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ABSTRACT. - This paper is concerned with a non-strictly hyperbolic
system of conservation laws. We study the existence of weak solutions to
the associated Cauchy problem, in the framework of L 00, using the methods
of compensated compactness. Some previous results for quadratic systems
have been generalized.
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RESUME. - Etant donne un certain systeme de lois de conservation
faiblement hyperbolique, on etudie l’existence d’une solution faible dans
L °° du probleme de Cauchy associe en utilisant les methodes de la compa-
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resultats connus pour les systemes quadratiques.
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628 B. RUBINO

1. INTRODUCTION

This paper is devoted to investigate the convergence of vanishing visco-
sity approximation to weak solutions, satisfying the entropy inequality, of
the following, quasilinear 2x2 hyperbolic system of conservation laws

for real valued functions u v on x I~ t + . We assume that a > 1 E C2 (~
2

is even and superlinear and for all v satisfying

The system (1.1) fails to be strictly hyperbolic under these assumptions
since there is an umbilical point in (u, v) --- (0, 0). Moreover the system is
not genuinely non-linear (see below for the definition) along the u axis.

A system of this type, when / M = -1~ has been investigated by

Kan [14] in his doctoral thesis, and we also employ some of his ideas to
extend his results to our case. Systems of this type have been widely
investigated in connection with oil reservoir engineering models ([12], [13],
[24]) and also in some situations arising in problems of mathematical
physics ([1], [2], [7], [15]).
A complete account of the literature on these topics goes beyond the

scope of this paper, but among many other important contributions we
wish to mention ([5] to [8], [10], [16] to [21], [30]).

In this framework the method of compensated compactness is the main
tool developed to analyze the vanishing viscosity method and we refer to
the classical papers of Tartar [29], Murat [22] and DiPerna ([5] to [8]) for
the crucial ideas in the theory. Further some important contributions are
also due to Chen, Ding and Luo [I], Chen [2] and Serre [26].

In order to use the compensated compactness methods we will need
a priori estimates in L 00, independent of the viscosity. These bounds will
be obtained using the theory of invariant domains due to Chueh, Conley
and Smoller [3] (see also [27]) and the classical maximum principle.

We extend the result of [14], from the to a general even

and superlinear function, showing that, in order to overcome the difficulty
of explicit computation, it is only necessary to provide the asymptotic
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629VANISHING VISCOSITY APPROXIMATION

behaviour of the coefficients of the differential equation concerning the
entropies, getting over the problem of difficulty of the explicit computa-
tion. We hope to develop in future papers the theory for more general
non-linearities. In particular, the convergence of some numerical schemes
will be discussed in a forthcoming paper.

Let us recall the system (1.1) can be written in the vector form as a
single conservation law,

by denoting ~==(M, F(~)=~-+~)M~+/(~), 
The system (1.1) is said to be strictly hyperbolic if the two characteristics

speeds, namely the eigenvalues ~+ =~+ (M, ~), satisfy

In our case, let us denote by

and

then the characteristic speed of the problem are given by

and the corrisponding right and left eigenvectors by

Since vf’(v»O for all it follows

for all (u, v) ~ (0, 0). So the origin is an isolated umbilical point for ( 1.1 ).
The system (1.1) is said to be genuinly non-linear if 
~ 0 for all (u, v); in this case we have

so the genuine non-linearity fails on the u axis: { (u, v) E (~2 : v = 0 ~. A weak
solution to ( 1. 2) is a bounded measurable function t) such that
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630 B. RUBINO

for all 0 E C5 one has

An entropy - entropy flux pair of the system ( 1.1 ) is defined to be a

In order to select the appropriate weak solution, the essential idea of the
vanishing viscosity method consists in first introducing a small viscous
perturbation of the system and then considering limits of solutions of
such system which further satisfy the entropy inequality in the sense of
Kruzkov [16] and Lax [19] (see also Hormander [11]):

in for any convex ~ . However the uniqueness under this condition
remains still an open problem.
The plan of paper is the following: in section 2 we study the existence

of the invariant domain and the a priori estimates in L°°; in section 3 we
consider the viscous system. Section 4 is devoted to show the existence of
infinitely many entropies of different types, pecded to apply the arguments
of Tartar and DiPerna. We shall prove existence of product type, sum
type and weak entropies. When f is polynomial, we also prove the existence
of polynomial entropy. We then prove the energy estimates and apply
them to investigate the properties of the entropy rate. The final section is
concerned with strong convergence in LP required for the vanishing visco-
sity method.

