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ABSTRACT. – We study the existence of minimizing solutions for an elliptic equation with crit-
ical Sobolev growth on a smooth bounded domain of R3. We answer in particular two questions
of Haïm Brezis. Higher dimensions n � 4 are completely understood thanks to previous works
by H. Brezis and L. Nirenberg.

RÉSUMÉ. – On étudie l’existence de solutions minimisantes à une EDP elliptique à croissance
de Sobolev critique sur des domaines de l’espace euclidien de dimension 3. On résout en
particulier une conjecture de H. Brezis sur le sujet. Les questions analogues en dimensions plus
grandes étaient parfaitement comprises depuis des travaux de H. Brezis et L. Nirenberg.

Let � be a smooth bounded domain of Rn, n � 3, and let us consider the following
problem:

(E)




�u + au = u2∗−1 in �,

u > 0 in �,

u = 0 on ∂�,

where a is a smooth function in �, 2∗ = 2n/(n − 2) is critical for the embeddings of
H 1

0 (�) into Lq(�) and � is the Euclidean Laplacian with the minus sign convention,
that is �u = −div(∇u). We look for solutions of problem (E) which are in H 1

0 (�), the
completion of C∞

c (�) for the norm

‖u‖2
H 1

0 (�)
=

∫
�

|∇u|2 dx.

Any such solution of problem (E) is smooth in � by standard elliptic regularity theory.
As a first remark, one should note that, if problem (E) possesses a solution, then the
operator � + a must be coercive. By definition, � + a is coercive if its first eigenvalue
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with Dirichlet boundary condition is positive. From now on, we consider functions a

such that the operator � + a is coercive. A natural approach to find solutions of (E) is
to consider the following minimization problem:

Ja = inf
u∈C∞

c (�),u 
≡0

∫
�(|∇u|2 + au2) dx

(
∫

� |u|2∗ dx)2/2∗ .

If Ja is achieved by some ua ∈ H 1
0 (�), up to changing ua into |ua| and up to

normalization, one gets a smooth solution of (E). Such a solution is referred to as a
minimizing solution of (E). It is well known that, in any case,

Ja � K−1
n ,

where Kn is the best constant in the H 2
1 (Rn)-Sobolev inequality, defined by

K−1
n = inf

u∈C∞
c (Rn),u 
≡0

∫
Rn |∇u|2 dx

(
∫

Rn |u|2∗ dx)2/2∗ .

Its value, independently computed in [2] and [22], is

Kn = 4
n(n − 2)

ω−2/n
n ,

where ωn denotes the volume of the standard unit n-sphere. When looking for
minimizing solutions of (E), it was shown in Brezis and Nirenberg [4] that the situation
changes drastically when passing from dimensions n � 4 to dimension 3. In particular,
Brezis and Nirenberg proved that, if n � 4, the following properties are equivalent:

(i) ∃x ∈ �, a(x) < 0,
(ii) Ja < K−1

n ,
(iii) Ja is achieved by some smooth positive function ua .

In dimension n = 3, the situation is more tricky and still open. Available results concern
the special case a ≡ λ, λ a constant. More precisely, Brezis and Nirenberg proved in [4]
that for any smooth bounded domain � of R3, there exists λ∗(�) ∈ (0, λ1(�)), λ1(�)

being the first Dirichlet eigenvalue of � in �, such that

Jλ = K−1
3 when λ � −λ∗(�),

Jλ < K−1
3 when − λ1(�) < λ < −λ∗(�)

and such that Jλ is not achieved for λ > −λ∗(�). If � is a ball B , they also proved that
λ∗(B) = 1

4 λ1(B) and that J− 1
4 λ1(B) is not achieved.

Under the light of these results, H. Brezis asked in [3] the following question:
If n = 3, is Ja achieved if and only if Ja < K−1

3 as it is the case in dimensions n � 4?
(Question 5 of [3].)

From now on, � is a smooth bounded domain of R3 and a ∈ C∞(�) is such that �+a

is coercive. We let Ga : � × �\{(x, x), x ∈ �} → R+ be the Green function of � + a in
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� with Dirichlet boundary condition. We have, in the sense of distributions,

�yGa(x, y) + aGa(x, y) = δx in �,

Ga(x, y) = 0 for y ∈ ∂�, x ∈ �,

and Ga is symmetric with respect to the two variables. We may write

Ga(x, y) = 1

ω2|x − y| + ga(x, y),

where ga ∈ C0(� × �) verifies for any x ∈ �:

�yga(x, y) + aGa(x, y) = 0 in �,

ga(x, y) = − 1
ω2|x − y| on ∂�.

