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ABSTRACT. - We derive integral estimates for the Jacobian by using
the Rochberg-Weiss theory of nonlinear commutators. A refinement of
Muller’s result is obtained. We demonstrate how local estimates can be
used to improve the degree of integrability of the Jacobian.
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RESUME. - On etablit des estimations intégrales pour le jacobien au
moyen de la theorie des commutateurs non lineaires par Rochberg-Weiss.
On obtient ainsi un raffinement du resultat de Muller. On demontre
comment l’emploi des estimations locales permit d’ameliorer le degre
d’integrabilite du jacobien.
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18 L. GRECO AND T. IWANIEC

1. INTRODUCTION

Let Q be a domain in [Rn and f = ( fl, f2, ..., fn) : Q - (~n be a mapping
of the Sobolev class [Rn), where p = (pl, p2, ... , p") is an n-tuple
of exponents oo ) such that + I /pn =1. Thus the
gradient of each co-ordinate fk, k =1, 2, ..., n, belongs to LPk (Q):

We denote the differential off by Df (x) : f~" --~ [Rn. The operator norm of
D f (x) is then defined by 
We say that f is an orientation preserving mapping if its Jacobian

determinant J = J (x, f ) = det Df (x) is non-negative almost everywhere.
Clearly, the Jacobian is an integrable function. Because of Hadamard’s
inequality we have ... ~ ~ fn ~ . Hence Holder’s inequality
implies the following estimate

In case of pl = ... = pn = n, S. Muller [M] discovered, using maximal
theorems, that the Jacobian actually belongs to the Zygmund class
L Log L. This remarkable result inspired a new study of the Jacobian
function and related non-linear quantities (null Lagrangians), see [BFS],
[CLMS], [G], [1St], [IL]. For later use we record a more general result
corresponding to arbitrary Holder conjugate exponents 1 ... , oo.

If Q = Q = Q (a, R) is a cube in f~n we then have a rather precise estimate
[IL],

where a Q = Q (a, a R), 0  ~  l, and Ja Q is the integral mean of J over
the cube a Q. S. Muller also showed that the above

degree of summability of the Jacobian is the best possible.
In this paper we avoid maximal theorems by using the technique of the

Hodge decomposition. This technique was developed in [I] to treat non-
linear problems concerning quasiregular mappings, see also [IL] and [IS2].
Our approach is similar to that of [IS1] and leads to the following estimate.

THEOREM 1. - ... , ~’n) E ~V ~ ~ p (g, IRn) be an orientation pre-
serv ing mapping, p = ..., Pn), 1  p I , ... , Pn  o© , + ... + =1,
on a ball Then (det D f) log I D f ] belongs to (B) and for each
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19NEW INEQUALITIES FOR THE JACOBIAN

0  a  1 we have

Here, as usually, I Df IB denotes the integral mean over the ball B. For
... = pn = n this result is sharp, in the sense that the logarithm in

inequality (1.2) cannot be replaced by any function L : f~ + -~ f~ + such

that lim log t
L ( t)

REMARK. - In case p 1= ... = pn = n the local integrability of

( follows almost immediately from Muller’s result. We

thank P. L. Lions for pointing out this new argument. Actually, we shall
close this paper by showing how his argument can be used to improve
inequality (1.7). Estimate (1.2) can be derived from (1.1) similarly by
using inequality (6. 3) with s =1.