2. INVARIANT REGIONS

Here we consider the vanishing viscosity approximation to the system
(1.1):

for all E > o. In order to establish a priori estimates, independent of E, we
will use the theory of invariant regions due to Chueh, Conley and
Smoller [3]. The results of [3] can be summarized in the following

THEOREM. - Let g+ be two smooth functions, g+ :1~2 ~ (~ and

E = ~ (u, v) : g+ (u, v) _ 0 }. Assume that, for any t > 0 and (u, v) E aE, the
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631VANISHING VISCOSITY APPROXIMATION

following conditions hold:
is a left eigenvector v);

b) g+ is quasi-convex in (u, v), i. e. for all ~ E f~2:

Then E is an invariant region for (2 . .1 )E for all E > o, namely, if (uo, 
for all x, then (u£ (x, t), vE (x, t )) for all (x, t).
We say that 00- EC1 (~ + respectively) is a first (second ) Riemann

invariant for ( 1.1 ) if for all (u, v)

(u, v))T . r _ (u, v) = o). Therefore ~03C9~ and l + are parallel.
Further, it is well known that any classical solution (u, v) of (1.1)

satisfies

Fig. 1. - Integral curves R + for system ( 1. 1 ).

Finally let us recall that the integral curves R+ of r+ in the state space
are respectively called the first and second rarefaction wave curves. Thus,
in our case, a first (second) rarefaction curve satisfies the ordinary first
order differential equation

Since f is even, the curves R_ are obtained by a mirror reflection of the
curves R + about the v-axis; we can hence restrict our attention to the R +
family (Fig. 1). Further, we notice that the right hand side of (2.2)+ is
odd in v, so that the R+ curves have an up-down symmetry; in the upper
half plane they have a positive sign and so the R+ curves cannot be
closed.

Vol. 10, n° 6-1993.
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LEMMA 2. l. - Under the above hypothesis the following properties hold:
a) the R+ curves do not intersect the positive u-axis;
b) the R + curves are in one to one corrispondence with the points of the

negative u-semiaxis;
c) each one of the R + curves is confined to the upper half plane and

tends to (0, 0) as v -~ 0;
d) the half line { (u, v) : u > 0, v = 0 } is itself an R+ curve;
e) every R + curve which does not stay on the u-axis tends to 0o as

u~ +oo.

Hence we can conclude that an R + curve either starts from the origin
and stays on the u-axis going to infinity to the right or it intersects the

negative u-axis and goes to infinity to the right.
Finally, for ( 1. 1 ) we can construct Riemann invariants t~ _ , ~ + so that

Proof. - We limit ourselves to prove the last statement. In fact, if we
suppose that there exists M > 0 so that, for an R+ curve that stays in the

upper half for all u>u, we obtain lim On the
2 u - + 00 du

other hand, one has

for all u > u, then we arrived at a contradiction.
In order to study the convexity of the R+ curves, we compute the

second derivative

Since

then

so that we have
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Therefore the R + curves are concave in the positive half-plane and convex
in the negative half. Similarly R_ curves are convex in the positive half
plane and concave in the negative half.

Since 00+ is constant along every R + curve, if we prescribe 00+ (u, 0) as
follows:

then

From the geometry of the wave curves we also have the following

COROLLARY 2.2. - The Riemann invariants constructed as before satisfy

From now on, we shall use the Riemann invariants ~ _ , ~ + provided by
the previous construction.

Fig. 2. - Invariant region for the system ( 1 . 1 ).

