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ABSTRACT. - We study here the mathematical consistency of coupling
two classical methods in the theory of vision and surface reconstruction,
namely the shape from shading theory and the theory of stereo vision. It
is known that each of these approaches by itself is incomplete and leads
to ill posed problems and multiple solutions, even under drastic simplifying
assumptions. We show in this paper that, from a mathematical point of
vue, these ambiguities disappear when both theories are cooperatively
implemented. In section 2 we state our assumptions; then part 3 is devoted
to the presentation of the binocular vision theory. Section 4 eventually
studies, in the one and two dimensional case, how introducing the shape
from shading tool leads to the uniqueness of the solution. In the annex
(section 6), a few mathematical results are explained, and some experiments
(in 1 D) are presented.
Key words : Stereo vision, Shape from shading.

RESUME. - Nous etudions ici la consistance mathematique du couplage
de deux methodes classiques de reconstruction visuelle, a savoir la theorie
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2 A. CHAMBOLLE

du shape from shading, qui vise à retrouver le relief d’une surface à partir
des ombres et variations d’intensite lumineuse de son image, et la theorie
de la vision binoculaire (la « vision stereo » au sens usuel). Chacune de
ces approches est incomplete et conduit a des problèmes mal poses a
solutions multiples. Dans cet article nous montrons que d’un point de vue
mathematique ces inconvenients disparaissent lorsqu’on met a contribution
de maniere cooperative les deux methodes.
Dans la section 2 on etablit un certain nombre d’hypotheses simplifica-

trices, puis la partie suivante 3 est consacree a la presentation de notre
modele de vision binoculaire. Finalement nous montrons (section 4) dans
les cas uni- et bidimensionnel, comment l’introduction du shape from
shading supprime les ambiguités. Le detail des résultats mathématiques de
trouve en annexe, ainsi que la presentation de quelques resultats de
simulations numeriques (en dimension un).

1. INTRODUCTION

The main problem in stereo vision appears to be the correspondence
problem, i. e. given two different images of the same scene, how can a
computer match correctly an element of the first image to one of the
second when they correspond to the same part of the scene? Several
methods exist to try to solve this problem, which often differ by the kind
of objects they are using in input: basically one can try to match the dots
of equal brightness [7] eventually taking into account the fluctuations that
necessarily occur between the two images [2]. Most stereo-matchers rather
try to match image features that are supposed to be more stable and
reliable, like edges, corners ([3], [8], [12]). But whatever method is used
the outcoming information can never be complete and is even sometimes
very sparse, especially for feature-based stereo-matchers. One problem is
thus: how to fill-in the gaps? Generally the output of the matcher is

smoothed in a way or another, which gives most of the time a close
approximation of the right solution. 

’

Recovering shape from shading is also an ambiguous problem ([4], [8])
and it is even clear that the reconstruction of shape cannot be achieved
without using other sources of information. A. Pentland has shown that
a linearization of the equations [9] could help to find an approximate
solution, but he also quoted that this linearization had a meaning only
under assumptions that one cannot expect to be true on a whole image
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3A THEORY OF VISION

(roughly as long as the direction of incident light is far enough from the
normal to the surface there is an approximate proportionality between the
intensity and the depth). It was shown [10] that actually, the points where
the surface is lit frontally are generators of non-uniqueness of the solution
of the shape from shading equation. It is very easy after a few simplifying
assumptions to imagine two different surfaces giving the same image; this
method needs thus necessarily to be coupled with other methods to give
good results.

This paper deals with integration of stereo vision and shape from
shading. More than one way can be imagined of integrating both methods:
for example, one may think of using the information of the shading to
fill in the spaces left by a matcher. But the aim of this short study, rather
than to tell what the right way is, is to address the issue of the mathematical
consistency of this integration, with as many simplifying assumptions as
needed. Our main result is that coupling information of shape from
shading and stereo yields a complete theoretical recovery of shape.
Although our approach does not lead to a particular algorithm, we delimit
some fundamental aspects of the issue and in this way can help and guide
researchers in the development of algorithms; a few situations where no
result can be expected are also discussed.
The assumptions that are usually made before trying to solve the

problem of recovering shape from shading are, as pointed out by
Pentland [9], of three kinds: assumptions on the surface shape, on the
distribution of illumination and on the reflectance function. We will use

assumptions of these kinds, and add a few more to make the stereo vision
problem simpler. To be precise we’ll make assumptions on the cameras,
the surface, and their position with respect to each other. And most of
all, we’ll restrict our study to the case where the data as well as the
brightness map is assumed to be continuous.