By test functions computations (see [19]), one gets that

∃x ∈ �, ga(x, x) > 0 ⇒ Ja < K−1
3 . (1)

The condition that ga(x, x) should be positive somewhere in � plays the role the
condition that a(x) should be negative somewhere in � played in the case n � 4. Another
natural question then, asked by Brezis in [3], is the following:

Is the converse of (1) true? (Question 7 of [3].)
In this paper, we answer by the affirmative both these questions. More precisely, we

prove the following:

THEOREM 0.1. – Let � be a bounded domain of R3 and let a ∈ C∞(�) ∩ L∞(�) be
such that � + a is coercive. The following properties are equivalent:

(i) ∃x ∈ �, ga(x, x) > 0,
(ii) Ja < K−1

3 ,
(iii) Ja is achieved by some smooth positive function ua .

Note that, by [19], (i) implies (ii) (see above) and that, by standard minimization
techniques, (ii) implies (iii). Note also that Theorem 0.1 has already been proved in
[3] and [4] in the case a ≡ λ and � is a ball, λ a constant. Analoguous results were
also proved by the author [8] in the Riemannian setting. The main difference between
dimension 3 and higher dimensions is that the first problem is a global one whereas the
second problem is a local one. If n = 3, the condition that there exists x ∈ � such that
ga(x, x) > 0 is indeed a global condition since the Green function of � + a depends on
the values of a on all of � and also on the geometry of �. There is another difference
between the two cases n = 3 and n � 4. Following Hebey and Vaugon [15], we say that
a ∈ C∞(�) is a critical function in � if and only if

Ja = K−1
n ,

Jã < K−1
n , for any ã � a, ã 
≡ a.
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Then, if n � 4, the constant function a ≡ 0 is the only critical function in any smooth
bounded domain of Rn. Indeed, by [4], if a is a critical function in �, a(x) � 0 for any
x ∈ �. Since J0 = K−1

n , the only possibility for a to be a critical function is a ≡ 0. On
the contrary, as a consequence of our proof of Theorem 0.1 (see below), if n = 3, then
there are critical functions of all shape. More precisely, for any smooth bounded domain
� of R3 and any a ∈ C∞(�), there exists B(a) ∈ R such that a + B(a) is a critical
function in �.

The proof of the theorem is mainly based on a fine blow-up analysis for sequences
of solutions of an elliptic PDE in R3. There are many works about this kind of blow-up
analysis: among them, [1,5,12–16,18,20] were a great source of inspiration.

Proof of the theorem

We first note that for any a, ã ∈ C∞(�), we have

ã � a, ã 
≡ a ⇒ ga(x, x) > gã(x, x), for any x ∈ �. (2)

This follows from the Green representation formula: indeed, for any x ∈ �,

ga(x, x) − gã(x, x) =
∫
�

(ã − a)(y)Ga(x, y)Gã(x, y) dy,

> 0,

as soon as ã � a with ã 
≡ a. We let now a ∈ C∞(�) and we define B(a) ∈ R by

Ja+B < K−1
3 , for B < B(a),

Ja+B � K−1
3 , for B � B(a).

It is clear that B(a) is well defined, since for B large (for instance B > −mina),
Ja+B � K−1

3 and for B small enough (for instance B less than the first eigenvalue of
� + a on �), Ja+B < K−1

3 . Proving the theorem reduces now to the proof that
(1) there exists x0 ∈ � such that ga+B(a)(x0, x0) = 0.
(2) Ja+B(a) is not achieved.

Indeed, Ja+B is clearly not achieved by any smooth positive ua+B for B > B(a), since
otherwise, we would have

Ja+B(a) �
∫

�(|∇ua+B |2 + (a + B(a))u2
a+B) dx

(
∫

� |ua+B |6 dx)1/3

� Ja+B +
∫

�(B(a) − B)u2
a+B dx

(
∫

� |ua+B |6 dx)1/3

< K−1
n

which is in contradiction with the definition of B(a). Thus, if we prove that Ja+B(a) is
not achieved, then properties (ii) and (iii) of the theorem are equivalent. Next, if we
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prove that there exists x0 ∈ � such that ga+B(a)(x0, x0) = 0, we have then by (2) that for
any B < B(a), ga+B(x0, x0) > 0 which proves that property (ii) of the theorem implies
property (i). Since the converse is true by (1), this clearly proves the theorem. Up to
changing a into a + B(a), we may assume that B(a) = 0.

