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ABSTRACT. – We continue here our study of the thermodynamic limit for various models of
Quantum Chemistry. More specifically, we study the Hartree and the restricted Hartree model.
For the restricted Hartree model, we prove the existence of the thermodynamic limit for the
energy per unit volume. We also define a periodic problem associated to the Hartree model, and
we prove that it is well-posed.

RÉSUMÉ. – Nous poursuivons dans cet article notre étude systématique de la limite
thermodynamique de divers modèles issus de la Chimie Quantique Moléculaire. Nous étudions
plus spécifiquement les modèles de Hartree et de Hartree restreint. Pour le modèle de Hartree
restreint, nous prouvons l’existence de la limite thermodynamique de l’énergie par unité de
volume. Nous définissons également un modèle périodique associé au modèle de Hartree, et
nous démontrons qu’il est bien posé.

1. Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree
type models, thereby continuing a long term work that we have begun in [11] with a
similar study in the setting of the Thomas–Fermi–von Weizsäcker type models. The
results we have obtained in that framework were summarized in [10], those we shall
obtain here have been announced in [12]. It is to be mentioned that we also consider
in [13] the same problem for the reduced Hartree–Fock and the Hartree–Fock models.
For the sake of consistency, we briefly recall now the motivations of our work. We also
say a few words on how this work interacts with other mathematical studies. And we
refer the reader to [11] for a more detailed introduction.

The present work, as well as our previous ones, finds its roots in many mathematical
studies devoted to the mathematical counterpart of problems of Statistical Mechanics.
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Briefly speaking, the so-called thermodynamic limit problem consists of examining the
behaviour of models for a finite volume of matter when the volume under consideration
goes to infinity. Since the energy is an extensive thermodynamic quantity, it is expected
that the energy per unit volume goes to a finite limit when the volume goes to infinity.
It is also expected that the function representing the state of the matter goes also to a
limit in some sense. To fix the ideas, let us make precise these questions in the case of
an infinite crystal and in the setting of a model of the density functional theory. We shall
see extensions of this simplified setting later on.

Consider a finite number of nuclei, each nucleus being of unit charge and being located
at a point k = (k1, k2, k3) of integral coordinates in R3, which is the center of a cubic unit
cellQk = {(x1, x2, x3) ∈ R3;− 1

2 < xi − ki � 1
2 , i = 1,2,3} (with the convention thatQ0

will be henceforth denoted byQ). The set of the positions of these nuclei is then a finite
subset 	 of the set of all points of integral coordinates that is Z3 ⊂ R3. The union of all
cubic cells whose center is a point of 	 is denoted by 
(	); its volume is denoted by
|	|. Since each cell has unit volume and each nucleus is of unit charge, |	| is also the
number of nuclei and the total nuclear charge.

Suppose that for 	 ⊂ Z3 fixed, we have a well-posed model for the ground state of
the neutral molecule consisting of |	| electrons and |	| nuclei located at the points
of 	. Let us denote by I	 the ground-state energy, and by ρ	 the minimizing electronic
density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows:

(i) Does there exist a limit for the energy per unit volume 1
|	|I	 when |	| goes to

infinity?
(ii) Does the minimizing density ρ	 approach a limit ρ∞ (in a sense to be made

precise later) when |	| goes to infinity?
(iii) Does the limit density ρ∞ have the same periodicity as the assumed periodicity

of the nuclei?
We shall not deal here with the physical background of this theoretical problem, and we
refer the reader to the textbooks [4,51] and articles [26,30]. We prefer to concentrate
ourselves on the mathematical works that are devoted to this difficult question.

The models we shall consider are models arising in Quantum Chemistry, and therefore
models that are only valid at zero temperature. From the mathematical viewpoint, the
thermodynamic limit problem has been extensively studied, in the zero temperature case
as well as in the case of strictly positive temperatures.

A brief historical survey should go as follows. The story has really begun with Fischer
and Ruelle, who have proved the existence of the thermodynamic limit for the (classical
or quantum) microcanonical, canonical, and grand canonical ensembles for a system of
particles in Rd (see [44], and references therein). It is worth noticing that their proof
did not cover the case of a long range interaction like the Coulomb interaction. It is
only in the late sixties that Lieb and Lebowitz, using a result by Dyson and Lenard,
proved the existence of the thermodynamic limit for real matter, i.e. with Coulomb forces
(see [25–27,24]). This undoubtedly constitutes the first milestone of the mathematical
understanding of these problems of Statistical Mechanics. The proof has next been
extended by Lieb and Narnhofer [31] in 1974 to deal with the case of Jellium, that is
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to say to deal with a model where the electrons are immersed in a uniformly positively
charged background.

In 1985, Fefferman laid the second milestone by proving in [17] the existence of the
thermodynamic limit for a crystal, in the statistical setting. For the first time, a statistical
model of a non spherically symmetric matter was treated in this respect. With slight
modifications, Fefferman’s proof has been extended by Gregg in 1989 ([18]) to treat
Coulomb-like interactions. Let us emphasize that the two main difficulties that we have
just identified, namely the long range nature of the Coulomb potential and the (obvious)
lack of spherical symmetry of the periodic lattices, will be of course also present in our
work.

In this very brief survey, we have on purpose omitted to mention the ground-breaking
work [32] by Lieb and Simon on the thermodynamic limit in the framework of the
Thomas–Fermi theory (TF Theory for short). Indeed, this work is at the origin of our
own study [11] on the Thomas–Fermi–von Weizsäcker model (TFW model for short),
and has therefore a far larger impact on our work than the, however fundamental, works
that we have quoted above.

At this stage of our short presentation of the state of the art of the mathematical
knowledge on thermodynamic limit problems, we find it useful to briefly recall now
the results that we have obtained in [11] on the Thomas–Fermi–von Weizsäcker model.
Indeed, many of the concepts and techniques that we have used in [11] (some of them
being inherited from Lieb and Simon, some others being especially introduced by us in
order to treat the TFW case) will be useful here. Moreover, recalling the complete results
we have obtained in the TFW case will help the reader to place the results we shall
obtain here on the Hartree model in this context. It is also to be remarked that our results
on the TFW model include Lieb and Simon results on the TF model (suppress simply
the gradient term in the energy functional and make the quite obvious corresponding
modifications in the sequel).

The Thomas–Fermi–von Weizsäcker model for the neutral molecular system de-
scribed above is an improved form of the standard Thomas–Fermi model, and reads
as follows

I TFW
	 = inf

{
ETFW
	 (ρ)+ 1

2

∑
y �=z∈	

1

|y − z| ;ρ � 0,
√
ρ ∈H 1(R3),∫

R3

ρ = |	|
}
, (1)

ETFW
	 (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 +

∫
R3

ρ5/3 −
∫
R3

( ∑
k∈	

1
|x − k|

)
ρ(x)dx

+ 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy. (2)

The TFW (and as well as the TF) model belongs to a large class of models that is
today identified as the models arising in Density Functional Theory: we refer the reader
to [14,41] for an introduction to the general features and the physical foundations of such
models. Mathematically, it is a well-known fact that the problem (1)–(2) has a unique
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minimizing density, denoted by ρ	 (see Lieb [29], Benguria et al. [5], or Lions [35]),
and that, denoting u	 = √

ρ
	

, u	 is a solution to

−�u	 +
[

5
3
ρ

2/3
	 −�	

]
u	 = −θ	u	, (3)

where we denote by

�	 = ∑
k∈	

1
|x − k| − ρ	 � 1

|x| ,

the effective potential the electrons experience, and where θ	 > 0 is the Lagrange
multiplier associated to the constraint in (1).

In our previous work [11], we have proved that the three questions (i)–(ii)–(iii) of the
thermodynamic limit problem that we have asked above can be answered positively in
the setting of the TFW theory. More precisely, let us first of all introduce the periodic
potential G uniquely defined by

−�G= 4π
(

−1 + ∑
y∈Z3

δ(· − y)
)
, (4)

and ∫
Q

G= 0, (5)

and then define the following periodic minimization problem set on the unit cell Q of
the lattice

I TFW
per = inf

{
ETFW

per (ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (6)

ETFW
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 +

∫
Q

ρ5/3 −
∫
Q

ρ(x)G(x)dx

+ 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy, (7)

where

H 1
per(Q)=

{
u ∈H 1

loc

(
R3), u periodic in xi, i = 1,2,3, of period 1

}
.

The main results we obtain in [11] may be stated as follows (we need technical
assumptions that are irrelevant in this introduction and that we therefore do not make
precise here): up to an additive constant M/2 that only depends on G through

M = lim
x→0

G(x)− 1

|x| , (8)
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and which is just a matter of normalization, we have convergence of the TFW energy per
unit volume to the infimum I TFW

per ; moreover the density ρ	 minimizing I TFW
	 converges

(uniformly locally, at least) to the unique periodic density ρper minimizing I TFW
per .

In view of these results, the reader may understand the main two motivations of
our whole work. Our purpose is twofold: first, we want to check that the molecular
model under consideration does have the good behaviour in the limit of large volumes;
second, we wish to set a limit problem that is well-posed mathematically and that can be
justified in the most possible rigorous way (in particular with a view to give a sound
ground to the numerical simulations of the condensed phase). As far as this second
aim is concerned, it is clear (at least we hope it is) from the above formulae that one
keypoint for the definition of the periodic problem is the definition of laws of interaction
between particles, i.e. of the interaction potential(s). In the TFW setting, the second aim
was less prominent since the potential G is the same as the one appearing in the TF
setting and the periodic minimization problem is rather easy to guess in view of the one
arising for the TF theory. Likewise, it is easy to check that this periodic minimization
problem is mathematically well-posed. In other words, taking benefit from the work by
Lieb and Simon who had already defined the TF periodic problem, the idea to introduce
the periodic problem (6)–(7) was straightforward. In [11], our “only” contribution was
therefore to prove that the TFW model does converge in the thermodynamic limit to (6)–
(7). The purpose of the present work is the study of the thermodynamic limit problem
in the Hartree setting. We shall see below that the guess on the periodic problem is not
so obvious in the Hartree model. Consequently, the mere definition of the limit problem
turns out to be a substantial piece of the work (writing a periodic problem that has some
rigorous mathematical sense is not straightforward). This paper is aimed at describing it.
It will certainly be rather clear to the reader that the questions we tackle here in trying to
define as rigorously as possible periodic problems in the Hartree framework are indeed
close to questions of interest in Solid State Physics, both for theoretical and numerical
purposes. For the sake of brevity, we shall not detail here the relationship between our
work and Solid State Physics. We only mention some references here, namely [23,40],
and also [2,4,9,39,42,47,48,53], and refer the reader to some future work of our own.
Because of the complexity of the Hartree setting, we shall not be able to do in this setting
everything we did in the TFW setting, namely proving the convergence of the energy
per unit volume in the thermodynamic limit. We shall indeed prove the convergence of
the energy per unit volume in the thermodynamic limit for a simplified Hartree model
(namely the restricted Hartree model, treated in Section 3). Furthermore, we shall prove
the convergence of the energy per unit volume for one very peculiar form of the true
Hartree model (see Section 4), but our efforts to prove it for the generic form of the
Hartree model have failed so far. From the single example we have in hand, and from
more general considerations, we shall however deduce a general form for a periodic
Hartree problem that is likely to be the thermodynamic limit of the Hartree model. We
shall prove, still in Section 4, that this periodic model defines a mathematically well-
posed minimization problem.

Let us finally mention that the Hartree–Fock setting is discussed by the authors in [13].
But before all, let us devote Section 2 to the definition of the general setting we shall

work in, and to the detailed presentation of the results we shall establish.
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2. General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this
article. There are two of them, namely on the one hand the Hartree model and, on the
other hand, its simplified form, the restricted Hartree model. For the sake of brevity, we
shall often abbreviate these models in the H and the RH models, respectively.

We recall from the introduction that, for each 	, finite subset of Z3 ⊂ R3, we consider
the molecular system consisting of the |	| nuclei located at the points of 	, and |	|
electrons. We shall henceforth denote by

V	(x)=
∑
k∈	

1
|x − k| , (9)

the attraction potential created by the nuclei on the electrons, and by

1

2
U	 = 1

2

∑
m,n∈	,m�=n

1

|m− n| (10)

the self-repulsion of the nuclei.
As in [11], we shall also consider the case when the nuclei are not point nuclei but are

smeared nuclei. In that case, each Dirac mass located at a point k of 	 is replaced by a
compactly supported smooth non-negative function of total mass one, typically denoted
by m(· − k), and “centered” at that point of 	. The regularity of the function m does not
play a great role in the sequel, and therefore we shall assume without loss of generality
that m is C∞. The potential (9) and the repulsion (10) are then respectively replaced by

V m	 (x)=
∑
k∈	
m �

1
|x − k| , (11)

1
2
Um	 = 1

2
D

(∑
k∈	
m(· + k),∑

k∈	
m(· + k)

)
− 1

2
|	|D(m,m). (12)

In the above equation, we have as usual denoted by D(·, ·) the double integral defined as
follows

D(f,f )=
∫
R3

∫
R3

f (x)f (y)

|x − y| dx dy. (13)

It will be convenient to introduce in this setting the function

m	 = ∑
k∈	
m(· − k). (14)

In this setting of smeared nuclei, we shall also make use of the effective potential �	
defined for each electronic density ρ	 as follows

�	 = (m	 − ρ	) � 1

|x| . (15)
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It is now time to recall the properties of the sequence of sets 	 that we shall consider.
For the sake of completeness, we recall here the following definition taken from [11].