2. ASSUMPTIONS AND MAIN RESULT

We’ll consider the following assumptions in order to simplify the shape
from shading model:

1. The surface of the object we want to reconstruct is smooth (we will
suppose it is C1, i. e. continuously differentiable, and try to see in the end
if this strong assumption can not be weakened a little.)

2. There are no shadows on the surface.

3. There is only one light source, at infinity (and the surface is not

illuminating itself).
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4 A. CHAMBOLLE

4. The reflectance is lambertian, which means that the intensity reflected
by a point on the surface is proportional only to the cosine of the angle
made by the direction of illumination and the normal vector to the surface.
The lambertian assumption is found in many studies. As pointed out

by Pentland, it is likely that the human eye is making such an assumption
when it tries to extract shape from shading.
The problem of stereo vision will also be simpler if we assume that:
5. We get the pictures with a set of parallel "standard stereo cameras"

[11] which is described below.
6. There are no occluded zones on the images.
7. The surface can be represented by a function Z = f (X, Y) where the

plane (X, Y) is parallel to the focal planes of the cameras and Z remains
bounded. ’

Note that the assumptions made on the surface and its properties
correspond roughly to the description of a (not too bumpy) plaster bas-
relief.

. 

A set of parallel standard stereo cameras consists of two ideal cameras,
in which the image is obtained by a simple projection through a pointwise
lens, whose coordinate systems are parallel to each other and whose focal
distance f, i. e. the distance between the lens and the plane of the image,
is the same. This model simplifies calculations without changing the results
of uniqueness, as "images of any real stereo cameras can be transformed
to those of the standard stereo cameras if the parameters of these cameras
are known in advance." [11] J

If lens ~ 1 and # 2 are respectively in (A/2, B, C) and ( - A/2, B, C)
(baseline length thus is A), then a point in the scene (X, Y, Z), with Z _ C,
appears on the images # 1 and # 2 (represented by a rectangle R c R) in
resp. (xi , y) and (x2, y) where:

Here the epipolar lines - intersections of the images with a plane
running through both lenses - are simply the lines y = Const. We will have
to do one last assumption useful for treating both problems:

9. The brightness that is observed in one dot y), i =1, 2 of the
image is exactly the light intensity emited by the point (X, Y, Z) of the
surface it corresponds to (this implies that we have perfect noise-free
images.)

RESULT. - Under assumptions (1-9), if the direction of illumination is
not too close to the direction (X, Y) of the focal planes, and if the
following boundary condition holds: the disparity is already known on
the boundary of a certain set of dots of image # 1 that appear also on
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5A THEORY OF VISION

image # 2; then it should be possible to reconstruct the surface correspond-
ing to this set without ambiguity.

3. STEREO VISION

We begin with a short study of the stereo vision problem. Assumptions
(4, 5, 9) allow us to write when I; : R -~ [0, 1] is the intensity map describing

2 :

each time that (xi, y) and (x2, y) are corresponding points, linked by
relations (8). Substracting x2 and xi we find that the disparity function u
is directly related to Z:

Let’s call 03A91 the set of all the points of the first image that appear also
on the second one, we’ll assume that it is a connected set. The problem is
the following:
We’re looking for u (xl, y) : R verifying:

As this issue can be seen as a family of one-dimensional problems
indexed by y it is interesting first to study the following one-dimensional
issue, where:
01 eRe R, and we are looking for u (x 1 ) : R with:

Assumption (6) ensures that § (x) = x + u (x) is a continuous strictly
increasing function, thus an increasing homeomorphism mapping 03A91 onto
S22 = ~ (SZ1), and we can rewrite formula (13) I2 ~ ~. Let us set:

I1 is constant in a neighborhood of t ). ( 14)
We have the following theorem (shown in appendix A):

THEOREM 1. - Assume I1 (or in an equivalent way I2) has a left and
right limit at each xeoi and SZ2 being open intervals of
R - and 03C8 is another increasing homeomorphism mapping SZ1 onto

S2i = gs (SZ1) c R with = I2 ° gs, assume also that:

(when t0 ~ 03A91, we consider the limits of gs and 03C6 at to) then:

where B = ~ (A).
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This means that equation (13) associated with the knowlege of Q1 1 and
the value of u at one point to E ~~ is theoretically sufficient for recovering
the disparity everywhere where I1 is not locally constant.
We could not expect a better general result as it is easy to imagine

situations leading to a wrong solution and to mismatches if we don’t
know which points can be matched and the disparity at one of those.
Think for example of periodic surfaces as corrugated iron or rows of
pearls. Note also that relation (13) gives no information on the value of u
in A.
The problem can be written as follows: ,

then if v minimizes off on {v~E, ~t0~03A91 v(t0)=u(t0)} we have v = u on

This formulation is for instance the one adopted by R. March [7].

4. SHAPE FROM SHADING

Let us now study the shape from shading problem, and first return to
the bi-dimensional case. Once 01 and the disparity u are known, the part
of the surface corresponding to the set Qi can be recovered simply by
inverting formulas (8). We get a parametrized surface:

and with assumption (1) one can easily compute a normal vector to the
surface:
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7A THEORY OF VISION

We’ll write v=loglul ] and x = (x, and take as a normal vector to
the surface n = ( f av/ax, f av/ay, x . ’~ v -1 ) where the dot denotes the scalar
product in here ~82. We actually need a
normal vector pointing towards the inside of the illuminated object (i. e.
from top to bottom) and we can show that it is the case of this one [the
simplest way of seeing this is to notice that it is continuous and points
towards the bottom at (x, y) _ (o, 0)].
Now if Io = (a, P, y), where cx2 + p2 + y~ == 1 and y  0, is the direction of

the incident light (we use here assumption (3)) the equation for the shape
from shading problem turns to be, using assumptions (1, 2, 3, 4):

where = This equation can also be written:

This is an Hamilton-Jacobi-Belman equation and, as it is convex with

respect to V v, it can be seen as the equation of an optimal control problem
which can be studied using dynamical programming techniques ([1], [5],
[6], [10]).
Now again we’ll begin by restricting ourselves to the one-dimensional

case even though it has less signification than in the previous section:
In this case the normal vector to the surface, which is now a line, is

( fv’, xv’ -1 ) where v = lo g ] and v’ (x) = dv/dx (x). As above ~ 1 and
R are now segments of [R and we consider the formulation (18):

where now Io=(a, y), oc2 + Y2 --1, yO and V2). 
___

With assumption (7) we need to have v2 ~ 0 and thus V2 z ~1-- vi,
and (20) implies:

so that there is a choice between two possible values of v; expect when
Ii== 1. The C~ solutions of (20) form therefore a set of different curves,
with bifurcations from one to another at each point x where I i (x) =1.
We have to find the right solution among all those curves.
The answer is given by equation (13): as shown in the last section this

equation under the assumptions of theorem 1 makes u uniquely determined
except on the subset Equation (21) allows then to find u on A (or
almost). Actually A is the union of open segments K = ] x°, xl [ (its con-
nected components), on which I1 is constant and (13) guarantees the
uniqueness of u (XO) and while (21) gives two possible values of
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u’ (x)/u (x) = v’ (x) on K:

and

where

One can easily notice that

and in the first case only one of these two values of v’ can be compatible
with the already known values u (XO) and u (xl).

In fact we have to assume a stronger boundary condition than in
theorem 1 to really guaranty the uniqueness of the whole set 03A91 of the
solution of (13) and (20), as, in a few situations, there is a slight error in
the above proof: for instance if the lower boundary of 03A91 coincides with
the one of A, there is a segment [ c A with x° = inf (A) = inf(03A91) in
which is uniquely determined by (13) but not u(XO). Therefore to
ensure that u can be reconstructed in any case without ambiguity on the
whole set S~1 we have to know, as a boundary condition, its value on

The bi-dimensional problem is the following: 0 = int (01) is a bounded
connected open set in 1R2 and we’ll use as a boundary condition the
(assumed known) value of u on now, u representing here the actu-
al - unknown - disparity function, we would like 5= u to be the unique
solution of: (with ?=log I ùl)

where L~B~ 0 ~) (~ C1 (SZ) and x+u(x,y) is for all y a strictly
increasing function of x.