Step 1. We first prove that Ja+B(a) is not achieved. Let us assume by contradiction that
there exists ua ∈ C∞(�), ua > 0 in �, which achieves Ja . Then, up to normalization, ua

verifies

�ua + aua = K−1
3 u5

a in �,

ua = 0 on ∂�,
(3)

and ∫
�

u6
a dx = 1. (4)

For any ϕ ∈ C∞(R3), since Ja = K−1
3 , we have that for any ε > 0,

(∫
�

u6
a(1 + εϕ)6 dx

)1/3

� K3

[∫
�

∣∣∇(
ua(1 + εϕ)

)∣∣2
dx +

∫
�

au2
a(1 + εϕ)2 dx

]
. (5)

We clearly get with (4) that(∫
�

u6
a(1 + εϕ)6 dx

)1/3

= 1 + 2ε

∫
�

u6
aϕ dx + 5ε2

∫
�

u6
aϕ2 dx

− 4ε2
(∫

�

u6
aϕ dx

)2

+ o
(
ε2).

On the other hand, using (3) and (4),

K3

[∫
�

∣∣∇(
ua(1 + εϕ)

)∣∣2
dx +

∫
�

au2
a(1 + εϕ)2 dx

]

= K3

[∫
�

ua(�ua + aua)(1 + εϕ)2 dx + ε2
∫
�

u2
a|∇ϕ|2 dx

]

=
∫
�

u6
a(1 + εϕ)2 dx + K3ε2

∫
�

u2
a|∇ϕ|2 dx

= 1 + 2ε

∫
�

u6
aϕ dx + ε2

∫
�

ϕ2u6
a dx + K3ε2

∫
�

u2
a|∇ϕ|2 dx.

Coming back to (5) with these two last relations and letting ε go to 0, we get that

4
∫
�

ϕ2u6
a dx � K3

∫
�

u2
a|∇ϕ|2 dx + 4

(∫
�

u6
aϕ dx

)2

, for any ϕ ∈ C∞(R3). (6)
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We claim now that there exists (y, t) ∈ R3 × R+ such that:

F(y, t) :=
∫
�

u6
a

2t (x − y)

1 + t2|x − y|2 dx = 0, for any i = 1, 2, 3,

G(y, t) :=
∫
�

u6
a

1 − t2|x − y|2
1 + t2|x − y|2 dx = 0.

This result is the equivalent of a result on the standard sphere proved by Chang and
Yang [6]. Following [6], the proof of such a claim may go as follows: one considers
H : R3 × R → R4 defined by

H(y, s) =
(

F

(
y,

s + √
s2 + 4

2

)
+ y, G

(
y,

s + √
s2 + 4

2

)
+ s

)
.

One proves, thank to an asymptotic expansion of F and G that |H(y, s)|2 � |y|2 + s2 as
soon as |y|2 + s2 is large enough. This proves in particular that there exists R > 0 such
that H(B(0, R)) ⊂ B(0, R). Since H is a continuous function, we may apply Brouwer’s
fixed point theorem: H has at least one fixed point in B(0, R). But a fixed point of H is
just a zero of both F and G. This proves the above claim.

We now apply (6) to each ϕi , i = 1, 2, 3, 4, where

ϕi(x) := 2t (xi − yi)

1 + t2|x − y|2 , for any i = 1, 2, 3,

ϕ4(x) := 1 − t2|x − y|2
1 + t2|x − y|2 .

Since F = 0 and G = 0 for the good choice of (y, t), we then obtain:

4
4∑

i=1

∫
�

u6
aϕ2

i dx � K3

4∑
i=1

∫
�

|∇ϕi |2u2
a dx.

But

4∑
i=1

ϕ2
i = 1

and

4∑
i=1

|∇ϕi|2 = 12t2

(1 + t2|x − y|2)2
.

Thus we have

4
∫
�

u6
a dx � 12K3

∫
�

t2

(1 + t2|x − y|2)2
u2

a dx.
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By Hölder’s inequalities and (4), we obtain

1 � 3K3

(∫
�

t3

(1 + t2|x − y|2)3
dx

)2/3

.

One then easily verifies that

(∫
R3

t3

(1 + t2|x − y|2)3
dx

)2/3

= (3K3)−1.

Since � is bounded, we clearly get the desired contradiction and Ja can not be achieved.
The following steps deal with the proof that there exists x0 ∈ � such that ga(x0, x0) = 0.

