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Ces resultats sont prouves a l’aide de la methode de concentration-
compacite et de principes variationnels duaux pour obtenir l’existence des
points critiques correspondants.

1. INTRODUCTION

We consider the existence of multiple solutions of the following semi-
linear elliptic equation

where 1   N + 2 if N >_ 3 1   + oo if N = 2 ~, > 0 is a real
N - 2 

_

number, b (x) and c (x) satisfy

Existence of nontrivial solutions (positive solutions, for example)
concerning (1.1) has been extensively studied even for more general
nonlinearity-see, for instance, W. Strauss [12], H. Berestycki and
P. L. Lions [4], W. Y. Ding and W. M. Ni [5], P. L. Lions [9], [10],
A. Bahri and P. L. Lions [2] and the references therein. For the multi-
plicity of solutions we refer to H. Berestycki and P. L. Lions [4],
X. P. Zhu [13] and Y. Y. Li [8].

It is known to some extent that the equation

may have infinitely many solutions because ( 1. 3) ensures that the cor-
responding variational functional
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satisfies the (PS) (Palais-Smale) condition and the dual variational princi-
ple of A. Ambrosetti and P. Rabinowitz [I] ] may be applied. When À is
small, (1.1) can be taken as a small perturbation of ( 1. 4) and thus it

seems reasonable to hope that (1.1) has more and more solutions as X
tends to 0.
As mentioned in P. L. Lions ([9], [10]) that the variational functional

corresponding to ( 1.1 ) defined by

fails to satisfy the (PS) condition because of the lack of compactness of
the Sobolev embedding H 1 ((~N) ~ L2 (~N).
Such a failure creates difficulties for the application of standard varia-

tional techniques. In section 2, arguing as P. L. Lions [10], we show by
using the concentration-compactness principle that satisfies (PS)~
condition if c belongs to an interval depending on À which becomes large
as À tends to 0. In section 3, using a variant of the dual variational
principle (dealing with unbounded even functionals) of A. Ambrosetti
and P. Rabinowitz [1] ] we obtain the existence of multiple solutions by
establishing the corresponding existence of critical points of with

critical values in the interval in which Ix (u) satisfies (PS)~ condition.
We conclude this introduction by remarking that some more general

nonlinearities can be considered and similar existence results can be obtai-
ned by the arguments in this paper.

2. EXISTENCE OF A POSITIVE SOLUTION

In this section, we are concerned with the existence of a positive solution
of ( 1.1 ). As preparations and for the discussion of next section, we first
give some notations, definitions and auxiliary results.

Define

where is defined by (1.6), (u) is defined by
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We have

PROPOSITION 2.1. - For each ~, > o, I~ _ I*.

Proof. - If c (x) --_ o, then 1*= +00, thus I~  I * . In what follows, we
assume c (x) ~ 0.

Suppose uEH1 (I~N), such that

Let such that e.,

Comparing (2 . 8) and (2 . 9) we deduce that such 6 exists and 03C3 E (o, 1).

Letting h(03C3)=03C32 2~|~u|2+u2-03C3q+1 q+1~c(x)|u|q+1, we have
2 q+1

Thus I* and we have proved Proposition 2 .1.

PROPOSITION 2. 2. - We have
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Proof. - We can easily find that

which has a positive minimum u~H1 (RN) n C2 (IRN) satisfying

(see W. Strauss [12], P. L. Lions ([9], [10]) for examples). By Gidas, Ni
and Nirenberg [7] we may assume u is radial.
On the other hand, there exists a positive radial function

~H1 (RN) n C2 (IRN) achieving Ir such that u satisfying

(see also W. Strauss [12], P. L. Lions ([9], [10]) for examples).

Let M==(20142014 ) v, then ~>0 in tR~ and solves (2.13). By the

uniqueness of radial positive solution due to M. K. Kwong [11] we deduce
and thus

proving Proposition 2. 2.

LEMMA 2 . 3. - I~ (u) satisfies (PS)c condition if

Proof. - Suppose such that

It is easy to deduce from (2.16) and (2.17) that {un} is bounded in
H1 (I~N). By choosing subsequence if necessary we assume

By the method of concentration-compactness, as in A. Bahri and
P. L. Lions [2], P. L. Lions [10], V. Benci and G..Cerami [3] we deduce
that there exist a nonnegative in (1~~,
solutions ((I~N) ( 1 _ i _ k) of (2 . 14) such that (extracting subsequence
if necessary)
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n

ince I~03BB (£;) p-1 2(p+1)~|V £; |2 + Q > 0 for I = I , ... , k if for some 1,

2 (P + 1) 
_

k 0, then I~03BB (§;) > which implies c > because Ix (uo) > 0. Thus u; * 0

1  I  k. Hence un converges to uo strongly 
and therefore Lemma 2 . 3

1 been proved.
Ne are now going to use the preceding result 

to obtain the existence of

ositive solution.

THEOREM 2 . 4. - Suppose Ix  I~03BB. Then (I , I) has a positive 
solution.

Proof - By Ekeland’s variational principle [6] 
and the definition of Ix,

ere exists a minimizing sequence ( such that ( c Mx

T ,, i - 1,

Indeed, trom ~z . ~ 1 ~, 
.»-----__ . ~ _

C2 > 0 such that

Letting 
, wc 

"’ 

rhus

tor some 

Since we have from (2 . 26)
_ _. T~ ~~. ~ " - A If 

~.~~~~~». -_----
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Thus from (2. 24), (2. 28) and u" E M~ we have

for some constants C3, C4 > 0 independent of n.
From M~ (un) -~ 0, we obtain by (2 . 27) and (2 . 29) that 9n - 0 which

n n

combined with (2 . 26) deduces I~ (un) -~ in H -1 ((~N). Thus (2 . 23) holds.
n

Following Lemma 2. 3, we can assume (by choosing subsequence if

necessary)

By Sobolev inequality, we have I~ > o. Thus uo is a nontrivial solution
of (1.1). Letting where uo = max ~ uo, 0 }, uo = uo - uo , we
have Ix (uo) = Ix (u) ) (uo ). Since I~ (uo ) uo = 0, i. e., uo E M~ if 0 we
have if uo ~ 0. Therefore uo = 0 or uo -_- o. Without loss of
generality, assume Mo=0. Thus u0~0 in It follows from standard

regularity method and maximum principle that uo E C2 (I~N), uo > 0 in f~N.
Thus, we conclude the proof of Theorem 2.4.