It is illuminating and rewarding to discuss first a smooth mapping
f = ( fi, ... , In) E Co (tR", [R"). Using the linear theory of Hodge decomposi-
tion, we split the matrix-field (Df ) log 1 Df as

where and is a diver-

gence free matrix-field, for all 1  s  oo . The matrix H can be expressed
by an integral formula; H = T (D f log Df I ), where

is a singular integral operator of the Calderon-Zygmund type. From the
uniqueness of the Hodge decomposition it follows that T(D/)=0. We
shall now refer to the known result of R. Rochberg and G. Weiss [RW]
on non-linear commutators. Accordingly

for all GL (n)), 1  s  oo . Applying this to F = D f and s = n, we
arrive at the following homogeneous estimate for H

From now on it will be easier to use the calculus of differential forms.
Thus ... ~ df ~ is an n-form, while (1.3) can be
rewritten as

where hk are the differential forms of degree 1 whose coefficients coincide
with the entries of the k-th column of H. Letting k be equal to 1, we
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20 L. GRECO AND T. IWANIEC

compute that

By Stokes’ theorem we notice that the integral ~dg1 A df2 A ... A df,. van-
ishes, because dg1 E LPl (IRn), d,f2 E LP2 ..., dfn E LPn (IRn) with some
Holder conjugate exponents ... , pn  oo . With the aid of Hadam-
ard’s inequality, we estimate the second integral by

The latter being an immediate consequence of ( 1. 4). We then conclude
with the following estimate

THEOREM 2. - Let f : f~n ~ (~" be a mapping of class Co (f~n, f~"). Then

This result seems to be of some interest for the future study of the
Jacobian function.
The sign condition on the Jacobian determinant is crucial for absolute

convergence of the integrals in ( 1.1 ) and ( 1. 2) .
Having inequality (1.5) with constant c (n) independent of f, it is now

possible to extend it to mappings f with Df E Ln (IRn, GL (n)). By using an
approximation argument one can give a meaning to the integral in the

left hand side, for instance as lim sup J (x, f~) log D/) (x) I dx, 
is any sequence of C~0-mappings such that D./j - Df in Ln.
Another way to interpret ( 1. 5) for such mappings is by using the well

known duality between BMO and the Hardy space .1(1, due to Fefferman
and Stein [FS]. As pointed out by P. L. Lions, we can decompose

Here the Jacobian determinant J belongs to Ye1, see [CLMS]. On the
other hand Coifman and Rochberg [CR], so
can be regarded as a bounded functional The first intergral has,
therefore, a meaning. The last one is obviously converging.
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In an entirely routine manner one can deduce local variants of (1.5).
Unfortunately, inequality (1.5) and their local variants cannot be derived
for mappings tR"). This is due to the fact that, for

Df E Ln GL (n)), the term Dg in the Hodge decomposition (1. 3) need
not belong to LR (IRR, GL (n)), which is required for the cancellation of the

integral f dg1 A df2 A ... A dfn. It is worth noting, however, that the term
H belongs to Ln GL (n)) and satisfies ( 1. 4) .
The limit theorems for integrals also fail. an orienta-

tion preserving mapping (as in theorem 1), one might try local variants of
(1 . 5) and then use Fatou’s lemma. This is still a nontrivial task. The

reason being that it is not always possible to approximate f by smooth
mappings with non-negative Jacobian. We overcome these difficulties by
proving first certain LS-estimates with exponents s = n - E below the dimen-
sion n. Then letting E go to zero establishes the result.
As it might be expected, the local estimates between the integral averages

such as ( 1.1 ) imply higher degree of integrability of det D f, provided the
differential Df belongs to an appropriate integrability class. To illustrate
this fact, in section 6 we examine an orientation preserving mapping
f = ( fi, ... , fn) : SZ --~ I~n, where we assume that each of the gradients O f
belongs to the Zygmund class LPi log L (SZ) i =1, 2, ..., n, 1 p1, ...,

pn  oo, 1/p1 + ... + 1/p" = l, that is

Under this assumption we obtain

THEOREM 3. - The Jacobian determinant J (x) = det Df (x) belongs to
the Orlicz space L log2 L (Q) and

where SZ is a cube in Rn and 0  a  1.

In the case I Df I E L" log L (SZ), we have

Let us stress that inequality (1 . 6) follows directly from ( 1.1 ), that is,
no specific properties of the Jacobian function are invoked. To this effect
we introduce a new maximal operator of the functions of the Zygmund
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22 L. GRECO AND T. IWANIEC

class L log L. This little innovation seems to be interesting on its own
accord.

