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ABSTRACT. - Let be bounded and open, 1) and let
u : SZ -~ I~~ be in the Sobolevspace W 1 ~ " (SZ; !R"). This paper discusses the
singular part of the distributional determinant Det Du and shows the
existence of functions u for which that singular part is supported in a set
of prescribed Hausdorff-dimension a E {o, n). For n = 2 and simply con-
nected Q the problem is equivalent to analyzing div (bv) - b. Dv where

(R2) with div b = 0.
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RESUME. - Soit un ouvert borne, soit p >_ n2/(n + 1 ) et soit

u : SZ -~ ~’~ dans l’espace de Sobolev WI, ° p (S2; On construit des applica-
tions u dont le determinant au sens de distributions Det Du est une mesure

de Radon positive, portee par un ensemble singulier dont la dimension de
Hausdorff est arbitraire, strictement entre 0 et n.
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658 S. MULLER

1. INTRODUCTION

In this paper we continue the study, begun in [Mu 90a], [Mu 90b],
[MTY 92] of the validity of certain formal identities for distributions. For
illustration consider an open, bounded set Q c [R2 and a map u : [R2
which is in the Sobolev space [R2), p >_ 4/3. Denoting components
by upper indices and partial derivatives by lower indices with comma, one
defines (a. e.) the pointwise determinant of the (distributional) gradient Du
by

and its distributional determinant by

(where the derivatives outside the parentheses are to be understood in
the sense of distributions). The distributional determinant is of crucial

importance in nonlinear elasticity because it enjoys continuity properties
with respect to weak convergence in Wi, P (see Ball [Ba 77]). For smooth
u one has

and by approximation the identity holds in the sense of distributions, if
(Q; f~2). The example Q= B 1= ~ x E ~: ~  1 ~, shows

that (1.1) is in general false if p  2. Indeed, one has f~2) for
all p  2, det Du = 0 a. e. but

So far in all examples where (1.1) was known to fail, Det Du - det Du
was a linear combination of point masses (see [Ba 77]). Here examples are
constructed for which Det Du - det Du is a singular measure whose support
is a set of prescribed Hausdorff-dimension ae(0, 2). Moreover in these
examples u is continuous (in fact Holder-continuous with exponent a/2).

Before discussing the generalization to higher dimensions we note that
for u : Q c f~2 -~ 1R2 the problem of analyzing

is equivalent (for simply connected Q) to studying

for a scalar function v : SZ -~ R and a divergence free vectorfield b : S2 -~ 1R2.
Now consider maps f~" and recall that the adjungate adj F

of an n by n matrix F is defined as the transpose of the matrix of cofactors
of F so that (adj FYj Fjk = ~‘~ det F. Here and throughout this paper the
summation convention is used. For p > n2~(n + 1 ) one
defines the distributional determinant by
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659DISTRIBUTIONAL DETERMINANT

Using the identity (adj ([Mo 66], Lemma 4.6.4) one finds by
approximation (see [Ba 77], [Da 89]) that for p >_ n

in the sense of distributions. As before the I shows that
the identity fails for p  n. Our goal is to construct "many" maps for
which ( 1. 4) fails.

THEOREM 1.1. - Let n >_ 2, let Q=(0, 1)", and let 0152E(O, n). Then there
exists a closed subset S of Hausdorff dimension a and a map SZ -~ f~n such
that:

(i ) u E WI, p (Q; H C° (Q) for all p E [0, n).
(ii ) Det Du = det Du a. e.

(iii) Det Du is a nonnegative measure with support S.
The functions u in Theorem 1.1 are constructed explicitly, and more

precise information on u and Du is available (see Theorems 4.1 and 5.1
below). In particular one has not only (ii ) but

The ultimate goal would be to understand the range of the map u H Det Du
(cf. the work by Dacorogna and Moser [DM 90] on the solvability of
Det Du = f ). If Coifman, Lions, Meyer and Semmes

[CLMS 89] showed that Det Du lies in the Hardy space Even under

the additional hypothesis that Det Du be a Radon measure (e. g.
Det Du >_ 0) this seems to imply no restrictions on the support S of the
singular part of Det Du (by [Mu 90a] in this case det Du is the regular
part of Det Du). On the other hand in all examples that I am aware of
where Det Du is a measure one has for any (n-1)-dimensional manifold
N

where denotes the (n -1 ) dimensional Hausdorff measure. I conjec-
ture that (1 . 5) holds in general if Det Du is a measure but I am not aware
of a proof even for n = 2. Below we show that (1 . 5) may fail if Det Du is
not a (Radon) measure.

