Convergence of the exchange term.

In view of the bounds (5.7), (5.13), (5.14), we may choose a subsequence ofKn, still
denoted byKn, such that the following convergences hold:




ρn(ξ, x, y) converges weakly inL2(Q� ×Q×Q),

ρn(ξ, x, x) converges weakly inL5/3(Q� ×Q),

ρn(x, y) converges strongly inLp(Q×Q), 1� p < 6.

(5.15)

The last convergence holds, because by Rellich’s theorem, (5.14) implies thatρn(x, y)

strongly converges (up to the extraction of a subsequence) inLp(Q2) for all 1 � p < 3.
But, since we have in addition the second bound of (5.7), the interpolation inequality
yields the strong convergence inLp(Q2) for all 1 � p < 6. Let us denote byK =∫
Q� Kξ

dξ

(2π)3
the operator that is the limit ofKn in the sense of the operators weak

topology, and in the sense of (4.50) – the latter being equivalent to the first convergence
of (5.15). Letρ(ξ, x, y) denotes the kernel of the associatedKξ : It is indeed clear that
K ∈K for the same reasons as those indicated in the proof of Theorem 2.1. In particular,
K still satisfies the constraint of charge 1. Likewise, we have

lim inf
n→+∞

∫
Q�

TrL2
ξ
(Q)

[−�ξK
n
ξ

] dξ

(2π)3
�

∫
Q�

TrL2
ξ
(Q)

[−�ξKξ

] dξ

(2π)3
,

and the electrostatic terms converge as they do in the RHF setting. Concluding the
proof of Theorem 2.3 therefore amounts to proving that we may pass to the limit in
the exchange term, or in other words that

lim
n→+∞

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗n(ξ
′, x, y) dξ dξ ′ dx dy

=
∫∫∫∫
Q2×(Q�)2

ρ(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗(ξ ′, x, y) dξ dξ ′ dx dy. (5.16)

In order to prove (5.16), we again decompose the interaction potentialW∞(·, ·)
accordingly to (5.6). We treat each of the three categories of terms separately, proving
the analogue of (5.16) for each of them. The assertion (5.16) will then follow by addition.

We begin with proving
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lim
n→+∞

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗n(ξ
′, x, y) dξ dξ ′ dx dy

=
∫∫∫∫
Q2×(Q�)2

ρ(ξ, x, y)W∞(ξ − ξ ′, x − y)ρ∗(ξ ′, x, y) dξ dξ ′ dx dy.

Clearly, it suffices to prove

lim
n→+∞

∫∫∫∫
Q2×(Q�)2

[
ρn(ξ, x, y)− ρ(ξ, x, y)

]
W∞(ξ − ξ ′, x − y)

× ρ∗n(ξ
′, x, y) dξ dξ ′ dx dy = 0. (5.17)

For this purpose, we observe that∣∣∣∣
∫∫∫∫
Q2×(Q�)2

[
ρn(ξ, x, y)− ρ(ξ, x, y)

]
W∞(ξ − ξ ′, x − y)ρ∗n(ξ

′, x, y)
dξ dξ ′

(2π)6
dx dy

∣∣∣∣
�

∫∫
Q×Q

∣∣∣∣
∫
Q�

ρn(ξ, x, y)
dξ

(2π)3
−

∫
Q�

ρ(ξ, x, y)
dξ

(2π)3

∣∣∣∣|W∞(ξ − ξ ′, x − y)|

×
∣∣∣∣
∫
Q�

ρ∗n(ξ
′, x, y)

dξ ′

(2π)3

∣∣∣∣dx dy

� ‖W∞‖L∞
∫∫

Q×Q

∣∣ρn(x, y)− ρ(x, y)
∣∣ |ρn(x, y)|dx dy

� ‖W∞‖L∞ ‖ρn(x, y)− ρ(x, y)‖L2(Q2) ‖ρn(x, y)‖L2(Q2),

and (5.17) follows from the strong convergence ofρn(x, y) to ρ(x, y) in L2(Q2).
For the second term, we remark that∣∣∣∣

∫∫∫∫
Q2×(Q�)2

[|ρn(x, y)|2− |ρ(x, y)|2] 1

|x − y| dx dy

∣∣∣∣
� C

∥∥∥∥ 1

|x − y|
∥∥∥∥
L2(Q2)

∥∥|ρn(x, y)|2− |ρ(x, y)|2
∥∥
L2(Q2)

,

where the right-hand side converges to zero becauseρn(x, y) converges toρ(x, y),
strongly inL4(Q2), thus|ρn(x, y)|2 converges to|ρ(x, y)|2, strongly inL2(Q2).