It is possible to show that then J = det D f
belongs to the Orlicz space L logs+1 L for [M], s = -1 [IS 1 ], arbitrary
s E ( -1, 0) [BFS], s>O [Mo] and s  -1 [G2]. Some new approachs to
these questions are discussed by Milman [Mi]. We shall report on estimates
of the Jacobian in more general Orlicz spaces in [GIM].

2. HODGE DECOMPOSITION

Arguments proving theorem 1 are based on the following
LEMMA 2.1. - Let B = B (a, R) be a ball in (~" and let u be a function of

the Sobolev class W1,r(B), r > 1. Then for each E E ( 1- Y, 1 ) the vector field
I V u I - E V u ELr~~ 1- £> (B, l~") can be decomposed as

for almost every x E B, where cp E ° r~~ 1- £~ ( ~n) and H E Lr~~ 1- £~ ( f~n, is
a (divergence free) vector field such that

The constant A (n, r) depends only on r and the dimension.
This result is a refinement of theorem 3 in [IS2], where we have consi-

dered 

Proof. - It may be assumed that B is centered at the origin. With the
aid of the inversion about the sphere 88, we extend u to the whole space
~n by

It is easy to see that

Hence

Next, let Tl E (2 B) be a cut-off function such that 0 ~ 1 11 = 1 on B
and a ~ , ~ c (n)/R. We define an auxiliary function

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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by

Then Poincare’s inequality yields

In this way the problem reduces to theorem 3 from [IS2]. To apply this
theorem, we consider the following Hodge decomposition in (~n.

wi th cp E r~t 1- E~ and H E Lr~~ 1- E~ a vector field such that

this, in view of (2. 3), implies (2.2). What remains is to observe that the
Hodge decomposition (2 . 4) coincides with (2 .1 ) on the ball B.

3. TWO INEQUALITIES

We shall need to prove two elementary inequalities that clear away
quite long computations in section 4.

LEMMA 3.1. - Let 0  E  1/2 and b > 0. Then for each we have

Proof. - We begin with the familiar inequality

For this reads as

where E can be any number. Hence, for s > o,

Similarly, for 0  E  1 /2

These two estimates obviously imply (3.1).
To prove (3 . 2), we write

Vol. 11, n 1-1994.
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Hence

as desired.

4. THE PROOF OF THEOREM

Our theorem will follow almost immediately from the following estimate

where s is any sufficiently small positive number, for instance

p / 
i r B~~08 20142014-~201420142014. . Hereafter the symbol [~L= 20142014 

stands
2~(~1-1)~2 /

for the p-average of g over the ball B = B (a, R) c: [R" and a B = B (a, a R),
0jl.

Notice that the integral in the left-hand side of (4.1) is converging.
Because of the same degree of homogeneity of both sides of (4.1), we
may assume that

This yields

Then, we may interpolate to obtain

for

Next observe that adding a constant to the function f2 does not affect
its differential df2, so we may assume that the integral of f2 over B is
equal to zero. With this assumption we can write the Poincaré-Sobolev
inequality
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Fix a cut-off function XeCJ (B) such that 0 __ ~, __ 1, on a Band

I _ c o) R. Thus (4 . 4) implies that

and

We shall examine the following integral

Since the n-form dfl A ... A (x, f) dx was assumed to be non-

negative, we may apply inequality (3 . 2) to get

We then break the first integral in accordance with the formula
to write that

where

It follows by Holder’s inequality and (4. 2) that

The second term 12 is estimated with the aid of inequality (3 .1 ) and
Holder’s inequality:

Vol. 11, n° 1-1994.
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Here, in view of (4.2) and (4.3), the first factor is controlled by
(2 + b-1) This together with the inequality (4 . 5) yields

