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ABSTRACT. — We continue here our study [10-13] of the thermodynamic limit for various
models of Quantum Chemistry, this time focusing on the Hartree—Fock type models. For the
reduced Hartree—Fock models, we prove the existence of the thermodynamic limit for the energ
per unit volume. We also define a periodic problem associated to the Hartree—Fock model, an
prove that it is well-posed.

© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous poursuivons dans cet article notre étude systématique [10-13] de la limi-
te thermodynamique de divers modeles issus de la Chimie Quantique Moléculaire, en nou
consacrant cette fois aux modeéles de type Hartree—Fock. Pour le modéle de Hartree—Fock rédt
nous prouvons que I'énergie par unité de volume a une limite thermodynamique, que nou
identifions. Nous définissons également un modéle périodique associé au modéle de Hartre
Fock, et nous démontrons qu’il est bien posé.

© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree—
Fock type models, thereby continuing a long term work that we have begun in [11]
with a similar study in the setting of the Thomas—Fermi—von Weizsacker type models.
The results we have obtained in that framework were summarized in [10]. The
thermodynamic limit problem for the Hartree type models has been studied in [13] anc
announced in [12]. Those we shall obtain here have also been announced in [12]. W
refer the reader to [11] for a detailed introduction to these issues (see also [13], for
summary).

Briefly speaking, the so-called thermodynamic limit problem consists in examining
the behaviour of models for a finite volume of matter when the volume under
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consideration goes to infinity. Since the energy is an extensive thermodynamic quantity
it is expected that the energy per unit volume goes to a finite limit when the volume goes
to infinity. It is also expected that the function representing the state of the matter goe:
also to a limit in some sense. The thermodynamic limit problem we study (that is, for
crystals and at zero temperature) may be stated as follows.

We consider a neutral molecule consisting of nuclei of unit charge (atomic units
will be adopted in all that follows), and which are located at points (kq, k», k3) of
integral coordinates iR3; each nucleus therefore lies at the center of a cubic unit cell
O = {(x1, x2,x3) € R% —3 < x; —k; < 3, i = 1,2,3} (with the convention thao
will be henceforth denoted b@). The set of the positions of these nuclei is then a finite
subsetA of the set of all points of integral coordinates thaZic R3. The union of
all cubic cells whose center is a point dfis denoted byi"(A); its volume is denoted
by |A|. Since each cell has unit volume and each nucleus is of unit chatgjés also
the number of nuclei and the total nuclear charge. It is important to note that, in all
that follows, I" (A) may be viewed as a big box into which the molecule is confined.
(This claim may actually be checked rigorously; see Remark 3.2 in Section 3.1 below.)
This assumption is standard for statistical physicists, and is compulsory at positive
temperatures.

Suppose that fort C Z2 fixed, we have a well-posed model for the ground state of
the neutral molecule consisting ofi| electrons andA| nuclei located at the points
of A. Let us denote by, the ground state energy, and by the minimizing electronic
density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows:

(i) Does there exist a limit for the energy per unit volwﬁgl,‘ when|A| goes to
infinity?

(i) Does the minimizing density, approach a limito,, (in a sense to be made

precise later) whehA| goes to infinity?

(iii) Does the limit densityp., have the same periodicity as the assumed periodicity

of the nuclei?

Let us precise now the scope of this article. We shall not deal here with the physical
background of this theoretical problem, and we would rather refer the reader to the
textbooks [6,55] and the articles [27,28]. The questions we tackle here are indeed close
questions of interest in Solid State Physics, both for theoretical and numerical purpose:
For the sake of brevity, we shall not detail here the relationship between our work anc
Solid State Physics. We only mention some references here, namely [23,42], and als
[2,6,9,40,43,48,49,57].

The purpose of our study is twofold: first, we want to check that the molecular model
under consideration does have the expected behaviour in the limit of large volumes
second, we wish to set a limit problem that is well-posed mathematically and that car
be justified in the most possible rigorous way (in particular with a view to give a sound
ground for numerical simulations of the condensed phase).

The models we shall consider here, and which are described in Section 2 below, ar
issued from Quantum Chemistry, and therefore, they are models that are only valid &
zero temperature. From the mathematical viewpoint, the thermodynamic limit problem
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has been extensively studied, in the zero temperature setting as well as in the setting
strictly positive temperatures (see [11] or [13] for a brief historical survey). We shall

only mention the ground-breaking work [32] by Lieb and Simon on the thermodynamic
limit in the framework of the Thomas—Fermi theory (TF Theory for short). Indeed, this

work was at the origin of our own study [11] on the Thomas—Fermi—von Weizsécker
model (TFW model for short), and has largely influenced our work.

In [11], we have proved that the three questions (i)—(ii)—(iii) of the thermodynamic
limit problem that we have raised above can be answered positively in the setting of the
TFW theory. We find it useful to briefly emphasize the fact that many of the concepts
and techniques that we have used in [11] (some of them being inherited from Lieb anc
Simon, some others being introduced by us in order to treat the TFW case) will be usefu
here. Taking benefit from the work by Lieb and Simon who had already defined the TF
periodic problem, the idea to introduce the periodic TFW problem was straightforward.
Our “only” contribution was therefore to prove that the TFW model does converge in
the thermodynamic limit to the guessed periodic model.

The Thomas—Fermi type models are derived from the so-called Density Functiona
Theory. In this framework, the electronic ground state is determined globally by a single
function: the electronic density. In the Hartree model [13] and in the Hartree—Fock
model that we study now, thei| electrons are described x| wave-functions, whose
number thus goes to infinity while passing to the thermodynamic limit. The analysis
of these models is therefore expected to be much more intricate than in the Thomas
Fermi case. As a matter of fact, we have not been able to do in the Hartree—Fock settin
everything we did in the TFW setting; that is to prove the convergence of the energy pe
unit volume in the thermodynamic limit. We shall see below that even the guess on the
periodic problem is not so obvious for the Hartree—Fock model. Consequently, the mer:
definition of the limit problems turns out to be a substantial piece of the work. Actually,
it is worth emphasizing that the main obstacle we shall encounter comes from the lacl
of convexity of the Hartree—Fock functional. Indeed, our study of the TFW model [11]
(as well as the TF model study by Lieb and Simon [32]) relies in a crucial way upon
the convexity of the energy functionals. For the very same lack of convexity, we have
not been able in [13] to prove the convergence of the energy per unit volume in the
thermodynamic limit for the Hartree model. We have only proved the convergence of
the energy per unit volume in the thermodynamic limit for a simplified Hartree model
(namely the restricted Hartree model), whose energy functional is convex. However, we
have proposed a periodic problem which is likely to be the Hartree model for crystals,
and we have proved that this periodic problem is mathematically well-posed.

Similarly, in the Hartree—Fock setting, we shall not be able to prove the convergence o
the energy per unit volume in the thermodynamic limit. We shall nevertheless prove the
convergence of the energy per unit volume in the thermodynamic limit for a simplified
Hartree—Fock model, whose energy functional is convex (namely the reduced Hartree
Fock model, treated in Section 4).

As far as the Hartree—Fock model is concerned, we shall suggest a periodic probler
as a candidate for the thermodynamic limit (see Section 5). We shall prove that this
periodic problem is mathematically well-posed. By the way, it is worth emphasizing the
fact that the Euler-Lagrange equations that are derived from our periodic HF problen
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are already known in the Quantum Chemistry literature (see, for example, [42]), thereby
strengthening our conviction that our model is the correct one.

This paper is organized as follows. The forthcoming Section 2 is devoted to the
definition of the general setting we shall work in, and to the detailed presentation of
the results we shall establish. Section 3 colleztgriori estimates for the reduced
Hartree—Fock and the Hartree—Fock models and a detailed description of the so-calle
Bloch waves (or Floquet) decomposition, which is a well-known tool by Solid State
physicists, and which will also play a great role in our study. Section 4 and Section 5
are concerned with the reduced Hartree—Fock and the Hartree—Fock model respectivel
The last section of this paper is devoted to various comments and extensions. We shze
also describe there some directions of current research.

2. General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this
article, namely the Hartree—Fock model, and one of its simplified form, the reduced
Hartree—Fock model. For the sake of brevity, we shall often abbreviate the names o
these models, and write simply the HF and RHF models, respectively.

We recall from the introduction that, for eaeh finite subset oZ* c R3, we consider
the molecular system consisting |of| nuclei of unit charge that are located at the points
of A and of| A| electrons. We shall henceforth denote by

1
Va(x) :Zm, (2.1)

keA

the attraction potential created by the nuclei on the electrons, and by

1 1 1

“Up== 2.2

2 2m§€:A m — n| (2:2)
m#n

the self-repulsion of the nuclei.

As in [11], we shall also consider the case when the nuclei are not point nuclei but are
smeared nuclei. In that case, each Dirac mass located at akpwiint is replaced by a
compactly supported smooth non-negative function of total mass one, typically denote
by m(- — k), and “centered” at that point of. The regularity of the functiom does not
play a great role in the sequel, and therefore we shall assume without loss of generalit
thatm is C*. The potential (2.1) and the repulsion (2.2) are then respectively replaced

by

Vi (x) = Zm —k|

keA

SUL =5 (Zm( +4).> m(- +k)> ——|A|D(m m).

keA keA
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In the above equation, we have as usual denoteB @y-) the double integral defined as

follows
- f&x) f(y)
(= [[ FEE S avay.

R3xR3
It will be convenient to introduce in this setting the function

ma=Yy_m(-—k).

keA

In this setting of smeared nuclei, we shall also make use of the effective poténtial
defined for each electronic densjy as follows

¢A = (mA —pA)*—l.
We are now in position to introduce the molecular models we shall deal with.
The Hartree—Fock model, which is the most commonly used model in Quantum
Molecular Chemistry [41] can be written as follows

1
|x

1
Il'jF:inf{EjF(K)JrEUA;KeICA}, (2.3)

where the set of minimizatiokl , consists of self-adjoint operatofs on L?(R3%) such
that

Ka={0<K<LTrK =|A|,Tr[(—A = VA)K] < +0o0}, (2.4)
with 1 denoting the identity oi.2(R3). The energy functionak!F in (2.3) is given by
px, x) p(y,y) J

HF 1
EN(K)=Tr[(—A — V4)K] +5 // P xdy
R3xR3 Y
1 2
RSl (2.5)
2 lx =yl
R3xR3

with p(-, -) denoting the kernel of the Hilbert—Schmidt operafor Let us now define
the various quantities that appear in the above definition of the Hartree—Fock model.

The operatorK is the so-called (reducgédone-particle density matrixFrom the
general theory of trace-class operatorsIGiiR®) (see, for example, [44]), any operator
K in K, admits a complete set of eigenfunctios,),>1 in H'(R®) associated to the
eigenvalues & 1, < 1 (counted with multiplicity). Thus we may decompo&ealong
such an eigenbasis df?(R?), in such a way that its Hilbert—Schmidt kernel may be
written as

P Y) =D (X))
n>1
Owing to the fact thak is trace-class, the corresponding density is well-defined as a
non-negative function in*(R®) throughp (x, x) = 3,51 As l@,(x)|%, and TIK =|A| =
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Jrap(x,x)dx =3",~1 A,. Moreover, according to this spectral decompositiokofve
may give a sense to

—AK]=) X, /lV(pn(x)lzdx, (2.6)
n=1 R3

while

TVAK] =S 2, / Vs (0)lgn () 2elx = / Va()p(x, ¥) dx.

n>1

It is a standard fact [30] that this formulation of the Hartree—Fock problem is
equivalent to the following one, which might be more familiar to the reader

1
I = mf{E”F«ol, o)+ 5Us o € HY(RO),

R3

||

. X p(x )p(y)
E ((pl,...,(/)|A|)—Z /|V(p,| /VA(X)p(X)dX+ ZR/{ |X—y| dy

_5 lx — |
R3xR3

dxdy, (2.8)

wherep(x,y) = Y12 01 ()¢ (9)*, p(x) = p(x, x) = SI2) [¢; (x)[2. This equivalence
means that every minimizer of (2.3)—(2.5) is a projector with finite fatikIn this latter
formulation they;’s are interpreted as the electronic wave-functions. Let us observe that
the formulation in terms of density matrices is more intrinsic, and therefore sometimes
more convenient to use than the second one. Indeed, for every unitary trarigform
in C'41, and for every orthonormal familyp;)1<i<j4 in H*(R%)!4!, we obviously
have EXF (U (¢1; ...; 914) = ENF (15 ... 914)), while the density matrices that are
respectively associated (¢1; ...; ¢j4) and(gi; ...; ¢4)) are the same.

It is of course straightforward to deduce from the point nuclei setting (2.3)—(2.5) the
analogous smeared nuclei setting for the HF problem; namely

mHE 1 4]
IA’ =inf TI’[—AK}+§D(p—mA,,0—mA)—7D(m,m)
2
R TRl KEICA}. (2.9)
2 lx — ¥l
R3xR3
We also remark that the equivalence with a standard form of the type (2.7)-(2.8)
obviously holds true.
As announced above, we shall also consider in the sequel the following simplified
form of the Hartree—Fock model; namely the reduced Hartree—Fock model:
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RHF RHF 1
1§ =infq ERTR(K) + 2UA, K ek, (2.10)

1
ERFF(K) =Tr[(—A — Vo) K] + 5D p) (2.11)

(wherelC 4 is still defined by (2.4)), and respectively its analogous smeared nuclei model

_ 1
IZ"’RHF:lnf{Tr[_AK] + ED(,o —my, p—My)

1
—§|A|D(m,m); KGICA}. (2.12)

In order to turn to the thermodynamic limit problgyar se it is now time to recall the
properties of the sequence of sdtshat we shall consider. For the sake of completeness,
we recall here the following definition taken from [11] and [32].

DEFINITION 1.—We shall say that a sequenca; ), >, of finite subsets a2 goes to
infinity if the following two conditions hold
(a) For any finite subsef C Z3, there exists e N such that

Vjzi, ACA,;.
(b) If A" is the set of points iR® whose distance t8I" (A) is less thari (> 0), then

IAhI

i—00

=0, Vh>0.

Condition(b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence
for which the ‘boundary’ is negligible in front of the ‘interior. A sequence of
large cubes typically satisfies the conditions of Definition 1. We shall only consider
henceforth so-calledVan Hove sequencesghich are going to infinity in the sense of
the above definition. Occasionally, some additional conditions will also be required
(see Theorem 2.2). Following the notation of [32,11], we shall write henceforth
liMm,_ o f(A) instead of lim_, o, f(A;).

Before introducing the Hartree—Fock type periodic models, it is to be noticed that
a key-point for their definition is the understanding of laws of interactions between
periodically arranged particles. Indeed, owing to the long-range of the Coulomb
potential, the electrostatic potential created by the infinite lattice of nuclei cannot be
simply 3 cz3 7= since this series obviously does not make sense.

We first of aII introduce the periodic potenti@l that is uniquely defined by

—AG=4ﬂ<—L+§:5C—y0, (2.13)
yez3
and

ZG:Q (2.14)



694 I. CATTO ET AL./ Ann. I. H. Poincaré — AN 18 (2001) 687-760

with § being the Dirac measure. Due to our choice of normalization (2.14§fove
also need to define the constant

M = lim {G(x) — i}. (2.15)
x—0 |x|

We shall see in the sequel that this periodic potentia(which is also the Green’s
function of the Laplacian with periodic conditions on the unit cell) is the interaction
electrostatic potential created by the periodic distribution of charges of nuclei. We denot

De(f. f) = //f(x)G(x — ) () dxdy.

oxQ

We also define

1 d
I =55~ wr
0]

and then

fA(x):Z<|xik| _Q/ |x —dky—y|>'

keA

It is convenient to rewritef, as

1
fa=Va— Xra) * 7,
|x|
where, more generally, we shall denote Ry the characteristic function of the
domaing2. Besides, it is proved in [32], and recalled in [11], that, whi&is a cube,

Cc
If(X)I<W

almost everywhere oR?, for some positive constard, and thatf, converges to the
periodic potentialG + d, for some real constamnt that is independent aofi, uniformly
on compact subsets &3\ Z3. Moreover, for any compact subsé&t of R3, f, —
Yteank =g converges uniformly ok to G +d — Yyz3nx 25 (S€e [32]). Therefore,
we may noteworthy observe that the periodic poter@athich was previously defined
by (2.13) and (2.14) is also given by

1 1
G<x)=z<|x—k| _Q/|x—y—k|dy) —d:

kez3

that is, the sum over the lattice points of the Coulomb potential created by a point charg
placed at the center of the unit cube, and which is screened, on each cell, by a uniforr
background of negative unit charge. This screening effect which is commonly observec
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in thermodynamic limit issues (see [25-27,32,11,13)]) is a consequence of the electrice
neutrality of the molecular systems under consideration.

Let us now turn to the periodic problems we want to define. We shall detail in
Section 3.2 below the reasons why we need to introduce the following set of operators
which are aimed to become the analogues of the usual density matrices in the period
case.

DEFINITION 2.—LetQ* =[—m; +x[3, and, for eveng in Q*,
L?(Q) {u e LE.(R®%); ey is Q-periodic}.

We now consider families of operatoks (¢ € Q*), which are self-adjoint orLg(Q),
and which enjoy the following properties, for almost every O*.