Step 2. By the definition of B(a), for any ε > 0, we have that

Ja−ε < K−1
3 . (7)

Remember that we have chosen B(a) = 0 for all the proof of the theorem. This
inequality ensures, this is by now standard, the existence of a minimizer for Ja−ε. Up
to normalization, we thus have for any ε > 0 that there exists some smooth positive
function uε in � verifying:

�uε + (a − ε)uε = λεu
5
ε in �,

uε = 0 on ∂�,∫
�

u6
ε dx = 1,

(8)

where we have set λε = Ja−ε.
The aim now is to study this sequence (uε) as ε goes to 0. First of all, (uε) is bounded

in H 1
0 (�) so that, after passing to a subsequence, uε converges weakly to some u0 in

H 1
0 (�). We may also assume that, up to a subsequence, limε→0 λε = λ0, with λ0 � K−1

3
by (7). By passing to the limit in (8), one checks that u0 verifies

�u0 + au0 = λ0u
5
0 in �,

u0 = 0 on ∂�.

Moreover, by weak convergence properties,

∫
�

u6
0 dx � 1.

Since Ja = K−1
3 , we have that
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(∫
�

u6
0 dx

)1/3

� K3

(∫
�

|∇u0|2 dx +
∫
�

au2
0 dx

)
= λ0K3

∫
�

u6
0 dx,

where we have used the equation verified by u0. If u0 
≡ 0, we obtain that λ0 = K−1
3 and

that
∫

� u6
0 dx = 1 which exactly means that Ja is achieved by u0. Since we proved in

Step 1 that Ja was not achieved,

uε ⇀ 0 in H 1
0 (�).

By the compactness of the embedding of H 1
0 (�) into L2(�), we have that

lim
ε→0

∫
�

u2
ε dx = 0. (9)

We let xε be a point of � where uε achieves its maximum and we set

uε(xε) = µ−1/2
ε = sup

�

uε. (10)

Since

1 =
∫
�

u6
ε dx �

∫
� u2

ε dx

µ2
ε

it is clear by (9) that µε → 0 as ε → 0. Combining standard results of elliptic theory
(namely results of [21] and [10] or [17]), one gets that

lim
ε→0

µ1/2
ε uε(µεx + xε) =

(
1 + ω

−2/3
3

4
|x|2

)−1/2

in C0
loc

(
R3) ∩ L6

loc

(
R3). (11)

In particular, we have that

lim
ε→0

d(xε, ∂�)

µε

= +∞ (12)

and that

lim
R→+∞ lim

ε→0

∫
B(xε,Rµε)

u6
ε dx = 1. (13)

By bootstrap techniques and since uε verifies (8), one also obtains that

lim
ε→0

uε = 0 in C0
loc

(
�̄\{x0}) (14)

where x0 = limε→0 xε, up to the extraction of a subsequence.
Step 3 (Weak pointwise estimates). We claim that there exists C > 0 such that for any

ε > 0,

|x − xε|1/2uε(x) � C, for any x ∈ �. (15)
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A similar estimate was obtained in [16] and [20]. We follow here the proof of [7]. Let us
note, for x ∈ �,

wε(x) = |x − xε|1/2uε(x)

and let yε be a point of � where wε achieves its maximum. We assume by contradiction
that

wε(yε) = sup
�

wε → +∞ as ε → 0. (16)

Clearly, by (11),

lim
ε→0

|xε − yε|
µε

= +∞ (17)

and, by (16),

lim
ε→0

|xε − yε|
uε(yε)

−2
= +∞. (18)

Since � is bounded, we also clearly have that limε→0 uε(yε) = +∞ and thanks to (14),
that limε→0 |xε − yε| = 0. We set now, for x ∈ �̃ε = { y−yε

uε(yε)−2 , y ∈ �},

ũε(x) = uε(yε)
−1uε

(
uε(yε)

−2x + yε

)
. (19)

It is clear that

�ũε + (
a
(
uε(yε)

−2x + yε

) − ε
)
uε(yε)

−4ũε = λεũ
5
ε in �̃ε,

ũε = 0 on ∂�̃ε.

(20)

For any x ∈ B(0, 1) ∩ �̃ε, we have that

ũε(x) = uε(yε)
−1uε

(
uε(yε)

−2x + yε

)
� wε(uε(yε)

−2x + yε)

wε(yε)

|xε − yε|1/2

|uε(yε)−2x + yε − xε|1/2
,

so that

ũε(x)2 � |xε − yε|
|uε(yε)

−2x + yε − xε|
by the definition of yε. Then, by (18), we obtain that, for ε small enough,

ũε(x)2 � 2, for any x ∈ B(0, 1) ∩ �̃ε.