It is also natural to assume that:

and this time we define two sets A and B:
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We now state the following theorem:

THEOREM 2. - If Io, direction of the light illuminating the scene, does
not have a too low angle of incidence, i. e. satisfies the condition

then problem (22) has a unique solution u = u on SZ.
Condition (25) means that the angle between I° and (x, y, - 1), which

is the direction of the ray connecting the point (x, y) on the camera screen
Qi to the corresponding real point (X, Y, Z), is always smaller than 7C/2.
From the first section - using stereo vision - we know that u is known

on QBA and equals the true disparity u. By continuity it is also true on
A B B is made of segments

[ X ~ y } with y)=u(XO, y), y) and I 1 (x, y) =1,
As I1 = 1 the equation (19) has a unique solution

thus u=u on ]XO, xl [ X y } . Then u=u on QBA and on ABB, i. e. on
and thus on QBB, and we just need to prove that u = u inside

int (B) which leads to the following problem:

where

and where:

and this problem has been shown to have a unique solution, provided
(25) is true (see appendix B).

5. CONCLUSION

We have shown the theoretical possibility of recovering a surface such
as a plaster bas-relief without ambiguity from two stereo images of the
scene. The numerical resolution of this problem remains difficult, but
some lessons can be drawn:
~ At least in the zones where one wants to use shading information it

is necessary to make an assumption of smoothness of the disparity, and
thus of the surface. The above uniqueness results remain true if one just
assumes (Q, 0 ~) n C1 (int (A)) and consider equation (19) only
Vol. 11, n° 1-1994.
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where u is smooth. If u ~ C 1 (int (A) it may not be possible to find the
right solution: we can find C~ solutions that won’t match the boundary
conditions, and there may be an infinity of non-C1 solutions matching
these conditions.
~ We always used important boundary conditions to get our results,

and these conditions were often necessary. (In the two-dimensional prob-
lem one can still obtain good results by using as an initial condition
instead of the value of the disparity on aSZ its value at just one point in each
epipolar line, it is even likely that with the strong continuity assumption we
made knowing its value at one point should be enough in most cases).
Anyway most stereo matchers won’t need these conditions to work, except
on very particular periodic images, so they are not a real problem for the
implementation.
Two kinds of algorithms based on these ideas can be imagined:
~ We can try to solve the shape from shading problem using stereo

vision to select among all the solutions the right one: this has been
implemented in 1 D on synthetic images and happens to give good results,
that are presented in appendix C; however its 2 D implementation is a lot
more difficult.

~ In a completely different way we can, as it was suggested in the
introduction, try to build a stereo matcher using the shape from shading
information to fill in the gaps left between the matches, in a more or less
integrated way. And probably, as it is seen in the last section, the ideal
matcher here would match among other features the maxima of the
brightness, which are the points generating "trouble" in the shape from
shading problem.

APPENDIX A

PROOF OF THEOREM 1. - Assume first that SZ2 = 5~2. We have
on ~2~, i.e. I~Bt/°())’’~==l2 on 5~2. Let w=~r°~-1, w is

an increasing homeomorphism mapping Q~ on itself with, if

w (xo) = xo. We need to show that w (x) = x
where:

B = ~ (A) = gs (A) = { t E ~2, 12 is constant in a neighborhood of t ~ .
Consider any x~03A92 with We must prove that x E B.

If, for instance, xo  x, then:

either:
or:

In the first case by induction we find that
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and therefore:

and we have as w is continuous. Let I = I2 (x) = I2 (w (x)), we
have I = I2 (wn (x)), Vnefl, and as 12 has a right limit at xoo,
I = lim I2 (wn (x)) = I2 + 0) .

n - oo

Now if (x) [ we have

thus lim wn (t) = XOO and therefore:

which leads, as V n 12 (t) = 12 (wn (t)), to:

We thus proved that I2 = I = Const. on ] (x) [3 x, therefore x E B.
The second case is not different from this one: we just have to replace w
by w-1, and the proof is the same.
Now if we drop the assumption Q2 = 522, theorem 1 remains true. For

instance of the right of xo = ~ (to) e S~2 we may have:

and

with r  s _ + oo, defines an increasing homeomorphism
mapping [xo, s[ [ on [xQ, r [; we have w (r)  w (s) = r  s and can show
(just the same way as above), if lim wn (r), that 12 is constant

n -> oo

on and therefore 11 is constant on sup (Qi)[ [ where
(because and sup (SZ 1 ) _ ~ 1 (r) _ ~ 1 (s)) ~

Therefore] tOO, and, using the above demonstration after
having replaced S2~ with [ and °2’ SZ2 with [xo, xoo [, we find that
B(/=(j) on [to, + oo [, and we obviously deal the same way on
the left of to.