(H2) 0< K¢ <1, with 1 being the identity or.Z(Q);

(H3) the operatorsK; have finite traces, and satisf,. TrLg(Q)Kg(szs)S =1;

(H4) Trpzg)[—AcK,] < 400 and [, Tr20) [—A: K| dé < +o00.
To every such family of operators is associated, in a unique way, a self-adjoint
operatorK in L*(R%), denoted byk = ;. K (2 )3, such that

(H1) K commutes with the translations of;

(H2) 0K K <1
We denote by the set of operator& = [,. K 4 o )3 which satisfy the condition@i1)—
(H4) (or equivalently(H2'), (H3) and (H4)), and we shall callK a periodic density
matrix.

In all that follows, we shall denote by(¢, -, -) the Hilbert—-Schmidt kernel oK.
Owing to the fact thak; is a trace-class operator, we may give a sengg4ox, x) as
a Q-periodic function inL} .(R®), and to

dt
p(x)zg[p@ 0 s (2.16)

Moreover,p(x) is also aQ-periodic function inLL (R?), which will play the role of the
electronic density in crystals. Let us emphasize once more the fact that the definitions c
the various quantities appearing in the above definitions are made precise in Section 3
below, and, more specifically, in Proposition 3.2 therein.

With the help of the above definitions, we are now able to state the periodic
minimization problems associated to the above RHF and HF models. First, for the RHF
model (2.10)—(2.11), we set:

IR = |nf{E§§F(K); Ke /C}, (2.17)
dg

1
RHF
Eper (K):Q[TQg(Q) [—AK] ) —Q/GP+§DG(0,,0) (2.18)
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with p being defined by (2.16). The analogous model in the smeared nuclei setting is
written

IR = inf{ ElsRAR(K); K e K, (2.19)
m, dé
1 1
+§Dc(p—m,p—m)—§DG(m,m). (2.20)

We shall prove in Section 4 the following results.

THEOREM 2.1 (Well-posedness of the RHF periodic problem)The minimization
problem defined by2.17) and (2.18) fespectively by(2.19) and (2.20)) admits a
minimum. In addition, the corresponding minimizing dengitys unique and, thus,
shares the symmetries of the unit cube.

THEOREM 2.2 (Thermodynamic limit for the RHF energy). We assume that the
Van Hove sequencé satisfies

Jim |—||Log|Ah| =0, Vh>0, (2.21)

where A" is defined in DefinitiorL. In addition, we assume that the unit céll of the
periodic lattice is a cube.
In the point nuclei case, we have

1 rue_ rie, M
A AT = e

where the constanM is defined by2.15) Respectively, in the smeared nuclei case,
assuming in addition that shares the symmetries of the unit cubewe have

1 . rHF_ mrur, M
fim G

where, this time, the constaM is defined by

} dxdy. (2.22)

1
M= [[memn |66 =9 - —

oxQ

Some comments are in order. The reader has remarked that some technical assun
tions (Q is a cube, (2.21), andk has cubic symmetry) have been made in the above
theorem. We need these technical assumptions in Section 4, and more precisely in Su
section 4.3 to prove that the upper limit %IEHF may be compared from above by

I}F+ 2. A technical assumption such as (2.21), that is satisfied by all Van Hove se-

guences except some very pathological ones, already appears in [11]. However, in [11
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we manage to get rid of all these technical assumptions using another strategy of proc
for results like Theorem 2.2; namely the “energy via density” strategy. Here, such a
strategy, based upon the convergence of the minimizers, is out of reach. Of course w
believe they are not necessary here either. We believe there is room for improvement i
our proofs and some other strategy could allow one to do without these assumptions
Unfortunately, we have not been able to do without them so far.

On the contrary, no additional assumption at all is necessary for the other result:
stated in this work. In particular, the fact that the unit cell is a cube is not important for
Theorems 2.1 and 2.3. We shall not repeat this observation in the forthcoming sections
but the reader should keep it in mind. For further comments, we refer the reader tc
Section 6.

In view of the above theorem, and in view of calculations that will be detailed
in Sections 3 and 5 below, we find it natural to introduce the following periodic
minimization problem in the Hartree—Fock framework:

13 =inf{ EpE(K); K e K}, (2.23)

1 1
K] o / Gp+3Da(p. p) — SEadK), (2.29)

Eper(K) =/TrL§(Q) [-A
o
wherep(x) is still defined by (2.16). Wltho(g, -, -) being the Hilbert-Schmidt ok,
the Schwarz kernel oK is given by p(x,y) = fQ,p(s;x,y) (2‘2—5)3, and belongs to

L?(Q x R®) (at least ; see Proposition 3.2 in Section 3.2 below). For some reasons
which are made precise later in Section 5, the periodic exchangeicéﬂgxc(K) is then
defined by any of the following two equivalent quantities (see Lemma 5.1 in Section 5
below):

(x, »)I?
Eex(K) =/ d udy
lx — ¥l
0
/ k !/ d d '
= //// P&, x, y) Woe(§ =&, x —y)p" (5", x, y)dxdy —(in)i-
(0")2x 0?
The interaction potentidlV,, is defined, for every; andz in R®, by
O (2.25)
Woo(n, 2) = . .
kez3 2+ k|
The analogous problem in the smeared nuclei case reads
I7HF = mf{EgeﬁF(K); Ke lc}, (2.26)

d§

Egle:*F(K)_/TrLz(Q)[ AKel —— 2 )3

Dg(p—m, p—m)
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1
S 2

For the Hartree—Fock model, we only have hints which indicate that the limit we suggest
above is the correct one. In order to prepare and stimulate future works on the subject, w
prove in Section 5 that the periodic Hartree—Fock problem is well-posed, in the following
sense.

zEexdK) — }DG(m m). (2-27)

THEOREM 2.3 (Well-posedness of the HF periodic problem)The minimization
problem defined by2.23) and (2.24) fespectively by(2.26) and (2.27)) admits a
minimum.

Moreover, we establish in Subsection 5.2 the following.

PROPOSITION 2.1. — We assume that the Van Hove sequencsatisfies(2.21) In
addition, we assume that the unit céll is a cube, and that there exists a minimizer

K € K of Ir'je'? whose density shares the symmetries of the unit cube. Then,

HF
lim sup— <SLE+

msup, 5 (2.28)

wherel"" is defined by(2.23)—(2.24)

per

Finally, we define the following useful functional transformation which is a particular
convex combination, and that we have already used in [11]. It will be again very efficient
in the present work in Subsection 4.1, by allowing to take advantage of the convexity of
the reduced Hartree—Fock functional, in order to compare from below the lower limit of
the energy per unit volume by the corresponding reduced Hartree—Fock periodic mode

DEFINITION 3.—For a given sequencd and a sequence, of densities, we call the
~ —transform ofp, and denote by, the following sequence of functions

Zm( +k).

keA

A
|A]

We shall make use in the sequel of the following notatior Ifs a functional space,
we denote byH,,i(R®) the space

Hunt(R%) = {¥ € D'(R): Y € H(x + Q) Y € R®, SUD[[¥ [0y < 00}

xeR3
and
Hyo(Q) = {u € Hg.(R®), u periodic inx;, i =1, 2,3, of period 1.

As announced in the introduction, the sequel of this paper is devoted to the proofs of th
above results.
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3. Preliminaries

3.1. A priori estimates for thereduced Hartree-Fock and the Hartree—Fock
models

We begin this section by recalling the existence results of minima for the Hartree—
Fock and the reduced Hartree—Fock models defined in Section 2 through the formul
(2.3)—(2.5) and (2.10)—(2.11) respectively. We shall only state the results and make th
proofs in the case of point nuclei; stating the analogues in the case of the smeared nucl
brings no additional difficulty and the proofs are even easier in that case (see [11]).

In the Hartree—Fock setting, the existence of a minimizer for neutral molecules for the
standard Hartree—Fock model (2.7)—(2.8) has been proved by Lieb and Simonin [33] an
by Lions in [37]. Moreover, the equivalence between the standard Hartree—Fock mode
(2.7)—(2.8) and the Hartree—Fock model stated in terms of density matrices (2.3)—(2.5
(without restricting the minimization to projectors) is due to Lieb [30]. Lieb’s proof has
been simplified later by Bach [5]. A similar proof by Lions may also be found in [37]. In
the reduced Hartree—Fock setting (2.10)—(2.11), the existence of a minikizer 4
for neutral molecules is due to Solovej [52]. It is important to notice that, the energy
functional (2.11) is convex with respect to the density matrix. Moreover, thanks to the
strict convexity ofp — D(p, p) (this is standard) and of the convexity of the Kgtany
minimizer K 4 of (2.10) leads to the same density which is uniquely definedbgs not
depend on the minimizek 4) (see [52]). Let us henceforth denote fyy(x) this density.

Let us now begin our study of the thermodynamic limit for these models with getting
bounds on the energy per unit volume.

~ LEMMA 3.1.—LetA be a Van Hove sequence, then/ ;""" and 7, 71" are bounded
independently ofA.

Proof. —Since the so-called exchange tef /s, s "’lix_;i)"z dx dy appearing in the
definition (2.5) of EX{F is non-positive, it is obvious, from (2.3)—(2.5) and (2.10)—(2.11)

that

1 1
HF RHF

— I
Al Al
Thus in order to prove the above lemma, we shall first checklﬁﬂ?aﬁHF is bounded
from above, and then, thq{}ﬂIAHF is bounded from below, with bounds that are
independent ofA.
Let us begin with the bound from above, which is simpler. ket D(Q) with

fQ ¢p?dx = 1. For eachk in A, we setg, = ¢(- — k). Then, the trace-class operator
K9 whose Hilbert-Schmidt kernel is defined BY, ., ¢« (x) ¢ (y) is clearly a test
function for 7’HF, with the electronic density being® = 3", l¢|2. Arguing as in
[11], Chapter 3, Section 3.2 for the electrostatic terms, we check successively that

1
— Tr[-AK?® :/V 2,
A rl n Q|‘/’|

and that
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i 1 1, M lD
Ainoo|A|( Up— /VAIOA+ (pA,pA)> _7_Q/G'O+§ c(p, p).

Let us check now the lower bound for the Hartree—Fock energy per unit volume.
We first recall that, by virtue of the so-called Lieb—Thirring inequality [35] and its
generalization by Lions and Paul [39] to the case of general density matrices), ther:
exists a positive constauit 1, that isindependenof A, such that, for any in £ 4:

CLT/,OS/3 < Tr[—AK]. (3.1)
R3
On the other hand, the Lieb—Oxford inequality [31] gives a lower bound for the exchange

term in the following way. There exists a positive const@ny that is independent of,
such that, for anyk in &, with densityp

2
—CLO/ 4/3 ¢ / Gl y)| (3.2)

R3xR3

Whence, with the help of (3.1) and (3.2), the HF model may be compared from below
by a Thomas—Fermi-Dirac type model (see Lieb [29]), as follows:

1
EY(K) > Cur [ 0%~ [Vap+5D(0.0) = Clo [ 5%, (3.3)

R3 RS R3

for every K € K 4. The proof of the lower bound foroI/ﬁ'F is then a consequence of
the results obtained by Lieb and Simon [32] and by the authors [11] for the Thomas-
Fermi type models. We first notice that, whén lies in K,, because of the Lieb—
Thirring inequality (3.1), the corresponding electronic dengityelongs to the set

{p >0, peL3R3, D(p,p) <+00, [gsp =|Al}. In particular, with the help of

the Holder inequality, and since< 3 < 2, we get

1/2 1/2
[ro= ([ ([o) < ([ e e
R3 R3 R3 R3

In addition, with f4 = V4 — xr) * o7, we recall from [11] that, for every & p < 3,

1/2

|x |'
1 fallLrre < C [AJMP. (3.5)
Whence, going back to (3.3),

U
ENF(K) + 7A

1
2CLT/,05/3_/fA/0+§D(XF(A)_,O»XI‘(A) - p)
R3 R3
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U 1
- CLO/,04/3+ 7/‘ — ED(XF(A)a Xr)

R3
1/2
> Car [ 0% = allise Nz = Cuo ( / p5/3) A2 —ColAl (3.6)
R3 R3
5/6
> Curllolldes — 1A ol s — CrollpllYas |AIY2 — Col Al (3.7)

for everyK € K4, where, in addition to (3.4) and (3.5) — with= g we have used the
following two facts:

1 Uy

—|v ZD(p, =

/3A;0+2 (0, p)+ 5
R

1 u, 1
_/fA p+ ED(XF(A) — P, Xry —p)+ o ED(XI"(A)’ Xr)
R3

which follows from the definition off,, and
[lUa — D(xrcay, xra)l < ColAl, (3.8)

for some positive constarnd that is independent afi [11]. From (3.7) and by setting
X = ”pAngfs/s , we finally obtain

1
mI;‘F >Cr X2 — X — CLoX®% — (o, (3.9

for any X > 0. The function ofX which appears in the right-hand side of the above
inequality is bounded from below by some constant (independem)oén the set
{X > 0}. This concludes the proof of the lemmar

From now on, we shall denote by, a minimizer of /" or I'{F indiscriminately,
by pA(:; +) its kernel, and by, = p.(x; x) the corresponding electronic density. As a
corollary of Lemma 3.1 and its proof, we have the following:

PROPOSITION 3.1. — There exist positive constan@sthat are independent of ¢ Z3
such that the following estimates hold:

1
1
o / V. /oAl < C: (3.10b)
5/3
oA < C; 3.10c
o / 5 (3.100)

S
— P <C, foreveryl < - 3.10d
|A|[/)A ylsp<gz; ( )
R
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ﬁD(XF(A) — Pas Xray —pa) < C;  and (3.10e)
// A 4y e (3.10f)
|A| lx — ¥l

Remark3.1. — The bound (3.10f) on the exchange term was postulated in the
chemistry literature (see [42]) but, to the best of our knowledge, it was not checked
rigorously so far except in the simplified framework of the free electron gas by
Friesecke [21]. This bound implies that the exchange term has to be asymptotically of the
same order as the volume occupied by the molecule,|lgrén particular, the exchange
term exhibits an asymptotic behaviour in the thermodynamic limit which is completely
different from the one of the other electrostatic terms. (Note that each of them behave
separately likg A|>2 while their sum globally behaves liket| (see [11]).)

Proof of Proposition 3.1. We argue only in the framework of the Hartree—Fock
model, the case of the reduced Hartree—Fock model being even easier to deal with. W
first show that (3.10c) holds. Indeed, on the one hand, we know, by Lemma 3.1, that th
energy per unit volum ‘IHF is bounded from above by some constant independently
of A. While, on the other hand, by combining with (3.9) in the special case when

x = 24452 |and by using Jensen’s inequality, we obtain

> iIHF C1X°3 — C,,
A4
whereC, C; andC, are positive constants that are independent oft is now easy to
deduce (3.10c). Holder’s inequality together with (3.10c) yields (3.10d).
The inequality (3.10f) next follows with the help of the Lieb—Oxford inequality (3.2)
and (3.10d) — withp = ‘5‘. From (3.5) and (3.10c), and using Holder’'s inequality, we
deduce

il sana| <€ (3.11)
R3
We then deduce (3.10e) by comparing (3.10c), (3.10f) and (3.11) with (3.6) and (3.8).
Collecting the previous bounds and comparing with the definition (2.Bf6{(K 4), we
check that the last remaining term in the definition of the functional, nam@iyAK 4],
is also of the order ofA|. This gives (3.10a).
We next observe that for evely in K4, we have

/|Vﬁ|2 < Tr—AK]. (3.12)
3

Indeed, letk € K4 be given, that we decompose along an eigenk@sis >1 € HY(R®)
as in Section 2. Thanks to (2.6), we check successively that:

J19var=[lv( 3 |<pn|2)1/22
J

R3 n>1
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_/ 2 Z:lk aw” w:-zi’:)z (3.13)
Sl )
<[ _lz_:@:f ! )(Zf i ) (3.14)
R3 nz n>

= [ Y IVau? =Tr-AK]

R3 n>1

with the help of the Cauchy—Schwarz inequality to obtain (3.14) and with the convention
that the quantities inside the integrals in the right-hand sides of (3.13) to (3.14) are zer
almost everywhere in the region wheréself vanishes. Finally, thanks to (3.12), (3.10b)

is a direct consequence of (3.10a). This concludes the proof of the proposition.

From these bounds on the energy per unit volume, we deduce as in [11,13], th
following two corollaries.

COROLLARY 3.1 (Compactness). +or any Van Hove sequencg, we have

/ pa=0(|A]. (3.15)

r(A)¢

Remark3.2. — The above corollary says that, asymptoticalty, + o(] A|) electrons
lie in the “big box” I'(A). With this result together with the fact that the Van Hove
condition allows to neglect the surface effects, it turns out that, at zero temperature
any boundary condition for the wave functions or the electronic density on a big box
(like Neumann, Dirichlet or periodic boundary conditions) give rise to the same periodic
model after passing to the thermodynamic limit. This, of course, may be particularly
relevant for numerical computations.

Proof of Corollary 3.1. -This is a direct consequence of (3.10e) (see [11], Section 3
in Chapter 3). O

The second corollary makes use of the notion-etransform, introduced in [11] and
recalled in Definition 3 in Section 2.