THEOREM 1.2. - Let S2 = (0, 1 ) X ( -1, 1 ).
There exists a map u : SZ -~ ~" with the following properties:
(i) For all p E [1, (~ C~~ 1~2 (SZ; (1~2).
(ii) For all cp E Co (Q) one has;

where A0 ~ 0.

Vol. 10, n° 6-1993.



660 S. MILLER

More details are given in Theorem 6.3.
With the analogy of (1.2) and ( 1. 3) in mind we also produce an

anisotropic example for which Det ~ det.

THEOREM 1.3. - Let SZ = (o, 1 ) X ( -1, 1 ), ~i > o.
Then there exists a map u : S2 --~ f~2 such that:

(ii ) Det Du~det Du in the sense of distributions.

More details can be found in theorem 6.1 below.

The idea of the construction underlying Theorem 1.1 is to use a self-
similar set S. Consider first a vaguely analogous situation for n =1: Find
a function h : (0, 1) --> f~ such that h is differentiable a. e. with derivative 0
and such that the distributional derivative h’ is a measure supported on a
set M of Hausdorff dimension 03B2~(0, 1). It is well known that such
functions exist, indeed M may be obtained as a Cantor set. Letting n = 2
for simplicity, a first guess might then be to choose u (x, y) _ (h (x), h (y)).
Such a choise satisfies (ii ) and (iii) of the Theorem 1.1 but neither u nor
h is in W1, 1. The idea is then to choose u such that u (x, 
but such that ul ( . , y) is "smoother" if y ~ M. Similarily u2 (x, y) = h (y) if
x E M, but "smooth" if x ~ M.
A construction related to the one given here appeares in [Po 87], where

Ponomarev constructs homeomorphisms in which map a set

of measure zero to a set of positive measure. Recently Maly and [MM 92]
solved a longstanding conjecture by exhibiting a map satisfying
det Du = 0 a. e. (and hence Det Du = 0) which also maps a null set to a set
of positive measure. De Arcangelis [DA 89] has studied lower semiconti-
nuity properties of integral functionals and used examples for which

det Du ~ Det Du to show that certain of his hypotheses cannot be relaxed.
I believe that the examples given here allow one to extend that line of
reasoning.

Outline. The properties of the Cantor sets M and the functions h

discussed above are reviewed in Section 2, while in Section 3 a sufficiently
smooth map p : [0, 1]2 --~ (~ is constructed which interpolates between h
and the identity. Sections 4 and 5 contain the proof of Theorem 1.1 for
n = 2 and n >_ 2, respectively. Although the constructions are very similar
in both cases, the case n = 2 was given a separate treatment because
certain technical and notational difficulties are not present. In Section 6
Theorems 1.2 and 1.3 are proved.
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Notation. For an open set SZ c 
P (SZ), Co~ ~ (SZ) denote the usual

spaces of Sobolev and Holder continuous functions, respectively, the spaces
of corresponding vector-valued functions are denoted by W 1 ° p (~; (RR) etc.
By H" we denote the a-dimensional Hausdorff measure and by yk the k-
dimensional Lebesgue measure. The square (0, 1)2 is denoted by Q, while
Q" _ (o, The letters C and c denote generic constants whose value may
change from line to line. For sets A, B c I~" we let

The euclidian diameter of a set is

and the cubic distance of y from A is

where I x - y ~ ~ = sup 
1 _i_n

Additional notation related to Cantor sets is introduced in Section 2.

2. CANTOR SETS

For a set A c (RR the a-dimensional Hausdorff premeasure is defined by

where 0) (a) = 03C003B1/2/0393(03B1 2 + 1) and where diam2 is the diameter with respect
to the euclidean norm. As Hs is decreasing in 8 the a-dimensional Haus-
dorff measure is defined by

The Hausdorff dimension of a set is given by

A famous set of fractional Hausdorff dimension is obtained by the follow-
ing construction. Let y E (o, 1). To construct the Cantor set MY begin with
the closed interval [0, 1] ] and, in the first step, remove an open set of

length y in its middle. In the second step remove an interval of lenght

t 20142014- y in the middle of the two remaining intervals. Continue the

Vol. 10, n° 6-1993.



662 S. MULLER

process, removing open intervals of lenght ( 20142014 ) y in the k-th
step. This eventually leaves a closed (Lebesgue) nullset M~.