Since by definition V 00+ are left eigenvectors forVF, the Riemann
invariants are the functions ~ + used to define the invariant regions
following [3]. Therefore we will find in this way a family of invariant
regions (Fig. 2) given by

Vol. 10, n° 6-1993.
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These regions are bounded by the wave curves of the two families. On
the other hand, ~~ is strictly increasing in c and it spans the whole state
space as c -~ +00.

We have by the above construction

LEMMA 2 . 3 . - Away from the origin,

namely ~+ are quasi-convex (respectively quasi-concave) in the sense of [3].

Proof. - In our case w + satisfy

Differentiating with respect to u

and multiplying by - ±) , thenf’ (v) lv

On the other hand, if we differentiate (2. 3) respect to v, it follows

Then we multiply by 20142014 2014~- 2014~ and therefore
/’(~) ?M ~

Since one has
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adding (2. 3) and (2. 4), we get

and by using (2. 3) we obtain

Because of the corollary 2 . 2, we have only to prove that

is non negative. We can express (2. 5) also as

(u, v) >_ o, we need only to show that

is non negative. But one has

Then the lemma holds when In the case .~- u _ o, one has

then

Hence, in any case, Q+ (u, v) >_ o. .
Because of the quasi-convexity property, we can conclude with the

following

Vol. 10, n° 6-1993.
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THEOREM 2. 4. - Assume that (uo, vo) E L°° (R) x L°° (R) and consider the
viscous problem (2.1)E, then the solution (uE, v£) is bounded a priori in L°°
independent of E.

3. STUDY OF THE VISCOUS SYSTEM

We now show that (2 .1 )£ has a global solution in time. The proof will
be carried out using the result of section 2 and the contraction mapping
theorem in a standard way.

Let T = C (R) be provided with the norm

and C ([0, T] x (~)

Let

def 1 

x2where Z (x, t) = is the heat kernel and * denotes convo-

lution in x.

By using the formula of the method of variation of constants, we have

Let

than ff maps rT into itself if T > 0 is sufficiently small. Indeed we have
the well known estimate
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On the other hand, if then

Finally, denoting by

we have

Thus it follows that

The right hand side is bounded by ~ u0 ~, provided that

Now as T is small enough,

is a contraction mapping on rT; indeed if we easily see that
there exists a constant ca, ~o > 0 such that

so that we can conclude

Now the right hand side is bounded by °Ilz ~~, provided that

Therefore, we conclude that (2 .1 )E has a unique solution in C((0, T*),
~ (T*)), where we have set

Because of the existence of an invariant region, T* depends only on ~ u0 ~.
Then we can iterate the previous argument by taking (u, V),t=T* as initial
datum. Thus we have proved

Vol. 10, n° 6-1993.
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THEOREM 3 . .1. - Under the above hypotheses the approximation (2 . .1 )E
for the problem ( 1.1 ) has a unique smooth solution inside a suitable bounded
invariant region.
We conclude this section showing that, when the data lies in the upper

half plane, the solution remains in it for all t > o. To establish this result
we apply a positive solution theorem for parabolic equations of second
order (see [9]).

Consider the linear operator

for any smooth function then because of the equation (2.1), and
by the theorem 2 . 4 there exists M > 0 such that  M. Therefore, for
all (x, t ), ~3 > o, we have

We now deduce an a priori bound on ~x ~ ~ in terms of (uo)x ~ ~ and
I Indeed, if we differentiate (2.1), with respect to x, one has

Let us denote by

then

where ca, M, f depends on a, M and f therefore

Assume that T > 0; then define A : C ([0, T]) - C ([0, T]) by
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We can easily check that this definition is well posed and

namely

Then (I - cca, M, fA) is an invertible operator when T  
1 

2.(2 cca, M, f)
Denote by

Then

On the other hand, for all T]

def

Since g = max ~ 0, ~ - satisfies

we then get

However, which is impossible, unless g (t) = 0 for all
te[0, T]. Therefore

Thus we conclude that ~ is bounded on [0, T] and, since T depends only
on M, we can iterate the previous arguments.