It now remains to treat the third term of (5.6), namely, for instance, to prove

lim
n→+∞

∫∫∫∫
Q2×(Q�)2

ρn(ξ, x, y)ρ
∗
n(ξ

′, x, y)
e−i(ξ−ξ ′)·(x−y)

|ξ − ξ ′|2 dξ dξ ′ dx dy

=
∫∫∫∫
Q2×(Q�)2

ρ(ξ, x, y)ρ∗(ξ ′, x, y)
e−i(ξ−ξ ′)·(x−y)

|ξ − ξ ′|2 dξ dξ ′ dx dy.
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We introduce the function

Fn(ξ, x, y)=
∫
Q�

ρ∗n(ξ
′, x, y)

e−i(ξ−ξ ′)·(x−y)

|ξ − ξ ′|2
dξ ′

(2π)3
, (5.18)

and the analogous functionF whenρn is replaced byρ. What we have to prove is that

lim
n→+∞

∫∫∫
Q2×Q�

[
ρn(ξ, x, y)Fn(ξ, x, y)

− ρ(ξ, x, y)F (ξ, x, y)
]
dξ dx dy = 0, (5.19)

and for this purpose it suffices to show thatρn(ξ, x, y) converges weakly toρ(ξ, x, y)
in L2(Q� ×Q2), which we already know from (5.15), and thatFn(ξ, x, y) converges
strongly toF(ξ, x, y) in L2(Q� ×Q2), which we now establish (up to the extraction of
a subsequence).

Since e−iξ ·(x−y)

|ξ |2 belongs toL∞(Q×Q;L1(Q�)), and sinceρn(ξ, x, y) is bounded in

L2(Q� ×Q2), we easily deduce from Young’s inequality that

Fn(ξ, x, y) is bounded inL2(Q�×Q×Q).

Likewise, the generalized Young inequality for the Marcinkiewicz spaces (or weakLp

spaces) implies

Fn(ξ, x, y) is bounded inL6(Q� ×Q×Q), (5.20)

using this time thate
−iξ ·(x−y)

|ξ |2 belongs toL3/2,∞(Q�).

Let us now prove thatFn(ξ, x, y) is bounded inW 1/2,1(Q�×Q2). This will imply by
the Sobolev embeddings theorem thatFn(ξ, x, y) is relatively compact inLp(Q�×Q2),
for all 1 � p < 19/18. In view of (5.20), Hölder’s inequality yields the compactness in
all Lp(Q� × Q2), for all 1 � p < 6, and thus in particular the desiredL2(Q� × Q2)

compactness. To prove thatFn(ξ, x, y) is bounded inW 1/2,1(Q� ×Q2), we prove that
Fn(ξ, x, y) is bounded both inL1(Q2;W 1/2,1(Q�)) and in L1(Q�;W 1/2,1(Q2)). The
second bound is an immediate consequence of the fact thatFn(ξ, x, y) is bounded in
L2(Q�;H 1(Q2)). The latter fact holds because bothρn(ξ, x, y) and∇xρn(ξ, x, y) are
bounded inL2(Q� ×Q2), e−iξ ·(x−y)

|ξ |2 ∈L∞(Q2;L1(Q�)), and

∇xFn(ξ, x, y)=∇xρ
∗
n(ξ, x, y) �Q�

e−iξ ·(x−y)

|ξ |2 + ρ∗n(ξ, x, y) �Q�

∇x e−iξ ·(x−y)

|ξ |2 .