DEFINITION 1. – We shall say that a sequence (	i)i�1 of finite subsets of Z3 goes to
infinity if the following two conditions hold:

(a) For any finite subset A⊂ Z3, there exists i ∈ N such that

∀j � i, A⊂	j.
(b) If 	h is the set of points in R3 whose distance to ∂
(	) is less than h, then

lim
i→∞

|	hi |
|	i | = 0, ∀h > 0.

Condition (b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence for
which the ‘boundary’ is negligible in front of the ‘interior’. A sequence of large cubes
typically satisfies the conditions of Definition 1. We shall only consider henceforth Van
Hove sequences going to infinity in the sense of the above definition. Following the
notation of [32,11], we shall write henceforth lim	→∞ f (	) instead of limi→∞ f (	i).

We now need to define the following useful functional transformation, that we have
already used in [11], and which will be again very efficient in the present work.

DEFINITION 2. – For a given sequence 	 and a sequence ρ	 of densities, we call
the ∼transform of ρ	 and denote by ρ̃	 the following sequence of functions

ρ̃	 = 1

|	|
∑
k∈	
ρ	(· + k).

We finally introduce

f (x)= 1

|x| −
∫
Q

dy

|x − y| ,

next

f	(x)=
∑
k∈	

(
1

|x − k| −
∫
Q

dy
|x − k− y|

)
. (16)

It is convenient to rewrite f	 as

f	 = V	 − χ
(	) � 1
|x| , (17)

where, more generally, we shall denote by χ* the characteristic function of the domain
*. Besides, it is proved in [32], and recalled in [11], that, when Q is a cube,

|f (x)| � C

|x|4 (18)
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almost everywhere on R3, for some positive constant C, and that f	 converges
to the periodic potential G + d , for some real constant d independent of 	, uni-
formly on compact subsets of R3 \ Z3. Moreover, for any compact subset K of R3,
f	 − ∑

k∈	∩K
1

|x−k| converges uniformly on K to G+ d − ∑
k∈Z3∩K

1
|x−k| (see [32]).

We shall make use in the sequel of the following notation. If H is a functional space,
we denote by Hunif (R3) the space

Hunif
(
R3) = {

ψ ∈D′(R3)/ψ ∈H(x +Q) ∀x ∈ R3, sup
x∈R3

‖ψ‖H(x+Q) <∞}
.

In addition, we shall also simply write f �Q g instead of f � (χQ g).
We are now in position to introduce the molecular models we shall deal with. The

Hartree model is defined as follows.

IH	 = inf
{
EH	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (19)

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1
2
D

(|ϕi |2, |ϕi |2)
)

−
∫
R3

V	ρ+ 1
2
D(ρ,ρ), (20)

with

ρ =
|	|∑
i=1

|ϕi |2. (21)

The Hartree model was historically introduced by Hartree in [19]. It is a well-known fact
that, for any subset 	 of R3, this minimization problem is attained by at least one vector
(ϕ1; . . . ;ϕ|	|), with ϕi > 0 for every 1 � i � |	| (see the works by Lieb and Simon
in [33] and by Lions in [35]).

In the smeared nuclei case, the energy functional of the Hartree model reads as follows

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1
2
D

(|ϕi |2, |ϕi |2)
)

−
∫
R3

V m	 ρ+ 1
2
D(ρ,ρ), (22)

and the minimization problem can therefore be written in the following more concise
form

I
m,H
	 = inf

{ |	|∑
i=1

(∫
R3

|∇ϕi |2 − 1
2
D

(|ϕi|2, |ϕi|2)
)

+ 1
2
D(ρ −m	,ρ −m	)

− 1
2
|	|D(m,m);ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (23)

where we recall that m	 is given by (14).
As announced above, we also define the restricted Hartree model, obtained from the

standard Hartree model by introducing the self-interaction between electron i and itself
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in the energy functional. In the point nuclei case, this model reads

IRH
	 = inf

{
ERH
	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (24)

ERH
	 (ϕ1; . . . ;ϕ|	|)=

∫
R3

|	|∑
i=1

|∇ϕi |2 −
∫
R3

V	ρ + 1

2
D(ρ,ρ), (25)

with ρ being defined as in (21). It is obvious that, for all 	,

ERH
	 �EH	 , (26)

and thus

IRH
	 � IH	 . (27)

In the smeared nuclei case, the energy functional of the restricted Hartree model reads
as follows

E
m,RH
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

∫
R3

|∇ϕi|2 −
∫
R3

V m	 ρ + 1
2
D(ρ,ρ), (28)

and the minimization problem can therefore be written in the following more concise
form

I
m,RH
	 = inf

{ |	|∑
i=1

∫
R3

|∇ϕi|2 + 1
2
D(ρ −m	,ρ −m	)− 1

2
|	|D(m,m);

ϕi ∈H 1(R3), ∫
R3

ϕ2
i = 1, 1 � i � |	|

}
. (29)

In view of the periodic problem that we have obtained in [11] for the TFW model, it is
rather natural to introduce the following minimization problem, that we intend to relate
with the Hartree model with 	 fixed:

IHper = inf
{
EHper(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (30)

where the periodic energy EH is defined as follows

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) −
∫
Q

Gρ + 1

2
DG(ρ,ρ), (31)

with

ρ(x)= ∑
k∈Z3

|ϕ|2(x + k), (32)
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and the following notation that we shall adopt henceforth (in the spirit of the
notation (13))

DG(f,f )=
∫
Q

∫
Q

f (x)G(x − y)f (y)dx dy. (33)

We recall that Q denotes here and henceforth the unit cube ]− 1
2 ,+ 1

2 ]3. On the
other hand, for the restricted Hartree problem, we introduce the following minimization
problem

IRH
per = inf

{
ERH

per (ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (34)

where we denote by H 1
per(Q) the set of all Q-periodic functions in H 1

loc(R
3) and where

the periodic energy functional ERH is given by

ERH
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

Gρ + 1
2
DG(ρ,ρ). (35)

It is easy to show that the minimization problem (34)–(35) admits a unique minimum
(the same property will hold true in the smeared nuclei setting below). We now define
the periodic H and RH problems in the smeared nuclei case.

Im,Hper = inf
{
Em,Hper (ϕ); ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (36)

where the periodic energy Em,Hper is defined as follows

Em,Hper (ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) + 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m), (37)

with the periodic density ρ being related to ϕ through (32).
On the other hand, for the restricted Hartree problem, we introduce the following

minimization problem

Im,RH
per = inf

{
Em,RH

per (ρ); ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (38)

Em,RH
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (39)

The main purpose of Section 3 will be to prove the following result on the
thermodynamic limit of the RH problem.
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THEOREM 2.1 (Thermodynamic limit for the RH energy). – In the point nuclei case,
we have

lim
	→∞

IRH
	

|	| = IRH
per + M

2
,

where the constant M is defined by (8). Likewise, in the smeared nuclei case, we have

lim
	→∞

I
m,RH
	

|	| = Im,RH
per + M

2
,

where M is this time defined by

M =
∫ ∫
Q×Q

m(x)m(y)
[
G(x − y)− 1/|x − y|] dx dy. (40)

We shall also make there some comments on this result.
As far as the Hartree model is concerned, we shall extensively present our point of

view in Section 4, but let us already emphasize here that our main result will be the
following one, which states that the minimization problem we have defined above is
mathematically well-posed.

THEOREM 2.2 (Well-posedness of the H periodic problem). – The minimization
problem defined by (30)–(31) (respectively by (36)–(37)) admits a minimum. In addition,
any minimizing sequence of (30)–(31) (respectively (36)–(37)) is relatively compact in
H 1(R3), up to a translation.

Is is to be mentioned here that in the proof of the above theorem, we shall make use
of the concentration-compactness method [34].

As announced in the introduction, we shall also see in Section 4 that, for a very
particular choice of smeared nuclei, we are able to prove the convergence of the Hartree
energy per unit volume to the periodic energy (30). We refer the reader to Proposition 4.1
below. We also prove in Section 4.4 the following.

PROPOSITION 2.1. – We assume that the Van Hove sequence 	 satisfies

lim
	→∞

|	h|
|	| Log |	h| = 0, ∀h > 0, (41)

where 	h is defined in Definition 1. We assume here that the unit cell Q is a cube and
that there exists a minimizer ϕper ∈ H 1(R3) of IHper which shares the symmetries of the
unit cube. Then,

lim sup
	→∞

IH	

|	| � IHper + M

2
,

where IHper is defined by (30)–(31).

As announced in the introduction, the sequel of this paper is devoted to the proofs of
the above results. We shall also give some complements.
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3. The restricted Hartree model

We devote this section to the thermodynamic limit problem of the so-called restricted
Hartree model (RH model for short). We shall see that we shall be allowed to extend
to this setting most of the methods introduced in [11] in order to prove that the TFW
energy has a thermodynamic limit. Of course this study can be seen as a step towards the
study of the complete Hartree model (H for short) that will be addressed in the following
section. We shall see however that despite their relative formal resemblance, the RH
model, on the one hand, and the Hartree model, on the other hand, do behave in a very
different fashion, as far as the thermodynamic limit problem is concerned. For the time
being, let us concentrate on the RH model.

Let us now recall the definition we have given in Section 2 above of the restricted
Hartree model. For the sake of brevity, we shall only consider in this section the case of
point nuclei. Actually, the case of smeared nuclei is easier to treat, and we leave it to the
reader.

For every finite subset 	 of Z3, the RH model is defined as follows:

IRH
	 = inf

{
ERH
	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;

∀1 � i � |	|, ϕi ∈H 1(R3), ∫
R3

ϕ2
i = 1

}
, (42)

with

ERH
	 (ϕ1; . . . ;ϕ|	|)=

∫
R3

|	|∑
i=1

|∇ϕi|2 −
∫
R3

V	ρ + 1
2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy, (43)

ρ = ∑|	|
i=1 |ϕi|2, and where we recall that V	(x) = ∑

y∈	
1

|x−y| . If we compare with
the complete Hartree model given in (19)–(20), we may note that only the interaction
between the electrons has been modified and has been replaced by a mean-field potential
which is the same for each of the |	| electrons. In other words, the self-interaction of
each electron has been reincorporated into the energy functional.

We show now that, due to this modification, this infimum is the same as

inf
{
ERH
	 (ρ)+

1

2
U	; ρ � 0,

√
ρ ∈H 1(R3), ∫

R3

ρ = |	|
}
, (44)

with

ERH
	 (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 −

∫
R3

V	 ρ + 1
2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy. (45)

Indeed, we first recall from [35] that, on the one hand, the infimum defined by (44)–
(45) is achieved by a unique positive function ρRH (the uniqueness coming from the
strict convexity of the functional ρ �→ ERH

	 (ρ) defined by (45)). On the other hand, the
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infimum in (42) is attained by |	| positive functions ϕi , for 1 � i � |	|. In addition, for
every 1 � i � |	|, ϕi satisfies

−�ϕi − V	 ϕi +
(
ρ �

1
|x|

)
ϕi + θiϕi = 0 on R3, (46)

for some θi > 0. This latter claim comes from the fact that, since
∫
ρ = |	|, the positive

part of the spherical average of the potential −V	 + (ρ � 1
|x|), which is identically 0,

lies in L3/2(R3). Then, we may apply a result of Lieb and Simon in [32]. Therefore,
since ϕi > 0 and since −V	 + (ρ � 1

|x|) also belongs to Lpunif (R
3), for some p > 3

2 ,
ϕi is the (unique) positive normalized eigenfunction associated to the first eigenvalue
of the operator −� − V	 + (ρ � 1

|x|) on R3, and the corresponding eigenspace is
of dimension 1 (see, for example, [46]). We thus conclude that θ1 = · · · = θ|	| and
ϕ1 = · · · = ϕ|	|(= 1√|	|

√
ρ). Then, returning to (46), we deduce that ϕ = √

ρ is a critical

point for ERH
	 . Since the functional ρ �→ ERH

	 (ρ) is strictly convex and since ρ satisfies
the right charge constraint, we conclude that ρ is the unique minimizer of ERH

	 , that is
ρRH . Our claim follows.

