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ABSTRACT. — It is shown that if u is a solution of the initial value problem for the generalized
Korteweg—de Vries equation such that there exists b € R with suppu(-,t;) € (b, 00) (or
(=00, b)), for j=1,2(t; #12),thenu =0. ©
© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

AMS classification: Primary 35Q53; secondary 35G25; 35D99
Keywords: Korteweg—de Vries equation; Compact support; Carleman estimates

RESUME. — On montre que si u est une solution du probleéme de Cauchy pour 1’équation
généralise de Korteweg—de Vries et b € R tel que suppu(-,t;) € (b, 00) (ou (—00, b)), pour
Jj=1,2(t) # 1), alors u est nulle.
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1. Introduction

Consider the following question: Let u = u(x, t) be a real valued solution of the k-
generalized Korteweg—de Vries (k-gKdV) equation

du+ddu+uou=0 (x,0)eRx(t,t), keZ", (1.1)
with #; < t, which is sufficiently smooth and such that
suppu(-,t;) € (a,b), —oco<a<b<oo, j=1,2. (1.2)

Isu=0?
The first results in this direction are due to Saut and Scheurer [9]. They established
the following unique continuation result.

THEOREM 1.1 ([9]). — Assume that u = u(x, t) satisfies the equation

2
u+0ju+> rx,n)dlu=0, (x,1)€a,b)x (i, n), (1.3)
j=0
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with
r; € L®((ti, ) : L} (a, b)). (1.4)

loc

If u vanishes on an open set Q C (a,b) x (t1,t,), then u vanishes in the horizontal
components of 2, i.e. the set

{(x.1) € (a, b) x (t1, 1): Ty such that (y.1) € Q}. (1.5)

As a consequence they obtained the following result.

COROLLARY 1.2 ([9]). — If u is a sufficiently smooth solution of Eq. (1.1) with
suppu(-, 1) € (a,b), Vi€ (11, 1), (1.6)

then u = 0.

The key step in Saut—Scheurer’s argument is the following Carleman estimate:
Assume (0, 0) € 2 then 36y, M, K > 0 such that

K//|8,u+83u|zexp(2k<p)dxdt
Q
2k//lafulzexp(ZAgo)dxdt+A2//|8xulzexp(2kcp)dxdt w7
Q Q

+A4//|u|2exp(2kcp)dxdt
Q

forall A with A8 > M, 0 <8 < 8y and ¢(x,1) = (x — &) + 8212,
In 1992, Zhang [12] gave a positive answer to our question for the KdV equation

du+3>u4+udu=0 (1.8)

and for
du+d>u —u*du =0, (1.9)

using inverse scattering theory and Miura’s transformation.

In 1997, Bourgain [1] used a different approach to reprove Corollary 1.2. His argument
is based on the analyticity of the nonlinear term and the dispersion relation of the linear
part of the equation. It also applies to higher order dispersive nonlinear models, and to
higher spatial dimensions.

Recently, Tarama [11] showed that solutions u(x,¢) of the KdV equation (1.8)
corresponding to data uo € L*>(R) such that

0]

/(1 + |x])|uo(x)| dx + /e“xl”ﬁuo(x)ﬂdx <0 (1.10)
0

—00
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for some § > 0, becomes analytic with respect to the space variable x for # > 0. The
proof is based on the inverse scattering method. Clearly this also provides a positive
answer to our question in the case of the KdV equation.

The statement of our main result is the following.

THEOREM 1.3. — Suppose that u is a sufficiently smooth real valued solution of
du+u+ F(x,t,u,du,d7u) =0, (x,1) €R x [t1, 1], (1.11)

where F € C3 in (x,1), of polynomial growth in the other variables, at least quadratic
in (u, oyu, afu)for any (x,t) € R x [11, t5].
If
suppu(-,t;) € (—00,b), j=1,2,
! (1.12)
(or suppu(-,t;) € (a,00), j=1,2),

then u = 0.

Remarks. — (a) For the KdV equation (1.8) Zhang [12] also had a similar result, i.e.
one-sided support (1.12). Also for the KdV equation as a consequence of Tarama’s result
in [11] one finds that u = 0, if there exists #; < , such that suppu(-, ;) € (—oo, b) and
suppu(-, 1) < (a, 00).