We let now η ∈ C∞
c (B(0, 1)) and k � 1. Some integration by parts, using Eq. (20) and

the fact that ũε is uniformly bounded in B(0, 1) ∩ �̃ε, lead to the following:
∫

B(0,1)∩�̃ε

∣∣∇(
ηũk/2

ε

)∣∣2
dx � C

(‖∇η‖2
∞ + ‖�η‖∞ + k

) ∫
B(0,1)∩�̃ε

ũk
ε dx.
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Using Sobolev’s inequality, we obtain that

( ∫
B(0,1)∩�̃ε

(
ηũk/2

ε

)6
dx

)1/3

� C
(‖∇η‖2

∞ + ‖�η‖∞ + k
) ∫
B(0,1)∩�̃ε

ũk
ε dx,

where C is some constant independent of ε, k and η. For any i, we let ki = 6 × 3i

and we take some ηi such that ηi = 1 on B(0, 1
2 + 2−i ), ηi = 0 on B(0, 1

2 + 2−i−1),
‖∇ηi‖2∞ + ‖�ηi‖∞ � C4−i−1. Applying the above inequality by induction on i, we
obtain that

sup
B(0, 1

2 )∩�̃ε

ũε � C

( ∫
B(0,1)∩�̃ε

ũ6
ε dx

)1/6

,

where C > 0 is independent of ε. Since ũε(0) = 1, we have obtained the existence of
some C > 0 independent of ε such that∫

B(0, 1
2 )∩�̃ε

ũ6
ε dx � C.

Then, we write that for ε small,

1 =
∫
�

u6
ε dx �

∫
�∩B(yε,uε(yε)−2)

u6
ε dx +

∫
B(xε,Rµε)

u6
ε dx,

since B(yε, uε(yε)
−2) ∩ B(xε, Rµε) = ∅ for ε small enough: this is the content of (17)

and (18). By passing to limR→+∞ limε→0 in the right hand side, we obtain, with (13) and
the estimate above, a contradiction. Thus (15) is proved.

A simple adaptation of the above proof gives that

lim
R→+∞ lim

ε→0
sup

x∈�\B(xε,Rµε)

|xε − x|1/2uε(x) = 0. (21)

Step 4 (Ruling out boundary accumulation). In this step, we prove that the accumula-
tion point x0 cannot be on the boundary of �. Let us assume by contradiction that

νε := d(xε, ∂�) → 0 as ε → 0. (22)

We set for x ∈ �ε = { y−xε

νε
, y ∈ �ε},

vε(x) = ν1/2
ε uε(νεx + xε).

Then vε verifies the following:

�vε + (aε − ε)ν2
ε vε = λεv

5
ε in �ε,

vε = 0 on ∂�ε,

(23)
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where we have set aε(x) = a(νεx + xε). Moreover,
∫
�ε

v6
ε dx = 1. (24)

One also checks that (11), (13), (15) and (21) are scale invariant and thus continue to
hold with vε , µε/νε, �ε and 0 instead of uε, µε, � and xε (note that, by (12), µε/νε → 0
as ε → 0). Since � is smooth and with (22), we have that, up to a rotation,

lim
ε→0

�ε = �0 = R2×]−∞;1[.

For any R > 0, we let

ηε(R) = sup
x∈�ε∩B(0,R)\B(0,R/2)

vε. (25)

We let also Lε be the operator

Lεu = �u + (aε − ε)ν2
ε u − λεv

4
ε u

and we compute Lε(|x|ν−1) for some 0 < ν < 1 on B(0, R) ∩ �ε\B(0, R̃ µε

νε
) where R is

fixed and R̃ will be fixed later on. Easy computations lead to

Lε

(|x|ν−1) = |x|ν−3(ν(1 − ν) + (aε − ε)ν2
ε |x|2 − λε|x|2v4

ε

)
.

Thanks to (21), we may choose R̃ such that for ε small enough,

λε|x|2v4
ε � 1

2
ν(1 − ν) on B(0, R) ∩ �ε\B

(
0, R̃

µε

νε

)
.

With (11), we may find C(R, ν) such that for any ε > 0 and any x on the boundary of
B(0, R) ∩ �ε\B(0, R̃ µε

νε
),

vε(x) � C(R, ν)

((
µε

νε

)1/2−ν

+ ηε(R)

)
|x|ν−1.