From now on, with a view to proving the existence of the thermodynamic limit for the
energy per unit volume for the RH model, we shall essentially use the expression (45)
for the energy and identify IRH

	 with (44). It is therefore to be emphasized that we deal
with a sequence of minimization problems which are of density functional type: only the
electronic density ρ appears in the minimization and not the electronic wavefunctions
initially involved in (43). Consequently, we shall be able to use most of the machinery
developed in [11] to treat the TFW model. As far as the thermodynamic limit for the
energy per unit volume is concerned, this machinery (in particular the trick that consists
of approximating the Coulomb problem by a problem where the interaction is of Yukawa
type) will be effective and really allows us to determine the behaviour of ERH

	 /|	|
(see Theorem 3.1 below). Unfortunately, we have not been able to use it in order to
determine the behaviour of the density ρ	, apart from some very basic results that will
be mentioned below.

We shall relate the thermodynamic limit of the restricted Hartree model with the
periodic minimization problem defined by

IRH
per = inf

{
ERH

per (ρ);ρ � 0,
√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (47)

where

ERH
per (ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

Gρ + 1

2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy. (48)

Before turning to the thermodynamic limit problem per se, let us first give some results
on the existence and the uniqueness of the minimizer of IRH

per .

LEMMA 3.1 (Properties of IRH
per ). – Let IRH

per be defined by (47) and (48). Then, IRH
per

is achieved by a unique positive function ρper, uper = √
ρper ∈H 1

per(Q) ∩ L∞(R3), and
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satisfies

−�uper −Guper +
(∫
Q

G(x − y)ρper(y)dy
)
uper + θper uper = 0, on R3, (49)

for some real number θper.

Proof of Lemma 3.1. – The existence and the uniqueness of a minimizer of IRH
per follows

from the following observations. Since G is periodic and since the function G− 1
|x| is

continuous and bounded on Q, it is easy to check that IRH
per is finite. Indeed, on the

one hand, it is easily seen , by using for example the Fourier series expansion of the
periodic potential G (see [32]), that the quadratic form f �→DG(f,f ) is non-negative.
On the other hand, since G is in L3/2

unif (R
3), for every ε > 0, there is a positive constant

k(ε) such that we may decompose G into G = G1 + G2 with ‖G1‖L∞(Q) � k(ε) and
‖G2‖L3/2(Q) � ε. Now let ρ � 0 be such that u ≡ √

ρ ∈ H 1
per(Q). We first notice that

0 <
∫
Q u � 1 because

∫
Q u

2 = 1, and from Schwarz’s inequality. Therefore, we have,
using first Hölder’s, and then Sobolev–Poincaré’s inequalities,

EHper(ρ)�
∫
Q

|∇u|2 −
∫
Q

G(x)u2(x)dx

�
∫
Q

|∇u|2 − k(ε)
∫
Q

u2 − ε‖u‖2
L6(Q)

� (1 − 2ε)
∫
Q

|∇u|2 − k(ε)−Cε,

for some positive constant C, that is independent of ε and u. We conclude by choosing ε
small enough.

By the way, the same argument shows that every minimizing sequence ρn of IHper is
such that un = √

ρn is bounded in H 1
per(Q). Then, extracting a subsequence if necessary,

we may assume that un converges weakly in H 1
per(Q), strongly in Lpunif (R

3) for all
1 � p < 6 (from Rellich’s Theorem) and almost everywhere on R3. The limit is then
a minimizer of IHper. The uniqueness of the minimizer follows from the strict convexity
of the functional.

In addition, since G is in Lqunif (R
3) for all 1 � q < 3, it is clear from (49) that

−�uper is in Lpunif for every 1 � p < 2. Thus, u ∈W 2,p
unif . In particular, from Sobolev’s

embeddings, u ∈ L∞(R3). In fact, by a standard bootstrap argument, u is inW 2,p
unif ∩C0, α ,

for every 1 � p < 3 and 0< α < 1. ✷
Let us turn now to the thermodynamic limit problem we are interested in and prove

first the following:

LEMMA 3.2. – For every Van Hove sequence (	), we have

lim sup
	→∞

IRH
	

|	| � IRH
per + M

2
. (50)
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Proof of Lemma 3.2. – The proof is immediate once we have noticed that, for all ε > 0,

IRH
	 � I TFW

	,ε , (51)

where the notation I TFW
	,ε stands for the usual TFW problem we have studied in [11],

with ε as a coefficient in front of the Thomas–Fermi term
∫

R3 ρ
5/3 in the definition of the

TFW functional; namely

ETFW
	,ε (ρ)=

∫
R3

∣∣∇√
ρ
∣∣2 + ε

∫
R3

ρ5/3 −
∫
R3

( ∑
k∈	

1

|x − k|
)
ρ(x)dx

+ 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy, (52)

I TFW
	,ε = inf

{
ETFW
	,ε (ρ)+

1
2

∑
y �=z∈	

1
|y − z| ;ρ � 0,

√
ρ ∈H 1(R3),∫

R3

ρ = |	|
}
. (53)

Next, in view of the results of [11], we obtain from (51), and for every ε > 0,

lim sup
	→∞

IH	

|	| � lim
	→∞

I TFW
	,ε

|	| = I TFW
per,ε + M

2
, (54)

where, obviously, I TFW
per,ε is the periodic TFW model with a multiplicative parameter ε in

front of the term
∫
Q ρ

5/3 in the definition of the TFW periodic functional; namely

I TFW
per,ε = inf

{
ETFW
per,ε(ρ); ρ � 0,

√
ρ ∈H 1

per(Q),

∫
Q

ρ = 1
}
, (55)

ETFW
per,ε(ρ)=

∫
Q

∣∣∇√
ρ
∣∣2 + ε

∫
Q

ρ5/3 −
∫
Q

ρ(x)G(x)dx

+ 1
2

∫ ∫
Q×Q

ρ(x)ρ(y)G(x − y)dx dy. (56)

Assertion (50) follows now by letting ε go to 0 in (54), and by comparing with the
definition (47) of IRH

per . ✷
We next prove the existence of a bound from below for the energy per unit volume in

the RH case.

LEMMA 3.3. – For every Van Hove sequence (	), we have

lim inf
	→∞

IRH
	

|	| � IRH
per + M

2
. (57)
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Proof of Lemma 3.3. – Our strategy of proof will consist of comparing from below
IRH
	 with the corresponding minimization problem where the Coulomb potential has

been replaced by a Yukawa potential exp (−a|x|)
|x| , a > 0, and then letting a go to 0. Let

us recall that the same strategy has already been used in [11] in the TFW setting. We
shall therefore only sketch the main lines of the proof and refer the reader to [11] for the
details.

We thus define, for every a > 0,

I a	 = inf
{
Ea	(ρ)+

1

2
Ua	; ρ � 0,

√
ρ ∈H 1(R3), ∫

R3

ρ = |	|
}
, (58)

with

Ea	(ρ)=
∫
R3

∣∣∇√
ρ
∣∣2 −

∫
R3

V a	 ρ + 1

2

∫ ∫
R3×R3

ρ(x)ρ(y)V a(x − y)dx dy, (59)

V a(x)= exp (−a|x|)
|x| , V a	(x)=

∑
y∈	
V a(x − y), and Ua	 = ∑

y,z∈	
y �=z

V a(y − z).

It is clear that we may choose a small enough such that I a	 is achieved for all finite
subset	 of Z3. In addition, by using the methods of Chapter 2 of [11] for the upper limit
and the ones of Chapter 3 of [11] for the lower limit, it is easy to check that

lim
	→∞

I a	

|	| = I aper(µa), (60)

for any Van Hove sequence (	), where µa and I aper(µa) are defined just below. We set

I aper(µa)= inf
{
Eaper(ρ)+

1
2
Ua∞;ρ � 0,

√
ρ ∈H 1

per(Q),

∫
Q

ρ = µa
}
,

with

Eaper(ρ)=
∫
Q

∣∣∇√
ρ
∣∣2 −

∫
Q

V a∞(x)ρ(x)dx + 1
2

∫ ∫
Q×Q

ρ(x)ρ(y)V a∞(x − y)dx dy,

V a∞(x)=
∑
y∈Z3

V a(x − y), and Ua∞ = ∑
y,z∈Z3

y �=z

V a(y − z).

Finally the mass µa is defined as follows. We denote by ρaper the unique minimizer of
Eaper on the set {ρ � 0,

√
ρ ∈H 1

per(Q)}. Then, we define µa = min(1,
∫
Q ρ

a
per). (All these

definitions are justified in [11].) Arguing as in Chapter 2 of [11], we may prove that

lim
a→0+µa = 1,
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and that

lim
a→0+ I

a
per(µa)= IRH

per + M

2
. (61)

To conclude, we argue now as in Chapter 3 of [11], to check that

IRH
	

|	| � I a	

|	| −C a,

for some positive constant C that is independent of 	. Next, we let 	 go to infinity in
the above inequality and use (60) to obtain

lim inf
	→∞

IRH
	

|	| � I aper(µa)−Ca.

(57) then follows by letting a go to 0 and by using (61). ✷
Remark 3.1. – In the case when the unit cell is a cube, it is possible to prove the

above lemma by a different argument which does not use the comparison with a Yukawa
potential. Indeed, as in [11], we may use the ∼-transform trick and prove directly the
lower bound. Of course, this argument relies upon the convexity of the RH functional
with respect to the electronic density.

As a consequence of (50), we may prove that

COROLLARY 3.1 (Compactness). – Let ρ	 be the minimizer of IRH
	 , then

1

|	|
∫


(	)c

ρ	 → 0, as 	→ ∞.

The analogous result holds true in the Hartree setting, and a proof is sketched in this
setting (see the proof of Lemma 4.3 below).

Remark 3.2. – This property means that, asymptotically, the |	| electrons remain
in 
(	); that is, in a box of volume |	|. In other words, we could also say that no
electrons have escaped to “infinity”; this is the reason why this property is referred to as
“compactness” in [11].

Finally, collecting Lemma 3.2 and Lemma 3.3, we have proved the following

THEOREM 3.1 (Thermodynamic limit for the energy in the RH model). – For every
Van Hove sequence (	),

lim
	→∞

IRH
	

|	| = IRH
per + M

2
. (62)

Let us make some comments. Having proved the existence of the thermodynamic limit
for the energy per unit volume for the RH model, we may prove as in Chapter 5 of [11],
some preliminary convergence results concerning the convergence of the densities. In
particular, we may show that the ∼-transform of ρ	, ρ̃	, converges to the minimizer ρper



160 I. CATTO ET AL. / Ann. I. H. Poincaré – AN 19 (2002) 143–190

of IHper, or, even, that ρ	(· + y	) converges to ρper in H 1(Q) for some y	 ∈	. However,
we do not know how to improve these (weak) notions of convergence of the densities.
Indeed, in the framework of the RH model, we are not able to establish uniform L∞
bounds (for example) for the densities as in the TFW case, since the bounds obtained in
that setting are based upon the specific nature of the power nonlinearity which arises in
the Euler–Lagrange equations (see [11] for the details). Another point which is related
to the previous one is that we do not know whether there exists a unique solution (u,�)
to the system 


−�u−�u= 0 on R3,

u� 0, u �≡ 0,

−��= 4π
[ ∑
k∈Z3

δk − u2
]
,

without prescribing boundary conditions on u or � (like periodicity or conditions at
infinity, for example). On the contrary, we have proved in [11] that the analogue of the
above system in the TFW setting, which can be written as




−�u+ u7/3 −�u= 0,
u� 0, u �≡ 0,

−��= 4π
[ ∑
k∈Z3

δk − u2
]
,

admits a unique (thus periodic) solution.

4. The Hartree model

Let us first of all recall the Hartree model which will be the subject of this section:

IH	 = inf
{
EH	 (ϕ1; . . . ;ϕ|	|)+ 1

2
U	;ϕi ∈H 1(R3), ∫

R3

ϕ2
i = 1, 1 � i � |	|

}
, (63)

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1
2
D

(|ϕi|2, |ϕi|2)
)

−
∫
R3

V	ρ + 1
2
D(ρ,ρ), (64)

where as usual we denote ρ = ∑|	|
i=1 |ϕi |2.