Related to the above procedure is the construction of a nondecreasing
function /~ whose derivative vanishes on [0, 1]BM~ (see Fig. 1). Set 1/2

FIG. 1. - The Cantor function h,~.

on the interval removed on the first step, hy = If4 and 3/4, respectively on
the intervals removed on the second step, hy = (2 j -1 ) 2 - k, j =1, ... , 2k -1
on the 2k -1 intervals removed in the k-th step. This defines hy on
[0, 1 ]BMY. One easily checks that there is a unique monotone and continu-
ous extension.
For future reference we give a more formal description of M~. Define

numbers bk, m recursived by

The sets removed in the k-th step of the construction described
above are given by

And the sets remaining after the k-th step are

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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One has the disjoint union

The Cantor set M~ is defined by

To obtain h, consider the sequence of functions h~,k~ : [0, 1] - R defined by

For one easily verifies by induction that

Thus the converges pointwise on the dense set [0, 1]BM,~.
Again by induction,

where

Thus - h,~ uniformly and

The following proposition summarizes some well-known properties of
hY and MY (see also Falconer [Fa 85], Theorem 1.14; [Ro 70]).

PROPOSITION 2.1. - Let 03B2 be given by (2.10). The function h03B3 is non-

decreasing continuous and satisfies

Moreover

Vol. 10, n° 6-1993.
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and one has the self-similar scaling law

The set MY is a closed set of Hausdorff dimension j3, the distributional
derivative hY is a measure supported on MY and for any Borel set U c [0, 1]
one has

Finally the set M03B3 is self-similar, i. e.

For future reference we also note

PROPOSITION 2.2. - Let k >_ 0, then the open sets

form a disjoint cover of M,~ and

Here we set dist {x, 

Proof. - The Jk, m obviously cover M~ as To show that the
cover is disjoint let

We first verify by induction that

For k = 0 there is nothing to show, assume that (2.18) holds for some

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Hence, by (2.18) for By induction
one deduces easily from (2. 2) that

and hence

We turn to the proof of (2.17). As the Jk, m are disjoint one has for
2k

x~ [0, 1IB U Jk, m,
m=l 

for m = 1, ... , 2~, and hence (2.17). D

3. INTERPOLATION BETWEEN h AND THE IDENTITY

In this and the following sections we fix ye(0, 1), we set

and we drop the subscript y from all the quantities defined in Section 2.
Similarily all constants appearing in estimates may depend on y. We let

and we construct a function f E W 1 ~ 2 (Q) (~ C°~ ~ (Q) satisfying (see Fig. 2)

where h is the Cantor function defined in the previous section.

Vol. 10, n° 6-1993.



666 S. MILLER

Define f0i [0, 1] x 1 ~ R by (see 2)

FIG. 2. - Interpolation between h and the identity.

Note that x ~--~ f (x, y) is piecewise linear, that f is Lipschitz and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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For ~~0 define~: [0, 1] x N 20142014L j ~ ~ 20142014L j ~ ~ recursively by

One easily verifies that h is Lipschitz and that

and hence

Thus the function f given by

is thus well-defined and continuous. We extend f to a continuous function
on [0, 1]~ by setting

LEMMA 3 .1. - Let bk, m and Jk, m given by (2 .1), (2 . 2) and (2 . 4).
Then the function f defined by (3. 6), (3. 7) satisfies:

Vol. 10, n° 6-1993.
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for

Remark. - The regularity result in (i ) is optimal, i. e.

and for all X > p, f ~ C°~’~ (Q).

Proof. - Assertion (ii ) follows directly from the definition off.

Proof of (iii). - In view of (ii ) and Proposition 2.1 we may assume
y > o. It thus suffices to verify the following assertion (Pz) for all l E 

For all

and all

one has,

The case /=0 is trivial. Assume was true. We will show that (P~)
is true. Let 0k~l, let x=bk,m+(1-03B3 2)k, ~[0, 1]. Consider first the

Annales de Henri Poincaré - Analyse non linéaire
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case m _ 2k -1, then by (2 . 2) and (2.13)

Moreover x _ (1- y)/2, so that with the abbreviations

one has by definition (3.5) of fz and 

and (P,) is proved, provided that m~2k-1. The case w>2k-1 is analogous.

Proof of (iv) . - Consider j’e 0, x~[0, 

Thus by (2.5), (2.3), for some l~k- 1 so that

x=bl,m’+(1-03B3 2)l, l~k-1, with ~(1-03B3 2, 1+03B3 2).
If 1= 0, then x= and k ~ 1. Thus by definition 

If l > 0, by (iii), (3.14) and (2.14)

Moreover for x as above // (x) = 0 by (2.11).

Thus Df= 0 in the open set ([0, 1]B U Jk, m) x (0, (1-03B3 2)k).