(b) It will be clear from our proof below that the result in Theorem 1.3 extends
to complex valued solutions for the cases where energy estimates are available (see
Lemma 2.1). For example, this holds for the equation

du+ddut|u*o,u=0, keZ. (1.13)

(c) Although here we are not concerned with the minimal regularity assumptions on
the solution u required in Theorem 1.3, we remark that it suffices to assume that

ueC([t, bl HR)NC([t, ] : HY(R)). (1.14)

(d) To simplify the exposition we will carry out the details only in the case of the
k-generalized KdV equation (1.1). In this case it suffices to assume that

ueC([t, 6l HH®R)NC'([t;, ] : H'(R)). (1.15)

For the existence theory we refer to [5].
(e) Theorem 1.3 and its proof below extend to higher order dispersive models of the
form

du+ X u+ F(x,t,u,...,07u)=0, jeZv, (1.16)

whose local theory was developed in [6].
(f) It should be remarked that we do not assume analyticity of the nonlinearity F.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1.3
assuming a key step in the proof, Lemma 2.3, whose proof is given in Section 3. Section 4
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contains some remarks concerning the proofs and extensions of some of the results used
in the proof of Theorem 1.3.

2. Proof of Theorem 1.3
Without loss of generality we assume that t; =0, £, = 1. Thus,
Suppu('90)9suppu('a 1) g (_009 b) (21)

We need some preliminary results.
The first one is concerned with the decay properties of solutions to the k-gKdV. The
idea goes back to Kato [3].

LEMMA 2.1.—Letu = u(x, t) be a real valued solution of the k-gKdV equation (1.1)
such that

sup [lu(-, 1)[lg1 <00 (2.2)
tel0,1]
and such that for a given § > 0
e’ uy e L*(R). (2.3)
Then
e ueC(l0,11: L*(R)). (2.4)

Proof. — Let ¢, € C®(R), with ¢,(x) = ef* for x < n, ¢,(x) = e*" for x > 10n,
on(x) <, 0 < g, (x) < B (), and | ()] < B (x), j =2, 3.
Multiplying Eq. (1.1) by ug,, and integrating by parts we get

1d 1
, dx B) 203 dx / gl dx = 2.5
2dz/”‘p +/( )’y 2/”‘” ) *=0. @5)
Thus
d 2p
5 [edx<B [wg,ax+ S ulte [, 2.6)
and
sup [ u?(x, )@, (x)dx < ( / ugeh )exp(C*), (2.7
te[0,1]
where
2B
3 k
—,B +k—|—2” ”LOO(RX[OJ])' (2-8)

Now taking n 1 oo we obtain the desired result (2.4). O

Lemma 2.1 has the following extension to higher derivatives.
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LEMMA 22.—Let j € Z,j > 1. Let u = u(x,t) be a solution of the k-gKdV
equation (1.1) such that

sup [lu(:, )|l i+ < 00 (2.9)
t€l0,1]
and for a given > 0
ePug, ..., eMdluy e L*(R). (2.10)
Then
sup [|e?*u(t)||qjm1 < ¢j = cjug; C*), (2.11)
1

tel0,1
with C* as in (2.8).

Under the hypothesis (2.9)—(2.10) the result in [3] (Theorem 11.1) guarantees that
ueC*®MRx (0,1]).
To state the next results we need to introduce some notation,

FeCy (R if o f,02f,83f, 8, f € Co(R?), (2.12)

and
feCy'(R?) if feCy'(R?) with compact support. (2.13)

Next, following the ideas in Kenig et al. [7] and Kenig and Sogge [8] we have the
following Carleman estimates.

LEMMA 2.3.—If f € C3''(R?) (see (2.13)), then

e Fll sy < clle™ {3 + 073 £l e, (2.14)

for all & € R, with c independent of ) and the support of f.

The proof of Lemma 2.3, which is similar to those in [7] and [8], will be given in
Section 3.