In order to show thatFn(ξ, x, y) is bounded inL1(Q2;W 1/2,1(Q�)), we remark first that
1
|ξ |2 ∈ L∞(Q2,W 1/2,1(Q�), thus

∥∥Fn(ξ, x, y)
∥∥
W1/2,1(Q�)

= ∥∥ρn(ξ, x, y) �Q�

e−iξ ·(x−y)

|ξ |2
∥∥
W1/2,1(Q�)

�
∥∥ρn(ξ, x, y)

∥∥
L1(Q�)

∥∥ 1

|ξ |2
∥∥
W1/2,1(Q�)
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whence we deduce

∥∥Fn(ξ, x, y)
∥∥
L1(Q2;W1/2,1(Q�))

�
∥∥ρn(ξ, x, y)

∥∥
L1(Q�×Q2)

∥∥∥∥ 1

|ξ |2
∥∥∥∥
W1/2,1(Q�)

.

This concludes the first proof of (5.16), and thus the proof of Theorem 2.3.✷
Second proof of Theorem 2.3. –We may observe that we can modify the argument

which is used in Step 3 above by proving the following.

LEMMA 5.2. – For any minimizing sequenceKn ∈K of IHF
per , we have

lim
n→+∞

∫
Q

dx

∫
R3

|ρn(x, y)|2
|x − y| dy =

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy. (5.21)

Proof. –The proof of the above Lemma 5.1 yields in particular that the exchange term∫
Q dx

∫
R3

|ρn(x,y)|2
|x−y| dy is bounded independently ofn, with the help of (5.13). Moreover,

in view of (5.15), |ρn(x, y)|2 converges to|ρ(x, y)|2 almost everywhere onR3 × R3.
Then, by Fatou’s lemma, we deduce that

lim inf
n→+∞

∫
Q

dx

∫
R3

|ρn(x, y)|2
|x − y| dy �

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy.

In order to prove the reverse inequality for the upper limit, we argue as follows. Let
R > 0 be fixed, we may write∫
Q

dx

∫
R3

|ρn(x, y)|2
|x − y| dy =

∫
Q

dx

∫
|x−y|�R

|ρn(x, y)|2
|x − y| dy +

∫
Q

dx

∫
|x−y|�R

|ρn(x, y)|2
|x − y| dy.

On the one hand, we obtain∫
Q

dx

∫
|x−y|�R

|ρn(x, y)|2
|x − y| dy � 1

R

∫
Q

dx

∫
R3

|ρn(x, y)|2 dy

= 1

R
‖ρn(ξ ;x, y)‖2

L2(Q�×Q×Q) � C

R
, (5.22)

for some positive constantC that is independent ofn, and because of the bound (5.13)
onρn.

On the other hand, we know from (5.15), thatρn(x, y) converges toρ(x, y) strongly
in L4

loc(R
3× R3). Thus,|ρn(x, y)|2 converges to|ρ(x, y)|2 strongly inL2

loc(R
3 × R3).

Since 1
|x−y|χ|x−y|�R(x, y) belongs toL2

loc(R
3 × R3), we clearly obtain, for any fixed

R > 0,

lim
n→+∞

∫
Q

dx

∫
|x−y|�R

|ρn(x, y)|2
|x − y| dy =

∫
Q

dx

∫
|x−y|�R

|ρ(x, y)|2
|x − y| dy. (5.23)
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Collecting (5.22) and (5.23), and lettingn, and thenR, go to infinity, we finally obtain

lim sup
n→+∞

∫
Q

dx

∫
R3

|ρn(x, y)|2
|x − y| dy �

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy.

The proof is now complete. ✷
We shall now write down the system of Euler–Lagrange equations satisfied by any

minimizer K of IHF
per . These equations look like very much the usual Hartree–Fock

equations in Molecular Chemistry, and are likely to be the analogues in the periodic
setting of the well-known Hartree–Fock equations. The form of these equations is very
similar to the one we have derived for the periodic RHF model, namely (4.57)–(4.59),
except for an extra term which comes from the exchange term. Arguing by analogy with
the periodic RHF model, we obtain the following system of Euler–Lagrange equations,
for almost everyξ in Q�, and for everyn � 1,




−�un(ξ, ·)−Gun(ξ, ·)
+ ∑

m�1

λm(ξ)