Vol. 10, n° 6-1993.
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Proof of (v). - Assume M). If x e M the assertion follows
y

from (ii ). If x ft M there exist k, m such that

Consider first ~==0.

Then x E C 1 2 Y , 1 2 y l, l and hence

If _ 1 Y then x ~)= - ==/!(jc) by the definition If

one deduces that

and hence f (x, y) = 1 = h (x) by (3 . 4) .
2

If k > 0 one has similarily

Letting

one has in view of (2. 6) and (2 .16)

and so by (iii), the result for k = 0 and (2 .14)

Proof of (i). - We show first that f E (Q). To this end it suffices
to show that there exists a constant C, such that for all pairs (x, y), (~, 11)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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in [0, 1]~ one has

We may assume r~~. We may also assume ~>0 since for ~=~=0 the
estimates follow from (3.7) and Proposition 2.1. To establish (3.15),

choose k such that y~(20142014- , ( 20142014- )k].
If A;=0 then (3.15) is obvious. Indeed either ~>(1-03B3 2)2 so that

(3.15) follows from the fact that is Lipschitz or

20142014- J in which case |y-~|~ 1-03B3 2 -( 20142014L j and (3.15) follows

since O~/~l.
2~

then (3.15) follows from (iv). Finally 

let  = ( 20142014I ) 
- kl=1(03BE- bk, m). By (iii) and the result for k = 0 one has 

’

since

This proves (3.15).
We next show by induction that (3 .16) holds for all

For A;=0, there is nothing to show since f|[0, i]x[(i-y/2), i] is Lipschitz.
To carry out the induction step assume that

If x, 03BE~(1-03B3 2,1+03B3 2 J, the result follows from the definition (3.5) of
fk+1.

Vol. 10, n" 6-1993.
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We may thus assume x / (1 -03B3 2, 1+03B3 2 ) and, by symmetry under
x ~ 1 - X, X e 0, 1-03B3 2 " .X 1---+ 1 - x, XE 0, 2 .

If 03BE~[0, 1-03B3 2 "] then, by the definition of and the result for

If 03BE E C 1 2 Y , 11 then (3 . 16) holds since |x - 03BE I > 1 + y 1-’Y - y and
2 J 

~ 

2 2

0 _ f _ 1. Finally if 03BE E C 1 2 Y , 1 2 Y 1 then , f (03BE, y)=1 2 = f ( 1-03B3 2, yl and
as in (3. 17)

Thus the assertion f~0,03B2(Q) is established.

It remains to for all ~~~. Note that f is a

absolutely continuous along the lines and, by (iv), along
the lines x=xo for By [Mo66], Theorem 3.1.2, it thus suffices to
show 

Let By (iv) D/=0 a.e. outside
oo 2k

U 
o k=0 m=i 1
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and hence

The sum converges if and only if (2 - q) - ~3 ( 1- q) > 0 or, equivalently,

q2-03B2 1-03B2..

The proof of the Lemma 3.1 is finished. 0

4. CONSTRUCTION FOR n = 2

As before we fix ye(0, 1), we let

and consider M = MY, h = h,~ as defined in Section 2. In the following we
do not indicate the dependence of the various functions, sets, etc. on y.
Throughout this section f denotes the function defined by (3.6), (3.7).
WeletQ=(0, 1)~ and

dist(x, 
We define a map u : Q -~ 1R2 by (see Fig. 3)

Observe that for y e M, u1 (x, y) = h (x), while u1 ( x, - ) = x. Note that for
~e[0, 1 [cf. the proof of Lemma 3.1 (v)]

THEOREM 4.1. - Let u be given by (4. 1), (4. 2). Then:
(i) for all p E [1, 2), ~2)~
(ii) I du1|.|Du2| = 0 a. e. and in particular det Du = 0 a. e.;
(iii) Det Du is a nonnegative measure given by

Vol. 10, n° 6-1993.
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FIG. 3. - Values of Ul, cf. (2.7), (2.8).

In particular Det Du is supported on the set M x M of Hausdorff dimension
2 P and there are constants c, C such that for any Borel set U

c (U U (M x M)) ~ Det Du (U) _ CH203B2 (U U (M x M)). (4.3)
One may choose c = 2 - (2 p), C = 1 /t~ (2 p).
Remarks:
1. For the analogous result in higher dimensions, see Section 5.
2. The assertion det Du = 0 could be deduced from (iii) by appealing to

[Mu 90a], Theorem 1 and Remark 2.