COROLLARY 3.2. — For any Van Hove sequence the sequencg/p, is bounded in

HL.«(R®), independently oft. Moreover,

lim /ﬁA —1 (3.16)

A—0o0

Q

The above bounds gn,, which are easily deduced by a convexity argument from the
definition of the~-transform and from the bounds (3.10b) and (3.10d), will be useful
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while passing to the lower limit on the energy per unit volume for the reduced Hartree—
Fock model in Subsection 4.1.

Let us end this subsection by recalling the following result which asserts that the limit
of a sequence of-transforms is necessarily periodic. We skip its easy proof, for which
all arguments may be found in [11].

LEMMA 3.2. —Let A be a Van Hove sequence in the sense of Definitidret /4, be
a sequence of function such that, eithigfall .» _rs) < C Or || fallLrwrs) < C|A|YP, for

somep € [1, +-o00] and some constai that is independent of. Let us assume that,
converges to somg, almost everywhere dR3, or weakly inL . —whenl < p < +o0,
orin L* — xweak — whemp = +o0. Then,f is periodic.

In order to state rigorously the periodic models we shall consider below, we extend
in the forthcoming section the classical notion of one-particle density matrix used for
molecules to its analogue for crystals. This construction will allow us to set the RHF and
HF models for crystals in terms of such “periodic density matrices”. These new objects
are closely related to the so-called Bloch waves decomposition classically used in Soli
State Physics, as we shall see below.

3.2. Bloch waves decomposition

Let Q = [—3; +3[* be the unit cube oR® centered at 0. We denote h9* =
[—7m; +x[3 the unit cell of the dual (or reciprocal) lattice associatedZfo In full
generality, while working with a general periodic lattice (with unit cell still denoted
by 0), O* is the so-called Brillouin zone associated to the dual lattice (see, for example,
[45, Section XIlI-16]).

In the sequel, we shall denote &y a self-adjoint operator ii.?(R%), which is aimed
at being the “periodic density matrix” we are looking for, and that enjoys the following
properties:

(H1) K commutes with the translations which leave the periodic la#it@wvariant;
namely

VkeZ®, wK=Kr,
with 7, being defined by

T = (- +k)

for any functiong on R3,

(H2) 0< K < 1, in the sense of self-adjoint operatorsZid(R?), with 1 being the
identity operator orL.?(R3).

Because of (H1)K is not a compact operator. However, taking advantage of this
invariance property oK, we shall be able to decompogeinto a continuous family of
compact, and even trace-class, operators, whose spectral decomposition is therefore ve
simple. Itis classical to study the spectral resolutiokddis an operator oh?(R2) with
the help of the so-called Bloch waves decompositiorkKolvhich has been introduced
by Floguet [20] in the one dimensional case and by Bloch [7] in the general case. We
shall explain now the main ingredients of this method following mainly the formalism
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of Reed and Simon [45, Section XIII-16] together with the book by Conca, Planchard
and Vanninathan [16]. Among the wide literature which is devoted to the Bloch waves
decomposition (and some applications), we refer more specifically the reader to [2,15
17-19,22,24,56].

The spirit of this decomposition is the following: We may construct a decomposition
of L?(R®) according to this invariance by translation. For this purpose, we define
H = L?(Q*; L?(Q)). Then, there is an isometiy between.?(R3) andH, the so-called
Floquet operator, defined ly : L?(R%) — H and

Up)e(x)=> e fp(x+k), foraeteQ* xe, (3.17)
kez3

for any ¢ in the Schwartz clas§(R®). One may check (see [45]) thatis unitary from
L?(R®) ontoH and that the inverse df is U* defined, for alk +— g; in H, by:

, dg
* _ k-&
(U*g)(x + k) = / ¢ g ) o505 (3.18)
Q*
for all k € Z3, for a.e.x € Q. We write down explicitly the fact thal/ is an isometry,
using (3.17) and (3.18), and we obtain the following identity

dg

@) = [ (U9 Ue) 12,
J

for any functionsp andy in L?(R®), from which we also infer that, in particular:

de
e NN e (3.20)
Q*

Let us make a few comments on the definition (3.17). First of all, the expression
appearing in the right-hand side of (3.17) may be seen as a Fourier series expansic
with respect to the variable, and whose coefficients lie it?(Q). Next, it is clear
from (3.17) that ' **(Ug)¢(x) is Q-periodic. Such functions are often called quasi-
periodic functions with quasi-momentum They are known aBloch wavesn the Solid
State Physics literature. It is more convenient (and we shall always do it in the following)
to look at(U¢), as a function lying inL§(Q), with

LEQ) ={p e L (R} /p(x + k) =€ p(x),Vk € Z°, fora.e.x € 0},
or, equivalently,
LZ(Q) = {p € L} (R% /e7"**¢(x) is Q-periodic}.

It is clear from the second formulation, thag(Q), endowed with the usual Hilbert
scalar product o.?(Q), is a Hilbert space which is isomorphic IF(Q).
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With the help of the isomorphisrty betweenZ?(R®) andH, we now return to the
spectral analysis of the operatdtssatisfying (H1) by following [45].

To the above decomposition of functions i#(R3) into Bloch waves corresponds
a so-called direct integral decomposition Kfin the sense that there exists a unique
function £ — K; in L>®(Q*; £(L§(Q))) (in that follows, £(X) denotes the space of
bounded linear operators from X into itself) such that, for any funafiom L?(R®) and
almost eveng in Q*:

(UKg)s =K (Up)s. (3.21)
Moreover, we also have:
SSUp | K ”[,(LZ(Q)) = 1Kl £z2Rr3))- (3.22)
And we shall write
K= Q[ K: (2‘15)3 (3.23)

in order to refer to the decomposition (3.21)/0f

The spectral analysis & now reduces to the spectral analysis of the family of self-
adjoint operatorsK; e £(L§(Q)), the parametet varying in Q*. We now enter the
details of such a decomposition for a special class of operators satisfying (H1) and (H2
which will appear below in the setting of the periodic reduced Hartree—Fock and the
periodic Hartree—Fock models.

From now on, let us denote b§¥ an arbitrary self-adjoint operator satisfying (H1)
and (H2). We assume that there exists a kernel representatikrobthe form

Ko(x) =/p(x; ne(y)dy,
R3

say for any functionp in S(R?), with p(;-) € L2, (R® x R®). Note that (H1) is then
equivalently written

ox +k;y+k)=p(x;y), foreverykeZ3 ae.omR®xR3 (3.24)
while the self-adjointness & simply reads

p*(x;y) = p(y; x),

where z* denotes the complex conjugate of(e C). We shall now impose further
conditions on the kernel.

As a consequence of the definition and of the uniqueness of the decomposition (3.23
of K, we deduce that each operat&ig is self-adjoint [45]. Moreover, we have the
following

LEMMA 3.3.—LetK = fQ* K&- o )3 Then,(H2) is equivalent to
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(H2Y 0< K: < 1in the sense of self-adjoint operatorSLMLg(Q)), and for alImost
every¢ in Q*.

We are searching for operatoks for which theK;'s are Hilbert-Schmidt, and more
specifically, we shall rely upon the following.

LEMMA 3.4.— Let K = [,.K: -%5. Then the following two properties are
. 0 § (2m)
equivalent

(i)
peL?*(QxR¥)NLAR®x Q). (3.25)
(i) For almost every¢ in Q*, K: is a Hilbert-Schmidt operator with kernel

p(&:x;y), andp(&; x5 y) € L2(Q* L*(Q x Q)).
Moreover, ifK satisfieq(i) or (i), we have

/(de)g //|/0(§§x;y)|2dxdy://Ip(x;y)|2dxdy. (3.26)
O

oxQ OxR3

In addition, p and p (§; -; -) are related as followsFor almost every andy in Q, and
&in 0,
pE X = e p+ky =3 e pxy+h), (3.27)
kez3 kez3
hence

p(x;y) = /p(é; x5 y)
O
Proof of Lemma 3.3. Fhe proof mimics that of (3.22), which may be found in [45,
Section XI11.16 ] (proof of Theorem XI11-83). We shall partially reproduce the argument
here for the sake of consistency.
In virtue of (3.22), and since (H2) implies in particular that

d
o (3.28)

||K||£(L2(R3)) <1,

it just remains to check thak’: > 0 for almost eveng € Q* as soon ak > 0 (the
reverse implication being even easier to prove).

Following [45], we choose a dense subggt};>1 of the unit sphere ol.2(Q), and
we take an arbitrary functiof > 0 in L*(Q*). We check now that, for every> 1,

dg

Q[ FEOK: B B0, s 0.

Our claim will follow then immediately, since we already know that t& S; Bi)’s
belong to L>*(Q*). Let us first note that/f belongs toL?(Q*). Then, if we set
g = U*(JF B, & € L3(R®), and by using the definition (3.21) & together with
the definition (3.19) of the scalar product &f) we have
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dé dg
Q[ FOKe i Boizor s = [ (Ke VT VTOB) 1201 a5

*

= [ (ke g0 Wa0e) 20y ps

i & k)&> kJE)L2(0) (21)3
dg

=[((Ung)s§ (ng)é‘)Lz(Q) @

= (K gk; 81)12r3 = 0,
because of (H2). O

The proof of Lemma 3.4 is based upon the following result that we shall use severa
times in the sequel:

LEMMA 3.5.— Let (u,(&; -)),>1 be a Hilbert basis 01L§(Q) for almost eveng in
Q*, such thatt — u, (&; -) (that we shall simply denote by, in the following belongs
to . Then, if we sep, = U*u,, and, for everyp in Z3,

d§

i (3.29)

Gnp = Tp Pn = /e”’éu & x)

the family (¢, ,),>1. yez2 is a Hilbert basis ofL 2(R®).

Remark 3.3. — Before giving the proof of Lemma 3.5, and then the one of Lemma 3.4,
let us first note that such a basis exists. Indeed,jf is a given Hilbert basis of>(Q)
consisting ofQ-periodic functions(think, for example, ofu, = 7", n € Z3), then
u,(&; x) = €5*u, (x) provides the desired example.

Proof of Lemma 3.5. ket (u,), € H and(¢,,,),,, be defined as in the statement of
the above lemma. We first show that thg ,),>1 ,cz3's form an orthonormal family in
L?(R3). Indeed, letz, m > 1 and letp, ¢ € Z3. Then, using first the definition (3.19) of
the Hilbert scalar product oK, the definition (3.29) ofy),, ,, next the orthonormality
of u, (¢; ) andu,,(&; -), and finally the fact that

. d&
P& —
Q[ © @nyE

for everyp € Z3 (5... being the Kronecker symbol), we have

/wn(x + )¢, (x +q)dx = /((U% e Ubnge) 120,
R3

dé
(2m)3

_/el(p q)-& G )3/ u, (&;x)u; (§;x)dx

(r—q)-&
/ez p—q (271)3 =8um 0p,qg-
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We now check that the Parseval identity holds, thus proving our claim. Indeed, let
¥ € L2(R®), then

>3 | vw e+ pd

nzl pez3 R3

By /((Uw)g;(Urpn,p)s)Lg<Q>

n>1 pezs 0*

=2 2 / / e EE (U )e ua(§:) 129,

nzl pez3 0*x Q*

2

de |2

(2m)3

dE dt'

((Uklf)s/ un(‘i: ))L2 Q) (27.[)6

2
_gl [ o 5o / (U (x) ul (5 x) dx (3.30)
d
:/”(Uiﬂ)g”ig(Q) (2—5)3 (3.31)
o

= 1V 1220, (3.32)

where (3.30) follows from the Poisson formula, (3.31) from the Parseval identity, and
(3.32) from (3.20). O

We may turn now to the

Proof of Lemma 3.4. ket (u,,), and(g,, ,).,, be defined as in Lemma 3.5. With the
help of Lemma 3.5, and using first the Parseval identitg3(R®), and then the definition
of p as the kernel oK, we have

[ 1 wizaxay= /deZ [ ot D e+ pdy|

QXR3 n>1p623 R

SN L

nzlpezs

=Y IK@ullZoms) (3.33)

n>1

d
=3 [ K&z, % (3.34)

n}lQ*

where (3.33) comes from (H1), and (3.34) from the definitionsKg)fand of the scalar
product orfH. From (3.34), we obtain in particular, that, -, || Keu, (§; )|| is finite
for almost every: in Q* as soon as (3.25) holds true; this is precisely the dQefInItldflgOf
as an Hilbert—-Schmidt operator dSJg(Q) whose kerneb (£; -; -) belongs tal.2(Q x Q)

for almost every in O* (see, for example, [44]). Therefore, (ii) holds. If we go back to
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(3.34), we now have

d d
U/E:HKEMAS?NﬁQQ(25ﬁ:=/k25ﬁ‘//Wp@;x)OFdxd%
o oxQ

Q* n}l

whence (3.26). Itis easily seen that the same proof gives in fact the proof of the convers
implication (ii) = (i) since at each step of the proof we have argued by equivalence.
Let us now prove (3.27) and (3.28). For almost everyixed in Q, we know
from (3.25) thatp(-; y) lies in L2(R®). Next, (3.27) and (3.28) are two equivalent
formulations of the claim that (&; x; y) is obtained by applying the transformatidh
in x to p(x; y). By the way, let us note that, because of (3.20), this claim provides another
proof of (3.26). Let us check that (3.27) holds. kebe fixed, say inS(R®), we check
successively that

(UKp):(x) =Y e (Kp)(x+k)
kez3

=3 e [pttki e dy

kez3 R3

= Z e‘”‘f/p*(y;x +k)p(y)dy

kez3 R3

=2 & (zn)s/ ST EE v+ Lx +Ue)e(v)dy  (3.35)

kez3 1ez3
— k& L - |
_kgz:se (27.[)3/122236’ p(x +k—1; y)(U(p)s (y)dy
= —iks ki" —il-&
_kezz:s © (271)3 / IEZ:S p(x+1 (U (y)dy
> e—ik.ép(x +k; ) (U@)e(y) dy (3.36)
0 kez3
= Ke(Ug) () = [ p&: 5 DU 0y,

0

with (3.19) to deduce (3.35), and the Poisson formula to obtain (3.36). This proves oul
clam. O

We are now ready to state the definition of the admissible “periodic density matrices”
we shall work With

Let K = [, K¢ 271 be a self-adjoint operator ih?(R®) satisfying (H1). We shall
say thatk is an adm|SS|bIe periodic density matrik K satisfies in addition to (H1) the
following properties (H2)—(H4):

(H2) 0< K <1,
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(H3) for almost every in Q*, K; is a trace-class operator dirj(Q), and

d§
o*

(H4) for almost every in 0*, —A; K; is a trace-class operator alrg(Q), and
d§
Q*

where —A; is a notation for the operator®e (—Ape) € /6" acting on LZ(Q), and

with —Aper denoting the Laplace operator associated to periodic boundary conditions
in Q. Actually, —A; is equivalently defined by-A = [,. —A¢ % according to the
definitions (3.21) and (3.23) of the Bloch waves decomposition (see [45]). The set of
all admissible periodic density matrices is denotedbyVe collect in the forthcoming
Proposition 3.2 various properties of the periodic density matricés imat have been
proved in the course of this section. But, before that, let us introduce some functiona
spaces: For every in Q*, and for every XK p < +o0,

LE(Q)={p € L}}o(R®) /rip = €*¥9, Vk € 2%},
and
H(Q)={¢ € Hg(R®) /rup =€ ", Yk € Z°}.

PrROPOSITION 3.2. — Let K belong toK. Then,

() K satisfies the equivalent properties given in Len@va
Letp(§; ;) € L?(Q*; Q x Q) denote the Hilbert-Schmidt kernel &f .

(i) For almost everyé in Q*, there exists a complete set of eigenfunctions
(n (&5 ))n>1 Of K¢ in L?(Q) corresponding to the non-increasing sequence of
eigenvalued < 1,,(¢) < 1 (counted with their multiplicitysuch thatu, (¢ -) €
H}Q), & u,(&: ) € H, and such that

PE; X y) =D Ma(®) un(E: ) ui(E:y),

n>1

for almost every: in Q*.
(i) For almost ever in 0*, x — p(&; x; x) is periodic, non-negative, belongs to
Ll +(0), and may be written

pE:ix:x) =Y (€ lus(€:x)° a.e. ong.

n>1
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Hence,TrLg(Q)Kg = fQ p(&; x; x)dx. In addition, we may define(x; x) by
pin = [pmn S (3.39)
o (2m)3

and p(x; x) is a Q-periodic, non-negative function il .(Q). And, we also

have
dt dt
/TrL§<Q>K5 (2n)3:/(2n)3/p(5;x;x)dx
Q*

=[x n@)(z 5

o n>1

=/p(x;x) dx =1 (3.40)
0

(iv) (H4) writes

d
[ Taol-acke 5o =[S 5 )S/Wun(s 9)2dx < +oo. (3.41)
0 g ">

Let us now turn to the thermodynamic limit problem for the RHF model.

4. Thereduced Hartree—Fock mode

This section is devoted to the proof of Theorem 2.2 which has been stated in Section -
It is organized as follows. We begin with the hardest part of the work in Subsection 4.1,
which consists in verifying that the lower limit of the energy per unit volume may be
bounded from below by the periodic RHF model. Subsection 4.2 is then devoted to the
proof of Theorem 2.1; that is of the well-posedness of the periodic RHF model. At last,
with a minimizer of this periodic model at hand, we are able to check in Subsection 4.3
that the upper limit of the energy per unit volume may be compared from above by the
periodic RHF model.