If we let Gε(x) be the right-hand side of the above equation, we have obtained that

Lε(Gε − vε) � 0 in B(0, R) ∩ �ε\B

(
0, R̃

µε

νε

)
,

Gε − vε � 0 on ∂

(
B(0, R) ∩ �ε\B

(
0, R̃

µε

νε

))
,

since Lεvε = 0. This leads to

Lε(Gε − vε)
− × (Gε − vε)

− � 0,
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where (Gε − vε)
− denotes the negative part of (Gε − vε). Integrating by parts, we get

that ∫
|∇(Gε − vε)

−|2 dx + ν2
ε

∫
(aε − ε)

[
(Gε − vε)

−]2
dx

� λε

∫
v4

ε

[
(Gε − vε)

−]2
dx

< λε

(∫ [
(Gε − vε)

−]6
dx

)1/3

,

where we used (24) and where the integrals are taken over B(0, R) ∩ �ε\B(0, R̃ µε

νε
).

This clearly violates the definition of λε unless (Gε − vε)
− = 0. Thus we have that

vε(x) � C(R, ν)

((
µε

νε

)1/2−ν

+ ηε(R)

)
|x|ν−1 (26)

for any x ∈ B(0, R)∩�ε. Indeed, by (11), this inequality obviously holds on B(0, R̃ µε

νε
).

Let us now prove that

ηε(R) �
(

µε

νε

)1/2−ν

. (27)

Assume that, on the contrary, there exists C > 0 such that

ηε(R) � C

(
µε

νε

)1/2−ν

, (28)

so that we may rewrite (26) as

vε(x) � C(r, ν)ηε(R)|x|ν−1. (29)

Then, for any compact subset K of B(0, R) ∩ �ε\{0}, there exists C(K) such that

(
vε(x)

ηε(R)

)
� C(K), for any x ∈ K.

By Harnack’s inequality, we clearly get the existence of some D(K) > 0 (for any
compact subset K of �ε\{0}) such that

(
vε(x)

ηε(1/2)

)
� D(K), for any x ∈ K.

By standard elliptic theory, see Theorems 8.24 and 8.29 of [11], we obtain then that
(vε/ηε(1/2)) is bounded in C

0,η
loc (�ε\{0}). Thus, by Ascoli’s theorem, after passing to a

subsequence,

lim
ε→0

(
vε

ηε(1/2)

)
= G0 in C0

loc

(
�0\{0}), (30)
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where we have extended vε by 0 outside �ε. Moreover, G0 
≡ 0 and G0 verifies:

�G0 = 0 in �0\{0},
G0 = 0 on ∂�0.

Since G0 
≡ 0, by the maximum principle, G0 must clearly be singular. Moreover, by
(29), the only possible singularity is at 0. Thus

G0(x) = λ

|x| + b(x)

for some positive constant λ and some smooth harmonic function b in �0 with b =
−λ/|x| on ∂�0. Integrating (23) on B(0, δ) for δ > 0 small enough, we obtain that

−
∫

∂B(0,δ)

∂νvε dσ + ν2
ε

∫
B(0,δ)

(aε − ε)vε dx = λε

∫
B(0,δ)

v5
ε dx,

where ν denotes the outer normal to B(0, δ). By (29) and (30), using Lebesgue’s
dominated convergence theorem, we have that

ηε

(
1

2

)−1

λε

∫
B(0,δ)

v5
ε dx → −

∫
∂B(0,δ)

∂νG0 dσ.

For δ small enough, − ∫
∂B(0,δ) ∂νG0 dσ is positive. Thus

ηε

(
1
2

)
� C

∫
B(0,δ)

v5
ε dx � C

(
µε

νε

)1/2

+ C

∫
B(0,δ)\B(0,R

µε
νε

)

v5
ε dx,

for any R > 0 provided ε is small enough: we have here used (11). Next, by (29),∫
B(0,δ)\B(0,R

µε
νε

)

v5
ε dx � Cηε

(
1
2

) ∫
B(0,δ)\B(0,R

µε
νε

)

|x|ν−1v4
ε dx

� Cηε

(
1
2

)( ∫
�ε\B(0,R

µε
νε

)

v6
ε dx

)2/3( ∫
B(0,δ)

|x|3ν−3 dx

)1/3

� Cηε

(
1
2

)( ∫
�ε\B(0,R

µε
νε

)

v6
ε dx

)2/3

.

Coming back to the next to last estimate on ηε(1/2) and choosing R large enough so that∫
�ε\B(0,R

µε
νε

) v6
ε dx is small (this is possible by (13)), we obtain the existence of C > 0

such that

ηε(R) � C

(
µε

νε

)1/2

,
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which is clearly in contradiction with (28) since µε/νε goes to 0 as ε goes to 0. Thus we
have proved (27).