Proof of Theorem 4.1. - To prove (i ) it suffices to consider The
assertion is obvious since [see (3 . 8)] and

dist(’, M) is Lipschitz. One easily verifies that for y ~ M, u is

absolutely continuous along the lines tH (t, y), t H (x, t) with derivatives
_ , ... , _ ,

where f 1 denotes the partial derivative of f with respect to the i-th

argument. Note that ~dist (y, M ) _ _ 1 a. e. To p rove u 1 E W 1 ° p (Q) it thus
ay 

suffices to show g E Lp (Q) where

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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For ~ e one has by Lemma 3.1 (iii) and (iv)

Zk / /i-yYB
whereas for 03BE~ U bk, m, 2 one deduces

Thus for all y satisfying 2 dist(y, M) E 1, C 1 - Y 2 J 2 JJ
obtains

Let Q’ = { (x, y) : dist ( y, M) E (0, y/2). Then
QBQ’ _ ~ (x~ y) : dist ( y, M) E ~ 0, Y/2 ~ ~ _ ([0, 1] x M) U ([0, 1 ~ X ~ 1 /2 ~ )

has measure zero, and by (4. 5)

It remains to show that the last integral is finite for all p  2. To this end
consider the distribution function

To estimate cp from above we cover M by intervalls as follows. Let

By Proposition 2.2

Moreover

Thus

Vol. 10, n° 6-1993.
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or

Now 03C6(03BB)~ 1 for all 03BB, and 1 > 1 for E 1 2) so that~P~ )_ ~ 

p-1 
p ~ ~ )

To prove (ii ) and (iii) of the theorem we will use the following

LEMMA 4.2. - Let A = { (x, y) : dist (x, M) = dist ( y, M) ~ and let u given
by (4 .1 ) and (4 . 2). Then :

(i ) A is closed and 22 (A) = 0;
(ii ) for a. e. (x, y) E [0, 1 ] 2 one has

(iii) for a. e. (x, y)

Proof of the Lemma. - Let h (x, y) = dist (x, M) - dist (y, M).
The set A is dosed since h is continuous. Moreover h is Lipschitz and

2014 =1, 2014 = 1 a. e. since M is closed and 1 (M)=0. Let

By the coarea formula (see e. g. Giusti [Gi 84]) the function t - H~ 1 (h -1 (t))
is an L~ function and

Since the primitive of an L 1 function is (absolutely) continuous one sees
that

and assertion (i ) follows.
To establish assertions (ii ) and (iii) consider (xo, Yo) E (0, 1 )2BA. Thus

either dist (xo, M) > dist (yo, M) or dist (yo, M) > dist (xo, M). If the former
holds Lemma 3.1 (v) implies that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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for (x, y) in a neighbourhood of (xo, yo) in particular Du~ = 0 a. e. in a
neighbourhood of (xo, yo). If dist (yo, M) > dist (xo, M) then

a. e. in a neighbourhood of (xo, yo).
Thus the set of point where (4.6) or (4.7) fail has density zero in

(0, 1 )2BA and hence in [0, 1]~ as ~2 (A) = o. Assertions (ii ) and (iii)
follow. D 

°

Proof of Theorem 4.1 (continued). - Assertion (ii) is an immediate

consequence of Lemma 4.2 (iii). To prove (iii) recall that for cp E Co (Q)

With bk, m given by (2.1) and (2 . 2) and

let

o~ 2k

The sets Sk, m are disj oint and QB U U Sk, m is a nullset. Consider first

S = S =

(1-03B3 2, 1+03B3 2)
X 0 1 . Note thatthat

and that by Lemma 4.2 (ii ) for j =1, 2,

Thus

Vol. 10, n° 6-1993.
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Now 1±03B3 2~M so that 
last integral equals

Using the fact that h is constant on Ik, m one obtains similarily

Letting cp (x, y) = B)/ (x) 11 ( y) one finally has

Thus Det as claimed.
It remains to show that M x M has Hausdorff dimension 2 P and that

(4.3) holds. The former follows from the latter. To show (4.3) let

~, = h’ Q h’, v(A)=H2(A (~ (M x M)). Extend the Radon measure j to an
outer measure on all subsets of [0, 1]~. We first show that (4. 3) holds for
all rectangles

To show the upper bound let ~ _ ~ Fm ~m E ~ be a covering of R n (M x M).
Choose a cube Fm parallel to the co-ordinate axes with side lm = 2 diam2 Fm
such that F m. By (2 .12)

Since x M~ 
= 0 one has

Thus

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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To show the converse estimate let and choose the integers 
It, jz such that (cf. Proposition 2.2) 