In view of the energy functional (63) which clearly is a sum of a functional involving
the ϕi’s explicitly and a functional depending only on the density ρ and not on the ϕi’s
themselves, it is rather natural to isolate the part depending explicitly on the ϕi’s, and
therefore to introduce the following auxiliary minimization problem

IC = inf
{
EC(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (65)
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with

EC(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2), (66)

which is nothing else but the well-known Choquard problem. For the convenience of the
reader, we mention here that the fact that IC >−∞ is a straightforward consequence of
the following string of inequalities

D
(
ϕ2, ϕ2) �C

∥∥ϕ2∥∥2
L6/5(R3)

= C‖ϕ‖4
L12/5(R3)

�C‖ϕ‖3
L2(R3)

‖ϕ‖L6(R3) � C‖∇ϕ‖L2(R3), (67)

where C denotes various positive constants that are independent of ϕ, the last inequality
being true since

∫
R3 ϕ

2 = 1. The existence and the uniqueness of the minimizer of (65)
are subtler facts proven in Lieb [28].

As a matter of fact, the Choquard problem will play a central role in our analysis of
the thermodynamic limit for the Hartree energy. We shall see that below, but let us for
the moment concentrate ourselves on the a priori estimates that we may show on the
Hartree energy per unit volume.

4.1. A priori estimates and consequences

The first estimate is rather straightforward, since it is a simple consequence of Lemma
3.2 and of the fact that the Hartree energy functional is clearly bounded from above by
the restricted Hartree energy functional:

LEMMA 4.1. – There exists a constant C such that, for any Van Hove sequence (	),

IH	

|	| � C. (68)

Let us now turn to the existence of lower bound for the energy per unit volume. Of
course, we cannot use any more the analogous results for the restricted Hartree model.
Nevertheless, we have:

LEMMA 4.2. – There exists a constant C such that, for any Van Hove sequence (	),

IH	

|	| � C. (69)

Proof of Lemma 4.2. – Let us first prove this claim in the case of smeared nuclei, and
we shall next explain how we proceed with minor modifications in the case of point
nuclei.

We recall the expression (22)–(23) for the energy in the case of smeared nuclei

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]

+ 1
2
D(m	 − ρ	,m	 − ρ	)− 1

2
|	|D(m,m). (70)
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Since the term D(m	 − ρ	,m	 − ρ	) is non-negative, it follows that

1

|	|E
m,H
	 (ϕ1; . . . ;ϕ|	|)�

1

|	|
|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)] − 1

2
D(m,m)

� IC − 1
2
D(m,m), (71)

using the definition that we have recalled above of the Choquard problem.
In the case of point nuclei, arguing as in Chapter 3 of [11], we rewrite the expression

for IH	 =EH	 (ϕH1 ; . . . ;ϕH|	|)+ U	
2 as

IH	 =
|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1
2
D

(
ϕ2
i , ϕ

2
i

)] −
∫
R3

f	 ρ	

+ 1
2
D(χ
(	) − ρ	, χ
(	) − ρ	)+ 1

2
U	 − 1

2
D(χ
(	), χ
(	)), (72)

where f	 is defined through (16). As before, we begin with noticing that the first sum is
bounded from below as follows

|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]
� |	|IC, (73)

and that the term 1
2D(χ
(	) − ρ	, χ
(	) − ρ	) is non-negative. Therefore proving the

bound from below amounts to proving that

−
∫
R3

f	 ρ	 + 1

2
U	 − 1

2
D(χ
(	), χ
(	))� −C|	|,

where, here and below, C denotes a positive constant that is independent of 	. On the
one hand, we have already proved in [11] that

∣∣U	 −D(χ
(	), χ
(	))
∣∣ � C|	|.

On the other hand, in view of the upper bound (68) on IH	 , it is straightforward to see
that

|	|∑
i=1

[∫
R3

|∇ϕi |2 − 1
2
D

(
ϕ2
i , ϕ

2
i

)] −
∫
R3

f	 ρ	 � C |	|, (74)

We next show, without difficulty, that for all ε > 0, there exists a positive constant k(ε)
independent of 	 such that f	 = f (1)	 + f (2)	 with ‖f (1)	 ‖L∞ � k(ε) and ‖f (2)	 ‖

L
3/2
unif

� ε.
Then, using Hölder’s and Sobolev’s inequality, we check that

∣∣∣∣
∫
R3

f	 ρ	

∣∣∣∣ � k(ε) |	| + ε
|	|∑
i=1

∫
R3

|∇ϕi|2. (75)
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At this stage, we insert, for every ε > 0, the bound (75) into (74). It follows that

1

|	|
|	|∑
i=1

∫
R3

|∇ϕi|2 � C, (76)

by the same argument as the one used to establish (67), and that

1

|	|
|	|∑
i=1

D
(
ϕ2
i , ϕ

2
i

)
�C.

Therefore, we have ∣∣∣∣
∫
R3

f	 ρ	

∣∣∣∣ �C|	|,

and consequently, returning to (72), the desired bound from below follows. ✷
Thanks to the bounds we have obtained in the course of the proof of the above lemma,

we state (and prove) in the following two lemmas, first a “compactness” result which
is similar to the one we have obtained in the RH setting (in particular, the comments in
Remark 3.2 also apply here), and, next, a further bound on the electronic density.

LEMMA 4.3. – Let ρ	 be the electronic density corresponding to a minimizer
(ϕH1,	; . . . ;ϕH|	|,	) of IH	 . We have

lim
	→∞

1

|	|
∫


(	)c

ρ	 = 0. (77)

With the help of the bounds (80) and (76), we may establish the

LEMMA 4.4. – Let ρ	 be the electronic density corresponding to a minimizer
(ϕH1,	; . . . ;ϕH|	|,	) of IH	 . We have

1
|	|

∫
R3

ρ
3/2
	 �C, (78)

for some constant C that is independent of 	.

Proof of Lemmas 4.3 and 4.4. – Let us argue first in the smeared nuclei case. We recall
from [49] and [11] that, for any function h	 in H 1(R3),

∣∣∣∣
∫
R3

(m	 − ρ	)h	
∣∣∣∣ � CD(m	 − ρ	,m	 − ρ	)1/2‖∇h	‖L2(R3), (79)

(this is easy to check using Fourier transforms), where here and below C denotes a
positive constant that is independent of 	.
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Let us begin with the proof of Lemma 4.3. In view of the expression (70) along with
the bound from below (73) and the bound from above for the energy (68), we deduce
that the density of a minimizer satisfies

1
|	|D(m	 − ρ	,m	 − ρ	)� C. (80)

Next, it only remains to apply (79) with a special choice for h	; namely, h	 is such
that 0 � h	 � 1, h	 ≡ 1 on 
(	), h	 = 0 on {x ∈ 
(	)c; d(x; ∂
(	)) � 1}, and∫

R3 |∇h	|2 = o(|	|) (see the details in Chapter 3 of [11]).
In order to prove Lemma 4.4, we remark that (76) implies in particular

∫
R3

∣∣∇√
ρ	

∣∣2 � C|	|. (81)

Then, we may apply the inequality (79) with h	 = √
ρ	, and we deduce from (80)

and (81) that ∣∣∣∣
∫
R3

(m	 − ρ	)√ρ	
∣∣∣∣ � C|	|.

The Cauchy–Schwarz inequality now gives

∣∣∣∣
∫
R3

m	
√
ρ	

∣∣∣∣ � ‖m	‖L2(R3)

∥∥√
ρ	

∥∥
L2(R3)

�C|	|.

The same argument carries through to the case of point nuclei, replacing m	 by χ
(	)
everywhere above, since the various bounds obtained in the course of the proof of
Lemma 4.2 yield in particular D(χ
(	) − ρ	,χ
(	) − ρ	)� C|	|. ✷
4.2. A striking example

In view of the estimates of the previous section, it seems reasonable to believe that the
Hartree energy per unit volume admits a thermodynamic limit (though it is not explicitly
proven). The natural question is then to determine even formally such a limit. We go
back to the expression for the Hartree energy given in (64), that is

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

(∫
R3

|∇ϕi|2 − 1
2
D

(|ϕi |2, |ϕi|2)
)

−
∫
R3

V	ρ + 1
2
D(ρ,ρ),

that can be rewritten in the usual way

EH	 (ϕ1; . . . ;ϕ|	|)=
|	|∑
i=1

∫
R3

|∇ϕi |2 −
∫
R3

V	ρ + 1
2

∑
1�i �=j�|	|

D
(|ϕi|2, |ϕj |2).
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It is then tempting to argue as follows: in view of the large number |	| of functions
asymptotically involved, there should not be a large difference between the above energy
and the restricted Hartree energy given in (45). In other words, since the number of
“diagonal” terms [i = j ], namely |	|, is small compared to the numbers (|	|2 − |	|) of
the “off-diagonal” terms [i �= j ], one could be tempted to replace the sum

∑
1�i �=j�|	|

by the sum
∑

1�i,j�|	|, and obtain the same problem in the thermodynamic limit,
both for the Hartree and the restricted Hartree problem. As a consequence, the Hartree
model should degenerate in the thermodynamic limit, to a periodic problem of density
functional type. As we shall see, this guess is wrong. We shall provide two arguments in
the favor of this claim. We shall first prove, for a very special case detailed just below,
that the thermodynamic limit of the energy per unit volume converges to the periodic
Hartree model we have set before. Secondly, we prove in Section 4.4 below that the
upper limit of the energy per unit volume in the general Hartree setting may be bounded
from above by the periodic Hartree model, provided the unit cell of the crystal is a cube,
and provided there exists a minimizer of the Hartree periodic model which shares the
symmetries of the unit cube. In both cases, the limit of the energy per unit volume is
clearly strictly smaller than the corresponding periodic energy in the restricted Hartree
setting, as shown in Section 4.4 below.

To convince the reader that the diagonal terms do play a role even in the limit, we
consider the Hartree model for smeared out nuclei, and we moreover choose a very
particular form of nuclei. Let us denote by ϕC a positive minimizer of the Choquard
problem introduced in (65) (there are many minimizers, all equal from one another up to
a translation, we just pick out one of them). We choose ϕ2

C as a shape of the nuclei. For
each finite set 	, the measure m	 defining the density of nuclei is therefore

m	 = ∑
k∈	
ϕ2
C(· − k). (82)

The Hartree energy (70) then reads

E
m,H
	 (ϕ1; . . . ;ϕ|	|)=

|	|∑
i=1

[∫
R3

|∇ϕi|2 − 1

2
D

(
ϕ2
i , ϕ

2
i

)]

+ 1

2
D(m	 − ρ	,m	 − ρ	)− 1

2
|	|D(

ϕ2
C,ϕ

2
C

)
.

It is straightforward to see on the above expression that any (ϕ1; . . . ;ϕ|	|) such that
{ϕi;1 � i � |	|} = {ϕC(· − k);k ∈ 	} defines a minimizer of this Hartree problem.
Indeed, by definition of the Choquard minimum ϕC we have, for all arbitrary function ϕ

∫
R3

|∇ϕ|2 − 1
2
D

(
ϕ2, ϕ2) �

∫
R3

|∇ϕC |2 − 1
2
D

(
ϕ2
C,ϕ

2
C

)

with equality if and only if ϕ = ϕC(· + y), for some y in R3, and on the other hand

1
2
D(m	 − ρ	,m	 − ρ	)� 0,
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with equality when m	 = ρ	 = ∑
k∈	 ϕ2

k , which happens precisely when {ϕk;1 � k �
|	|} = {ϕC(· − k);k ∈	}.

As a consequence, we have in this setting

1
|	|I

m,H
	 = IC − 1

2
D

(
ϕ2
C,ϕ

2
C

)
,

and, also,

lim
	→∞

I
m,H
	

|	| = inf
{∫

R3

|∇ϕ|2 − 1
2
D

(
ϕ2, ϕ2) + 1

2
DG(m− ρ,m− ρ)− 1

2
D(m,m);

ϕ ∈H 1(R3),∫
R3

ϕ2 = 1, ρ = ∑
k∈Z3

|ϕ|2(· + k)
}
.

We have therefore proven

PROPOSITION 4.1. – In the special case when the shape of the nuclei is given by the
Choquard minimizer ϕC through (82), the energy per unit volume for the Hartree model
converges in the thermodynamic limit to the infimum of the associated periodic problem
(36)–(37)–(32), up to the usual additive constant M/2.

In addition, the Hartree minimizer, which in this special case is (ϕC(· − k))k∈	
converges to (ϕC(· − k))k∈Z3 , where ϕC minimizes (36)–(37)–(32).

The above setting has therefore allowed us to figure one possible thermodynamic limit
for the generic Hartree model. We are now going to study this periodic problem.