Therefore, for all T, we obtain the following a priori bound

for all t E [o, T] .
We summarize our conclusion in the following result

au avPROPOSITION 3 . 2. - Assume that uo, vo, o, o E L°° ((1~), vo (x) _>- 0 for
ax ax

all x, then the solution vE) to (2 .1)~ satisfies vE (x, t) >_ 0 for all (x, t).

Vol. 10, n° 6-1993.
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COROLLARY 3. 3. - Under the previous assumptions we have, for all (x, t),

4. ENTROPIES

In this section we discuss several properties of the entropy pair asso-
ciated to our problem which we shall use later.
The inner product of ( 1. 3) with the right eigenvectors r + of V F produces

the characteristic form

which is equivalent to (1.3). Hence the Riemann invariants (o_ , o+) are
well defined coordinates because

is a one to one map which defines a change of coordinates in the half
plane ~ (u, v): 

Indeed we have

which transforms the system (4 .1 ) into

The equations (1 . 3) can be written explicitely as

Eliminating q, we get a second order partial differential equation in r~ :
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The same equation, in coordinates 00=(0)_,00+), becomes

and we shall only consider (4. 3) when 
We shall study, in the following, some particular types of entropies.

4.1. Entropies of product type

We now look for solutions of the form

For such a function 11 (u, v), (4 . 2) assumes the form

Dividing by a (v) f ’ (v) and differentiating with respect to u, we obtain

which allows us to conclude that there exists a k E R such that

Thus we have found a one parameter family of entropies of the following
type

On the other hand, dividing (4 . 4) by and differentiating
with respect to v, we get

then there exists an h e R such that

Thus we have found an other one parameter family of entropies of the
type

Vol. 10, n° 6-1993.
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Observe that (4. 5) is an entropy for our problem which does not depend
on f, and llh is convex provided that h ? o.

4.2. Sum type entropies

We now look for solutions of the form

In this case (4. 2) reduces to

which admits the following solutions

that is,

It is a well defined convex entropy. The corrisponding flux is given by

4 . 3. Polynomial entropies

In this paragraph we assume f is polynomial of degree n. Under this
hypothesis we will prove the existence of polynomial entropies by an

iterative process. Suppose first f (v) = 1 2v2, which is not restrictive since if

f (v) = - c2 v2, by means of the change of variable v - , we obtain
2 c

namely the problem C 1.1 ) ~ with f (v) 1 v2.
2
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In this particular case the problem of finding polynomial entropies was
treated by [14]. Indeed (4 . 2) reduces to

which is invariant under the dilatation

Therefore we can look for particular solutions by reducing (4.6) to an

ordinary differential equation in the new variables ~=-, D=2014, where
v v

a > 0 is an arbitrary integer. Then [13] obtains a polynomial solution of
degree a in u and v of the form

where C is a polynomial of degree a.
Now, we suppose that f is a polynomial of degree n which can be

written as

where g is a polynomial of degree greater than two. Let

then (4. 2) can be written as

Let us denote by

then we can easily find polynomial solutions to

and we want to find such solutions for (4. 7). Let 110 a solution to (4. 8),
then we can write the solution to (4. 7) in the following way

where H~ is a solution to the inhomogeneous equation

Vol. 10, n° 6-1993.
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Therefore HR solves also

Let us now split HR in the following way

with Hg solution to

We find that H~ is a solution to

Then our solution 11 is given by

Then, iterating this procedure, after k steps we obtain

where

Finally we have

PROPOSITION 4. l. - Under the above hypothesis the following properties
hold:

a) if H°_ 1 is polynomial, then there exists H° which is a polynomial;
b) there exists k > 0 such that 

Proof - We suppose that H°_ 1 (u, v) has degree m 1 in u, m2 in v, i. e.

then
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and there exist dk, h such that

and so, if we assume that

then (4.10)~ becomes

or, equivalently,

from which we obtain

Here we can choose some of the coefficients ck, h arbitrarily, for example,

With this choice we obtain H° (u, v) which is of degree mi - 2 in u, indeed
if has degree y in u, after - + 1 steps we obtain a function which is

independent of u, and our iteration procedure is complete. []
Thus we have proved that

Vol. 10, n° 6-1993.
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THEOREM 4 . 2. - If we consider ( 1. 1 ) with a polynomial f of degree n,
there exist polynomial entropies in (u, v).