~ ~

One has h ~) = ~ 2 ~~ [see (2 , 1 3)] and thus

The collection

of cubes forms a cover of R ~ (M x M) and each cube has diameter

~~).Thus

Letting ~ -~ oo it follows that

Thus (4.3) is proved if U is a rectangle parallel to the co-ordinate axes.
A particular consequence is that for any hyperplane H parallel to the co-
ordinate axes ones has v (H) _ ~, (H) = 0, as h is continuous. Now let U be
an arbitrary open set. Then U can be written as a countable disjoint union
of open rectangles and (portions of) hyperplanes, both parallel to the co-
ordinate axes. Hence (4. 3) follows for open sets and thus for Borel sets.
The proof of Theorem 4.1 is finished. 0

5. EXTENSIONS TO n > 2

Let n >_ 2 and let 0 c [RR be open and bounded. In this section we
generalize Theorem 4.1 to maps u : SZ ~ f~". Recall that for any n by n
matrix F, adj F denotes the transpose of the matrix of cofactors F so that

For a smooth map u one has

Vol. 10, n° 6-1993.
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(see Morrey [Mo 66], Lemma 4.6.4) and by density (5.1) holds in the sense
of distributions if !R"). If the products u (adj Du)’ 1 are in

(SZ) it suffices, e. g., that u E W1, p (Q; Rn), p >_ n 2 one defines theL n+1
distributional determinant by

Let det Du (x) denote the (pointwise) determinant of Du (x).
Using (6 .1 ) one easily verifies that for U E C2

By approximation one shows that (5.3) holds in the sense of distributions
if (RR) (see Ball [Ba 77], Dacorogna [Da 89]). We construct
examples where this identity fails and where the singular set of Det Du
has prescribed Hausdorf dimension.
As above we fix ye (0, 1) and we let

We suppress all dependencies on y in the following. The Cantor set

M = MY and the functions h = hy are as in Section 2 and f denotes the
function given by (3 . 6) and (3 . 7). We let furthermor

and for ..., xn) we use the notation

For define

Generalizing (4 .1 ), (4. 2) we define u : [0, 1 ]" - ~n by

THEOREM 5.1. - Let n >__ 2 and let u given by (5 . 5):
(i ) for all p  n, u E 

P (Q, U (Q; 
(it) = 0 a. e., in particular Det Du = 0 a. e. ;
(iii) Det Du is a nonnegative measure given by

and for any Borel set U one has

where c, C depend only on n and ~i.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



681DISTRIBUTIONAL DETERMINANT

The proof of Theorem S.1 is analogous to the one for the special case
n = 2 discussed in Section 4. Some technical difficulties, however, do appear
and we first state some preliminary results.

LEMMA 5.2. - For all p  n, 

LEMMA 5. 3. - Consider the hyperplane 
Then for all p E [ 1, n -1 ), and there exists a constant

depending on p and n (and on y) but not on a or j such that

COROLLARY 5.4. - There exists a sequence E C °° (Q; such that
for all p  n and for all hyperplanes H = { x E Q : x~ = a ~

r.. - .~.., yy ~i i, u~ ~.

Proof of the Corollary. - Extend u to Q = ( -1, 2)n by successive
reflection at the planes xi = 0 and x~ =1, i = l, ..., n. This yields û such
that for all p  n and all hyperplanes one has

with a bound analogous to (5.8). The corollary follows by applying
mollifying kernels of the form cp (x) = cp {xl) ... cp 
To prove Lemma 5.2 we will make use of the following

PROPOSITION 5.5. - Let g (x) = dist (x, MN). Then, for all p E [l, N + 1 )

Remark. - The case N = 1 was already used in the previous section.

Proof. - Consider the distribution function

To estimate cp (~,) from above we cover MN by 2kN cubes as follows. Recall
that

Let
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By Proposition 2.2 one has

Thus

and hence

Since N > 1 by assumption and ~p ~,  I for all ~, one has
p-l 

Y P ~P ( ) -

Proof of Lemma 5.2. - By symmetry it suffices to consider Observe
first that ul is absolutely continuous along a. e. line parallel to the co-
ordinate axis [consider lines ... , xi _ 1, t, ..., M for

and that a. e. on these lines

Here denote the partial derivatives of f. Since the distance function
is Lipschitz continuous with Lipschitz constant 1 it suffices to show (cf.
[Mo 66], Theorem 3.1.12) that the function G given by

satisfies 

Let ~~[(1-03B3 2)k+1, (1-03B3 2)k). In view of Lemma 3.1 (iii) and (iv) oneLet 11 E 2 / ’ 2 ll In view of Lemma 3.1 (iii) and (iv) one
has

and for 
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Moreover

Let xl be such that 2 03B3dist(1, M ) E 2 , 2 Then

Since the set

is an null set we deduce

The assertion follows from Proposition 5.5, applied with N = n -1. 0

Proof of Lemma 5.3. - Again it suffices to consider u 1.