LEMMA 2.4.—If g € C>'(R?) (see (2.12)) is such that

suppg € [-M, M] x [0, 1] (2.15)

and
g(x,0)=¢g(x,1)=0, VxeR, (2.16)

then
HeMgHLX(Rx[o,l]) < CHeM{at + aS}gHL??ﬂ(Rx[O,l]) (2.17)

for all & € R, with ¢ independent of ).

Proof. — Let 6, € C°(R), with 6.(t) = 1 fort € (¢, 1 —¢),0 < 0,(¢) < 1 and |0/(¢)| <
c/e.
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Let

8e(x, 1) =0.(1)g(x, 1),
we will apply (2.14) to g, for all € > 0. On the one hand

HeAXgEHLfK(W) = HekngHLg(]Rx[O,l]) - ||ekxg||L8(Rx[o,1]) as e | 0.

On the other hand,

{8, +33 g =0.(){8, +3}}g +0/()g,

He“@s(t){a, + 85}8‘}L8/7(R2) g He“{a, + 85}8‘}L8/7(Rx[0,1])’

and

e M 7/8
, C
||98<r>g||Lsn(Rz><g< / / |g<x,t)|8/7dxdt>

0 -M

1 M 7/8
¢ 8/7
+_<//|8(X,l)| dxdt) —0 ase 0
¢ l—e—M

from the mean value theorem. 0O
LEMMA 2.5.—Let g € C,f’l(]R x [0, 1]) (see (2.12)). Suppose that
> 10lgx, 0 <cge™™, 1e[0,1], VB >0, x>0,
j<2
and
gx,0)=g(x,1)=0, VxeR.
Then
3
HeMgHLS(Rx[o,u) < COHGM{at + 05 }gHL8/7(Rx[O,1])
for all & € R, with ¢y independent of X, A > 0.

Proof. — Let ¢ € C3°(R) be an even, nonincreasing function for x > 0 with
¢(x)=1,|x| <1, and supp ¢ < [—2, 2]. Define ¢y (x) = (x/M).

Let gy (x, 1) = dp(x)g(x,1).
Since

{0+ 07w = b {0 + 07} g + 309078 + 307 du 38 + 3 Pmg
=¢u{0 +0,}g+ E1 + E» + Es,
applying Lemma 2.4 to g (x, t) we get
||eMgM||L8(Rx[0,1])

< CHeM{at + 83:}gM||L8/7(Rx[O,1])

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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3
< c|’e“¢M{8, + 83}g||L8/7(Rx[0,1]) tc Z HeMEj HL3/7(R><[O,1])' (2.27)
j=1
We need to show that the terms involving the L3/7-norm of the “errors” E,, E,, and
E5 in (2.27) tend to zero as M 1 oo. It suffices to consider one of them, say Ej, since
the proof for E,, Ej is similar. Also it will be clear from the argument given below that
it suffices to consider only the case x > 0. From (2.23) with 8 > A it follows that

1 2M
& Bl oy =3 [ [ 1€ 0.uozel dxar
M

M ax 8/7
dx dt

Thus, taking the limit as M 1 oo in (2.27) and using (2.28) we obtain (2.25).

LEMMA 2.6. — Suppose u = u(x,t) € C([0, 1] : H*(R)) N C'([0, 1] : H'(R)) satis-
fies the equation

du+ddu+uo,u=0, (x,1)eRx][0,1] (2.29)
with
suppu(x, 0) C (—o0, b]. (2.30)
Then for any g >0
Z |8){u(x, t)| < ch,lge_ﬂx, forx >0, t €[0,1]. (2.31)
Js2