4.4. Weak entropy

We now consider the Riemann invariant coordinate system (co_, o+).
In this case we find that the characteristic curves for the entropy equation
are the straight lines parallel to the coordinates axes. The Goursat problem
consists in finding a solution 11 of (4.3) when its value on two incident
characteristics are known.

Let us take two constant of, rot with we shall study the
Goursat problem

where 8 _ and o + are given smooth functions.
We recall the following standard result due to Sobolev [28]:

THEOREM. - The Goursat problem (4.11) admits a solution as regular
as the initial data 8 _ and 8 + on any bounded domain away from the
umbilical point and from the 03C9 + axis.

This solution will be, in general, singular along the 03C9+ axis. This is due
to the fact that the domain of dependence of any point on the 03C9+
axis contains the umbilical point, where the coefficients of (4. 3) become
singular.
We shall only consider special classes of Goursat data, namely:

and we shall consider special constants, namely:

In this case the solution possesses some convenient vanishing properties
and, in particular,

We shall see later that the same condition has to imposed on 8 _ to make
the entropy function regular everywhere.
The technical complication that one finds with this method is becouse

of our incapacity to write the change of coordinates T explicitely.
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However, as we can easily see, there exist Riemann invariants (~ _ , 
with the above properties for which we have

In this way we can estimate the coefficients of the first order terms of the

equation (4. 3) : we have

and

We are interested in the order of the infinitesimal ~, + (~) - ~, _ (~) with
respect to (~ _ , co+).

Vol. 10, n° 6-1993.
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Now, we notice that ~, + (u, v) - ~, _ (u, v)=2Ja2u2+vf’(v); hence we
have

and

LEMMA 4. 3. - Let f be a function such that

for some k + and Then, the quantities

just computed are continuous functions in a neighbourhood of the umbilical
point f and only if a = n.

In the other case, ~ = 0 is an essential singularity.

~roof. - In fact, with the hypothesis (4 1 2), the limit, as v --~ 0, for the
special term

is n. On the other hand, as it is easy to see, the term

is uniformly bounded but it does not admit a limit as (M, v) 1 -~ 0. So, it
is necessary that the associated term

tends to 0 and the lemma is proved..
Therefore, to continue our method, it is necessary to take the special

coefficient ~z = n. From now on, we make this hypothesis and hence we
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obtain in the previous calculation

and, in particular we have, in a neighbourhood of the umbilical point, it
turns out that

and that the singularity of the equation (4. 3) at the umbilical point
depends only on

,

Remark 4 . 4. - The case studied in [14], where a= 1 and f(v)=1 2v2,
falls within the scope of our result.
The result just found means that our equation behaves in a neighbour-

hood of the umbilical point as in the case of [14]. We finally remark that
this generalization is possible for even and superlinear, not

only for a perturbation of the quadratic 
2

On the other hand, we recall that for our problem (4.11), the following
Riemann representation formula holds (see [4], pp. 449-461).

is the Riemann function associated to the
equations.

Vol. 10, n° 6-1993.
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The Riemann function is subject to the following condition:
(i ) a, P) satisfies the equation (4 . 3), namely

(ii ) we have, on the axis 

and on the axis x = a

So, the singularity of the Riemann function ~ depends only on the
singularity of the first order terms of the equation. Therefore, by using
the method of [26] as in [14] one has the following result

THEOREM 4. 5. - Consider the Goursat problem (4. 3). There exists a
datum 8 _ vanishes when - b _ ~ _ -- 0 for some b > 0 that balances the

singularity of the Riemann function ~ in the neighbourhood of the umbilical
point so that the solution ~ and its derivatives with respect to (u, v) up to
the second order are bounded on bounded sets in the state space (u, v).
The solution just found of the Goursat problem (4. 3) with the previous

conditions is said, following Serre [26], to be an east type entropy with
limit It is easy to show that r~ satisfies the condition

A similar theorem holds for entropies of west types with limit co* and
likewise for entropy of south and nord type with limit 03C9*+ =0.