First By symmetry we may assume j = n. Observe that
ul L is absolutely continuous on a. e. co-ordinate line

and as in the proof of Lemma 5.2

Here DH denotes the tangential gradient in the directions xl, ..., 
Arguing as in the proof of Lemma 5.2 one obtains
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Now

Thus

The last expression is independent of a and is finite for p  n - 1 by
Proposition 5.5.

Second Again one only has to estimate Now
from Lemma 3.1 one deduces easily that for fixed a and a.e.

~L(~) ~)) one has

with C independent of a. Thus

The right hand side is independent of a and, in view of Proposition 5.5
(applied with remains finite for D

Next we aim for a counterpart of Lemma 4.2 which will be used to
establish (ii ) and (iii) of Theorem 5.1. Define sets

LEMMA 5.6. - One has:

(i) A is closed and 
(ii ) for a. e. x E Q one has

Proof. - The proof of (i ) is completely analogous to the one given
for Lemma 4.2 (i ). To prove (ii ) and (iii) consider If
dist (x°, M) > dist (x°, M) for j = 2, ..., n, then ul (x) = h (xl) in a neigh-
bourhood of XO by (5 . 5) and (3.13). In particular Dul (x) = 0 a. e. in a

neighbourhood of x°. If there is a 1 such that

M), for 
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then Duk (x) = 0 a. e. in a neighbourhood of x°. Hence the set where (5.10)
or (5.11) fails has density zero in QBA and is thus a null set as

claimed. D

To compute Det Du we shall use the following result from calculus.

PROPOSITION 5.7. - Let v E C2 (Q; let vt: (0, --~ be given

by

Let (a, b) c (0, 1). Then, for all cp E Co (Q)

(pt(~)=~P(~ ~).

Proof. - Since -~-. (adj = 0 (see [Mo 66], Lemma 4.6.4) and 
~JC~

one has

Since vt is C2 and cpt ( . ) E Co ((0, 1)" -1)) it follows from (5 . 3) that the last
expression equals

as claimed. D

Proof of Theorem 5 .1. - Assertion (i ) follows from Lemma 5.2,
Lemma 3.1 (i ) and the fact that the distance function is Lipschitz. Assertion
(ii) follows from Lemma 5.6 (iii). To prove (iii) we argue by induction
over n. For n = 2 the result has been proved in Section 4. To carry out
the induction step from to n we let (cf. 4.8)
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We have for cp E Co (Q)

We first compute the term with So , i = S =(1-03B3 2, 1+03B3 2) x (0, 1)n-1. For

z~(1-03B3 2, 1+03B3 2) one has h(z)=1 2. In view of Lemma 5.6 it follows thatB ~ ~ / 2 
°

At this point we would like to apply Proposition 5.7. Now u fails to be
in C2 but according to Corollary 5.4 we can find a sequence of smooth
functions such that, for all p  n

Thus

By the definition of Det and the Sobolev imbedding theorem one has

Since Proposition 5.7 applies to we obtain

Now by definition of ut [see (5.12)]

For t = ( 1 ~ y)/2

where y 1= (y2, ~ ~ ~ , and similarily

Therefore the induction hypothesis implies that
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Now let cp~ E Co (0, 1) and let

Then

and by (5.14)

Applying the above arguments to Sk, m instead of S and using the fact
that hi Ik. m is constant (see (2 .11)) one obtains

This holds for all cp of the form (5.15). Since these functions are dense
in C~ (Q) one has

in the sense of distributions.

The proof of (5.6) is completely analogous to the one for (4.3) and
will not be repeated here. D

6. FURTHER EXAMPLES

First we construct a map u = u2) : (0, 1) x ( -1, 1) - (~ 2 with
and det Du~Det Du. Such examples are relevant in particular

in view of the correspondence between (1.2) and (1.3). Secondly (see
Theorem 6.3 below) we construct a map u2) : (0, 1) x ( -1, 1) -~ (R2
where the singular support of Det Du is a line. In this case, however,
det Du~ L1 and Det Du is not a Radon measure.
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As before fix ye(0, 1), let

let h = hy, as defined before Proposition 2.1 and let f denote the function
defined by (3 . 6), (3 . 7). We suppress dependence on y in the following.

THEOREM 6.1. - Let Q=(0, 1 ) X ( -1, 1). Then there exists a map
u = u2) : S2 -~ [R2 such that:

(ii) det Du = 0 a. e;
(iii ) 

Remark. - Note that - and 2 - are dual exponents, i. e.