We want now to prove that (26) still holds for ν = 0. Of course, with the same
argument than above, we will then clearly have that

C−1ηε

(
1
2

)
�

(
µε

νε

)1/2

� Cηε

(
1
2

)

for some C > 1 independent of ε. We let (zε) be a sequence of points of B(0, R) ∩ �ε.
The aim now is to prove that there exists C(R) > 0 such that

|zε|vε(zε)

((
µε

νε

)1/2

+ ηε(R)

)−1

� C(R). (31)

We distinguish three cases.
Case 1: |zε|νε/µε → δ as ε → 0. By (11), we clearly have (31) in this case.
Case 2: |zε| → R′ as ε → 0 with R/2 < R′ � R. By the definition of ηε(R), we clearly

have

|zε|vε(zε)ηε(R)−1 � R

so that (31) is valid in this case.
Case 3: |zε| → R′ as ε → 0 with R′ � R/2 and |zε|νε/µε → +∞ as ε → 0. We let

Hε be the Green function of � − ε0 with Dirichlet boundary condition on �ε ∩ B(0, R)

for some ε0 > 0 small enough. By Green’s representation formula, we may write that

vε(zε) =
∫

�ε∩B(0,R)

Hε(zε, y)
(
�vε(y) − ε0vε(y)

)
dy −

∫
�ε∩∂B(0,R)

∂νHε(zε, y)vε(y) dσy,

where ν denotes the outer normal of ∂B(0, R). By standard elliptic theory, since
�ε → �0 as ε → 0 and since |zε| � 2R/3, we get that

−
∫

�ε∩∂B(0,R)

∂νHε(zε, y)vε(y) dσy � C(R)ηε(R).

On the other hand, using (23), we may write that∫
�ε∩B(0,R)

Hε(zε, y)
(
�vε(y) − ε0vε(y)

)
dy

=
∫

�ε∩B(0,R)

Hε(zε, y)
[
λεv

5
ε − (

aεν
2
ε − εν2

ε + ε0
)
vε

]
dy.

Since, by the maximum principle, Hε(zε, y) � 1/(ω2|zε − y|), we get that, for ε small
enough,

vε(zε) � C

∫
�ε∩B(0,R)

|zε − y|−1v5
ε dy + C(R)ηε(R).
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But, by (26) and (27),∫
�ε∩B(0,R)

|zε − y|−1v5
ε dy �

∫
B(zε,|zε |/2)

|zε − y|−1v5
ε dy + 2|zε|−1

∫
�ε∩B(0,R)

v5
ε dy

� C(R, ν)5
(

µε

νε

)5/2−5ν

|zε|5ν−3 + C|zε|−1
(

µε

νε

)1/2

,

where we have also used (11). This leads to

|zε|vε(zε)

((
µε

νε

)1/2

+ ηε(R)

)−1

� C(R) + C

(
µε

νε

)2−5ν

|zε|5ν−2.

Since |zε|νε/µε → +∞ as ε → 0, taking ν < 2/5, we have obtained (31) in this third
case.

Thus, (31) is proved. As already mentionned, this is equivalent to

vε(x) � C(R)

(
µε

νε

)1/2

|x|−1 (32)

for any x ∈ �ε ∩ B(0, R)\{0}. By Theorems 8.24 and 8.29 of [11], we then get that

(
µε

νε

)−1/2

vε → H0 in C0
loc

(
�0\{0}), (33)

where H0 is a nonzero harmonic function in �0\{0} which vanishes on the boundary of
�0. This enforces H0 to be singular at the origin. Then

H0 = λ

|x| + b(x),

where λ is some positive constant and b is a smooth harmonic function on �0 which
satisfies b = −λ/|x| on ∂�0. By the maximum principle, b is everywhere negative and,
in particular,

b(0) < 0. (34)

We apply now the Pohozãev identity to vε on B(0, 1/2). This leads to

ν2
ε

∫
B(0,1/2)

(aε − ε)v2
ε dx + 3

2
ν2

ε

∫
B(0,1/2)

(
xk∂kaε

)
v2

ε dx

= 1

4
ν2

ε

∫
∂B(0,1/2)

(aε − ε)v2
ε dσ − λε

12

∫
∂B(0,1/2)

v6
ε dσ

+ 1

2

∫
∂B(0,1/2)

(
1

2
|∇vε|2 − (∂νvε)

2
)

dσ − 1

2

∫
∂B(0,1/2)

vε∂νvε dσ.
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Multiplying both sides by (µε/νε)
−1 and passing to the limit as ε → 0 by using (32) and

(33), we get that

∫
∂B(0,1/2)

(
1
2
|∇H0|2 − (∂νH0)

2
)

dσ −
∫

∂B(0,1/2)

H0∂νH0 dσ = 0.