4.1. Lower limit of the energy per unit volume

In this section, we bound from below the lower limit eﬁ—l as defined in (2.10)—
(2.11) by the energy of the periodic RHF model (2.17)—(2.18). For the sake of clarity, let
us recall here the definitions of these problems:

1
IRHF = |nf{ERHF(K)+ Up: K ech}

1
ERMR(K) =Tr[(=A = VK] + D0, p),
IRF=inf{ ERIF(K); K e K},

per per
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RHF 1
Eper (K) = [ Trp2g) [—AK] (2 )3 G/O +5 DG(/O 0)s

where the meaning gf = p(x; x) is made precise in Proposmon 3.2.

Of course, our argument will still applyputatis mutandigthis is even simpler) to the
smeared nuclei case (see (2.12), (2.19), (2.20)). We concentrate ourselves in the seq
on the point nuclei case.

We shall use in a crucial way the fact that the RHF functioB8™(K) is convex
with respect to the density matriX, when K belongs to the convex sét,, for any
A C Z3. Indeed, this convexity property will allow us to use thetransform trick that
we have previously applied to the TFW model in [11]. Let us emphasize the fact that,
since we fail in obtaining local bounds on the electronic density in the RHF model (say,
for example,L* bounds orp, independent oft), this is the only method among all the
methods presented in [11] which seems to go through to the RHF model.

The sequel of this subsection is devoted to the proof of the following

PROPOSITION 4.1. — Let A be a Van Hove sequence. Then,
RHF

M
P RHF , M
A—00 |A| Iper + 2 )

whereI*HF is defined by2.17)—(2.18)

per

Proof. —From now on, we shall denote ki, a minimizer of I’HF, by p,(-; ) its
Hilbert—Schmidt kernel and by, = p4(x; x) the (unique) corresponding electronic
density. In particular, using the fact th&t, admits a complete set of orthonormal
eigenfunctions(y,,),,>1 belonging toH(R®), associated to the eigenvaluesQ, <1
(counted with their multiplicity), we may write

PAC Y) =D iY@ Y (y)  and palxix) =Dl (),

n>1 n>1

where, here and in all that follows, we have on purpose omitted to mention the
dependence of thg,’s and of they,,’'s on A, in order to simplify the notation. Let
us recall that

T Ka =Y s [ (0P dx =141, (4.1)
n=1 R3
and that
0< Trzms[—A Kl = Zun/ww dx < C|A|, (4.2)
n>=1 R3

thanks to (3.10a). Generally speaking, the idea of the strategy detailed below, and whic
draws its inspiration from [11], is the following. We shall build a particular convex
combination from the operator& 4, which is more or less a minimizing sequence of
IRHF but which converges to a periodic density matrix /agoes to infinity. Moreover,
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this periodic density matrix will turn to be a minimizer dif . By analogy with the
definition of the~-transform for functions (see Definition 3 in Section 2), we set

Ky= ZTkKAT k- (4.3)

Al A
Then, it is easy to check that, belongs tok 4, that the Hilbert—Schmidt kernel df ,
is

Palx; y) = ZpA(x+k y+k),

lAl keA

while p,(x; x) coincides with the usuat--transform of p, as introduced in [11].
In particular, K, also admits a complete set of orthonormal eigenfuncti@ns,>1
belonging to H1(R?), associated to the eigenvalues<., < 1 (counted with their
multiplicity), and, therefore, we may write as fér,

PAC ) =D du@n(@)@r(y) and pa(x;x) = Aylga(0)]%

n>1 n>1

Of course, the analogues of (4.1) and (4.2) remain tru&for N

The proof is organized as follows. We first check that the sequ&nagefined by (4.3)
converges in a sense to be made precise later to some opErb&onging tolC; that is,
to a periodic density matrix3tep ). Moreover, using the two facts thafo 4 is bounded
in HL (R (Corollary 3.2) and that its limit is necessarily perlodlc (Lemma 3.2), we
already infer that,/p, converges weakly i} .(R®), strongly in L{.(R®), for every
1< p < 6, and almost everywhere & to ./p, with 5 being Q—periodic, non-negative,
and such that/p e leer(Q). The second step, which is much more involved, consists in

verifying that the limitg of the densityp, associated tok 4 is also theQ-periodic
density which is associated to the periodic density makfixaccording to (3.39) in
Subsection 3.2, Proposition 3.2 — (iii) (Step Rinally, we bound from below the lower
limit of the energy per unit volume bERHF(K) (Step 3, thereby concluding the proof of
Proposition 4.1. Let us already say, at this stage, that thanks to the proof of the upper lim
(and thus of the limit), of the energy per unit volume we shall finally deduceKhata
minimizer of /55'F, and thereforg is simply pper, With pper denoting the unique periodic
electronic density that corresponds to any minimizerIF@)‘F. In particular, the whole
sequence/p, converges (and not only a subsequence), and its limit is independent of
the choice of the Van Hove sequende

Step1.—We first check that the sequend€, converges to some operatat
belonging to the set of periodic density matriééswhich is defined through properties
(H1)—-(H4)in SubsectiorB.2 (equivalent to Definitior2 in Section2).

Since the sequence of operatdfs is bounded in operators norm, we may extract a
subsequence if necessary in such way ttigtconverges to some bounded operakor
in L?(R3) for the weak convergence of operators; that is

(Kag; ¥) = (Kg; ) asA — oo,
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for all ¢ andy in L2(R®). In particular, K is a self-adjoint operator iL?(R% and
0< K < 1. Therefore K enjoys (H2).

Let us check now that it also satisfies (H1); that is, let us prove that

(a) K commutes with the translations which le&®invariant.

Let r be such a translation. We fixandy in L?(R?®), and we intend to prove that

([Ea T]‘P» w)LZ(RS) =0.

For this purpose, we make use of a standard argument of [11] which is based upon th
fact that the sequenc is a Van Hove sequence. We just outline this argument here. We
have

[EA,‘L’] A (Z‘[_kKATk‘E—Z‘[‘[_kKA‘L’k)
| | keA keA
( Z Tt KAt — Z rr_kKArk>.
|A| ket A\A ke A\TA
Hence
= AN\ TA]
|([K 4, T10; ¥) 12R3)| < Al IKallllollL2r3) 1]l L2r3) = O(1)

as A goes to infinity. As the left-hand side converges(t&, t]g; V) 12r3), this shows
the expected invariance. N
According to the results and the notation of Section 3.2, we may wKite-
Jo- Ke % with K being a self-adjoint operator ihZ(Q) such that < K; < 1, for
almost every in Q*. N N
Having checked that (H1) and (H2) are satisfiedkbywe next want to verify thak
satisfies (H3). Namely, we now want to check that,
(b) for almost every: in Q*, the operatorK; has a finite trace orLg(Q), and

_ de
Q/TrLg(@Ké @73 "

According to Lemma 3.5 in Subsection 3.2, we denoteihyé; -)),>1 an arbitrary
Hilbert basis ofL?(Q) for almost ever¥ in 0*, and byg, , = T p@n the corresponding
Hilbert basis ofL2(R3). (Note that in fact, sinc&k and theK;’s are non-negative, it
would be sufficient to make the following argument fame given basis — see [44].)
Then, we check successively that:

1
1= A TI’Lz(Rs) = Z Z( APn, [7= Dn, [J)
l l n>1peZ3
ZZ( APn, p9 @n, p) Z Z(prAf—p Pn; ‘pn)
n>1p€A n>1 peA

= Z(Kmpn; Pn) (4.4)

n>1
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the inequality in the above string of equalities coming from the positiveness dhen,
because of the weak convergenceKQf to K, (Ka@n; ¢a) CONverges tak ¢,; ¢,), for
everyn > 1, asA goes to infinity. Now, sinc& , > 0, we know that the terms of the
series appearing in the right-hand side of (4.4) are all non-negative. We may then appe
to the discrete version of the Fatou lemma to infer that., (K ¢,; ¢,) < +o0, and that

Imlgof Z(EA‘PM QDn) 2 Z([Z‘Pn, (pn)

n>1 n>1

Owing to the definitions (3.21) of the notatidh = Jor K 2 o )3 and (3.19) of the scalar
product onH, we have

_ . d§
K ny On) = UK n)Es U n 2 A2
n%:l( ©ns Pn) ;Q/(( e Upn)e) 1200, (27)3
- d&
:;/(Kgun(é; Vi un(E:0)) 120 @27)°
nz Q*
_ dE
- Q/ 3 (Ret €506 200 Gy

~  dé&
:Q/ oK Goa

In particular, collecting with the above string of inequalities, we already know that, for
almost even in Q*, K; is a trace-class operator dirj(Q) and that

_ dE

Moreover, denoting by (&; x; y), the Hilbert—Schmidt kernel Ofg, we may give a
sense tg(£; x; x) as a non-negative periodic functionirt(Q), such that ng(Q)I?g =
fQ o(&; x; x)dx. In addition, thanks to (4.5), we may associatef&pthe non-negative
Q-periodic densityp, which is defined by z(x; x) = [,. p(§; x; x) %, and which
belongs toL(Q). In order to conclude the proof of (H3), it remains to show that

~ d&

To prove this claim we shall actually prove in Step 2 below that

F0) = piix) = [ (g0 (4.7)

Q*

d§
(2m)3
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for almost everyy in Q, wherep is the limit of p,. Whence (4.6), thanks to (3.16) in
Corollary 3.2. N

Admitting (4.7), for a while, we now claim that satisfies (H4) i.e. that

(c) for almost every: in 0*, —A; K; is a trace-class operator obg(Q), such that

_ gt
Q/TFL§<Q>[—As Ke] @ =T (4.8)

by proving that

d§

oo (4.9)

|Im|l’lf ﬁTI’Lz(Rs)[ AKA] > / TI’Lz(Q)[ Ag: Kg:]
Q‘k

The proof of (4.9) follows the same lines as the proof of (4.5). IndeeduJ&Et; -)),>1

andg, , = t_, ¢, be defined as before, with the additional assumptiong(if)&:; -)),>1

€ H}(Q) for almost eveng¢ in 0*, and that thep, ,'s belong toH*(R®). Then, for the
same reasons as before, we find

1
7 TrLz(R3)[_A KA] Z Z (_A)l/zgon,p; (_A)l/z gon,p)
| | n>1pez3
> Z K4 (=D)20,: (M) g,).
n>1

Then, thanks to the weak convergencd?ogf to K, we have, for every > 1
lim (K4(—2)"20,; (=A)"2g,)
A—00
= (K(=8)"20,; (=M)Y?9,) = (=) 2 K (=2) %05 9,).

Moreover, Fatou's lemma still applies since, on the one hand, for eteandn, we
get (—A)Y2 K ,(—A)Y?p,; ¢,) = 0; while, on the other hand, we know from (3.10a)
in Proposition 3.1, thaﬁl‘—] Tr 2rs)[—A K 4] is bounded independently of. Therefore,
passing to the lower limit ad goes to infinity in the above inequalities, we get first that

> (—AK@u: gn) < +00,
n>1

and next, that

o1
I|/r‘r1)|Cr>10f m Tri2rs[—AK,]

. a2 a2
> liminf » (=) Ka(=2)"?gu: ¢,)

n>1
> Y (K (=8)Y20,5 (=02 g,)
n>1
_ e
= [ Y (Re= 802,65 92 (~ 20 21006 ) @)

Q* n}l
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~ d&
:zTrLg(Q)[—A&-K&-] w,

since

12 _ 1/2

Hence (4.8) and (4.9).
We turn now to the proof of (4.7) (thereby proving (4.6)); that is, the fact that

Step 2. TheIimitof,oA,,o and the periodic density associated€gwhich is defined
by pg = [p. P(E; x; x) (2 )3, coincide.

We are first looking for
(a) A priori estimates o4 (x; y).
Sincek2 < K4, we have

pa(x) 2/pA(x;y)pA(y;x)dyz/IpA(x;y)lzdy (4.10)
R3

almost everywhere oR3. Thanks to (4.10), we first check that

Fal) > / 15 (s W)[2dy, (4.11)

which in particular implies that
pa(x;y) is bounded inL?(Q x R® N L%(R® x Q) (4.12)

independently ofA, for 54 (x) is bounded in.1(Q). Indeed, because of (4.10), we check
successively that

pa(x) = Z:OA(X +k; x +k)
|A|keA

loa(x +k; )2 dy
lAlkeA/ !

Z/|pA<x+k v+ b[2dy

Al kea

>/|5A<x;y)|2dy,
3

by convexity. We prove now that

pa(x: y) is bounded inL2(Q; Hy(R%) N L3(Q: H(RY)) (4.13)
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independently ofA, or, more precisely, that

[y [la- a0 pfPax < c. (4.14)
0] R3

where C denotes here and below a positive constant that is independent @fe
emphasize the fact that, in the following, we shall use the notation A)Y/?5,(., )
for the Schwartz kernel of the operatt — A)Y2K ,, which is alsoy", 51 Au[(1 —
A)Y29,1(¢) 9 (-). Indeed, we have

/ dy / (L= )25, (x: y)Pdx

2

=/dy/]m2<l— MY2p00x 4 ki y 4+ 0| d

keA

Z/dy/|(1 AYY2p,(x 4+ k; y+ k)2 dx

STAl

_ _ 1/2 .
-5 = dy/|<1 A0 (x: y)| dx

ra) R3
1
oot
2
—_ A2 *
N // 2 a0 = &Yl pi )] dxdy

/Zunkl A2, ()P dx

R3 n=1

T Al

1
m TI’Lz(Rs)[(l — A) KA]

<
The first inequality is deduced by a convexity argument, and the last one comes fron
(4.1), (4.2) and the fact thatQ u, < 1. Finally, we conclude with the help of (3.10a)
in Proposition 3.1. An easy consequence of (4.13) is fhatr; y) is bounded in
HL+(R®x R?). Thus, up to a subsequence, it converges to some fungtiary) weakly
in HL.(R®xR3), strongly inL{.(R3 x R3), for every 1< p < 3 (by the Rellich theorem
for bounded domains dR®), and almost everywhere dR®. Actually, because of the
weak convergence of , to K, o(x; y) is nothing buto(x; y), the Schwartz kernel of
K. Note that, in particular, we obtain from (4.12) (respectively (4.14)) that, up to a
further subsequence, (x; y) (respectively(1 — A)Y/25,(x; y)) converges tg(x; y)
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(respectively(1 — A)Y25(x; y)) weakly in L2(Q, x R?). Therefore, we have
[ dx [l iy < +oo,
0 R?

and

/dy/\(l— MYY25(x; y)|Pdx < +oo.
Q0 RS
The first bound provides another proof of the fact tﬁ@tis Hilbert—Schmidt orL?(Q)
for almost evert € Q*, with kernel5(&; x: y), and thato (x; y) = [,,. 5(&: x: y) (575)3,
by using Lemma 3.4.

Our next step now consists in showing that

(1—A)}?pa(x 4y, y) is bounded inL* (R% L}(Q)). (4.15)

This claim will be a consequence of the following two bounds. First, sincs bounded

in L +(R®), we clearly have

supZA / | (X)2dx < C. (4.16)
1eR%,>1 o
Next, we now prove that
sup> "2, / (1 )20, < C. (4.17)
15R3n>l 40

Indeed, using the fact that the self-adjoint operattis- A)Y/2K (1 — A)Y/? and
(1— A)Y?K 4(1— A)Y? are positive and trace-class with Hilbert—Schmidt kernels being
respectively defined by, -1 4, [(1— A)Y24, 1) [(1— A) Y2y, 1*(y) and)_, 5 1 A [(1—
A)Y20,1(0)[(1 — A)Y?¢p,1*(y), we may observe that

3 | L= A2, (0| ——Zun|<l MY, (x

n>1 n>1

almost everywhere oR3, thanks to the definition ok 4. Therefore, for every in R3,

S [ 1@= 2,0 dx

n>1 I+Q

O BN CEPNLLTARIR

n2l i)

L / (L= 8)2y, ()" dx

n>1

T4l

IAI
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1
<C mTr[(l— A)KAl<C,

because of (3.10a). Let us now prove (4.15). For almost evenyR?, and by a repeated
use of the Cauchy—Schwarz inequality, we obtain

/\(1 — A5, 0+ .| dy

-

S o[- 0)Y2,] (x4 y) <p;:<y>] dy

n>1
N\ 2 1/2
g/(an|(l—A)l/2<pn(x+y)| ) (an Iwn(y)|2> dy
0 n>1 n>1

1/2

1/2
<([Tula-aaarnta) ([Suwoia) .

0 n>1 0 n>1

and (4.15) follows, thanks to (4.16) and (4.17).
At this stage, we observe that in particular (4.14) yields

(1— A)Y?p4(x + y, y) is bounded inL% (R% L3(Q)). (4.18)
Therefore, by a standard interpolation argument,

(1— A)Y2p4(x + y, y) is bounded in.? (R% L' (Q)), (4.19)

with % + pi =1, and for every X p < +o0. In particular, extracting a further

subsequence if necessary, we may assume(thatA)Y?5,(x + y, y) converges to
(1—A)Y2p(x +y, y) weakly in L? (R L' (Q)), for every 2< p < +oc.

(b) Proof of (4.7).