It remains to estimate the integral I1. To this effect we decompose

as in lemma 2 .1. Inequality (2. 2), applied with

shows that the pi-average of h I is small compared to Indeed, we
have

Now, because of the decomposition (1- ~ df11-t) dfi = df1 - dcp - h, we split
11 into two integrals

By Stockes’ theorem the first integral vanishes. We then estimate the
second one by Holder’s inequality to obtain

Finally, using (4 .11 ) and (4 . 6) we infer that

This together with (4.10), (4. 9) and (4. 8) implies

Recalling the definition of I, ~ (4.7), completes the proof of (4.1).
The final step is to pass, by means of a limiting argument, from (4.1)

to (1.2). First, letting 8 go to zero, by Fatou’s lemma we deduce that

7(. ,/)log( 2+ is integrable on oB. We also obtain the estimate
B 

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



27NEW INEQUALITIES FOR THE JACOBIAN

Clearly, one can replace fl in the left-hand side by any other co-ordinate
function, k = 1,2, ..., n. Taking into account that

inequality (1.2) is immediate, proving theorem 1. For ... = pn = n,
this inequality reads as:

which is an extension of Müller’s result [M].

5. A MAXIMAL OPERATOR IN L log L

Let Q be a cube in fR" and f a measurable function on Q. We denote
the integral mean of f over a subcube Q c Q by

Accordingly, the Hardy-Littlewood maximal operator is defined by

Although this maximal operator plays a primary role in the theory of
Lebesgue spaces LP (Q), there are larger classes of Orlicz spaces in which
specific variants of the maximal operator appear to be appropriate tools.
In this section we introduce one of such operators acting on the Zygmund
class LlogL(Q). We mimic the lines of the classical theory of maximal
operators. There are, however, new interesting details which may be useful
for further development of the differentiation of integrals.
The Zygmund space consists of the functions f : S2 --~ R such that

Notice that LlogL(Q) is a Banach space and ( )n is an order preserving
norm, that is ~ f )n  ~ g ~n whenever pointwise, see [IK].
The well known theorem of E. Stein [S l] asserts that f E L log L if and

only if M f~L1 (S2). The following estimates establish the equivalence
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between these two norms in LlogL(Q)

It should be notified in advance that the maximal function M f depends
on the cube Q. In particular, the Lebesgue differentiation theorem does
not apply, so no point-wise estimates follow from (5. 2).

For f E L log L (Q) we shall consider a maximal function

where, as usually, the supremum is taken over all cubes Q~03A9 containing
the given point x E o. Thus Z : L log L (SZ) ~ (here -4Yo (SZ) stands
for the space of all measurable functions which are a. e. finite) is an order
preserving sublinear operator. This latter means that Z ( f + g) _ Z f + Z g.
In honor of Professor Antoni Zygmund we call Z the Zygmund maximal
operator. We shall prove the following analogue of Stein’s result

THEOREM 4. - The maximal function Z f is integrable on SZ if and only
if f belongs to the Orlicz class L log2 L (SZ). Moreover, we have the following
inequalities

and conversely

Before the proof, we recall the Luxemburg norm of a function

h E L log L (Q), with Q a cube in Q:

In other words, for the number ~~ h ~)Q is the unique solution of
the equation

These two norms in the space L log L (Q) compares to each other by
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To see this, we first observe that (( h ~~Q >__ ~ h IQ. Hence

On the other hand

as claimed.