(∫
Q

um(ξ, y)
2G(· − y) dy

)
un(ξ, ·)

−
∫∫

Q�×Q

ρ(ξ ′;x;y)W∞(ξ − ξ ′;x − y)un(ξ, y) dy
dξ ′

(2π)3

= ∑
m�1

εnm(ξ) um(ξ, ·), a.e. onQ,

∫
Q

(|∇ un(ξ, x)|2−G(x) |un(ξ, x)|2)dx
+ ∑

m�1

λm(ξ)DG

(|un(ξ, ·)|2, |um(ξ, ·)|2)

−
∫∫∫
Q�×Q2

ρ(ξ ′;x;y)W∞(ξ − ξ ′;x − y)u∗n(ξ, x)un(ξ, y) dx dy
dξ ′

(2π)3

= µ0
n(ξ)+µ1

n(ξ)+ π,

(5.24)

with ρ(ξ ′;x;y) =∑
m�1λm(ξ

′)um(ξ
′, x)u∗m(ξ ′, y), and where the Lagrange multipliers

π , µ0
n(ξ), µ

1
n(ξ), εnm(ξ) are respectively associated to the set of constraints




∫
Q�

∑
n�1

λn(ξ)
dξ

(2π)3
= 1,

0� λn(ξ) � 1, for all n � 1, and for almost allξ ∈Q�,∫
Q

un(ξ, x)u
∗
m(ξ, x) dx = δn,m, for almost allξ ∈Q�.

(5.25)
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Since, once more,EHF
per(K) is independent of the choice of an eigenbasis forKξ , we

may assume without loss of generality that the matrix ofεnm(ξ) is diagonal, for almost
everyξ in Q�; under this assumption, the right-hand side term,

∑
m�1 εnm(ξ)um(ξ, ·),

in the first equation of (5.24) becomes simplyεn(ξ)un(ξ, ·). In addition, the Lagrange
multipliers still satisfy the properties (4.58a), (4.58b), and (4.59), that we recall here for
the convenience of the reader; namely, for alln � 1 and for almost everyξ in Q�,

µ0
n(ξ)

{= 0, if λn(ξ) > 0,
� 0, if λn(ξ)= 0,

µ1
n(ξ)

{= 0, if λn(ξ) < 1,
� 0, if λn(ξ)= 1,

and 


λn(ξ)= 0 �⇒ εn(ξ) � π,

0< λn(ξ) < 1 �⇒ εn(ξ)= π,

λn(ξ)= 1 �⇒ εn(ξ) � π.

Once we have established the existence of a minimizer for the periodic Hartree–Fock
model, we are able to compare from above the Hartree–Fock energy per unit volume
with this periodic problem.

5.2. Upper limit of the energy per unit volume

In this section, we prove the following.

PROPOSITION 2.1. –We assume that the Van Hove sequenceΛ satisfies(2.21). In
addition, we assume that the unit cellQ is a cube, and that there exists a minimizer
K ∈K of IHF

per whose densityρ shares the symmetries of the unit cube. Then,

lim sup
Λ→∞

IHF
Λ

|Λ| � IHF
per +

M

2
,

whereIHF
per is defined by(2.23)–(2.24).

Remark5.1. –
(1) The same result holds true in the smeared nuclei case, if we assume moreover that

m shares the symmetries of the cubeQ, and defineM according to (2.22).
(2) In the HF setting, since we do not know whetherρ is unique, the assertion thatρ

shares the symmetries of the cube needs to be assumed.

Proof of Proposition 2.1. –The beginning of the proof is the same as in the proof of
Proposition 4.2 for the RHF problem. Let us denote byK a minimizer of the periodic HF
problem such that the corresponding densityρ shares the symmetries of the unit cube.
We set

∂Λ= {
k ∈Λ; d(k, ∂Γ (Λ)) � 2

}
,
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Γ (∂Λ)= ⋃
k∈∂Λ

k +Q,

◦
Λ=Λ \ ∂Λ,

and

Γ (
◦
Λ)= ⋃

k∈ ◦Λ
k +Q= Γ (Λ) \Γ (∂Λ).