Let 6 be a continuous real-valued function, which is compactly supported in the unit
cube Q, and let us denoté, = >, ,0(- — k). (Note thatd, has compact support in
I'(A).) Then, on the one hand, we have

1 1 _
mTrLZ(R3)[KA NE m/ﬁA 04 :/IOA 0,
R3 0

and, thus,
. 1 -
Jim mTrLz(Rs)[KA 041 = /,o(x)e(x)dx. (4.20)
0
On the other hand, we now prove that

d§
(27)%

lim iTI’Lz(Re,)[KA@A]:/dx/,a(éﬁ;x;x)@(x) (4.21)
Q*

A—Nm|/”
0
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Sinced is arbitrary, comparing (4.20) and (4.21) completes the proof of (4.7). We now
prove (4.21), and we begin with recalling that the self-adjoint operaterA)Y/?K , (1—

A)Y? is Hilbert-Schmidt (and even trace-class) Io(R®), with kernel(1 — A)Y/2(1 —

N Ppa(x,y) = 51 mal(X — D)Y2P, 1) [(A — A2y, 1%(y), for Trizgs[(1 —

A) K4]

< +00. Besides, due to the fact th@y is a continuous function with compact support,

it is a known fact that the self-adjoint operatdr— A)~Y%0,(1 — A)~Y/? is Hilbert—
Schmidt onL?(R®), whose kernel is denoted I8, (x, y). With these observations, we
write

Tl‘Lz(Rs) [KA OA]
=Tr2ms [(1— A)Y?K 41— MY - A) 20,1 - A)Y7]

= [[1a- 0¥ - 020, )] O4x. ) dxdy
R3xR3

=Y [ dxl@-)¥2y,] <x>( JCTE RS e AN dy) (4.22)
R3 R3

n>1

thanks to Fubini’s theorem. We shall now use the explicit form of the Hilbert—Schmidt
kernel of(1— A)~Y/26,,(1 — A)~Y2. Indeed, recalling that, by definition ¢f — A)~/2,
FI(L— A)"2p](x) = (1+ |x|>) Y2 Fp(x) (whereF denotes the Fourier transform), it

is not difficult to verify that, ifp is, say, in the Schwartz class, we have

L=A)Y2p=Gyxop, (4.23)

where G is a function in L*(R®) whose Fourier transform is simply the function
(14 |x]?)~Y? (e LP(R®), for every 3< p < 400). The functionG, is a special kind
of Bessel functions, and, from [53], for example, we know tfatis a non-negative
radially symmetric function, such that

1
Gi(x) < C1 exp(—é |x|), for |x| large enough

and
1 1
Gi(x)=Co— + o(—), as|x| — 0,
|x|2 |x|2

for some positive constan;, andCs. In particular,G, actually belongs td.*>>*(R3 N
LP(R3), forevery 1< p < 3.

Therefore, for any continuous functighwith, say, a compact support, the Schwartz
kernel of (1 — A)~Y29 (1 — A)~Y2 may be written agss G1(x — 2)9(2)G1(z — y) dz.

Then, by definition o® 4,

/ O4(r 1) [(A— MY2y,]"(y) dy
R3

=1-2)""20,1- M) ([A- A2y, ®)
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= (1= A)2Os9) = Grx 04 ¥).
Thus, using Fubini’'s theorem again,

S / dx[(1— &)y, <x>( / Ot N[A= )7, ) dy )

n>1

= /[ Gux- )9A<y>(§jun (1= 8720, ) 0 ¥ ) ) dedy

R3xR3 n>1
_ / / G1(x — 1AL — A)Y2p4(x, y) dx dy.
R3xR3

Therefore, we deduce, comparing with (4.22),

1
m TrLZ(RB)[KA QA]
/ G1(x — )0A) (A — AY2p,(x, y)dx dy
R3xR3

1
= / dy / Ga(x — O, (L— A2 (x, y) dx
F(A) R3

IAI

DS / dy / Gi(x — k= YOG — M)Y2p,(x, y +K) dx

F>

Ly / dy / Gi(x — VOO — MY2p,(x + k. y + k) dx

TG

- / dy / Gax — O — A2, (x, y) dx

- / dy / GL()OO) (L — A)Y25,(x + v, ) dx.

We now make use of the two facts thét — A)Y25,(x + y,y) converges to(1 —
A)?p(x + y,y), weakly in, sayL}(R® L}*(Q)), and thatG(x)6(y) belongs to
LY3(R3) x L(Q). Therefore,

. 1 ~
Jm T [K a0l = [y [ G060 - 8)2250x + y. v dx
0 R3

/ / G1(x — NOG)A — AYZ5(x, y) dx

R3

0
/ /9<x>p<s xx)
) 203
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Indeed, we first observe that the self-adjoint operétor A)~Y/2 is bounded or.2(R®)
and commutes with the group of the translationsZéf Therefore, we may apply the
abstract Bloch wave decomposition (that is explained in Section 3.2) toA)~/2
and we have(l — A= [ (1—A); 12 (;5)3, with the operatorl — A); ' being
defined by

UA-A)Y2), (1) =1~ A)_l/z(Uf/))s:/Gs(X—y)(Uw)s(y)dy

thanks to (4.23), for every in L?(R%), and for almost every in Q and& in Q*, and
where, according to (4.23),

Ge(t)=>_ e Gt +k).
kez3

(Note that, from the definition of—A)g, (1 — A);7? = (1 — A;)~Y2) Finally, we
conclude as follows

/ dy / Ga(x — VOO — AY25(x, y) dx

o
—/G(y)dy/dx/Gg(X—y)[(l Ae)Y?p)(E; x5 y) z g)3
_ / 6(y)dy ,;Q / Q/ Ge(x — Nha ) [L— 2 %u, 6. 0] ui 6. y) f;;’;;
_I;QX/Q/*G(W W (&) U (E, y)(/Gs<x—y>(1 A)l/z”‘"@’x)dx> %
_/O(y)dy’;lk O € NP

—/G(y)dy/p(é yiy) 2 5)3

This completes the proof of (4.21).
The kinetic energy term being settled with (4.9), we now turn to

Step 3. —Lower limit of the sum of the electrostatic terms. Conclusion

We shall first rewrite the sum of electrostatic terms in a more convenient (and
equivalent) manner which has been introduced in [11, Section 3.4]. We shall only sketcl
the argument and refer the reader to [11] for more details. The electrostatic terms in th
energy are the following

1 1
—TI’Lz(Ra) I:VAKA} + ED(pAy :OA) + EUA

1 1
__/VAPA+§D(/)A,/)A)+§UA- (4.24)
R3
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Denoting by f4(x) = S yea(eog — Jo o= L ) = Va = Xra * 7, We rewrite the sum

of the electrostatic terms as foho

—Z lim [fA(x)— —} / fa

ZEA #

1
- / fapa+ ED(XF(A) — PA> XI(A) — PA)- (4.25)
ra)

We next remark (see [11, Chapter 2]) that we have

lim —an [fA(x)—%} = lim_lim {fA(x) ” M +d, (4.26)
A xstz

A—oo |A z| A—o0 x—>

whered is some constant which is related to our choice of normalization for the potential
G and which is defined in [11]. In addition, we have

Jim / fa = lim /fA_/(G—i—d) 4.27)
Ira) o
and
. 1 ~
A'[noom/fA Pa =d+/G(y)p(y)dy- (4.28)
R3

Therefore, if we prove that

S | I
|mlgof mD(XF(A) — Pas Xra) —Pa) 2 Da(p, p), (4.29)

we shall easily deduce from (4.26), (4.27), (4.28), and the formulation (4.25) of the sum
of the electrostatic terms (4.24) that

1 1 1
liminf —( Tr[VaKa] + ED(,OA, o)+ EUA)

A—oco | A

1. .M
—/G(y) 5(y)dy+§DG(p,p)+ > (4.30)

We now prove (4.29). Let us defige, = (xr ) — pa) * . Itis a standard fact that
Al D(Xra) — pas Xra) — PA) = —— Al /lVgAl /Q/|V8A| (4.31)

From the bound (3.10e) in Proposition 3.1, we deduce

/|V§A|2 <C

Q
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whereg, is defined, as usual, by, = ﬁzke,‘ ga(- + k). Thus,Vg, is bounded in
L2 «(R®? independently ofA. Therefore, extracting a subsequence if necessary, we
may assume that there exigtin L2 (R%)3, such thavg, converges ta € L2 (R3)3,
for the weak convergence inZ.(R*)?3, and curlh = 0, in the sense of distributions.
Moreover, from Poincaré’s theorem, there exista D' (R®) (which is uniquely defined,
up to a constant), such that= Vg, still in the sense of distributions. In addition,
sinceg, satisfies

—Ags=—div(Vga) =41 [Xr) — Pal,
we deduce thag is a solution to

—div(VE) = —Ag =4r[l— 7], (4.32)

in D'(R®) (see [11]). With (4.31), we obtain

1
oo 1 B _ > 52
|IAII_)IICF>10f |A|D(XF(A) P> XA PA)//|V8|
o

Now, we notice that we already know another solution to (4.32), namely

§x) = / Glx— (1= p(»)d / GGx—yp(ydy.  (4.33)
thanks to the normalization (2.14) @nh The functiong is periodic and satisfies
[1var =[-8z =De(s. ).
0 0
thanks to (4.32), forf, ¢ = 0. We are going to show that
[var= [ivar (4.34)
0 0

For this purpose, we first remark th&tg — d,¢ (whered; denotes the first derivative
with respect to the first coordinate of R®) is an harmonic function, fof andg are two
solutions to the same Laplace equation (4.32).

Now, both d,¢ (as the limit ofd;g,) and d;g (by construction, see (4.33)) are in
L2 +«(R®). Thereforep;g — 912 is an harmonic function which belongs g, ;(R%), and
thus is a constant, that we denoteday(use for instance the mean-value inequality). The
same argument applies to the first derivatives with respect to the coordinaasd xs.
Hence we obtain

g—g=a-x+b,

wherea = (a1, a», az) andb are two fixed vectors oR3. It follows from this equality,
that
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/|Vg| —/|V<g+a X+ D)

—/|Vg| +/|a| +2/a vz

since
/a Vg /vg 0
0
because of the periodicity @f. The mequallty (4.34) follows, from which we deduce

easily (4.29) and (4.30).
At this stage, we collect (4.9) with (4.30) to obtain

RHF 1 1 1
minf 4= Imlpof i (TrLz(Rs) [(—A —VKa] + ED(pA, o)+ EUA>
1 M
Q*
M
= Ege*:F(K) +=
Ig*et'FJr > (4.35)

This concludes the proof of Proposition 4.1

Before turning to the study of the upper limit of the energy per unit volume, we can
anticipate a little bit and assume that we have already proven

1
RHF RHF
Ier + ? |IT_)SOLime (4.36)
which will be the purpose of Proposition 4.2 below. It will follow from the comparison
of (4.35) and (4.36) that all equalities in these strings of inequalities (4.9), (4.30), (4.35),
(4.36) are indeed equalities. In particular, we shall recover

d§

. 1
I|m —TrLZ(RS)[ AKA]_/TI’Lz(Q)[ Ag: KE] (2 )3’

4.37
Amoo | A (4.37)
Q*
and we shall also obtain that is a minimizer of/RHF.
In order to prove that the upper limit behaves in the expected way, we shall make us

of the minimizer of (2.17) (it is nostricto sensunecessary, as we might use an almost
minimizer). Therefore, we devote the next section to the study of problem (2.17), and
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in particular to the proof of Theorem 2.1. We shall come back to the proof of the upper
limit (4.36), and thus conclude the proof of Theorem 2.2, in Subsection 4.3.

4.2. Theperiodic RHF problem

We begin this section with the proof of Theorem 2.1, that we recall here for the
convenience of the reader.

THEOREM 2.1 (Well-posedness of the RHF periodic modell.he minimization
problem defined bg2.17)—(2.18)i.e.
I = |nf{E§e*jF(K)- K ek},
E;?e'?F(K)=/TfL§<Q> [—A:K:] -7 (2 )3 /Gp+ Dg(p, p)
(respectively in the steared nuclei case hy II—(QSLQ)—(Z.ZO)m Section2) admits a

minimum. In addition, the minimizing densijtyx; x) is unique and, thus, shares the
symmetries of the unique cube.

Before we begin with the proof, let us at once remark that the argument we are going
to make will be also useful in the Hartree—Fock case for the proof of Theorem 2.3 in
Section 5 below. As the reduced Hartree—Fock model is convex, another strategy than tt
one we shall use below could have been chosen. However, we have chosen on purpo
a strategy of proof that will be also valid for the non-convex Hartree—Fock model. This
will simplify our task in Section 5. Let us also remark that we only do the proof in the
point nuclei case, and that adapting our argument to the smeared nuclei case (2.19
(2.20) is straightforward. Let us also mention at this stage that some of our argument
are similar to those used by Lieb, Solovej and Yngvason in [34], where a close problen
is studied.

Proof of Theorem 2.1. ket us consider a minimizing sequenég for the min-
imization problem (2.17)—(2.18). For eaeh the operatorK” may be decomposed
into operatorsK;. We denote byp, (&, x,y) the kernel of K, and by p,(x,y) =

fQ* on, x, y) dé 5 the Schwartz kernel of,,, according to Lemma 3.4. More precisely,
we have, in V|ew of Proposition 3.2,

pu(E,x,y) =Y A0 E) ulP(E, x) ul (€, y)".

p=>1

In the right-hand side, the index referring to the index in the minimizing sequence
K", has been put into parentheses in order to avoid ambiguity with powers 8ince,
in addition,Kg is trace-class omg(Q), we may also define

pn(€,x,0) = 290 (E) |u

p=>1

which is a non-negative, periodic function ih%(Q), such that T,[g(Q)K
= fQ on (&, x, x) dx. Moreover, let us recall from Proposition 3.2, that the density; x)
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which appears in the definition (2.18) of the energy functional is also a non-negative pe
riodic function in L1(Q) (at least) defined by (x; x) = Jo- P&, x, x) . Our first

step consists in finding some bounds, independent oh the operatorKn and on the
functionsp, (-, -) andp, (&, -, -).

Step 1. —A priori estimates on the minimizing sequence.

First of all, we remark that the following bound holds obviously
0< Ky <1,
for almost eveng in Q*, which comes straightforwardly from Lemma 3.3. In view of

the decomposition of the operatak§' along their eigenbasis, let us rewrite the kinetic
energy term:

/TrLz(Q) —A¢K}|dE = /Zﬂm(g)/wu(")(g x)|2dx dE. (4.38)

o* p=>1

Next, we remark that the constraint of charge 1, namely

/TrLZ(Q) ; (27r)3
may also be written as

d
—S/pn@ ende= [Y0@ o= [pwndi=1 (439)
0]

3 3
J @0 = (2r)

Another consequence of this constraint is

/ o €, x, V)2 dx dy

(2 )3
/ ZZW)@)N)@)\ / W€, Du” (&, x)* dx dés
O P=1lq>1 (2r)

n n dg
=/Z SR EONE) 8rg oo

o P>1a>1

d
:/an’)(&)lz—‘E

o* p=l (27[)3
(")
QZ ; ® (2 )3 1

whence

on (£, x, y) is bounded inL2(Q* x Q x 0Q), (4.40)



730 I. CATTO ET AL./ Ann. I. H. Poincaré — AN 18 (2001) 687-760
or, equivalently, because of (3.26) in Lemma 3.4,

pa(x,y) is bounded inL?(Q x R). (4.41)
(Note that actuallyp, (x, y) is bounded inL2 (R3; L2(R3)), thanks to the translation

invariance.) We are now going to work on the energy functional. Owing to the convexity
of the functionf +— fQ |V./f|?, and because of (4.39), we have

12,2
JivvaanPa= [v( [ Sap@peof o5) | a
0 o o>t (2m)

) (n) 2dxd§
<//2>:1Ap MG oy
0x 0" P>

(n) (n) 2dxd§
<//p§>:lxp @0 55
0x Q" P>

ny 98

:Q[ Tz [— e K] 20 (4.42)

the second inequality being true sinde| f|| < |V f| for any complex-valued function
f. Let us now observe that

1/4

3/4
‘/G(x)pn(xyx)dx <C”G”L2(Q)”lon”L/1(Q) ||:0n||L3(Q)
Q

1/2
<ClG 20 IVP, 15 g,

1/4
< ClGl 21+ IV, 1220) " (4.43)

sinceG is L? on Q (it has only a singularity Iikqxll) and| ol 10y = 1, and whereC

denotes here and below some positive constant that is independerihsérting (4.42)
and (4.43) into the definition (2.18) of the energy, and noticing gm;(-, >0, we
obtain that we have, for the minimizing sequerice,

Vpn(x, x) is bounded inH1(Q), and thusinL”(Q), 1< p <. (4.44)

This can also be expressed by stating that
n n n 2
/TrLg(Q) [~ AcK?] dt ://ZA;>(5)|Vu§,>(g,y)| dx dg (4.45)
0 oxo* P>l

is bounded independently of
Using the Cauchy—Schwarz inequality as follows
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n n n * dg
1ax, )] = ]/Zjlxy(s)u;)(s,x)u;)(s,y) P
Q* 2
n n 2 d%_ 12
< (/Zjlxy(s)\u;)(s,x)\ 5o5)
o* PZ
. . ) dr‘;: 1/2
) </§A;>(s)|u;>(g,y)| (271)3>
Q* 2
=V (X, %) V/pu (3, ), (4.46)
we obtain a direct corollary of the bound (4.44):
on(x,y)isbounded inL?(Q x Q), 1< p<6. (4.47)

Another corollary of these bounds is obtained by using the convexity of the function

0 oo IVV/T12dx dg, itis
V/oa(€, x, x) is bounded inL2(Q*; HY(Q)). (4.48)

Finally, a very useful bound is obtained from (4.45) by using the Lieb-Thirring
inequality in this setting. (This is an easy adaptation of the Lieb—Thirring inequality in
the periodic case given in the Appendix of [54] for finite-rank projectors together with
the results of [39] for its extension to general density matrices.) We have, for almost

every¢ € Q~,

[ e x. 052 dx < CoTrz g [(A— A0K?),
0

for some constanty, which may be chosen independentlyégincet lies in a bounded
subset oR3, and therefore by integration ad* (since the left-hand side lies in*(Q*)),

dé ) 45
Q/* @3 Q/ puE. 2, 1) dx < C Q/ Tri2) (1= A)eKE] -

This shows that
pn(€, x, x) is bounded inLY3(Q* x Q), (4.49)
and concludes our first step, devoted toahgriori bounds on the sequenég'.
Step 2. —Passing to the limit in the constraint.