4.3. Well-posedness of the Hartree periodic problem

In view of the above example, we believe that we are founded to consider the periodic
Hartree problem introduced in (30)–(31) and that we recall here for convenience

IHper = inf
{
EHper(ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
,

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1

2
D

(|ϕ|2, |ϕ|2) −
∫
Q

Gρ + 1

2
DG(ρ,ρ), (83)

with

ρ(x)= ∑
k∈Z3

|ϕ|2(x + k). (84)

Note that (83) may equivalently be written as

EHper(ϕ)=
∫
R3

|∇ϕ|2 − 1
2
D

(|ϕ|2, |ϕ|2) −
∫
R3

Gϕ2 + 1
2

∫ ∫
R3×R3

ϕ2(x)G(x − y)ϕ2(y)dx dy.
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The analogous problem for smeared nuclei is given by

Im,Hper = inf
{
Em,Hper (ϕ);ϕ ∈H 1(R3), ∫

R3

|ϕ|2 = 1
}
, (85)

where the periodic energy Em,Hper is defined as follows

Em,Hper (ϕ)=
∫
R3

|∇ϕ|2 − 1
2
D

(|ϕ|2, |ϕ|2)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (86)

We have the following result announced in Section 2

THEOREM 2.2 (Well-posedness of the H periodic problem). – The minimization
problem defined by (30)–(31) (respectively by (36)–(37)) admits a minimum. In addition,
any minimizing sequence of (30)–(31) (respectively (36)–(37)) is relatively compact in
H 1(R3), up to a translation.

The rest of this paragraph is devoted to the proof of this theorem. For the sake of
clarity, we only do the proof in the smeared nuclei case. A straightforward adaptation of
the following arguments allows one to conclude in the case of point nuclei.

Proof of Theorem 2.2. – Let us first make the following observation. Since the
quadratic form f �→DG(f,f ) is non-negative, we may use, once more the comparison
from below by the Choquard energy, and we obtain without difficulty that Im,Hper >−∞.

Step 1: Compactness of the periodic density.
Let ϕn be a minimizing sequence of (85)–(86). It is clear that the Choquard energy

∫
R3

|∇ϕn|2 − 1
2
D

(|ϕn|2, |ϕn|2) (87)

of ϕn is bounded, and therefore, by using (67), that ϕn is bounded in H 1(R3).
Consequently, ρn = ∑

k∈Z3 ϕ 2
n (· − k) satisfies

√
ρ
n

is bounded in H 1
per(Q), (88)

for ∫
Q

ρn =
∫
R3

ϕ2
n = 1, (89)

and by convexity ∫
Q

∣∣∇√
ρn

∣∣2 �
∫
R3

|∇ϕn|2. (90)

It follows that (extracting a subsequence if necessary)
√
ρ
n

converges weakly in
H 1

per(Q), strongly in Lp(Q), 2 � p < 6 (by the Rellich–Kondrakov theorem), and thus
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almost everywhere on R3, to some
√
ρ satisfying

∫
Q

ρ = 1, (91)

and

lim
n→+∞DG(ρn −m,ρn −m)=DG(ρ −m,ρ −m). (92)

The “only” question that remains to settle is the behaviour of ϕn itself in order to pass
to the (lower) limit in the Choquard energy (87). (Note that the weak convergence of
ϕn in H 1(R3) is not sufficient to conclude.) Another point is worth to be noticed at this
stage. Since m and G are periodic, we obviously check that, for any k in Z3 and ϕ in
H 1(R3), Em,Hper (ϕ(· + k)) = Em,Hper (ϕ), and that ϕ(· + k) and ϕ yield the same density
ρ through (84). Therefore, the minimization problem under consideration has some
translation invariance, and the meaningful notion of convergence for the minimizing
sequences is the convergence up to some translation. For these reasons, we shall adopt in
the following the concentration-compactness approach (and its terminology), for which
we refer the reader to [34] and the Appendix of [35].

Step 2: Vanishing does not occur.
We argue by contradiction, and begin by assuming that the sequence ϕn vanishes, that

is to say, for all R > 0,

lim
n→+∞ sup

x∈R3

∫
x+BR

ϕ2
n = 0. (93)

A standard consequence of (93) (see [34]) is that ϕn converges to 0 in Lp(R3) for all
2< p < 6. Hence,

lim
n→+∞D

(
ϕ2
n, ϕ

2
n

) = 0. (94)

On the other hand, by the convexity argument used in (90), we have

lim inf
n→+∞

∫
R3

|∇ϕn|2 � lim inf
n→+∞

∫
Q

∣∣∇√
ρn

∣∣2 �
∫
Q

∣∣∇√
ρ
∣∣2
, (95)

where we recall that ρ is the limit of ρn. It follows from (94) and (95) that

Im,Hper + 1

2
DG(m,m)= lim inf

n→+∞

[∫
R3

|∇ϕn|2 − 1

2
D

(
ϕ2
n, ϕ

2
n

) + 1

2
DG(ρn −m,ρn −m)

]

�
∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m). (96)

Therefore, contradicting the vanishing assumption amounts to exhibiting some ϕ ∈
H 1(R3) such that the following two properties are satisfied

∑
k∈Z3

ϕ2(· − k)= ρ (97)
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and ∫
R3

|∇ϕ|2 − 1
2
D

(
ϕ2, ϕ2)< ∫

Q

∣∣∇√
ρ
∣∣2
. (98)

Indeed, assume for a moment that we have at our disposal some ϕ satisfying (97)–(98).
We then have

Im,Hper + 1
2
DG(m,m)

� inf
{∫

R3

|∇ψ |2 − 1

2
D

(
ψ2,ψ2); ψ ∈H 1(R3), ∑

k∈Z3

ψ2(· − k)= ρ
}

+ 1
2
DG(ρ −m,ρ −m)

�
∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2) + 1

2
DG(ρ −m,ρ −m)

<

∫
Q

∣∣∇√
ρ
∣∣2 + 1

2
DG(ρ −m,ρ −m).

This contradicts (96).
In order to construct a convenient ϕ, let us first of all consider a partition of unity. We

fix some ω1 ∈D(R3), ω1 � 0,
√
ω1 ∈W 1,∞(R3), and

∑
k∈Z3

ω1(· − k)= 1.

(Such a function exists; indeed, for any ϕ ∈ D(R3), with ϕ � 0 and
∫
ϕ = 1, ϕ � χQ

provides an example.) We next scale this function ω1 by defining, for all n ∈ N,

ωn = 1

n3
ω1

( ·
n

)
.

The function ωn yields again a partition of unity

∑
k∈Z3

ωn(· − k)= 1. (99)

Indeed, it suffices to remark that the function in the left-hand side of (99) is periodic and
to show by a simple calculation, that we leave to the reader, that its Fourier transform at
the points of Z3 is everywhere zero except at 0 where its takes the value one.

Next, we consider the sequence of functions ψn = √
ρ
√
ωn. It is easily checked that

ψn ∈H 1(R3) when
√
ρ ∈H 1

per(Q). By construction,

∑
k∈Z3

ψ2
n(· − k)= ρ(·)

∑
k∈Z3

ωn(· − k)= ρ(·),
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and we shall prove that, for n large enough,

∫
R3

|∇ψn|2 − 1
2
D

(
ψ2
n,ψ

2
n

)
<

∫
Q

∣∣∇√
ρ
∣∣2
.

We claim that

D
(
ψ2
n,ψ

2
n

) = 1

n

∫ ∫
R3×R3

ρ(nx)ρ(ny)ω1(x)ω1(y)

|x − y| dx dy

= 1
n
D(ω1,ω1)+ o

(
1
n

)
. (100)

In order to prove this claim, let us remark first that, by the Riemann-Lebesgue theorem,
the sequence of functions ρ(n ·) converges weakly in Lploc, for every 1 � p � 3, to the
constant function of value

∫
Q ρ = 1 as n goes to infinity.

Denoting for a while ρn(x)= ρ(nx), we remark next that

∫ ∫
R3×R3

ρ(nx)ρ(ny)ω1(x)ω1(y)

|x − y| dx dy =
∫
R3

(
ρnω1 �

1

|x|
)
ρnω1.

It is easy to see that (ρnω1) �
1
|x| is bounded in H 2

loc(R
3) since ρnω1 is bounded in

L2(R3). Therefore it strongly converges in L2
loc(R

3), to ω1 �
1
|x| , and thus ((ρnω1)�

1
|x|)ω1

converges in L2(R3) to (ω1 �
1
|x|)ω1. As ρn converges weakly locally in L2 to 1, we

obtain (100).
We now estimate∫

R3

|∇ψn|2 =
∫
R3

∣∣∇√
ρ
∣∣2
ωn + 2

∫
R3

√
ρ
√
ωn∇√

ρ · ∇√
ωn +

∫
R3

∣∣∇√
ωn

∣∣2
ρ

=
∫
Q

∣∣∇√
ρ
∣∣2 + 1

2n

∫
R3

∇ρ(nx) · ∇ω1(x)dx + 1
n2

∫
R3

∣∣∇√
ω1(x)

∣∣2
ρ(nx)dx.

To treat the last term, we remark that

1
n2

∫
R3

∣∣∇√
ω1(x)

∣∣2
ρ(nx)dx � 1

n2

∫
Supp(ω1)

∣∣∇√
ω1(x)

∣∣2
ρ(nx)dx

� 1
n2

∥∥∇√
ω1

∥∥2
L∞

∫
Supp(ω1)

ρ(nx)dx

� 1
n2
C te∥∥∇√

ω1

∥∥2
L∞

∫
Q

ρ = O
(

1
n2

)
.

For the second term, we compute by Green’s formula∫
R3

∇ρ(nx) · ∇ω1(x)dx = −
∫
R3

ρ(nx)�ω1(x)dx
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and the right-hand side goes to 0 as n goes to infinity, for ρ(nx) converges to 1 in D′(R3),
and

∫
R3�ω1 = 0. Therefore, we have

1
2n

∫
R3

∇ρ(nx) · ∇ω1(x)dx = o
(

1
n

)
.

Collecting these informations, we deduce

∫
R3

|∇ψn|2 =
∫
Q

∣∣∇√
ρ
∣∣2 + o

(
1
n

)
. (101)

From (101) together with (100), we obtain

∫
R3

|∇ψn|2 − 1
2
D

(
ψ2
n,ψ

2
n

) =
∫
Q

∣∣∇√
ρ
∣∣2 − 1

2n
D(ω1,ω1)+ o

(
1
n

)
.

Therefore, for n large enough, we obtain a convenient function ϕ in (97)–(98) by setting
ϕ = ψn. We have thus reached a contradiction, and it follows that vanishing does not
occur. The next step consists of ruling out dichotomy. As we shall see, this is somewhat
more intricate than ruling out vanishing.

Step 3: Dichotomy does not occur.
Let us come back to the minimizing sequence ϕn of our problem. Since (93) does

not occur, there exist a subsequence of ϕn (still denoted by ϕn), R0 > 0, ε0 > 0, and a
sequence of points yn in R3, such that

∫
BR0

ϕ2
n(· + yn)� ε0. (102)

By setting yn = [yn] + kn, with [yn] in Q and kn in Z3, and ϕ̃n = ϕn(· + kn), we
obtain another minimizing sequence ϕ̃n of Im,Hper , which yields the same limit density ρ.
Moreover, since [yn] is bounded, we infer from (102) that the weak limit of ϕ̃n in L2(R3)

is not identically zero. In all that follows, we shall work with the new sequence ϕ̃n (still
denoted by ϕn for simplicity). Without loss of generality, we may assume that ϕn � 0.
Moreover, with the help of Ekeland’s principle [16], given a minimizing sequence ϕ̂n,
we may construct a new minimizing sequence ϕn, such that

Im,Hper �Em,Hper (ϕn)�Em,Hper (ϕ̂n), (103)

and that

‖ϕ̂n − ϕn‖L2(R3) → 0, as n→ ∞. (104)

In particular, it is easily seen that the densities corresponding to ϕn and ϕ̂n, namely
ρn = ∑

k∈Z3 ϕ 2
n (·−k) and ρ̂n = ∑

k∈Z3 ϕ̂ 2
n (·−k), converge to the same limit ρ. Moreover,

ϕn satisfies
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−�ϕn −
(
ϕ2
n �

1
|x|

)
ϕn + (

G �Q (ρn −m))ϕn + εnϕn → 0, (105)

in L2(R3) (at least), as n goes to infinity, for some real number εn. We recall that,
in (105), m denotes the measure defining the smeared nucleus in the unit cell Q, and
we have denoted

G �Q (ρn −m)=
∫
Q

G(x − y)(ρn(y)−m(y)) dy.