COROLLARY 2. 5. - Suppose ( 1. 2) holds, c (x) satisfies

Then ( 1.1 ) has a positive solution provided

Proof. - From (2 . 31 ) we have

which combined with Proposition 2.1 implies

Thus, by Theorem 2 . 4 we know ( 1.1 ) has a positive solution.
We end this section by a few remarks.

Remark 2. 6. - The fact that if I~  then I~ has a minimum has been
proved in P. L. Lions ([9], [10]). We reprove this fact for the sake of

completeness.
Remark 2. 7. - Consider the following equation

where
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(2.35) can be obtained by taking ~, =1, Q (x) --_ b (x), c (x) ! 0 in ( I .1 ).
From Theorem 2.4 we can deduce the corresponding results concerning
the existence of positive solution of (2.35) in section 3 of W. Y. Ding and
W.. M. Ni [5]; [for the case Q (x) --i Q as x 1-+ oo]. Corollary 2. 5 gives a
type of precise condition under which I~  I~ .

where hex) satisfies (1.2) and

c (x) satisfies (2.30) with supp c (x) bounded.
Corollary 2.5 ensures the existence of positive solution if À is properly

small. It should be pointed out that in this case Q (x) does not satisfy the
condition proposed by A. Bahri and P. L. Lions in [2].

3. EXISTENCE. OF MULTIPLE SOLUTIONS

First of all, let us state a variant of the dual variational principle
of A. Ambrosetti and P. Rabinowitz [1] ] dealing with unbounded even
functionals.

Let E be a Banach space, Br be the ball in E centered at 0 with radius r,
aBr be the boundary of Br. AcE is called symmetric if u eA implies
-M6A. Let

For A m E, v (A) denotes the genus of A. We set forfEC1(E, R)

(3 . 3) E), h is odd homeomorphism 
(3 . 4) rn_= ~ A c ~ ~ A is compact, v (A (~ h (~ B 1)) >__ n for any 

Replacing- (PS) by condition, we have the following lemma proved
exactly as in [ 1 ] .

LEMMA 3‘ . 1:.. - Suppose f E C 1 (E, R) satisfies
(Cl) and there exist p, ex>O such that f (u) > 0 for any

u~ B03C1B{ 0},f (u) >__ oc for all u E aBP;
(C2) for any fin.i.te dimensional subs pace E" n E + is bounded;
(C3) f (u»=f ( ~ u)..
Set

Then

(i ). T-’n ~ O:A for r~ =1, 2, ... , bn >_ a; .

(ii) critical level if f satisfies (PS)c condition for c = b".
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Furthermore, if b = bn = ... = bn + m~ then v (~b) >_ m + 1, where

In what follows, we always take and use the same

notations X, Br, aBr and v (A). Let

(3 . 8) H~ _ ~ h e C (H1 (~N), H1 (~N)), h is odd homeomorphism,

(3 . 9) ((~~), H 1 ((~N)), h is odd homeophormism,

Obviously 

PROPOSITION 3 . 2. - satisfies ( 1. 2), c (x) satisfies

Then Ix (u) and I* (u) satisfy (C l), (C2) and (C3) in the previous lemma.

Proof. ~- The verification of (Cl) and (C3) is trivial. We only show
that (C2) holds for Ix (u) [resp. I* (u)]. We argue by way of contradiction.
Suppose there exists a m dimensional subspace a

sequence {un} c E"" n Ex (resp. {un} ~E* n Em) such that II ~ + oo . Let
n

el, e2, ... , em be the basis of Em. Then

for some tn = (fl, ..., tm) E (~m.
Set we have 1 tn 1-+ +00.

n

where Cs > 0 is some constant.
(3.14), (3 .15) ;and =(3 . 16) .deduce I03BB (un) 0 for lu larger enough [resp.

I* (un)  0 for ~c large enough], which contradicts un E*).
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Define

By the definitions we have

Suppose (3.10) holds then by Proposition 3.2 and Lemma 3.1,
0393n* ~ ~ for each n =1, 2, ..., and consequently c*  + ~.

Let

We have

THEOREM 3 . 3 . - Suppose ( 1. 2) and (3 .10) hold. Then for each
n =1, 2, ..., (1 . 1) has n pair of solutions { - ui ui ~, i =1, ..., n if
~1, E (0, ~l,n) .

Proof. - By the definition of c~, c*, n =1, 2, ... we have

Thus

Next we claim that for each c~, k = 1, ... , n, satisfies (PS)~ condi-
tion.

Indeed, À  ~,n implies
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Thus

which combining with (3 . 23) deduces

On the other hand, obviously we have

Thus, by Lemma 2. 3, Ix (u) satisfies (PS)~ condition for c~, k = 1, 2, ..., n.
Following Lemma 3.1, has at least n different critical points
uiEH1 ((I~N) ( 1 _ i _ n) such that _ i -- n). Since is a even

functional - ui is critical point either ( 1 _ i _ n), ~ - ui, are the solutions
we are looking for. Hence we have proved Theorem 3 . 3.
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