Let us first remark that, in view of the bound (4.40), we may assume without loss
of generality that the sequengg (&, x, y) converges weakly ir.2(Q* x Q x Q) to
somep. (&, x, y). According to the formal decomposition given in [45], and recalled
in Section 3.2, we may now define a self-adjoint operaét on L?(R%), by K> =

Jor K& %, where K is the Hilbert-Schmidt operator oh?(Q) whose kernel is
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the function p. (&, x, y). Another way to state the weak convergenceopfto p.. is
to say that for almost € Q*, and for any self-adjoint operatdr on L?(R?%), such
that L = fQ* L %, where the operators; are Hilbert-Schmidt operators drf(Q),

whose kerneld. (£, x, y) belong toL?(Q*; L?(Q x Q)), we have

nﬂTmQ[ Trizg)[Ke ‘Ls]w :Q[TrLg(Q)[KE ‘Ls]w- (4.50)

Clearly, the operatonk’g><> satisfy 0< K2° < 1, and thus X K*° < 1

A second consequence of the bounds of Step 1 comes from (4.44). Again, we ma
always assume that the sequengg,(x, x) converges weakly ierler(Q), strongly
in L?(Q), 1< p < 6, and almost everywhere d®®, to some function/pu (x, x) €
leer(Q)-

A third consequence of the bounds of Step 1 is deduced from (4.49): We may
suppose that the sequence of (non-negative) functigiis, x, x) converges weakly
in L%3(Q* x Q) to some (non-negative) function that we denote for the moment by
Poo(§, X, X).

Let us first prove thatf,. pe (&, x, x) % = poo(x, x). For this purpose, we note
that the weak convergence Ir*/3(Q* x Q) implies in particular that, for any function
ve LY?(Q),

. d& d& B
nﬂTooQ[@Q/"n@’x’x)”(“dx =(2[@Q/pm(s,x,x>v<x>dx.

Now, the left-hand side is also given by

lim (/,on(é,x,x) dé )v(x)dx:nﬂrroo/pn(x,x) v(x)dx,
0

n—+00 (27-[)3
Q*
and thus by

n—-+00

lim /pn(x,x) v(x)dx:/ﬁoo(x,x)v(x)dx.
o o

Therefore, we have

d
[t S (x ). (4.51)

(2m)3
Q*

At this stage, we do not know priori that po (€, x, x) = pso(&, x, x), but we shall
prove this claim below in Step 3.

Let us now turn to the proof of the fact that the operaGf necessarily satisfies the
constraint:

oo_d§
Q*
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The difficulty to deduce (4.52), from the convergence (4.50) and the fact that the above
constraint is satisfied for al, is of course that we cannot takeas being the identity
operator in (4.50), for the identity is not a Hilbert—Schmidt operator. In order to conclude,
we shall need to use the bound on the kinetic energy term. We argue as follows.

For all n, and for almost alk € 0, we know thatk; and —A; K} are trace-class

operators orL2(Q). In particular, this implies that the operaidr— A)l/zK”(l A)?
is also trace- class (thus, in particular, Hilbert—Schmidt). In addltlon since we have &
bound, derived from (4.45) and (4.38),

/ Tz A= MFREA- A de = [ Tryzg[A- a)K2]dé < C,

we may assume, extracting a subsequence if necessary, that the sequence of operat

L(1— A)l/zK”(l — A)¢? 25 converges in the sense of (4.50), and its limit is
0 (2m)

necessarilyf,.(1 — A)y/? k(1 — A)y? £ Testing this weak convergence with the
Y, 0 (2m)

operatorsL; = (1 — A)s , which are Hilbert-Schmidt oﬂg(Q), we obtain

n—+00

lim / Triz[(1— A 2K A - 02— a7t ds

_/TrLz(Q) (11— M2k - MYPA - A)FY de
that is

n——+00

lim /TrLg(Q)Kg dg:/TrLg(Q)Kgo dg.
* Q*

Therefore, ang* TrLg(Q)Kg‘ (2—)3 = 1for alln, we deduce that the operat&ir® satisfies
the constraint.

Step 3. —Passing to the limit in the energy

A simple argument, using the operatd— A) and Fatou’s lemma allows one to show,
arguing as in the proof of Proposition 4.1, and making use of Step 2, that

n—+00

n—+00

:llmlnf/TrLg(Q)[(l—AE)Kg] d&

| o dE
2 i [ Tiali- k7] 25,
Q*
oo 48
:1+Q/ Tz [~0eKE] o

and, therefore, that
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. L dE o dE
||m|nf/ TrL?(Q) [—AEK&-] w 2Q/ TrLg(Q) [—A&-K&. ] w (4.53)
Q* *

n——+00

Next, a standard argument on the sequenge, x), whose square root converges in
Hp.(Q), shows that

lim —/G(x) (x,x)dx + }D (on(x, %), pa(x, X))
400 PnX, 2 G\ On ) s Pn s
0

_ 1 _ _
= [ G, X dx + 5D (o X), e (5,)). (4.54)
0
It is then clear that (4.53) along with (4.54) will suffice to establish the existence of a
minimizer for the periodic RHF model, provided we are able to show that, for almost
everyé € Q* andx € Q,

Poo (&, X, X) = poo (&, X, X). (455)

We finally prove this fact. For this purpose, we choose an arbitrary funétignx)
L (Q* x Q), and define the Hilbert-Schmidt operators

Le=(1— A0, Q- a2

Using the convergence (4.50) for the sequence of operétersh);/°K 7 (1— A);/%, we
have

n——+00

lim /TrLg(Q> [(1— A)g/ng(l_ A)§/2<1_ A)g_l/zé?(é, ) A)gl/z} dt
Q*

= / Trizo[(1— AFPKEA- M)A - 0 M0, )1 - 8); ) ds,
3

This may also read

im [ pu. 0066 0 dxds = [ [ pute. 0066, 0 dx ds.
0*x 0 0*xQ
But, on the other hand, we know that the sequence of funciQ(is x, x) converges
weakly in L>3(Q* x Q) t0 p (€, x, x), thus we also have
Jm ([ o6 x 006 0 dxds = [ [ e x 00 x) dx ds.
0*x0 o*xQ0
This shows equality (4.55), and concludes the proof of the existence of a minimum. We
now show the uniqueness of the periodic dengity; x). The argument is an adaptation
of a similar claim in [34]. Assume that there exist two minimizé&fsand K, in K of
IRHF Denoting byp, and p, their respective density, it is easily checked that

per
1 1 1
Eper (K) = 5 Eget (K1) + = Eger’ (K2) = 2D6(p1 = pa, p1.= p2)

1
=I5 — éDG(,Ol — P2, p1— P2)-
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We thus haveDg (p1 — p2, p1 — p2) = 0. Now, sinceG, p; andp, are periodic, we may
rewrite Dg(p1 — p2, p1 — p2) With the help of the Fourier coefficients pf — p, andG.
Since the Fourier series expansion®ivrites (see [32])

1 1 ..
G(X):— Z _eZmn-x,
wo L Inf?
neZ>\{0}
we observe thaDg(p1 — p2, p1 — p2) = 0 if and only if p; — p, is constant. But,
fQ p1 — p2 = 0, hencep; = p,. In particular, in the above proof, the whole sequence

v/ pn(x; x) converges ta/p (x; x) and not only a subsequence

Before concluding this section, let us write down the Euler-Lagrange equations
satisfied by a minimizek of I¥!F. Using the decomposition ok in K along an
eigenbasis of eaclk;, when¢ describesQ*, we may reformulate the minimization
problem/F in the following way: /3" is obtained by minimizing

per
dxd
/Zx <s>/ (Vin & )P = G ) &, 1) 2) 2295

o n>1 (27[)3
dé d¢’'
"2 // =i Z Jon (€& )Q/Zm & DG — Wlun (€, y)Pdx dy
subject to the constraints
Q[ 5 1) (2 )3 1
0< 1, (8) <1, foralln > 1, and for almost alE € O*, (4.56)
/un(g,x)uj‘n(g,x)dx = 8,.m, for almost alls € O*.
0

The Euler-Lagrange equations satisfied by a minimieof 17" can then be easily
written. They exhibit the Lagrange multipliers, u0(&), ul(€), e..(£), respectively
associated to the constraints of (4.56). More precisely, we obtain, for almost&irery

Q*, and for everyr > 1,

—AuyE, ) = GuyE, )+ D e E) (€, )x0 * Gy (€, )

m>=1
=3 e @©un, ). ae.onQ,
m>=1
/(|Vu”(€’x)|2_G(x)|’4n(§,x)|2) dx (4.57)
0

+ ) 2 (um (€, )2x0 * G)un (€, )

m>1

= pd&) + pukE) + .
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Since Ef[™(K) is independent of the choice of an eigenbasiskforwe may assume
without loss of generality that the hermitian matrix with entrigs(¢) is diagonal, for
almost every in Q*; in other words, the right-hand side tei,,~1 & (§)un(§, ) in
the first equation of (4.57) may be replaced y¢)u, (¢, -). Moreover, owing to the
fact that the Lagrange multipliers®(£) and ul(£) are respectively associated to the
constraints X 1,(§) anda,, (§) < 1, they satisfy, for alh > 1 and for almost everg in
or,

0 :O, |f )\.n(r‘;:)>0,
=0, ifr, &) <1,

1
1 (§) { <0 ifr)—1 (4.58D)

We now applyu, (£, -) to the first equation of (4.57), next integrate og&rand, finally,
insert the result into the second equation of (4.57), to obtain, using (4.58a) and (4.58b)

Aa(§) =0 == &) =27,
O<X(®) <l= ¢,()=m, (4.59)

4.3. Upper limit of the energy per unit volume and conclusion

In order to conclude the proof of Theorem 2.2, we now prove the

PrROPOSITION 4.2. — We assume that the Van Hove sequencsatisfieg2.21) and
that the unit cellQ is a cube. Then,

RHF
. M
lim supAT <ot + = (4.60)

A—>oo||

whereIRHF is defined by2.17)—(2.18)

per

Remark4.1. — As stated in Theorem 2.2, the same result holds true in the smearec
nuclei case, if we assume moreover thashares the symmetries of the unit cufe
and defineM in a convenient way.

As a corollary of Proposition 4.1 and Proposition 4.2 (and the slight modifications
which are necessary to treat the smeared nuclei case), we shall obtain Theorem 2.2.

Proof of Proposition 4.2. et us denote byK a minimizer of the periodic RHF
problem. As usual, we may decompokeinto operatorskK; (¢ € 0*), whose kernels
p(&, x, y) may be written as

PE X, 9) =D hn(E)un(E, X)un(E, y)*.

n>1
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We denote

p(x,y)z/p(é,x,y)
Q*
Let now A be fixed. We build a cut-off functiory, € D(R®) satisfying the following
properties:

d§
(2m)%

0<xa<L
xa=1 on{xel(A); dx,oI(A)) =2}
xa=0, onI(A)-.

In addition, we choosg , in such a way that it also satisfies

/xi(x)p(xm)dx — | Al + 0(|A]).
R3

We next consider the operatér, on L?(R®) whose kernel is

Pa(x,y) = xa(x)px, ) xa(y). (4.61)

A simple computation shows that

(KA, ‘//)L2(R3) = (K(XA‘//); (Xa Kl’))Lz(Rs),

and therefore we haveQ K, < 1. The choice ofy, ensures also that Jags K, =
|Al+o(|A]) < | Al

We now compute the RHF energy &f; .

Sincep,(x; x) = x2(x)p(x; x), it is a simple matter, arguing as in [11] and using the
periodicity of p(x; x), to show that the electrostatic terms

1 1
_/VAIOA + ED(K)A, pa) + EUA
R3

behave like

1 M
1|~ [ Go+ 5Doto. )+ 5 .
2 2
0
as A goes to infinity. This is precisely where we need the assumption (2.21), the fact
that Q is a cube, and that(x; x) shares the symmetries of the unit cube. Both facts play
a fundamental role — see the details in [11]. Therefore, we concentrate ourselves on tt
behaviour of the kinetic energy term. We intend to prove that

1 dt
Alinoo m TrLZ(RS)[—AKA] :Q/; TrLg(Q)[—AEKg] w (462)

which will of course conclude the proof of Proposition 4.2.
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Let us denote byg,,),,>1 an Hilbertian basis of.?(R*). We begin with

—AK 1 =—A (/ PAX, Y)Om () dy)
R3

_ / —A(p (V) X)) X4 (¥) dy

dyd
/Zkn(é)A(un(S,X)XA(X))Mn(S,y)*xA(y)cpm(y) y a8

R3x O* nz1

Hence,

(—AK p@; <Pm)L2(R3)

(27)3

vd
- //Zk (5){/ (1 & ) X 00) €, () x|t (62 3)° X () () 22
=l (2 )
Summlng up next imz, we obtain
Z (_AKAQDm; (pm)LZ(R?’)
m>1
= [ay [ St @ 3" a )
R3 0* n=1
d
sz;i [ =8 xaw)e 0 dxon ) 5 5)3
RS
ds
= [y [ Z @ 0" xa () = Al 214 0) 5
g e >l (2m)
=/W§>jxn(s>/un<s,y)*m(y> — A(n (&, 1) x4 () dy
—/(2 )32 n<s)/|v n (€, 1) xa0) [Py,
We have therefore obtained
Taml-aKal= [ o )szx 2 () / V(6. ) xa) Pdx.  (4.63)

We now remark that

/|V(un(s,x)xA<x))|2dx
R3

- /|xA<x)V(un<s,x)) a6, 0) Va2
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=/|xA<x>|2|V(un<s,x))|2+/|un<s,x)|2|vXA<x>|2dx
R3 R3

42 / XA COUE &, X) Vit (€, X) - Vxa(x) dx.
R3

Each of the three integrals in the right-hand side may be restricted(ar), for x .
vanishes outside this domain. In addition, the third integral may be restricted on the
“boundary”9A ={x € I'(A);d(x; 9" (A)) < 2} of I'(A), asVx, =0 in the “interior”
I'(A)\ oA of I'(A). Therefore, we have

/(2 7 L Zk (S)/IV un (€. X)xa(0)) [Pdx =1L + 12 + 213, (4.64)

wherel?, 12, I3 denote respectively

_/<2 )3ZA (5)2/'“(”’0! IV (un 6. x + K)) P,

keA 0

_/(2 )3 Z)‘ (S)Z/Wn(f x+ k)l |VXA(X+k)| dx,

keA

_/(2 )3 Z)‘ (5)/XA(X)M &, x)Vu,(§,x)- Vxalx)dx.

As A is a Van Hove sequence, we expect that the integrals over the “boundary(’/Af

are negligible with respect tpA|, or, in other words, that only the integrals over the
“interior” of I"(A) play a role in identifying the limit per unit volume. Indeed, it is easy
to see, by a standard argument that we have already used in [11] and that is based up
the properties of 4 and ofu, (¢, -), that

|/(2 )32 n(s>/|V<un<s 0)Pdx +0(] Al)

d§
= |A|‘{TrL§(Q)[—A§Kg] w +0(|A|), (465)
and
d§

Q‘k
Finally, we may bound? as follows

1/2

151<o0(141) [ S <s>(/|v (&, )| )1/2(/|un<s,x>|2) dt
0

O n>1
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o(| A /(ZMS)/\V 2 (&, 1)) dx) (an@)/|un<s,x)|2dx)l/2ds
n>1 o

o n>1

o(la)( [ £ (5)/|v (8. )| dxds)l/z

o+ n>1

(/ZA @)/m (&) dxdé)l/z

o+ n>=1
dé 1/2
o*

by a repeated use of the Cauchy—Schwarz inequality. Inserting (4.65), (4.66), (4.67) int
(4.64), next in (4.63), we obtain

(4.67)

dg

2073 +o(lAl),

Tryoms)[— AKA]_|A|/TrLz(Q) —AeKe] ——
Q*

which shows (4.62) and concludes the proof of the propositiamn.