We build a cut-off functionχΛ ∈D(R3) satisfying the following properties: 0� χΛ � 1,

χΛ ≡ 1 onΓ (
◦
Λ), χΛ ≡ 0 onΓ (Λ)c. In particular, we have

∫
R3

χ2
Λ(x)ρ(x, x) dx = |Λ| + o(|Λ|) � |Λ|. (5.26)

We next consider the operatorKΛ onL2(R3) whose kernel is

ρΛ(x, y)= χΛ(x)ρ(x, y)χΛ(y).

Then, because of (5.26), and sinceIHF
Λ is also obtained by minimizingEHF

Λ when the
trace constraint is relaxed, that is on the set of self-adjoint operators

K′Λ =
{
0 � K � 1,TrK � |Λ|, Tr

[
(−�− VΛ)K

]
<+∞}

,

we have

IHF
Λ

|Λ| � 1

|Λ|E
HF
Λ (KΛ).

We show exactly as in the proof of Proposition 4.2 that

lim
Λ→∞

1

|Λ|
[
TrL2(R3)[−�KΛ] −

∫
R3

VΛρΛ+ 1

2
D(ρΛ,ρΛ)+ 1

2
UΛ

]

=
∫
Q�

TrL2
ξ
(Q)[−�ξKξ ] dξ

(2π)3
−

∫
Q

Gρ + 1

2
DG(ρ,ρ)+ M

2
.

According to the definition (2.5) of the Hartree–Fock energy, to reach the conclusion, it
now remains to compute the exchange term corresponding toKΛ, and to show that

lim
Λ→∞

1

|Λ|
∫∫

R3×R3

|ρΛ(x, y)|2
|x − y| dx dy =

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy.

It is easily seen that

1

|Λ|
∫∫

R3×R3

|ρΛ(x, y)|2
|x − y| dx dy
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= 1

|Λ|
∫∫

R3×R3

χΛ(x)
2|ρ(x, y)|2χΛ(y)

2

|x − y| dx dy

= 1

|Λ|
∫∫

Γ (
◦
Λ)×Γ (

◦
Λ)

|ρ(x, y)|2
|x − y| dx dy + 2

|Λ|
∫∫

Γ (
◦
Λ)×Γ (∂Λ)

χΛ(x)
2|ρ(x, y)|2
|x − y| dx dy

+ 1

|Λ|
∫∫

Γ (∂Λ)×Γ (∂Λ)

χΛ(x)
2|ρ(x, y)|2χΛ(y)

2

|x − y| dx dy.

Let us first concentrate on the last two terms and show that they converge to 0 asΛ goes
to infinity. Indeed, since 0� χΛ � 1, the sum of these two terms isa fortiori less or
equal to the following quantity

QΛ = 2

|Λ|
∫∫

R3×Γ (∂Λ)

|ρ(x, y)|2
|x − y| dx dy,

which makes sense since

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy <+∞.

Besides, using the fact thatρ(x + k, y + k)= ρ(x, y), for everyk in Z3, we have

QΛ = 2

|Λ|
∑
k∈∂Λ

∫
Q

dx

∫
R3

|ρ(x + k, y)|2
|x + k − y| dy

= 2

|Λ|
∑
k∈∂Λ

∫
Q

dx

∫
R3

|ρ(x, y − k)|2
|x − (y − k)| dy

= 2
|∂Λ|
|Λ|

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy.

We conclude easily, since by definition of Van Hove sequences,|∂Λ| = o(|Λ|), asΛ

goes to infinity. Therefore, it remains to check that

1

|Λ|
∫∫

Γ (Λ)×Γ (Λ)

|ρ(x, y)|2
|x − y| dx dy =

∫
Q

dx

∫
R3

|ρ(x, y)|2
|x − y| dy + o(1),

since it is clear that, for the same reasons as above,

1

|Λ|
∫∫

Γ (Λ)×Γ (Λ)

|ρ(x, y)|2
|x − y| dx dy = 1

|Λ|
∫∫

Γ (
◦
Λ)×Γ (

◦
Λ)

|ρ(x, y)|2
|x − y| dx dy + o(1).