These four canonical types of entropies each vanishing in a half plane
will be used later on to reduce the Young measure.

4.5. Entropy rate

In order to apply the theory of compensated compactness (see [5], [11],
[22], [29]) we need to show the following fact; for any entropy pair (r~, q),
11 (~E)t + q lies in a relative compact subset of The first step in
this direction will be an energy-type estimate in L2, in order to control
both the L2-norm of the solutions and the L2-rate of explosion of uX and
vx, along shock waves.
We have the following result
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LEMMA 4 . 6. - Assume that (uE, vE) is an L2-solution that satisfies (2 . 
Then there exists a constant M > 0 such that we have the following estimate

for all E > o.

Proof. - We have determined a strictly convex entropy in section 4. 2
above. Multiplying (2 .1 )E by ~~ and using ( 1. 3), when q is the entropy
flux corresponding to ~, we get

where r~E = ~ and qE = q Integrating (4 .14) over the domain

we get

provided that ~x (., t) decays sufficiently rapidly at infinity. But

and, since (u£, vE) E E~ n ~ (u, v) v >_ 0 ~, we obtain for some constant M > 0
the estimate (4 .13)

LEMMA 4 . 7. - For any entropy - entropy flux pair lies in a

relatively compact set of H-1loc, where ~~ =~ (u£, vE), qE = q (uE, vE).

Proof. - It follows immediately from a lemma due to Murat [22] and
the method of [29] and [5]..

If we now define the Young measure t ~ as the limit, in the sense of
weak topology, of the Dirac measure sequence ~~u~, vE~ ~x~ t ~ [determined by
(uE, vE) (x, t)], we have 

’ ’

COROLLARY 4. 8. - For any entropy - entropy flux pair (r~~, q J), j =1, 2
the commutation relation of Tartar, namely

holds.

Proof. - It follows by applying the div-curl lemma (see [29])..
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5. STRONG CONVERGENCE

Now we establish a strong convergence theorem of the vanishing visco-
sity approximation to the hyperbolic system ( 1 .1 ). To accomplish this, we
make use of the entropies constructed in section 4. 4 and apply the theory
of compensated compactness.

THEOREM 5.1. - Under the hypothesis of Proposition 3.2, the approxi-
mate solutions { (uE, vE) ~ converge (taking eventually a subsequence) strongly
in Lfoc, p  + 00, to a weak solution (u, v) to the system ( 1 . 1 ).
The proof of this result will take several steps. First, we reduce the

Young measure to a point mass in the Riemann invariant space. We then
conclude that the Young measure is also a point mass in the state

space (u, v).
Let v denote the Young measure. Suppose that v is not a Dirac mass

and R is the minimal rectangle in «(0 -, space containing the support
of v. We assume that ~ is not a line segment parallel to any axis and
contains the umbilical point, namely

for (the other cases are simpler and can be dealt with
using a similar method).
Now we can use the results in [14] and generalize to our case the theory

developped by [26] for strictly hyperbolic systems. It is easy to show that
the following results are true:

LEMMA 5. 2. - Let a be any number satisfying mi  a  - b, E be such
that

let (~, q) be of east type with limit ~*_ and q) be of west type with
limit Then the following conditions hold:

a) If, for all east type entropy  with limit we have  v, ~> = 0, then

b) Let 8 _ and 8 _ be the respective Goursat data for the entropies r~ and
r~ and suppose that their derivatives up to the second order valued at a are
nonzero constants independent of E. If we suppose that, for all E,

then

c) There exists a constant c independent of ~*_ and of the entropy such
that
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d) If there exists an east type entropy  with limit 03C9# so that v, > ~ 0,
then for all west type entropy pairs of limit ~# we have

with the same constant c corresponding to the entropies of east type with
limit and satisfy the hypothesis (5.1).
The reduction process will take two steps. First, we show that the

support of v must be concentrated only at the four corners of i. e. v is

the sum of four delta functions. Then, with a standard method ([1], [2],
[8], [26]), we reduce these delta-functions to one.