5. TheHartree-Fock model

Let us first of all recall the Hartree—Fock model (2.3)-(2.4)—(2.5) introduced in
Section 2:

. 1
I = mf{E;'F(K) + EUA; K € ICA},
where the set of minimization is
Ka={0<K <1 TrK =|A|, Tr[(=A — VK] < 400},

and the energy functional writes

p(x, x)p(y,y)

1
EF(K)=Tr[(=A = VOK] + = // dxdy
2 lx =yl
R3xR3
2
1 lp(x, y)I dx dy,
2 lx =yl

R3xR3

where p(x; y) is the Hilbert—-Schmidt kernel oK. As is well-known, this functional

is not convex, and therefore we expect the thermodynamic limit problem to be much
more difficult than in the reduced Hartree—Fock setting. In this latter case, we have
used in a fundamental way the convexity of the energy functional through the use of
the ~-transform. Here, for the Hartree—Fock case, this is not possible any more. Lei
us at once say that this is the main reason why we are not able to prove a result o
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the convergence of the Hartree—Fock energy per unit volume in the thermodynami
limit, and why we cannot establish the analogue of Theorem 2.2. Nevertheless, in thi
section, we shall (a) give some formal computations in order to justify our guess on
the periodic Hartree—Fock problem (2.23)—(2.24)—(2.25) that should be obtained in the
thermodynamic limit, (b) show that this periodic problem is well-posed mathematically
(Theorem 2.3 in Subsection 5.1 below), and, finally, (c) check that the upper limit of the
Hartree—Fock energy per unit volume may at least be compared from above by the HI
periodic problem (Proposition 2.1 in Subsection 5.2).

Let us begin with some formal computations on the Hartree—Fock energy of a
minimizer K 4, of I'/F when A goes to infinity.

We postulatethat the sequence of operatoks, converges to some self-adjoint
operatork that commutes with the translation zf, and that belongs t&. By saying
so, the main assumption we do is the following one: We postulate that the density
o4(x, x) asymptotically behaves like @-periodic densityp (x, x). We emphasize this
is anassumptionpand that we only have the intuition that it is true. The lack of convexity
of the Hartree—Fock model has prevented us so fardeethis postulate.

In view of the results we have obtained on the reduced Hartree—Fock model, it is ther
reasonable to believe that in the energy (2.5) of a minimkzgof (2.3)—(2.4)—(2.5)

1
EEF(KA):Tr[(—A—VA)KA}_i_E // pa(x, x)pa(y,y)
3xR3

dxdy
|x =yl

2

-2 loa(x, y)I dxdy.
. lx — ¥

the first three terms globally behave liké|(ERHF(K) + %)

Therefore, it remains to understand, at Ieast formally, the behaviour of the so-callec
exchange term-3 5 JlRraxr3 %dx dy. For this purpose, let us replace the density
matrix p(x, y) by a matrix of the formy ,(x)p(x, y) x4 (y) mimicking the argument
we have made above to determine the upper limit of the RHF model. The functien
a cut-off function, which has all the good properties the reader may think of, and which
are recalled in the proof of Proposition 2.1 below. Then, we establish, still in the course

of Proposition 2.1 in Subsection 5.2 below, that

2
/ [oa(x, y)l xdy:/ lo(x, ¥ dx dy.
A*OOIAI |x — y 5 |x — y

OxR

Moreover, the quantity which appears in the right-hand side of the above equality make:
sense thanks to the following

LEMMA 5.1.—ForanyK in K, we have

2
/dx/lp(x,y)l dy < +o0.
lx —yl
0 R

and
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2

/dx lo(x, ¥ dy (5.1a)
|x — v

Q 3

dE dg’
(27)8°

= [[[] pex Wae &5 = )" € 5 vy dxdy (5.1b)
(0*)2x Q2

where the potentialW, is given by(2.25)in Section2; that is

Woe(n,2) =)

kez3

gk
|z + k|

The proof of this lemma is given below.
The above argument justifies, at least formally, the introduction of the periodic
problem (2.23)—(2.24)—(2.25), that we recall now:

I =inf{ E;¢.(K); K € K},

1
Ell)_leFr(K)—/TrLz(Q)[ AEKE} (2 )3 /GP+ Dg(p, p) — —Eexc(K)
Q‘k
where we denote b¥.(K) any of the two equivalent formulations (5.1a) and (5.1b) of

the periodic exchange term. Before proving in the forthcoming subsection that the HF
periodic problem is well-posed, we now give the proof of Lemma 5.1.

Proof of Lemma 5.1. We split the exchange term into two terms in the following way
2 2 2
/dx lox. NI” /d / lp(x y)l dy +/d / lp(x, Y)I dy.
lx =yl - lx =yl
0 R3 [x—y|<1 [x—y|>1

For the second term, we clearly have

2

/dx / Mdyg/dx/lp(x,y)lzdy<+oo.
x_

0] Y 0] R3

[x—y|>1

Now, let us concentrate on the first term. Since we may prove like in (4.46) that
lo(x, y)I? < p(x; x) p(y; v), almost everywhere oR® x R3, we may write

/dx / I,Tix_yy)||2 /d / p(x;|;c)_p§|y;y)dy

0 lx—yI<1 o [x—yI<1
X, X ;
< p(x;x) p(y;y) dx dy
lx — |
(Q+B1)x(Q+B1)
2
< C I|pI|L6/5(Q+Bl)
<C||/0|| 16/5 < 400,

H(R%)

Llnl
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sincep lies in HL(R®). We now check the equivalence of the two formulations (5.1a)
and (5.1b), which follows from the following string of equalities:

2
/ lp(x, y)l dx dy

lx =yl
OxR3
dt dg’
_//PC— axdy [[ pexp @ e G5
I R
dt d&'
- //// kzZ; lx—y klp(g YR x vk ddy (2m)®
02x(0")?
gi 6=k de d&'
= [[]] pexnrE ey T avar G
02x(0*)? kez
d& dg’
=//// P63, WS (E — ' x — y)p" (€, ) dxdy o2 i’
(2r)
02x(0*)?

where we have used the properties of periodicity of the functiggsx, y) with respect
to y, and the definition (2.25) o .
The proof of Lemma 5.1 is complete.0

This section is organized as follows. We first prove in Subsection 5.1 that the periodic
HF problem is well-posed. Next, in Subsection 5.2, we check that we may compare fromn
above the Hartree—Fock energy per unit volume with this periodic problem, by using &
minimizer of ;%

5.1. Theperiodic HF problem

This section is devoted to the proof of Theorem 2.3, that we recall here for the
convenience of the reader.

THEOREM 2.3 (Well-posedness of the HF periodic problem).he minimization
problem defined by2.23) and (2.24) fespectively by(2.26) and (2.27)) admits a
minimum.

We shall provide two different proofs of this claim. The first one makes use of
regularity properties of the potentidl (n, z) given by (2.25), and which appears when
one writes the exchange terms according to the Bloch waves decomposition. The secor
one, which is also the shortest one, is based upon the formulation (5.1a) of the exchanc
term.

First proof of Theorem 2.3. 1 order to check that the minimization problem (2.23)—
(2.24)—(2.25) is well-posed, we now prove that, given an arbitrary sequence of operator
K, (€ K) such thatE [ (K,,) goes tollf, asn goes to infinity, this sequence converges,
up to an extraction of a subsequence, to some opekafer K) that satlsfleSEper(K )=

Ir*jef For this purpose, we shall heavily rely upon the proof of Theorem 2.1. But, first
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of all, we begin our proof with a careful study of the properties of regularity of the
interaction potentiaW,, and consequently of the properties of the exchange term.

Step 1. —Decomposition of the exchange potential

We first remark that the functio& W, (5, x) is Q-periodic with respect te wheny,
is fixed. Indeed,j € Z3 being fixed, we have

gk

T Woo g, x + ) =€ ) o
X+

kez3
gmnn
|x 4+ m]|

= &7 Weo (1, %),

meZ3

for almost all (n,x) € O* x Q. We may therefore decompose”eW.,(n,
x) into its Fourier series:

€M Woo (0, X) = Y () €™,

meZ3

with coefficientsa,, (n) given by

an () = / & Weo 1, x) € 27

"
_/et(n Zﬂm)x e
3

|x +k|

_ Z ei(r)—erm)-(x-i-k) 1 dx
i) |x + k|

_/ - 2nm>y dy = An
|n—27rm|2’

for almost allp € Q*. Hence, we have

e2i7rm-x

In —2wm|?’

Weoo (17, x) = 4 €717 Z

meZ3

(5.2)

It is easily deduced from this expression that, wittbeing fixed inQ, the function
defined by W.. (1, x) — 4n i}—l"z is continuous with respect tg € 0*, and even to
ne(1+4+¢)Q (e > 0, small enough), and satisfies

—in-X e2i7'rm-x

. (S}
LuLno(Woo(n,x)—M |n|2>: > —|2:G(x).

mezd(op m
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Since we have isolated the singularityzinlet us now examine the singularity in Let
us then consider

—in-x

S,%) = Woo(n, x) =€ G (x) — 4 (5.3)

In2

We now check thaf (n, x) isin L*(Q* x Q), and eveninL.®((1+¢&)Q* x (1+¢)Q).
From (5.2) and the Fourier series expansiotzofve obtain

R S —)

_ 2 2
mezov) [n — 2mm)| |2 m|

4 -m — |nl?

— A e—in-x Z e2i7rm-x
meZ3\{0}

. 54
In —2mm|? |27 m|? (54)

It is obvious from the last equality that, at fixede ™ £ (5, x) is Q-periodic with respect
to x, and that

1+ |m|?
In —27m|*2rm|*’

meZ3\{0}

for some positive constant which is independeng @f (1 + ¢) Q*; in other words, for
anye > 0 small enough,

Lf (1. 20y € LZ((A+£)Q%). (5.5)

With 5 being still fixed in(1+ &) Q*, itis clear from (5.3) that

—Afx) =41 Y (€7 —1)8 (),

kez3\{0}

and thusf (n, x) is harmonic in(1+ ¢) 0. With the help of the mean-value property, we
finally obtain for everyx in Q,

OIS [ 1001y <01,

x+eQ

and we conclude since the right-hand side in the above inequality lie% (®*) thanks
to (5.5).

Next, we remark that the exchange term involves the functidg(é — &', x —
y) with & and &’ varying in Q*, andx and y varying in Q. Therefore, we need
some information onWu,(n,x) on 20 x 20 = [—2m, +27[3x[-1, +1[3. In a
straightforward way, for almost alj € [—27, +27[3, x € [-1, +1[3, we obtain from
(5.3) the decomposition

1
|x + k|

Woo(na-x)ZWOO(n9x)_ Z
keZ3,lkloo<1
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4 e—in-x Z e2i7zm-x
— am
|

—27m|?’
meZ3,|mloo<1 n |

(5.6)

with |x|s = max(|x1, |x2], |x3]), and whereW ., (n, x) belongs toL>(20* x 20Q),
owing in particular to the fact tha (x) — >~ cz3 4. <1 lx—ik‘ is bounded in @* x 20Q.

Step 2. —A priori estimates.

Using the decomposition (5.6), let us now show thatdhgriori estimates that have
been established in Step 1 of the proof of Theorem 2.1 also hold true here.

Since some estimates only depend on the constraints and not on the energy function:
it is easy to see that the following bounds of the RHF setting are also valid here:

ou(€, x, y) is bounded inL2(Q* x Q x Q),
pn(x,y) is bounded inL2(Q x R3), (5.7)
pn(x, x) is bounded inL1(Q).

Next, we are going to estimate the exchange term by splitting it into three terms
according to the decomposition (5.6). First, we have

] J[]] rexWaie =5 = o€’ x. v ay s ae
02x(0*)2
< Wl /// LonE, %, 0] P2 E % v dx dy dE dE’
02x(0*)2
< Weslle] Q°] /// lon(6. x. y)2dx dydé < C, (5.8)
02x Q*
by the Cauchy—Schwarz inequality and (5.7), wh€rdenotes here and below various

positive constants that are independent of
Next, we treat for instance the term:

pn(§, X, y) PnE' x,y) @ di/ dxdy
yl (2r)

02x(Q*")?

2
[on (x, y)l // Pn(x, X)pn(y y) dx dy. (5.9)

lx —y lx —y

since we recall that, by the discrete and next the continuous Cauchy—Schwarz inequalit
we have

d§
(27)3

Faes y)|—‘/2x (E)in (&, X)L (E, )

o* n>1

1/2 de

1/2
<[ (Zrm©ueEnr) (Themen?) o

0* n>=1 n>1
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it 12 , dt 1/2
(/Zk E)lunE, 0 o )3) (Q[’;kn(é)lun(é,y)l (2n)3>

0* n>1

<V ou (6, ) Vo (3, ¥)-
Thus, we have in (5.9)

\//// a5, lpn@ -, y)dxdyfij)i

02x(0*)?
1
< [ e (et o v
0
<cHi la (. 01128
e [ oo W TR
<C|m| e N7 o) oG 0175,

using Young's and then Hélder’s inequality. Next, using the Sobolev embeddings anc
(5.7), we obtain

LZ/X/(Z)/ZM@, £ |pn<s, ,y>‘g:)idxdy

1
CHEH 3 l0a G, 15y 1v/00 G 0 1
L , 00

1
CHH R TCR] A+ 9Vo G D) | 2g) (5-10)
13

Finally, we treat the contribution of the third term in (5.6), namely

iG-E ey dE dE’
’////pnéxy) & —&/|2 Pr(E x,y) (Zn)6dxdy‘
02x(0*)?

1
<//H(|pn<-,x,y>|*g* W)w(-,x,yn

where, here and below, we shall use the notafio: g(§) = j’Q, fE—¢&)gE) L
By the Young and the Holder inequalities, we have, withindy being fixed,

dxdy,
LY(0%)

(271)3

1
H<|pn(ax’y)|*Q* W)lpﬂ(9xay)| 1(Q)
L *
1
< Hlpl‘l(9 X, y)| *Q* @ LZ(Q*)Hp”(.’x, y)HLZ(Q*)
1 2
< PaT) pn('»X,y) *) *
H |§|2 Ll(Q*)H HLZ(Q )

Therefore,
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eeEs |§ S;(sz i 5 o dxdy

02x(0*)?
<Hi /|| X T2 pn dxd
S |%—|2 Li(0" Pnls X,y 12(0%) y
0xQ
1 2
:H@ L1(0%) Hpn(é,x,y)||L2(Q,XQ2)gc, (5.11)

in view of (5.7). We now collect (5.8), (5.10), and (5.11), and estimate the exchange tern
as follows

’//// PrE, %, ) Woo(§ =&, x = )P (&', x, ) é )i
0%x(0*)?

§C+CHV\/pn(x,x)HL2(Q). (5.12)

It now remains to copy the proof of Theorem 2.1: The kinetic energy term is bounded
from below by |[V/p,(x, x ||L2(Q), and therefore the fact that the energy of the

minimizing sequence converges to the infimum implies thet/ o, (x, x)|l.2g) IS
bounded. Consequently, all the bounds shown in the RHF setting still hold here:

Vpa(x, x) is bounded inH(Q), thus inL?(Q), 1< p <6,
on(x,y)is bounded inL?(Q x Q), 1< p <6,

Vpa(€, x,x) is bounded inL?(Q*; H'(Q)),

on (€, x, x) is bounded inL%3(Q* x Q),

(5.13)

and each of the four terms of the energy (2.24) is bounded independenilyAs a
consequence of (5.13), we show the following bound that will be useful in Step 3:

on(x, y) is bounded inH(Q x Q). (5.14)

Indeed, we have

d§

Vo, y>|—]/zx (6 Vot (6.0 6.3) 5

0* m>=1

1/2 de

12
</(me(s)|vxum(s,x)lz) (ka(f)'”m@’y)'z) 2n)?

de \ V2
< (/ZM(&)qum(s,xnz (Zn)g)

o~ m21

. , de 1/2
|3 b ®lun 6. ) (271)3> .

Q* m21

Hence,
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/ IV, pa(x, )P dx dy
oxQ

2 2 dyd§
<[] E @190 = 3 //ZA ©lun(e. P G5

0xQ* m=1
= [ Tz l=aeKel Sl 0l <
§ (m)3" (@ =
)
This yields (5.14).

Step 3. —Convergence of the exchange term

Q* m>=1

In view of the bounds (5.7), (5.13), (5.14), we may choose a subsequeliGe siill
denoted byK,,, such that the following convergences hold:

on (€, x, y) converges weakly i?(Q* x Q x Q),
on (€, x, x) converges weakly id%3(Q* x Q), (5.15)
on(x, y) converges strongly i”(Q x Q), 1< p <6.

The last convergence holds, because by Rellich’s theorem, (5.14) implies, thay)
strongly converges (up to the extraction of a subsequence) (@) for all 1 < p < 3.