In addition, εn is a sequence of “almost” Lagrange multipliers. Using the facts that
all minimizing sequences of Im,Hper are bounded in H 1(R3), we then easily deduce,
from (104) and Sobolev and Hölder’s inequalities, that

‖ϕ̂n − ϕn‖Lp(R3) → 0, as n→ ∞, (106)

for every 2 � p < 6, and we also check from (105) that εn is bounded. Moreover, we may
assume that ϕn converges to ϕ1 � 0, weakly in H 1(R3), strongly in Lploc(R

3), for every
1 � p < 6, and almost everywhere on R3. Moreover, because of (102),

∫
R3 ϕ

2
1 > 0. Of

course, if
∫

R3 ϕ
2
1 = 1, the proof is over. Indeed, (106) then yields the strong convergence

of ϕn and ϕ̂n to ϕ1 in Lp(R3), for every 2 � p < 6. In particular, ρ = ∑
k∈Z3 ϕ2

1(· − k),
and ϕ2

n �
1
|x| converges to ϕ2

1 �
1
|x| for the strong convergence in Lq(R3), for every

3< q <+∞. Hence,

lim
n→+∞D

(
ϕ2
n, ϕ

2
n

) =D(
ϕ2

1, ϕ
2
1

)
. (107)

Using (92), we thus prove without difficulty that

Im,Hper = lim sup
n→+∞

Em,Hper (ϕ̂n)

� lim inf
n→+∞ E

m,H
per (ϕ̂n)

� lim inf
n→+∞ E

m,H
per (ϕn)

�Em,Hper (ϕ1)

� Im,Hper .

Therefore, all above inequalities are equalities. In particular, ϕ1 is a minimizer of Im,Hper .
Moreover, we deduce from (107) and (92) that

lim
n→+∞

∫
R3

|∇ϕ̂n|2 = lim
n→+∞

∫
R3

|∇ϕn|2 =
∫
R3

|∇ϕ1|2,

and, thus, ϕ̂n and ϕn both converge to ϕ1 for the strong convergence in H 1(R3) (at least).
We now assume by contradiction that

∫
R3 ϕ

2
1 < 1, and set ϕ2,n = ϕn − ϕ1. We shall

analyze the behaviour of the sequence ϕ2,n, following the scheme of proof which is given
in the Appendix of Lions [35]. Since ϕ2,n is bounded in H 1(R3), we may reproduce
with ϕ2,n the same argument as the one we just made on ϕn. We leave apart for the
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moment the case when ϕ2,n vanishes in the sense of Step 2 (this case will be ruled
out in Step 4 below), and concentrate first on the most difficult case when a ‘standard’
dichotomy arises. That is to say, we assume that there exists a sequence of points yn
in R3, with |yn| → +∞, such that ϕ2,n(· + yn) converges to ϕ2 � 0, ϕ2 �≡ 0, weakly
in H 1(R3), strongly in Lploc(R

3), for every 1 � p < 6, and almost everywhere on R3.
When dichotomy occurs, we see, by reproducing several times the above argument, that
the sequence ϕn splits into many pieces, each piece going far away from all the others.
Assuming that, at each step, the case of vanishing is left apart for a while, we infer the
existence of functions ϕk ∈H 1(R3), ϕk � 0, such that

ϕn −
K∑
k=1

ϕk
(· + y(n)k ) → 0, (108)

strongly in L2(R3), as n goes to infinity, and for some sequences of points y(n)k ∈ R3

such that |y(n)k −y(n)l | → +∞, if k �= l. Let us observe that in (108) above, 2 �K � +∞
(when K = 1, ϕn is compact up to a translation). Our first step will consist in showing
that K is finite; that is to say, dichotomy may involve only finitely many pieces going
far away from each over. Indeed, otherwise, by setting αk = ∫

ϕ2
k > 0, we must have αk

going to 0, as k goes to infinity, since
∑
k�1 αk = 1, due to (108). Therefore, passing to

the limit in (105) as n goes to infinity, it is not difficult to check that the ϕk’s are infinitely
many (non-negative) solutions, in the sense of distributions at least, to

−�ϕk −
(
ϕ2
k �

1
|x|

)
ϕk +Wϕk + εϕk = 0, (109)

such that ϕk goes to 0 in L2(R3), as k goes to infinity, where we have denoted

W =G �Q (ρ −m), (110)

and where ε is the limit of the “almost Lagrange multipliers” εn appearing in (105).
The two main points in (109) are that (a) the Lagrange multiplier ε is the same in
all the equations, which is a standard fact in the concentration-compactness approach,
(b) the periodic potential W is also the same, which is a consequence of the fact that the
sequence of densities ρn is known to be compact from Step 1. It is to be noticed that the
argument which is used in the Appendix of [35] to prove that K is finite, within some
specific examples, is not valid in our case, for W is periodic (in particular, it does not
decay to 0 at infinity). Nevertheless, we may argue in the following way. Using (67) and
the fact that W is in L3/2

unif (R
3), it is a standard exercise to deduce from (109) (that we

apply to ϕk , and then integrate over R3), that ϕk is bounded in H 1(R3). Therefore, ϕk
converges to 0 strongly in Lp(R3), for every 2 � p < 6, almost everywhere on R3, and
weakly in H 1(R3). In fact, going back to (109), we even deduce the strong convergence
of ϕk to 0 in H 1(R3). We now claim that the sequence vk in H 1(R3), which is defined
by vk = ϕk/‖ϕk‖L2(R3), satisfies ‖vk‖L2(R3) = 1, together with

−�vk +W vk + εvk → 0, in L2(R3).
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This is simply a consequence of the convergence of ϕk to 0, and of the well-known bound

∥∥∥∥ϕ2
k �

1
|x|

∥∥∥∥
L∞(R3)

� 2‖ϕk‖L2(R3)‖∇ϕk‖L2(R3)

(which is, for example, deduced from Cauchy–Schwarz and Hardy’s inequalities). These
properties of vk imply that −ε is in the spectrum of −�+W (see, for example, [43]). We
then reach a contradiction, since we shall prove later that −ε is actually strictly below
the infimum of the spectrum of −�+W (see the comment following (126) below).

Having proved that dichotomy yields a finite number of “pieces”, we may argue now,
without loss of generality, as if there were only two pieces, ϕ1, and ϕ2,n, which is compact
up to the translation along the vectors yn. In other words, we have

ϕn − ϕ1 − ϕ2(· − yn)→ 0, (111)

strongly in Lp(R3), for every 2 � p < 6, and weakly in H 1(R3).
For reasons which will become clear in a moment, we define now the following family

of minimization problems, indexed by a density ρ̃ � 0, such that
√
ρ̃ ∈H 1

per(Q)

Iρ̃ = inf
{∫

R3

|∇ϕ|2 − 1
2
D

(
ϕ2, ϕ2);ϕ ∈H 1(R3), ∑

k∈Z3

ϕ2(x + k)= ρ̃(x)
}
. (112)

The fact that the minimizing sequence ϕn of the periodic Hartree problem (36) we
consider has split into two pieces ϕ1 and ϕ2,n (with the convergence (111)) while the
density ρn = ∑

k∈Z3 ϕ2
n(· + k) converges to the periodic density ρ of unit mass clearly

implies that {
Iρ � Iρ1 + Iρ2 ,

ρ = ρ1 + ρ2,
(113)

where we have denoted

ρi =
∑
k∈Z3

ϕ2
i (· + k), i = 1,2. (114)

In addition, we necessarily have

Iρi =
∫
R3

|∇ϕi|2 − 1
2
D

(
ϕ2
i , ϕ

2
i

)
, i = 1,2, (115)

for we always have

Iρ � Iρ1 + Iρ2 . (116)

Indeed, let ε > 0 be fixed, then there exist some functions ψi , i = 1,2, in D(R3), such
that

∑
k∈Z3 ψ2

i (· + k)= ρi , and

∫
R3

|∇ψi|2 − 1
2
D

(
ψ2
i ,ψ

2
i

)
� Iρi + ε. (117)
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Then, choosing n in Z3, such that ψ1 and ψ2(· + n) have disjoint supports, and defining
ψn =ψ1 +ψ2(· + n), it is easily seen that

∑
k∈Z3 ψ2

n(· + k)= ρ1 + ρ2 = ρ, and that

Iρ �
∫
R3

|∇ψn|2 − 1
2
D

(
ψ2
n,ψ

2
n

)

�
∑
i=1,2

[∫
R3

|∇ψi|2 − 1
2
D

(
ψ2
i ,ψ

2
i

)] + o(1)

� Iρ1 + Iρ2 + 2ε+ o(1),

where o(1) goes to 0 when n goes to infinity. Therefore, the inequality in (113) turns to
be an inequality, which gives (115). We deduce (116), by letting n go to infinity, and then
ε go to 0 in the above string of inequalities. In order to reach a contradiction with (113)
(and therefore conclude that dichotomy does not occur), we shall now prove the converse
inequality, namely

Iρ < Iρ1 + Iρ2 . (118)

Note that these strict inequalities (118) involve variational problems with pointwise
constraints, which is non-standard in the concentration-compactness method.

To proceed further, we need to obtain more information on the functions ϕ1 and ϕ2.
In particular, we prove now that these functions have an exponential decay at infinity.
Passing to the limit locally in (105), we thus obtain the system of equations

{−�ϕ1 − (ϕ2
1 �

1
|x|)ϕ1 +Wϕ1 + εϕ1 = 0,

−�ϕ2 − (ϕ2
2 �

1
|x|)ϕ2 +Wϕ2 + εϕ2 = 0,

(119)

with the periodic potential W being defined by (110).
First of all, as ϕi � 0 and ϕi �≡ 0, it follows from (119) and from the Harnack

inequality that ϕi > 0. Next, we claim that

ε > 0. (120)

For this purpose, we remark that
∫
Q ρ = 1, and therefore that

∫
Q

W = 0.

A straightforward consequence of this observation is that the first eigenvalue of the
operator −� +W on the unit cell Q, with periodic boundary conditions, denoted by
λ1(−�+W,per), is necessarily negative

λ1(−�+W,per) < 0. (121)

Indeed, it suffices to test the hamiltonian −�+W on the constant function 1
|Q| , which

yields λ1(−� +W,per) � 0, and to remark that this constant function cannot be the
first eigenfunction of −�+W unless W ≡ 0. This latter case may happen, but it is even
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simpler to conclude that ε > 0 then. Indeed, W ≡ 0 means ρ = m. The function ϕ1 is
then a positive solution to

−�ϕ1 −
(
ϕ2

1 �
1

|x|
)
ϕ1 + εϕ1 = 0.

If ε � 0, we then obtain λ1(−�− ϕ2
1 �

1
|x| ,*) > 0 on all bounded domain *, and this

cannot be true (use a rescaled function uσ (x) = σ 3/2u(σx) with σ small enough). We
shall therefore assume that W �≡ 0 in the sequel, which implies (121).

We shall denote henceforth by ϕper the first periodic eigenfunction of −�+W on Q.
From (121), we deduce that for any cube KR = [0,R]3 with R large enough, the

first eigenvalue of the operator −�+W on KR with homogeneous Dirichlet boundary
conditions, denoted by λ1(−�+W,KR), is negative. Indeed, it suffices to take as a test
function ψ/‖ψ‖L2 where ψ is built as follows: ψ is equal to ϕper on [1,R − 1]3, and
we glue to it a smooth function in order to satisfy the homogeneous Dirichlet boundary
conditions on ∂KR . Obviously,

∫
KR

|∇ψ |2 +Wψ2 = (R− 2)3λ1(−�+W,per)+ O
(
R2),

from where we deduce, for R large enough,

λ1(−�+W,KR) < 0,

and, therefore a fortiori,

λ1

(
−�−

(
ϕ2

1 �
1

|x|
)

+W,KR
)
< 0. (122)

Let us now contradict (120) and assume that ε � 0. We then have

{−�ϕ1 − (
ϕ2

1 �
1
|x|

)
ϕ1 +Wϕ1 = −εϕ � 0,

ϕ1 > 0.

A standard argument, recalled in [11], shows that this implies that for all bounded
domain *, the first eigenvalue of the operator appearing in the left-hand side with
homogeneous Dirichlet boundary conditions is non-negative:

λ1

(
−�−

(
ϕ2

1 �
1
|x|

)
+W,*

)
� 0. (123)

Of course, we reach a contradiction with (122), and therefore we have proven our
claim (120).
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Let us now see what this latter information implies on the behaviour at infinity of ϕ1

(the same holding true of course for ϕ2 respectively). We are in the following situation:




−�ϕ1 − (
ϕ2

1 �
1
|x|

)
ϕ1 +Wϕ1 + εϕ1 = 0,

ϕ1 > 0,
W isQ-periodic,

∫
QW = 0, ε > 0.

(124)

We claim that (124) implies that

ϕ1 (respectively ϕ2) has an exponential decay at infinity. (125)

This is probably a well-known fact. For the sake of consistency, we provide now one
possible proof of this claim.