We rewrite this sum in the following way
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1

|Λ|
∫∫

Γ (Λ)×Γ (Λ)

|ρ(x, y)|2
|x − y| dx dy = 1

|Λ|
∑
k, l∈Λ

∫∫
Q×Q

|ρ(x + k, y + l)|2
|x + k− y − l| dx dy

= 1

|Λ|
∑
k, l∈Λ

∫∫
Q×Q

|ρ(x, y + l − k)|2
|x − (y + l − k)| dx dy

= 1

|Λ|
∑
k,l∈Λ

∫∫
Q×R3

χl−k+Q(y)
|ρ(x, y)|2
|x − y| dx dy.

The conclusion is then easily reached by showing that the sequence of functions defined
by 1

|Λ|
∑

k,l∈Λ χl−k+Q(y) converges to 1 inL∞(R3)�-weak, and almost everywhere on

R3. To prove this claim, we could directly apply the technical lemma given in Chapter 2
of [11], but, since the proof is simple, we reproduce the argument here. On the one hand,
we clearly have

0� 1

|Λ|
∑
k,l∈Λ

χl−k+Q(y) � 1

|Λ|
∑
k∈Λ

∑
l∈Z3

χl−k+Q(y) � 1.

Therefore, the sequence is bounded inL∞(R3). On the other hand, lety be fixed inR3.
Then, there existsm ∈ Z3 such thaty lies in m+Q, and forΛ large enoughm lies in
Λ−Λ, by definition of a Van Hove sequence. Hence, for such any, we obtain

1= 1

|Λ|
∑
k∈Λ

∑
l∈Z3

χl−k+Q(y)= 1

|Λ|#{k, l ∈Λ; l − k =m}

= 1

|Λ|#{k ∈Λ; k−m ∈Λ} = 1

|Λ|#[Λ ∩ (Λ+m)]

� 1

|Λ|#
[
Λ \Λ|m|+ 1

2
]

� 1− |Λ
|m|+ 1

2 |
|Λ| ,

whereΛ|m|+ 1
2 = {k ∈Λ; d(k; ∂Γ (Λ)) � |m| + 1

2}, and where the notation #S stands for
the number of elements in the setS. We conclude easily since, by definition of a Van

Hove sequence,|Λ
|m|+ 1

2 |
|Λ| goes to 0 asΛ goes to infinity. ✷

6. Extensions and perspectives

We list in this last section a few comments on the above results, and indicate some
possible extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequenceΛ is Z3, and thus that the periodic cellQ is a cube of unit size. The first
basic observation to make is that our whole work goes throughmutatis mutandisif we
replace the cube of unit size by a cube of sizeR. Slight modifications must be made in
the definition of the potentialG in particular, and we refer the reader to [11] for such
modifications.
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Replacing the cube by another shape of unit cell is another story. As we have
mentioned above, Theorems 2.1 and 2.3 still hold. On the contrary, our strategy of proof
for Theorem 2.2 depends upon the shape of the cell. It is an open (but rather technical)
question to extend this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (2.21) is a technical
assumption required only for the proof of Theorem 2.2. We recall we believe it can
be left apart, but we do not know how.

Concerning the periodic problemsper se, it would be an interesting question to
address to see whether one can say something on the minimizers. In the HF setting,
for instance, we are not able to check, for the time being, whether or not the minimizing
periodic density matrixK is a projector (which is equivalent to the fact thatKξ is a (finite
rank) projector, for almost allξ in Q�), as it is the case for the Hartree–Fock model for
molecules.

Apart from these somewhat secondary questions, the main issue to tackle is theproof
of the thermodynamic limit for the energy per unit volume in the H and HF settings. As
far as this question is concerned, much remains to be done.

Even in some simplified framework, trying to understand Hartree–Fock type models
for quasicrystals would also be of interest. Our study [11] and references [1,3,8,47] could
constitute a starting point.

Finally, let us mention that the periodic problems we have defined in this work can
be treated numerically, and we indeed intend to treat them numerically. Numerical
experiment might in particular give some insight into the mathematical nature of these
models and help oneself to make up his mind on some of the questions mentioned above.
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