But, since we have in addition the second bound of (5.7), the interpolation inequality
yields the strong convergence iv(Q?) for all 1 < p < 6. Let us denote by =

Jor Kg zﬂ)3 the operator that is the limit oK, in the sense of the operators weak
topology, and in the sense of (4.50) — the latter being equivalent to the first convergenc
of (5.15). Letp (¢, x, y) denotes the kernel of the associateg It is indeed clear that

K € K for the same reasons as those indicated in the proof of Theorem 2.1. In particular
K still satisfies the constraint of charge 1. Likewise, we have

o T _ds
'JTLC.‘I/ Tizio[=2:KE] 50 2/ Tizo =8k s
Q* Q*

and the electrostatic terms converge as they do in the RHF setting. Concluding th
proof of Theorem 2.3 therefore amounts to proving that we may pass to the limit in
the exchange term, or in other words that

im (][] pue.x 5 Wacle = &' x = 90 (€ . ) d6 8 dxdy

n—-4o0o
0%x(0*)?
= //// ’O(g’ X, y)WOO(g - 5/7 X — )’)P*(Sl» X, y) d%' df/dx dy (516)
0%x(0*)7?
In order to prove (5.16), we again decompose the interaction poteWtial-, -)
accordingly to (5.6). We treat each of the three categories of terms separately, provin:

the analogue of (5.16) for each of them. The assertion (5.16) will then follow by addition.
We begin with proving
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n——+00

0%x(0*)?

= [[]] pe.x.5 W6 =€ 5= ) 7€' x. g a dxay.
07x(0")?

im ][] pue.x ) Wase = €5 = ) 516" x, ) de d dxdy

Clearly, it suffices to prove

Jm ][] 1 x0 =p6x 9] W6 €5 - )
02x(0*)?
X pr(&', x,y)d§ d&'dxdy = 0. (5.17)

For this purpose, we observe that

‘//// [on (€. x. ) = p(§.x, )] Woo(§ —&".x — )y (5" x. ) C(IZZ)%6 dxdy
02x(0"?
//‘/,Onéxy) /,O(Sxy) ds W (£ — £/, x — )|
(2r)3 (27)3
0x0 0 o
: PuE' X, y) 2073 dx dy

< Wl / one, ) — p (s )| 1on(x. y) | dx dy
ox0

SN Woollzoe lon (x, ¥) — p (s WI1lL2(02) 100 (x5 ) 1 22(02).

and (5.17) follows from the strong convergenceppfx, y) to p(x, y) in L2(Q?).
For the second term, we remark that

VL ——

0%x(0*)?

1
lx — yl

(e, M = 1p(x, )P ,
12002 H ||L2(Q2)
where the right-hand side converges to zero becayge, y) converges too(x, y),
strongly inL*(Q?), thus|p, (x, y)|? converges tdp(x, y)|?, strongly inL2(Q?).

It now remains to treat the third term of (5.6), namely, for instance, to prove

im (][] oute vy v S Y et dxdy

n—+00 |g-‘ %‘ |2
02x(Q*")?

e iG— £)-(x—y)
= [[[] pexvp xS Fo g deds'dxdy.
02x(Q*)?
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We introduce the function

e i(E—§)(x—y) dg’
E—&'12  (2n)%¥

Fn@,x,y):/p:(sxx,y)
Q*

(5.18)

and the analogous functiai whenp, is replaced by. What we have to prove is that

Jm [ [lo@ v nFEx

QZXQ*
—P(g»x,)’)F(g,x»)’)] dngdJ’:O, (519)

and for this purpose it suffices to show that&, x, y) converges weakly t@ (&, x, y)

in L?(Q* x Q?), which we already know from (5.15), and thBf(%, x, y) converges
strongly toF (£, x, y) in L?(Q* x Q?), which we now establish (up to the extraction of
a subsequence).

Since% belongs toL>*(Q x Q; L*(Q*)), and sincep, (£, x, y) is bounded in

L?(Q* x 0?), we easily deduce from Young’s inequality that
F,(£,x,y) is bounded inL?(0* x O x Q).

Likewise, the generalized Young inequality for the Marcinkiewicz spaces (or kéak
spaces) implies

F,(£,x,y) is bounded inL%(0* x 0 x Q), (5.20)

using this time tha% belongs toL¥%>(Q*).

Let us now prove thafF, (£, x, y) is bounded irtWY/21(Q* x @?). This will imply by
the Sobolev embeddings theorem that&, x, y) is relatively compact ik ”(Q* x Q?),
forall 1 < p < 19/18. In view of (5.20), Hélder’s inequality yields the compactness in
all LP(Q* x Q?), for all 1< p < 6, and thus in particular the desirdd(Q* x Q?)
compactness. To prove thay (£, x, y) is bounded inWY21(Q* x Q?), we prove that
F,(&,x,y) is bounded both inL(Q? W¥21(Q*)) and in LY(Q*; WY21(Q?)). The
second bound is an immediate consequence of the factFjfiat x, y) is bounded in
L?(Q*; HY(Q?)). The latter fact holds because bqijx&, x, y) and V,p, (&, x, y) are

bounded inL2(Q* x 0?), e_if;“;_” € L®(0% LY(0*), and

g & (x—y) e ) vV, e &=y
ez T PalS X, Y) *or
§17 ! §17

In order to show thaF,, (£, x, y) is bounded inL1(Q?% W¥%1(Q*)), we remark first that
7 € Lo(Q% WY2L(Q"), thus

van(gax» )’) ZVX,O;(S,X, y) * Qo

g & (x—y)
||Fn (59 X, y)le/Z,l(Q*) = Hpn(ga X, )’) *Q* WHWUZJ-(Q*)

1
< H,On(%', X, y)”Ll(Q*) @HWUZJ(Q*)
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whence we deduce

1
€2
This concludes the first proof of (5.16), and thus the proof of Theorem 23.

||F (g X, y)HLl(QZ Wl/Zl(Q*)) ||/0n(§ X, y)HLl(Q*XQ2)

Wl/zvl(Q*)‘

Second proof of Theorem 2.3We may observe that we can modify the argument
which is used in Step 3 above by proving the following.

LEMMA 5.2. — For any minimizing sequendg, € K of I/, we have

: | on (x, y)l2 lp(x, y)I?
lim / / Q/de3 LASIMLp (5.21)

n—>+o0 lx =yl lx =yl

Proof. —The proof of the above Lemma 5.1 yields in particular that the exchange term
dx [ 122 4y is hounded independently of with the help of (5.13). Moreover,
] R3

lx—yl

in view of (5.15),|p,(x, y)|? converges tdp(x, y)|?> almost everywhere oR® x R3.
Then, by Fatou’s lemma, we deduce that

2 2
Iiminf/ /Ipn(x y)I >/dx lo(x, ¥l dy
n—+00 lx — yl |x — y
0 R3

In order to prove the reverse inequality for the upper limit, we argue as follows. Let
R > 0 be fixed, we may write

2 2 2
/d |on(x, I dy _/d / [on (x y)l dy +/d / |00 (X, ¥)I dy.
|x — y lx—y lx—y
0 RS lk—yI<R lk—yI=R

On the one hand, we obtain

2 1
/dx / Mdyg_ /dx/l,on(x,y)lzdy
lx — ¥l R
0 RS
1

o [x—y| =R

C
. 2
= E ”:0:1(53 X, y)”LZ(Q*XQxQ) < E, (522)

for some positive constard that is independent of, and because of the bound (5.13)
on p,,.

On the other hand, we know from (5.15), thaix, y) converges te(x, y) strongly
in L C(R3 x R®). Thus,|p,(x, y)|? converges tdp(x, y)|2 strongly in L2 .(R® x R3).
Slnce e Xix-yi<r (¥, ¥) belongs toL2.(R® x R®), we clearly obtain, for any fixed

\x y
R >0,

2 2
lim dx / [on (x, y)l /d / lo(x, y)l dy. (5.23)

n—>+00 lx — | lx — ¥l
o [x—yI<R 0] [x—y|<R
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Collecting (5.22) and (5.23), and lettimg and thenR, go to infinity, we finally obtain

- 400 -yl lx — |

2 2
”msup /I,on(x y)l /dx lo(x, I dy
0 RS

The proof is now complete. O

We shall now write down the system of Euler—-Lagrange equations satisfied by any
minimizer K of IpHeFr These equations look like very much the usual Hartree—Fock
equations in Molecular Chemistry, and are likely to be the analogues in the periodic
setting of the well-known Hartree—Fock equations. The form of these equations is very
similar to the one we have derived for the periodic RHF model, namely (4.57)—(4.59),
except for an extra term which comes from the exchange term. Arguing by analogy with
the periodic RHF model, we obtain the following system of Euler—-Lagrange equations,

for almost every in Q*, and for everyr > 1,

—Auy (&) = Guy(&, )
3 @) [ €926 =0y ).
m>1 0
B //p@“x-y) W& — &5 — ) un (6 ) dy—o
o ’ e (21)3
o*xQ0
=Y em@ un(, ), ae. onQ,
m>1
/(Wun(s,xnz — G(x) |u, (&, x)|%) dx
o
+ ) (&) Do (lun €, )N |um (&, )IP)
m>1
/ oo / * dé/
= [[] ey W = i e e dxdy s
)
Q*XQ2
= ul€) + pulE) +m,

with p(g’ X5 9) =2 1 Am(EDun (', x)uy (', y), and where the Lagrange multipliers

7, 1), ur(), e.n (&) are respectively associated to the set of constraints

/Z n@)(z 5=l

o+ n>1
0< 1, (6) <1, foralln > 1, and for almost alE € Q*,

/un(é,x)u;“n(é,x)dx =8,.m, for almost alls € O*.
0

(5.24)

(5.25)
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Since, once moreEpHeFr(K) is independent of the choice of an eigenbasisKer we
may assume without loss of generality that the matrix,gf(¢) is diagonal, for almost
every¢ in Q*; under this assumption, the right-hand side tepn), - e (§)un (. -),

in the first equation of (5.24) becomes simply&)u, (€, -). In addition, the Lagrange
multipliers still satisfy the properties (4.58a), (4.58b), and (4.59), that we recall here for

the convenience of the reader; namely, fomalt 1 and for almost every in Q*,

0, (=0, if An&) >0,
“"(5){>0, if 3uy(5) =0,
o [=0, i AE) <1,
“"(5){@, if 3oy (8) = 1,

and
Aa(§) =0 == &,(§) =27,
O<r(§) <1 = ¢,(6) =m,

Once we have established the existence of a minimizer for the periodic Hartree—Focl
model, we are able to compare from above the Hartree—Fock energy per unit volum
with this periodic problem.

5.2. Upper limit of the energy per unit volume

In this section, we prove the following.

PROPOSITION 2.1. -We assume that the Van Hove sequenceatisfies(2.21) In
addition, we assume that the unit céll is a cube, and that there exists a minimizer

K € K of Ir*je’f whose density shares the symmetries of the unit cube. Then,

IEF HF
limsup—=— < I'F +
A-;oop |A| ~N per

?9

wherel''" is defined by(2.23)—(2.24)

per

Remark5.1. —

(1) The same result holds true in the smeared nuclei case, if we assume moreover th
m shares the symmetries of the cu@eand defineM according to (2.22).

(2) Inthe HF setting, since we do not know whetlheas unique, the assertion that
shares the symmetries of the cube needs to be assumed.

Proof of Proposition 2.1. Fhe beginning of the proof is the same as in the proof of
Proposition 4.2 for the RHF problem. Let us denotekbg minimizer of the periodic HF
problem such that the corresponding dengitghares the symmetries of the unit cube.
We set

A ={keA; dk,dI(A) <2},
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rea=Jk+o,
kedA
A=4)\04,
and
r)=Jk+0=rW\r@a.
keA

We build a cut-off functiony, € D(R?) satisfying the following properties: € x4, <1
xa=1on F(/o1), xa=0o0onTI(A)¢. In particular, we have

[t xdx =141 +0(4) < Al (5.26)
R3

We next consider the operatér, on L?(R®) whose kernel is

Pa(x,y) = xa(xX)p(x, ) xa(y).

Then, because of (5.26), and singf is also obtained by minimizingXF when the
trace constraint is relaxed, that is on the set of self-adjoint operators

K,={0<K<LTrK <|A|, Tr[(=A = V4)K] < +o0},

we have
m,
[A| IAI
We show exactly as in the proof of Proposition 4.2 that

A (K 4).

1 1 1
IIm LTl [TrLZ(R3)[ AKA]_/VAIOA+ D(pa, pa) + 2UA

M
=Q/ Tr20 - AeKel o — Q/Gp +3D6(p. 0+ g

According to the definition (2.5) of the Hartree—Fock energy, to reach the conclusion, it
now remains to compute the exchange term correspondig, i@and to show that

2
// [oa(x, y)l dx dy:/dx lo(x, I dy.
A%OIAI |x — y TS lx — yl

It is easily seen that

1 lpa(x, y)I?

7 dXdy
41 ) =l
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1 X4 ()2 p (e, Y xa(»)?
—m // dxdy

lx — yl
R3xR3
// lp(x, y)l2 // XA(x)ZI,O(x,y)IZd
xdy
IAI lx — yl IAI lx — yl
F(A)XF(A) F(A)xr(aA)
1 X 2 X, 2 2
41 XA p e, MITxa () dx dy.
Al ; lx — yl
I'(@A)xI'(0A)

Let us first concentrate on the last two terms and show that they converge b Gces
to infinity. Indeed, since & x4 < 1, the sum of these two terms asfortiori less or
equal to the following quantity

lp(x )’)l2
A // d%
|A| lx — I
R3xI"(dA)

which makes sense since

2
/dx Mdy<+c>o.
5 lx =yl

Besides, using the fact thatx + &, y + k) = p(x, y), for everyk in Z3, we have

PG+ k)P
d
|A|Z/ J k=Y

A
keoA

Iy =01
|A|Z/ | == h 4y

keoA
IaAl/ /Ip(x y)l2
| A lx — ¥l

We conclude easily, since by deflnltlon of Van Hove sequeni@es| = o(|A|), as A
goes to infinity. Therefore, it remains to check that

1 2 2
1 // LICRDIS _/d /|p< D o,
| Al lx — |
T(A)xT'(A)
since it is clear that, for the same reasons as above,

lp(x, v)I* 12 _ 1 lp(x, y)I?
// |x -~ dxdy = Al // 7|x _— dxdy +0(1).

F(A)XF‘A) F()XT(A)

We rewrite this sum in the following way
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k, NE

// I,O(x y)I Z / lo(x +k,y+ D] dx dy
IAI IAIk,A lx+k—y—I]

I'(A)YxI'(A) oxQ0

, 1 —k)|?

Z / lo(x,y + ) dx dy
IAIkleA lx — (y +1—=k)|

> //Xz k+0 () |,0( y)llz

k,leA

IAI

The conclusion is then easily reached by showmg that the sequence of functions define
by ﬁ > kiea Xi—k+0(y) converges to 1 i (R3x-weak, and almost everywhere on
R3. To prove this claim, we could directly apply the technical lemma given in Chapter 2
of [11], but, since the proof is simple, we reproduce the argument here. On the one hanc
we clearly have

1
A SN xiko) <1

keA |ez3

0< == > Ji—k+0(¥) <
|A|k15A 14]

Therefore, the sequence is bounded.fi(R?®). On the other hand, let be fixed inR3.
Then, there exists: € Z3 such thaty lies inm + Q, and for A large enoughn lies in
A — A, by definition of a Van Hove sequence. Hence, for sucl,ame obtain

1
S o0 = Hlk L€ Al —k=m)

T A& &, Al

1 1
=—H#MkeA k—meA}=—H#HAN(A+m)]
| Al |A|

1 Alml+3
—#[A \ A|m\+2} 2 _ | |’
| Al [Al

whereA™+3 = (k € A: d(k: 9T (A)) < |m| + %}, and where the notationS#stands for
the number of elements in the s&tWe conclude easily since, by definition of a Van

m|+ . g
Hove sequencé"lT| goes to 0 ast goes to infinity. O

6. Extensions and perspectives

We list in this last section a few comments on the above results, and indicate som
possible extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequenced is Z3, and thus that the periodic cef) is a cube of unit size. The first
basic observation to make is that our whole work goes througtatis mutandisf we
replace the cube of unit size by a cube of skzeSlight maodifications must be made in
the definition of the potentialy in particular, and we refer the reader to [11] for such
modifications.
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Replacing the cube by another shape of unit cell is another story. As we have
mentioned above, Theorems 2.1 and 2.3 still hold. On the contrary, our strategy of proo
for Theorem 2.2 depends upon the shape of the cell. It is an open (but rather technica
guestion to extend this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (2.21) is a technica
assumption required only for the proof of Theorem 2.2. We recall we believe it can
be left apart, but we do not know how.

Concerning the periodic problenser se it would be an interesting question to
address to see whether one can say something on the minimizers. In the HF settin
for instance, we are not able to check, for the time being, whether or not the minimizing
periodic density matrix is a projector (which is equivalent to the fact tikatis a (finite
rank) projector, for almost a§j in Q*), as it is the case for the Hartree—Fock model for
molecules.

Apart from these somewhat secondary questions, the main issue to tackl@iedhe
of the thermodynamic limit for the energy per unit volume in the H and HF settings. As
far as this question is concerned, much remains to be done.

Even in some simplified framework, trying to understand Hartree—Fock type models
for quasicrystals would also be of interest. Our study [11] and references [1,3,8,47] coulc
constitute a starting point.

Finally, let us mention that the periodic problems we have defined in this work can
be treated numerically, and we indeed intend to treat them numerically. Numerical
experiment might in particular give some insight into the mathematical nature of these
models and help oneself to make up his mind on some of the questions mentioned abov
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