Proof of inequality (5 . 4). - For t>O we shall consider the distribution
set Et of the Zygmund maximal function Z : L log L (03A9) ~ M0

We need to estimate the measure of Et by

The proof of this inequality is based on Vitali’s lemma. First we split f as
f=h+(f-h), where

Clearly I f (x) ~ _ I h (x) I + t/3. Hence we obtain the pointwise inequality
Z f (x)  Z h (x) + log ( 1 + e) t/3 _ Z h (x) + 2 t/3. Therefore

Next, as a consequence of the definition of the maximal function Z h, it
follows that for each XEEt there exists a cube Qx~03A9 containing x such
that ( h ~Qx > t/3. This combined with (5 . 7) yields

Hence

Vol. 11, n° 1-1994.
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or, equivalently

Finally, with the aid of Vitali’s lemma [S] we select mutually disjoint cubes
Qx, xeE, to conclude with the estimate

Here the summation is taken over selected cubes. This in view of the
definition of h is the same as (5. 9).
Now we compute the integral of Z f. Let a = f ~Q, then

Here we have changed the order of integration. Finally we make the
substitution s= 61 f I/t to obtain

This completes the proof of inequality (5 . 4)..
Proof of inequality (5. 5). - Because of homogeneity we may wish f to

be normalized so that (/)n= 1. Our first objective is to reverse inequality
(5 . 9) for the distribution function of Z f. More precisely, we shall need

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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to show that

for all t >_ 1, which requires a slight modification of the Calderon-Zygmund
lemma. This is fairly easy to achieve by deploying the familiar dyadic
partition of Q, as in the celebrated construction by Calderon-Zygmund.
The reader is referred to [S] for details. First notice that, if P is one of
the 2" congruent subcubes of a cube Q (obtained by bisecting the sides of
Q), then the corresponding L log L-averages compare as:

Indeed, using the order preserving property of the norm ( )Q yields

Here xP stands for the characteristic function of PcQc=Q. Notice also
that by Lebesgue’s differentiation theorem, for almost every x~03A9 there
exists the limit 

’

where Qx are those dyadic subcubes of S2 which contain x. These observa-
tions allow us to establish the following decomposition, analogous to that
of Calderón-Zygmund.
For each t >_ ~ f ~~ = l, there exists a disjoint family ~ of dyadic sub cubes

Q c S2 such that

for each cube Q Moreover

for almost every x E o - U W.
In particular ( f t, which combined with the right hand side of

(5.12) yields

On the other hand, inequalities (5.12) and (5.13) imply that Z f (x) > t
for x e U W and U ~ ~ ~ x; Hence estimate (5.11) follows

Vol. 11, n° 1-1994.



32 L. GRECO AND T. IWANIEC

immediately

The rest of the proof of theorem 4 proceeds in much the same way as the
proof of inequality (5 . 4). Namely, changing the order of integration yields

We make the substitution to obtain
2" t

On the other hand we have a trivial estimate

which combined with the previous one yields
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Finally, using an elementary inequality log2 (e + ab) _ 2 log2 (e + a) + 8 + 8 b,
for a, b ? o, we complete our estimation as follows

This ends the proof of theorem 4.

6. THE PROOF OF THEOREM 3

First we rephrase inequality (1.1) as

for each cube Q c Q.
Let Z denote the Zygmund type maximal operator associated with the

cube « Q, that is

We denote by Mp, 1 p  oo, the Hardy-Littlewood type maximal operator
associated with the cube Q,

Then applying (6.1) yields a pointwise inequality between the maximal
functions

for all x~03C303A9.

Vol. 11,n’1-1994.
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Observe that Mpi (V f ) E LPi (Q) . Indeed, by (5 . 2) we have

In case p 1= ... = pn = n this estimate takes the form

Therefore, by Holder’s inequality we find that ZJ is integrable and
its L 1-norm is controlled by

Here we used the elementary inequality ... n.

Finally, by theorem 4 we deduce that J E L log2 L (Q) and by (5. 5) we
conclude with inequality ( 1. 6). Similarly, in case of p 1= ... = pn = n esti-
mate (6. 2) yields inequality (1. 7), completing the proof of theorem 3.

It is possible to improve slightly inequality ( 1. 7) by replacing the
Jacobian under the logarithm in (1. 7) by as mentioned in the
Introduction. Indeed, by using an elementary inequality

for A, B, s, t > o, we obtain
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