We begin with proving that (124) implies

λ1(−�+W + ε,per) > 0. (126)

Let us make some comment on this inequality. (126) implies that −ε is strictly below the
essential spectrum of the linearized operator −�+W , since, as we are going to check,
λ1(−�+W,per) is precisely the bottom of the essential spectrum of −�+W . Indeed,
on the one hand, −� +W being a self-adjoint Schrödinger operators with a periodic
potential, its spectrum consists only of essential spectrum and λ1(−�+W,per) belongs
to the spectrum (see [43,15,52]). On the other hand, since W is in Lpunif (R

3), for some
p > 3/2, it follows, from the Rayleigh–Ritz principle and Harnack’s inequality, that
the first eigenfunction of −�+W with periodic boundary conditions on Q is positive.
Therefore, λ1(−�+W,per) is below the bottom of the spectrum of −�+W on R3

(see [46]). Let us turn now to the proof of (126).
It is easy to prove that λ1(−�+W+ε,per) cannot be strictly negative. Indeed, should

it be the case, we would just argue as we did before, building with the first eigenfunction
of −�+W + ε (which is of course the function ϕper introduced above) a convenient test
function in order to prove that we then have necessarily λ1(−�+W + ε,KR) < 0 for
some large enough cube KR . Now, because of (124), we must have in particular (arguing
as we did to prove (123)),

λ1(−�+W + ε,*) > 0

for any bounded domain *, and we therefore reach a contradiction.
In order to prove (126), it still remains to show that λ1(−�+W + ε,per) cannot be 0

either. For this purpose, we have to be a little more careful. If λ1(−�+W + ε,per)= 0,
we have

(−�+W + ε)ϕper = 0.

We consider the function χRϕper, where χR is a cut-off function built as follows

χR(x)= 1
R3/2

χ1

(
x

R

)
,
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with χ1 a given smooth cut-off function, spherically symmetric, that vanishes outside the
unit ball, and that is normalized by

∫
χ2

1 = 1. A simple computation shows that∫ ∣∣∇(χRϕper)
∣∣2 =

∫
ϕ2

per|∇χR|2 −
∫
χ2
R�ϕperϕper.

It follows that∫ ∣∣∇(χRϕper)
∣∣2 −

(
ϕ2

1 �
1

|x|
)
(χRϕper)

2 + (W + ε)(χRϕper)
2

=
∫
χ2
R

(−�ϕper + (W + ε)ϕper
)
ϕper −D(

ϕ2
1, χ

2
Rϕ

2
per

) +
∫
ϕ2

per|∇χR|2

= −D(
ϕ2

1 , χ
2
Rϕ

2
per

) +
∫
ϕ2

per|∇χR|2. (127)

We remark that ∫
ϕ2

per|∇χR|2 � ‖ϕper‖2
L∞

∫
|∇χR|2 = O

(
1
R2

)
,

and that

D
(
ϕ2

1 , χ
2
Rϕ

2
per

)
� (infϕper)

2D
(
ϕ2

1, χ
2
R

)
� (infϕper)

2 1

R

∫
BR

ϕ2
1

(the last inequality being true because of Newton’s theorem). Inserting both informations
into (127), we obtain that for R large enough, the left-hand side of (127) is negative, and
therefore

λ1

(
−�− ϕ2

1 �
1
|x| +W + ε,BR

)
< 0

which contradicts the fact that λ1(−� − ϕ2
1 �

1
|x| + W + ε,*) � 0, for any bounded

domain *. Hence, (126) is proven.
As (126) holds, we may choose some ε′ > 0, ε′ < ε, such that

λ1(−�+W + ε′,per) > 0. (128)

In addition, it is clear, using the fact that ϕ2
1 �

1
|x| goes to zero at infinity, that for some R

large enough, (124) implies


−�ϕ1 +Wϕ1 + ε′ϕ1 � 0, on BcR,
ϕ1 > 0,
W isQ-periodic,

∫
QW = 0, ε′ > 0,

λ1(−�+W + ε′,per) > 0.

(129)

We are going to see that this implies the exponential decay of ϕ1 at infinity. Let us first
of all fix some θ ∈]0,1[ close enough to 1, and some µ ∈ ]0, ε′[ close enough to ε′, such
that

λ1

(
−�+ 1

θ
(W +µ),per

)
> 0.
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This is of course possible because of (128). We then introduce the corresponding
periodic eigenfunction ψper which satisfies




−�ψper + 1
θ
(W +µ)ψper > 0 on R3,

ψper > 0,
ψper is Q-periodic,

∫
Qψ

2
per = 1,

(130)

and ψper ∈ L∞(R3). On the other hand, we set α = (ε′ −µ)/(1 − θ) and we define the
function

ψ1(x)= e−√
α|x|

|x| .

It satisfies, for any radius R > 0, and thus in particular for the R appearing in (129),{−�ψ1 + αψ1 � 0, on BcR
ψ1 > 0.

(131)

We are now going to show that the function

ψ =ψ(1−θ)
1 ψθper

is a supersolution to the equation in (129), i.e.

−�ψ +Wψ + ε′ψ � 0, on BcR.

Indeed, the point is to remark that by convexity

−�ψ = −�(
ψθ1ψ

(1−θ)
per

)
� −(1 − θ) ψ

ψ1
�ψ1 − θ ψ

ψper
�ψper.

Therefore,

−�ψ +Wψ + ε′ψ � ψ

ψ1

[−(1 − θ)�ψ1 + ε′ψ1 −µψ1
]

+ ψ

ψper

[−θ�ψper +Wψper +µψper
]

� 0,

in view of (131) and (130). The function ψ is therefore a supersolution.
Because of (128), we know that a fortiori the first eigenvalue of the operator

−�+W +ε′ on any bounded domain with homogeneous Dirichlet boundary conditions
is also strictly positive. Therefore, this operator satisfies the maximum principle on any
bounded domain. We now choose a large enough constant C such that ϕ1 �Cψ on ∂BR .
By a standard argument that we leave to the reader, we obtain ϕ1 � Cψ on BcR , and, as
ψ has an exponential decay, this yields the expected behaviour of ϕ1 at infinity.

As usual in the concentration compactness approach, the information that we now
have at our disposal on the exponential decay of ϕi will now be used to evaluate in a
precise way the behaviour of the energy.
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For this purpose, we consider the following sequence

ϕ̄n(x)=
√

ρ(x)∑
k∈Z3(ϕ1(x + k)+ ϕ2(x + k+ ne))2

(
ϕ1(x)+ ϕ2(x + ne)), (132)

where e denotes the unitary vector (1,0,0) ∈ R3.
The function ϕ̄n has been designed in such a way that

∑
k∈Z3

ϕ̄2
n(· + k)= ρ. (133)

In addition, because of the exponential decay of ϕ1 and ϕ2 at infinity, we have, for some
δ > 0,

∑
k∈Z3

(
ϕ1(x + k)+ ϕ2(x + k + ne))2 = ρ1 + ρ2 + O

(
e−δn) = ρ + O

(
e−δn), (134)

uniformly on R3. Let us now evaluate the energy of ϕ̄n. Because of (133), we must have
for all n

Iρ �
∫
R3

|∇ϕ̄n|2 − 1
2
D

(
ϕ̄2
n, ϕ̄

2
n

)
. (135)

On the other hand, using (134) and again the exponential decay of ϕ1 and ϕ2 at infinity,
we may compute∫

R3

|∇ϕ̄n|2 − 1
2
D

(
ϕ̄2
n, ϕ̄

2
n

) =
∫
R3

|∇ϕ1|2 − 1
2
D

(
ϕ2

1 , ϕ
2
1

) +
∫
R3

|∇ϕ2|2 − 1
2
D

(
ϕ2

2 , ϕ
2
2

)

−D(
ϕ2

1, ϕ
2
2(· + ne)

) + O
(
e−δn).

Therefore, in view of (115), we have∫
R3

|∇ϕ̄n|2 − 1
2
D

(
ϕ̄2
n, ϕ̄

2
n

) = Iρ1 + Iρ2 −D(
ϕ2

1, ϕ
2
2(· + ne)

) + O
(
e−δn)

= Iρ1 + Iρ2 − 1

n

∫
ϕ2

1

∫
ϕ2

2 + o
(

1

n

)
, (136)

which, for n large enough and along with (135), establishes (118) and contradicts (113).
Step 4: Conclusion.
In the preceding step, we have assumed for clarity that the dichotomy involves two

pieces that are compact (the second one up to a translation). A case that we have on
purpose omitted is the case when one part of the original sequence is compact, while
the other one, vanishes. In that case, ϕ2 ≡ 0 in the preceding proof and therefore (136)
does not allow to conclude. One thus has to use another strategy. What we are going
to show is that the work we have made in Step 2 to exclude the case of vanishing
allows to conclude also in that case. Assume that the original minimizing sequence ϕn
splits into ϕ1 > 0 (the one that is defined at the beginning of Step 3) and ϕ2,n such
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that the support of ϕ2,n goes to infinity (in the sense made precise by the dichotomy
assertion), and that moreover vanishes in the sense of Step 2. That is, for any sequence
(yn) of R3, ϕ2,n(· + yn) = (ϕn − ϕ1)(· + yn) converges to 0 weakly in H 1(R3), and,
actually, ϕ2,n converges to 0 strongly in Lp(R3), for every 2 < p < 6 (see [34]).
Let ρ2,n = ∑

k∈Z3 ϕ2
2,n(· + k). Then, ρ2,n is non-negative, Q-periodic, and, since the

sequence
√
ρ2,n is bounded in H 1

per(Q), it converges (maybe up to the extraction of
a subsequence) to

√
ρ2, with ρ2 non-negative and Q-periodic, weakly in H 1

per(Q), and
strongly in Lploc(R

3), for every 1 � p < 3, thanks to Rellich’s theorem. We now check
that, necessarily, ρ2 = ρ − ∑

k∈Z3 ϕ2
1(· + k) (and therefore the entire sequence ρ2,n

converges, not only a subsequence). Indeed, by observing that

ρ2,n = ρn − ∑
k∈Z3

ϕ2
1(· + k)− 2

∑
k∈Z3

ϕ1(· + k)ϕ2,n(· + k),

we get

∑
k∈Z3

∫
Q

ϕ1(x + k)|ϕ2,n(x + k)|dx =
∫
R3

ϕ1(x)|ϕ2,n(x)|dx.

We then easily conclude that
∑
k∈Z3 ϕ1(· + k)ϕ2,n(· + k) converges to 0 in L1

loc(R
3),

using for example the two facts that ϕ2,n converges to 0 in L4(R3) and that ϕ1 lies in the
corresponding dual space, that is L4/3(R3). Therefore, we deduce, by convexity, that

lim inf
n→+∞

∫
R3

|∇ϕn|2 =
∫
R3

|∇ϕ1|2 + lim inf
n→+∞

∫
R3

|∇ϕ2,n|2

�
∫
R3

|∇ϕ1|2 + lim inf
n→+∞

∫
Q

∣∣∇√
ρ2,n

∣∣2

�
∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2
.

Moreover, since ϕ2
n converges to ϕ2

1 strongly in Lp(R3), for every 1 < p < 3, ϕ2
n �

1
|x|

converges to ϕ2
1 �

1
|x| strongly in Lq(R3), for every 3< q <+∞. Hence, we have

lim
n→+∞ −1

2
D

(
ϕ2
n, ϕ

2
n

) = −1
2
D

(
ϕ2

1 , ϕ
2
1

)
.