PROPOSITION 5.3. - The support of v is concentrated at most at the

po in ts (0, 0), (~ - , 0), (o, ~ + ), (c~ -, ~ + ) ~

Proof - Let 03B4 > 0 be the constant used in the construction of the

entropies in section 4. 4 and assume that it is chosen a priori to satisfy
~ _  - ~. Define

03C9_(03B4)=inf{y:03C9~y~-03B4, supp v~ {03C9:y~03C9_-03B4}=~}.
We claim that (~) _ ~ - and so the support of v is concentrated on the
line and the 

If we suppose that 00 - (b) _ - b, we can use the lemma 5. 2 and conclude
that supp v does not intersect the line 00- =a for any There-

fore we again conclude that the support of v is concentrated on the line
t~ _ and the strip defined -- o.
On the other hand, if we suppose that 00 - (b) E (col, - 8), by an argument

similar to the previous one, we can show that for any c~ _ (S)),
supp v does not intersect the line Therefore v is concentrated on
the lines 00- =00- (S) and c~ _ and the strip defined  o.
We shall now show, using lemma 5 . 2, that this contradicts the minima-

lity of R. Let E > 0 such that 03C9  + ~  03C9_ (8). Let (~, q) be of east type
with limit 00= and (11, q) be of west type with limit ~ _ + ~. Let 9_ and 8_
be their respective Goursat data which we assume are smooth enough. By
lemma 5 . 2 we have

for all E > 0 small enough. But, as our system ( 1 .1 ) is genuinly non-linear
away from 00- =0, we have

and as in [26], we can obtain a contradiction as E - 0. So

Vol. 10, n° 6-1993.



654 B. RUBINO

By a similar argument, by using entropies of north and south type, we
have

So we obtain

Because of b > 0 is arbitrarily fixed, letting 6 - 0, the result is proved..

PROPOSITION 5 . 4. - The Young measure v is a point mass in the (c~ _ , c~ +)
plane.

Proof - By the genuine nonlinearity of ( 1.1 ) in the interior of sO,
using theorem 6.1 in Serre [24], we can exclude one of the four corners
of ~. First, suppose that

where 60 = 03B4(0, 0), 6 _ = 03B4(03C9, 0), 6 + = 03B4(0, 03C9) and flo + + = l , fl _ ,
fl+ > 0.

Let (q, q) be of west type with limit 103C9, Since entropies and entropy
2

fluxes are defined only up to additive constants, we pick (fi, §) as entropy
pair as constructed in section 4 . 2 but shifted such that

Substituting v into the commutation relation of Tartar (4.15), we obtain

and v is concentrated at, at most, two points.
With a suitable choice of the entropies we can similarly conclude in the

other cases. So we conclude in generale that v is the sum of at most two
delta functions.

Let where YP, Let (r~ l, (rl 2, q2)
be any two pairs of entropies as constructed in section 4. 2. We assume
that P ~ (o, 0) and let 

.

Then the commutation relation (4. 15) gives

for the arbitrariety of the entropies and we conclude that yP = 0 or yQ = 1.
This completes the proof of the proposition..

Proof of the theorem 5 . 1. - By the up-down symmetry of ( 1 . 1 ), ~ _
and 00+ are even functions of v. So, as a consequence of proposition 5 . 4,
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v is a sum of two delta functions in the (u, v) plane concentrated at two
points symmetric about the line v=0. If we now assume as in

proposition 3 . 2 that the data to ( 1.1 ) satisfies the condition vo (x) >_ 0 for
all x, we have the conclusion of corollary 3 . 3 and v is a point mass in
the (u, v) plane..
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