Since �b = 0, it is easy to check that the left-hand side of this relation is just λω2b(0).
Thus b(0) = 0: this is in contradiction with (34). Thus x0 /∈ ∂�.

Step 5. We let now ε0 > 0 be such that the operator � + (a − ε0) is coercive on �

and we denote by Ga−ε0 its Green’s function with Dirichlet boundary condition on �.
We let also Lε be the operator defined by Lεu = �u + au − λεu

4
εu. We compute

LεGa−ε0(xε, x)1−ν on �\{xε} for some 0 < ν < 1. We easily obtain that

LεGa−ε0(xε, x)1−ν

Ga−ε0(xε, x)1−ν
= ε0 − ε − λεu

4
ε + ν(1 − ν)

|∇Ga−ε0(xε, x)|2
Ga−ε0(xε, x)2

.

Since x0 /∈ ∂�, it is easy to see that there exists C > 0, ρ > 0 such that

|x − xε| � ρ ⇒ |∇Ga−ε0(xε, x)|2
Ga−ε0(xε, x)2

� C|x − xε|−2.

Then we have

LεGa−ε0(xε, x)1−ν

Ga−ε0(xε, x)1−ν
�

{
Cν(1 − ν)|xε − x|−2 − λεu

4
ε in B(xε, ρ),

(ε0 − ε) − λεu
4
ε in �\B(xε, ρ).

Using (14) and (21), we get the existence of some R(ν) > 0 such that for ε small
enough, LεGa−ε0(xε, x)1−ν > 0 on �\B(xε, R(ν)µε). By standard properties of the
Green function, since x0 /∈ ∂�, there exists C > 1 such that C−1 � |xε − x| ×
Ga−ε0(xε, x) � C, for any x ∈ �. Then, by (11), there exists C(ν) > 0 such that
uε(x) � C(ν)µ1/2−ν

ε Ga−ε0(xε, x)1−ν , for any x ∈ ∂B(0, R(ν)µε). We deduce from the
three last relations, as it was done in the previous step, the following:

uε(x) � C(ν)µ1/2−ν
ε |xε − x|ν−1, for any x ∈ �\{xε}.

Now, by the Green representation formula, for any sequence (zε) of points of �, we may
write that

uε(zε) =
∫
�

Ga−ε0(zε, y)
[
�uε(y) + (

a(y) − ε0
)
uε(y)

]
dy.

Similar computations to those developed in Step 4 lead to the fundamental estimate:

|x − xε|µ−1/2
ε uε(x) � C. (35)
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A similar fundamental estimate was obtained in [12,14,16]. The proof presented above
follows [9]. We deduce then by standard elliptic theory that

µ−1/2
ε uε → λGa(x0, .) in C2

loc

(
�\{x0}), (36)

where λ is some positive real number. Applying Pohozãev’s identity to uε in B(xε, δ),
δ > 0 small, one gets that∫

B(xε,δ)

[
(a − ε) + 3

2
(x − xε)

k∂ka

]
u2

ε dx

= δ

2

∫
∂B(xε,δ)

(a − ε)u2
ε dσ − λε

6
δ

∫
∂B(xε,δ)

u6
ε dσ

+ δ

∫
∂B(xε,δ)

(
1
2
|∇uε|2 − (∂νuε)

2
)

dσ − 1
2

∫
∂B(xε,δ)

uε∂νuε dσ.

Multiplying both sides by µ−1
ε and passing to the limit as ε → 0 by using (35) and (36),

we obtain that for any δ > 0,∫
B(x0,δ)

(
a + 3

2
(x − x0)k∂ka

)
Ga(x0, x)2 dx

= δ

2

∫
∂B(x0,δ)

aGa(x0, x)2 dσ − 1

2

∫
∂B(x0,δ)

Ga(x0, x)∂νGa(x0, x) dσ

+ δ

∫
∂B(x0,δ)

(
1
2
|∇Ga(x0, x)|2 − (

∂νGa(x0, x)
)2

)
dσ.

Computing an expansion as δ goes to 0 to both sides of this relation, one finally gets that
ga(x0, x0) = 0 which ends the proof of the theorem.
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