It follows that

Im,Hper �
∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2 − 1
2
D

(
ϕ2

1, ϕ
2
1

)

+ 1
2
DG(ρ −m,ρ −m)− 1

2
DG(m,m). (137)
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In order to reach a contradiction, it therefore suffices to exhibit some ϕ2 ∈D(R3), ϕ2 � 0,
that satisfies

∑
k∈Z3 ϕ2

2(· + k)= ρ2 and

∫
R3

|∇ϕ2|2 − 1
2
D

(
ϕ2

2 , ϕ
2
2

)
<

∫
Q

∣∣∇√
ρ2

∣∣2
, (138)

and this is proven exactly like in Step 2. Indeed, we now check that

Im,Hper �
∫
R3

|∇ϕ1|2 +
∫
R3

|∇ϕ2|2 − 1
2
D

(
ϕ2

1, ϕ
2
1

) − 1
2
D

(
ϕ2

2, ϕ
2
2

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m),

in the following way. We set ϕ(n)2 = ϕ2(· + ne1), and we consider ϕ̃n = (ϕ1 +ϕ(n)2 )‖ϕ1 +
ϕ
(n)
2 ‖−1

L2(R3)
as a test function for Im,Hper . Then, Em,Hper (ϕ̃n) = Em,Hper (ϕ1 + ϕ(n)2 ) + o(1), as

n goes to infinity, for ‖ϕ̃n − (ϕ1 + ϕ(n)2 )‖H 1(R3) goes to 0. Moreover, using the fact that
ϕ
(n)
2 converges to 0 weakly in H 1(R3), it is easily proved that ϕ1 ϕ

(n)
2 converges to 0

strongly in Lp(R3), for every 1 � p � 3. We then check without difficulty, with the help
of arguments detailed before, that

lim
n→+∞D

((
ϕ1 + ϕ(n)2

)2
,
(
ϕ1 + ϕ(n)2

)2) =D(
ϕ2

1, ϕ
2
1

) +D(
ϕ2

2 , ϕ
2
2

)
,

and that
∑
k∈Z3(ϕ1 + ϕ

(n)
2 )

2(· + k) converges to ρ1 + ρ2 = ρ in Lploc(R
3), for every

1 � p < 3. Using (138), we finally obtain

Im,Hper � lim sup
n→∞

Em,Hper (ϕ̃n)

=
∫
R3

|∇ϕ1|2 +
∫
R3

|∇ϕ2|2 − 1
2
D

(
ϕ2

1, ϕ
2
1

) − 1
2
D

(
ϕ2

2 , ϕ
2
2

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m)

<

∫
R3

|∇ϕ1|2 +
∫
Q

∣∣∇√
ρ2

∣∣2 − 1
2
D

(
ϕ2

1, ϕ
2
1

)

+ 1

2
DG(ρ −m,ρ −m)− 1

2
DG(m,m),

and this yields the desired contradiction with (137).
Since both cases of vanishing and dichotomy have been ruled out, we thus are in

the case when the sequence ϕn is compact in L2(R3). This concludes the proof of the
theorem. ✷

The purpose of the following subsection is to compare from above the upper limit of
the energy per unit volume in the Hartree setting by the periodic Hartree model, under
symmetries assumptions which are made precise in Proposition 2.1.
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4.4. Upper limit of the energy per unit volume

This section is devoted to the proof of the following proposition which was announced
in Section 2, and which is recalled here for convenience.

PROPOSITION 2.1. – We assume that the Van Hove sequence 	 satisfies (41). We
assume here that the unit cellQ is a cube and that there exists a minimizer ϕper ∈H 1(R3)

of IHper which shares the symmetries of the unit cube. Then,

lim sup
	→∞

IH	

|	| � IHper + M

2
, (139)

where IHper is defined by (30)–(31).

Remark 4.1. –
(1) The same result holds in the case of smeared nuclei, if we assume moreover that m

shares the symmetries of the cubeQ, and defineM according to (40). However, we shall
provide a proof only in the case of point nuclei, the case of smeared nuclei being even
easier to deal with.

(2) In the H setting, since we do not know whether the minimizing ϕ is unique (up to
a translation), we are not able to prove that ϕ shares the symmetries of the cube; this is
the reason why this is an assumption in the statement of the above proposition. However,
this assumption is very natural from the physical point of view.

An easy by-product of the above result is the following. The argument which rules
out the vanishing case in the proof of the existence of a minimizer of IHper, by the
concentration-compactness method, yields in particular that, given aQ-periodic function
ρ � 0 such that

√
ρ ∈H 1

unif (R
3) and

∫
Q ρ = 1, we may find a function ϕ ∈H 1(R3), with∑

k∈Z3 ϕ2(· − k)= ρ (and, thus
∫

R3 ϕ
2 = 1), such that

∫
R3

|∇ϕ|2 − 1

2
D

(
ϕ2, ϕ2)< ∫

Q

∣∣∇√
ρ
∣∣2

(see (97) and (98) in Section 4.3). Therefore, applying this result to the density ρ which
minimizes IRH

per , we make use of the corresponding function ϕ as a test-function for IHper,
to obtain

lim sup
	→∞

IH	

|	| � IHper + M

2
�EHper(ϕ)+

M

2
<ERH

per (ρ)+
M

2
= IRH

per + M

2
.

Thus, while passing to the thermodynamic limit in the energy per unit volume, the
Hartree model does not degenerate to the model IRH

per , which would be the case if the
sum of the self-interaction of the electrons was negligible with respect to |	|.

The rest of this section is now devoted to the

Proof of Proposition 2.1. – Let us denote by ϕper a minimizer of the periodic H
problem which shares the symmetries of the unit cube. According to the definitions (19),
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(20) and (21) of the Hartree problem, the |	| functions ϕper(· − k), for k describing 	,
are test-functions for IH	 , and

IH	 �E	
({ϕper(· − k);k ∈	})

= |	|
[∫

R3

|∇ϕper|2 − 1
2
D

(
ϕ2

per, ϕ
2
per

)] −
∫
R3

V	 ρ	 + 1
2
D(ρ	,ρ	)+ 1

2
U	,

where ρ	 = ∑
k∈	 ϕ2

per(· − k). If we compare now with the definitions (30) and (31) of
the periodic Hartree model, we observe that proving (139) amounts to proving that

lim
	→∞

1
|	|

[
−

∫
R3

V	 ρ	 + 1
2
D(ρ	,ρ	)+ 1

2
U	

]

= −
∫
Q

Gρper + 1
2
DG(ρper, ρper)+ M

2
. (140)

First of all, we write down equivalent expressions for the effective potential �	, with
the help of the definition of ρ	, in the following way.

�	(x)= V	 − ρ	 � 1

|x| = ∑
k∈	

(
1

|x − k| −
∫
R3

ϕper(y)
2

|x − k − y| dy
)
.

We first make the following observation. Since ϕper shares the symmetries of the unit
cube, and since

∫
R3 ϕ

2
per = 1, we may show the existence of a positive constant C such

that ∣∣∣∣ 1
|x| −

∫
R3

ϕ2
per(y)

|x − y| dy
∣∣∣∣ � C

|x|4 , (141)

for almost every x in R3 (see [32] and [11]). Let us emphasize the fact that the symmetry
assumption on ϕper is crucial for this bound to hold (see more details in [11]). We now
introduce

�per(x)=
∑
k∈Z3

(
1

|x − k| −
∫
R3

ϕper(y)
2

|x − k − y| dy
)
.

Because of (141), the series arising in the right-hand side of the definition of �per is
absolutely convergent on R3 and even uniformly convergent on the compact subsets of
R3 \ Z3. Moreover, since �per is clearly Q-periodic, and satisfies

−��per = 4π
[ ∑
k∈Z3

δk − ρper

]
(142)

(at least in the sense of distributions), we deduce that, there exists a constant d , such that

�per =G−G �Q ρper + d,
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for G−G �Q ρper is another Q-periodic solution to (142). Then, we prove like in [11]
or [32], that

‖�	‖Lp(R3) �C|	|1/p, for all 1 � p < 3, (143)

where, otherwise specified, C denotes here and below various positive constants that are
independent of 	,

1
|	|

∫

(	)c

|�	|p → 0, for all 1 � p <+∞, (144)

and
1

|	|
∫

(	)

|�	 −�per|p → 0, for all 1 � p <+∞, (145)

as 	 goes to infinity. From the proof of the existence of a minimizer for IHper, we know
that there exist positive constants C and µ such that

0 � ϕper(x)� C exp(−µ|x|), a.e. on R3,

and then, the analogous bounds and convergence results are also easily proved for ρ	;
that is

‖ρ	‖Lp(R3) � C|	|1/p, for all 1 � p� +∞, (146)

1
|	|

∫

(	)c

|ρ	|p → 0, for all 1 � p <+∞, (147)

and
1

|	|
∫

(	)

|ρ	 − ρper|p → 0, for all 1 � p <+∞, (148)

as 	 goes to infinity.
We may now turn to the proof of (140). First, we check that

lim
	→∞

1
|	|

[
−1

2

∫
R3

V	ρ	 + 1
2
U	

]
= −1

2

∫
Q

Gρper + M

2
+ d

2
. (149)

Indeed, we have

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
U	

]
= 1

2|	|
∑
k∈	

lim
x→k

(
�	(x)− 1

|x − k|
)

= 1

2|	|
∑
k∈	

lim
x→0

(
�	(x + k)− 1

|x|
)

= 1

2
lim
x→0

(
�̃	(x)− 1

|x|
)
,
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and it is shown in [11] that �̃	 converges to �per uniformly on the compact subsets of
R3. Thus, thanks to the definition of �per, we get

lim
	→∞

1
2

lim
x→0

(
�̃	(x)− 1

|x|
)

= 1
2

lim
x→0

(
�per(x)− 1

|x|
)

= −1
2

∫
Q

G ρper + M

2
+ d

2
,

which gives (149).
Secondly, we establish that

lim
	→∞

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
D(ρ	,ρ	)

]

= −1
2

∫
Q

Gρper + 1
2
DG(ρper, ρper)− d

2
, (150)

by remarking that

1

|	|
[
−1

2

∫
R3

V	ρ	 + 1

2
D(ρ	,ρ	)

]

= − 1
2|	|

∫
R3

�	ρ	 = − 1
2 |	|

∫

(	)

�	ρ	 + o(1)

= − 1
2|	|

∫

(	)

�perρper + o(1)= −1
2

∫
Q

�per ρper + o(1)

= −1

2

∫
Q

Gρper + 1

2
DG(ρper, ρper)− d

2
+ o(1),

as 	 goes to infinity. This string of equalities is straightforwardly verified with the
help of (143), (144), (145), (146), (147), and (148). The proof of (140) (and thus of
Proposition 2.1) follows gathering together (149) and (150). ✷
4.5. Some final comments on the Hartree type models

Theorem 2.2 deserves some comments, that we list in this paragraph.
First of all, let us notice that Theorem 2.2 provides an existence result of a normalized

(
∫

R3 ϕ
2 = 1) solution to the associated Euler–Lagrange equation, namely

−�ϕ −
(
ϕ2 �

1
|x|

)
ϕ + (

G �Q (ρ −m))ϕ + εϕ = 0. (151)

Existence (and bifurcation) results for this type of nonlinear equation (Choquard–Pekar
equation) have already been obtained by B. Buffoni, L. Jeanjean, Ch. Stuart et al. [7,
8,20–22,50], but as far as we know, the existence of a normalized solution was still an
open question. Theorem 2.2 settles this question.
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Secondly, it is usual in Solid State Physics to consider Hartree-type equations of the
more general form

−�ϕ +F(ϕ)ϕ +Wϕ + εϕ = 0,

where F(ϕ)ϕ is some local correction to the mean-field potential W . For example,
in (151),W =G�Q (ρ−m) is the electrostatic periodic potential created by the periodic
lattice of nuclei and by the electronic density ρ, while the more usual term −(ϕ2 � 1

|x|)ϕ
takes into account the self-interaction of each electron with itself. Therefore, it seems
to us that the Hartree equation (151) we have obtained is likely to be not so far from
equations used by Solid State physicists.

Thirdly, we must confess it may seem surprising that such an apparently easy
minimization problem, set on the unit cellQ with periodic boundary conditions, leads to
such a complicated proof. However, we have not been able (so far) to simplify the above
proof. In some sense, one can find some relationship between our strategy of proof and
ideas developed by O. Lopes in [37,38,36] for some translation invariant problems of a
similar type.

Finally, let us emphasize again that we do not know of any rigorous proof of the fact
that this periodic minimization problem is indeed obtained in the thermodynamic limit
for an arbitrary Hartree type model. It must be clear to the reader that the only case when
we are able to conclude (Proposition 4.1) is very particular. Nevertheless, we believe it
has some kind of generality. At least, we hope that the present suggestion for a periodic
Hartree model will stimulate further research.

5. Extensions and perspectives

We list in this last section a few comments on the above results, and indicate some
possible extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequence 	 is Z3, and thus that the periodic cell Q is a cube of unit size. The first
basic observation to make is that our whole work goes through mutatis mutandis if we
replace the cube of unit size by a cube of size R. Slight modifications must be made in
the definition of the potential G in particular, and we refer the reader to [11] for such
modifications.

Replacing the cube by another shape of unit cell is another story. As we have
mentioned above, Theorems 2.1 and 2.2 still hold. So does Proposition 4.1. On the
contrary, our strategy of proof for Proposition 2.1 depends upon the shape of the cell. It
is an open (but rather technical) question to extend this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (41) is a technical assumption
required only for the proof of Proposition 2.1. We recall we believe it can be skipped,
but we do not know how.

Apart from these side issues, the main open problem to tackle is the proof of the
thermodynamic limit for the energy per unit volume in the Hartree model. As far as this
question is concerned, a lot remains to be done.
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Even in some simplified framework, trying to understand Hartree type models for
quasicrystals would also be of interest. Our study [11] and references [1,3,6,45] could
constitute a starting point.

Let us also mention that the periodic problems we have defined in this work can
be treated numerically, and we indeed intend to treat them numerically. Numerical
experiment might in particular give some insight into the mathematical nature of these
models and help oneself to make up his mind on some of the questions mentioned above.

We finally recall from the introduction that the same issues on the Hartree–Fock model
(and some of its simplified form) are studied by the authors in [13].
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