APPENDIX B

Elisabeth Rouy and Agnes Tourin have studied the shape from shading
equation using techniques developed for optimal control, such as viscosity
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solutions [5]. We are using here the following theorem [1]:
THEOREM 3. - Let Q be a bounded connected open set in and

satisfy the following properties:
l. H is continuous with respect to x and p
2. H is convex with respect to p
3. ~ ~ : - continuous and equal to 0 in 0, such that:

(u is a strict sub-solution of the following problem.)
Then problem

has at most one viscosity solution u E C° (S2)
There is no use going into the details and define what a viscosity

solution is, it is just enough to point out that any classical C1-solution
will be a viscosity solution of the problem. We have to assume that 11 is

lipschitz-continuous to have property number 3 satisfied. This is true with
all the assumptions we made in the first section. The convexity of H with
respect to p is easy to check, and finally conditions (25) and (28) guarantee
the existence of a simple strict sub-solution:

APPENDIX C

EXPERIMENTS. - We show here some results of a method of solving in
1 D the shape from shading problem on a pair of signals, using the stereo
information to select the right solution. We implemented three very short
programs:

1. The first one builds the pair of synthetic stereo 1 D-images. The
output of this program is a pair of signals, whose integer values range
from 0 (zero intensity) to 255 (maximum intensity). Its input are: a signal
representing the shape (the "object"), the direction of illumination, and
the position of the cameras (their common height and their abscissas) - the
user can also choose their focal length and the width of their screens. We
must make sure that the viewed object is entirely seen by both screens, in
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FIG. 1. - A 1 D-shape and its reconstruction.

FIG. 2. - The same shape under different illumination conditions.

FIG. 3. - The images (vertical illumination).
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FIG. 4. - The images corresponding to Figure 2.

FIG. 5. - Samc conditions as in Figure 2 but with a 256 pixels wide image.

such a way that it is easy to find the two sets 03A91 and O2 defined in
section 3, and thus to get boundary conditions for the disparity. But the
method should still work if one end of the object disappears from one or
both images, as having just one boundary condition, that can be measured
on any end of the object, is enough to recover the disparity and the shape.

2. The second program finds the disparity, with the method described
by formulas (20), (21) and following. It needs as input the two images,
the direction of the light and the focal length of the cameras. The program
builds the two possible solutions, and selects one each time there is a

possible bifurcation, i. e. when the intensity reaches a maximum. To this
purpose, two energies are computed [of the kind of formula (15)], one for
each solution, and the solution with lower energy is kept.

3. The last program actually rebuilds the original shape from the dispar-
ity computed by program # 2. It needs to know the baseline length, i. e.
the difference of the abscissas of the two cameras, and the focal length.
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FIG. 6. - An example. Cameras are at (16, 150) and (20, 150).

FIG. 7. - Here cameras are at (28, 150) and (32, 150).

The absolute position of the cameras is also needed if we want to translate
the reconstructed shape to its original absolute position, in order to

compare it to the original data.
On Figures 1, 2 we plotted a signal and the corresponding reconstructed

shape in two different situations: with a vertical illumination, and with an
illumination making an angle of 20 degrees with the vertical direction (the
direction of illumination is indicated by a small vector at the top of each
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figure). In both Figures, the cameras were placed at positions (28, 70) and
(32, 70), and their focal length was 10 - while the x abscissa on the screen
ranges from -15 to + 15. Figures 3 and 4 show the images viewed by
the left and right cameras, with the direction of illumination shown
respectively in Figure 1 and in Figure 2. (These images are reversed with
respect to the original shape by the cameras). The results are good. The
error is mainly due to the fact that the initial value for the disparity
(measured, in our program, on the left of the images, which corresponds
to the right end of the original shape), is necessarily rounded off by the
fact our 1 D-"images" are discrete signals. Here they were 1,024 pixels
wide, which is a lot and gives a good precision. We also made experiments
with smaller images (256 pixels wide, Fig. 5): as expected, the initial value
is less accurate and a bigger error propagates through the solution. How-
ever the right solution is still found, and this method appears to be quite
robust in many cases. Other examples are given in Figures 6 and 7.
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