1-03B2 2-03B2+1 2-03B2=1. In particular u2~W1,(2-03B2)(03A9)

would imply Det Du = det Du in L~ (Q).
An immediate consequence of the theorem is

COROLLARY 6.2. - Let n >_ 2, Q = (0, 1 ) X ( -1, l)x(0, 1 )n - 2, r E { 1, oo ),
with dual exponent r’ = r/(r -1). Then there exists v : SZ --~ Rand a : S2 --~ R"
such that

and

but

Proo, f : - If r > 2 it suffices to let u = (ul, u2) as in Theorem 6.1 and to
choose
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One has specifically

For r  2 one can reverse the roles of u 1 and u2 upon observing that

Note that the last identity holds in the sense of distributions as 
q > 1. Finally, for r = 2 one may choose i =1, 2, z E R2

and define v and o as above. D

To prove Theorem 6.1 we shall choose

where f is given by (3. 6), (3. 7). The function u2 will be defined by means
of a related self-similar construction.

To this end choose a Lipschitz function

FIG. 4. - On the bold lines g = 0.

with the following properties (see Figs. 4 and 5)
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FiG. 5. - Possible choices 1) (solid line) 

Recall from Section 2 that

and extend g to [0, 1] x U 20142014L ~ ~ 20142014L j J by letting (see 6)
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Note that g is well defined as the intervalls are disjoint (see
Proposition 2.2) and g vanishes on ~Jk, m by (6 . 3). Using (6 . 4) one easily

verifies that g : (o, 1 ) is continuous across y-( 1 _Y .
* 2 /

We next show that

Note that

Thus

We claim that moreover

Inded, 1 and
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if y(1-03B3 2)k. Thus g(., y)~0 in Lp(0, 1) as y ~ 0 and (6.7) follows.
Let M~ be the antisymmetric extension of ~, ~’. ~.

Proof of Theorem 6.1. - Let ul, u2 be given by (6. .1) and (6. 8),
respectively. Assertion (i ) follows from Lemma 3.1 (i ), (6 . 7) and (6 . 8).
To show (ii) we will prove that

By symmetry we may assume y>0. The points with y= 20142014- ) form
a nullset. Consider y e (1-03B3 2)k).

If then Du1(x, y)=0 by (3.12). The points (x, y) with

(x, y) e form an J2 nullset. It thus remains to consider

Let x= 20142014’- =( 20142014- y. It follows from (3.10), (6.5)

and (6.8) that

It only remains to verify (6.9) for y~(20142014-, 1 ). For these values 

(6.9) is an immediate consequence of (3.4) and (6.2).
To prove (iii ) let (p(~)=~)r!(~ ~eC~((0. 1)), ~(~((-1, 1)). °

Using (6.9) integration by parts and M~ (jc, 0)=/!(jc) one finds that
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Hence Det Du = 2 h’ O ~o. D

We close this section by an example in two dimensions where the

singular support of Det Du is a line. Consider smooth functions

ul , u2 : f~ X 2, 1 1 --~ fl~ satisfying

Here the sine and cosine functions are merely chosen for definiteness,
suitable other periodic functions would do just as well. Extend ul, u2 to

1) as follows 
’

THEOREM 6. 3 . - Let SZ = (0, 1 ) x ( -1, 1 ). Then the map

given by (6 10) to (6 1 6) has the following properties:

where

Vol. 10, n° 6-1993.



694 S. MULLER

Remark. - Examples where ul, u2 lie in different Sobolov spaces are
easily constructed by replacing (6.13) by

a E (o, 1 ), and modifying (6 .11 ), (6 . 12) accordingly.

Proof. - One easily sees that u is absolutely continuous along every
co-ordinate line and by (6.13),

Hence 1R2) for p E [1, 2). Holder continuity also follows easily
from (6.13).
To prove (ii ) note that it suffices to check (6.17) for test functions cp

which are symmetric in y, since both sides vanish for antisymmetric cp.
Note furthermore that for b>a>O one has

Indeed (6.18) is obvious for smooth u. Now is Lipschitz and
(6.19) follows by approximation. Thus, for symmetric cp,

The last term converges to zero as k - oo since u 1 ~ ~ Du2 ~ e L~ (Q) [c_ f ’. (i )] .
It only remains to show that
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It follows from (6 .13) that u i ) (x, 2 - k) I _ C. Since

it suffices to consider

by periodicity of u i ) ( . , 1). The last term is estimated by

and (6.19) follows. D
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