Proof. — It follows from Lemma 2.2. O

Proof of Theorem 1.3. — We will show that there exists a large number R > 0 such that
suppu(-,t) C (—o0,2R], Vte]l0,1]. (2.32)
Then Saut—Schaurer’s result (Theorem 1.1) completes the proof. O
Let u € C*°(R) be a nondecreasing function such that u(x) =0,x <1 and pu(x) =
1,x > 2. Let ugr(x) = u(x/R).
Define
Vx,t) =u"""(x, 0)du(x, 1) e LP(R x [0,1]), Vpe[l,o0] (by (2.31)), (2.33)

and

ur(x,t) = urxX)u(x,t). (2.34)
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Combining our assumptions (see (1.15)) and Lemma 2.6 we can apply Lemma 2.5 to

ur(x,t) for R sufficiently large. Thus, using that

{00+ 97 ur(x, 1) = {8, + 0 } (ru)
= urVu—+ 38x;LR8§u + 38§uR8xu + aSMRM
= urVu+Fi+ 4+ F3=pupVu+ Fg,
it follows that

||eMMR“||L8(Rx[0 S COHCM{BZ + 83}(MR”)HL8/7(Rx[o 1)
< COHC MR VM||L8/7(]R><[0,1]) + c0||e FRHL*”(]RX[O,I])’

where ¢y is the constant coming from Lemma 2.5, (2.25). Then

COHeM“R V“HLSW(Rx[o,u) < COHCMNR“HLS(Rx[o,l]) IV Il L4 (x> Ry x10,17)-

Now we fix R so large such that

Co ” Vv ”L4/3({x2R}x[0,1]) < 1/2

From (2.36)—(2.38) one finds that

||eAx(MRM)HL3(]R><[O,1]) < 2COHCMFRHL8/7(Rx[0,1])'

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

As in the proof of Lemma 2.5 to estimate the left hand side of (2.39) it suffices to
consider one of the terms in Fg, say F;, since the proofs for Fi, F3 are similar. We recall

that the supports of the F;’s are contained in the interval [R, 2R]. Thus,

) 1 2R 7/8
€o
2¢0/€™* ol ps/r o)y < F( / / eg“/ﬂaxu(x,tng”dxdt)

1
2CO ZAR</
0

R 7/8

J

19,u(x, )37 dx dt)
R

On the other hand,

1

1/8
||CMWR”)||L8(R><[0,1])></ / eguIbt(x,t)lgdxdt> .

0 x>2R
Combining (2.39)—(2.41) we conclude that

1 1 2R

1/8 2 2
C
(/ / e8“x—2R>|u(x,z)|3dxdt> <R—§<//
0

0 x>2R R

7/8
10,1 (x, 1)|37 dx dt) )

(2.40)

(2.41)

(2.42)
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Now letting A 1 oo it follows that
u(x,t)=0 forx>2R,te]0,1], (2.43)

which yields the proof.

To complete this section we will sketch the proof of Lemmas 2.1 and 2.2 (and
consequently that of Lemma 2.6) for the general equation in (1.10).

Taking the x-derivative of order j, with j =1, 2, of Eq. (1.11) and using the notation

vj(x,t)za){u(x,t), j=0,1,2, (2.44)
we obtain the system (written in a convenient form)

dvo + v + F(x 1, o, v1, v2) =0,

0,1 +83v1 —i— (x tu, o, u)axvz—i-Gl(x,t, Vg, V1, Up) =0,
3 5 (2.45)
0;vp + 0 vz—i- (x t,u, o u, u)axvz

+ Ga(x,t,u, Bxu, 32u)d,va + G3(x, 1, vo, v1, v2) =0,

where F € C§ and G, € CS,k = 1,2,3, in the (x,?) variables, having polynomial
growth in the other variables.

Multiplying the equation for v; in (2.45) by 2v;e", b > 0, integrating the result with
respect to the x-variable, adding in j, and (formally) using integration by parts one finds
that

Z/ "de+32/(3 v;)*e” dx

; s (2.46)
F
</ —(x,t,u, Oyu, E)fu) (3, v2)%e dx + |a(0)] Z/vjz-ebx dx,
8)65 =0

where

/ a1t < e = c{sup lu(®)] ;b5 FO). (2.47)
Hence, by taking

F 2
b>by= sup — (x, t,u(x, 1), dyu(x, 1), du(x, 1)), (2.48)
(x.1)eRx[0,1]| 0X5

we have proven that if Bgu(x,())e”x e L*(R) for any b € R, with j =0,1,2 and
u e C([0,1]: H>(R)), then

d/ue™ e C([0,1]: L*(R)), j=0,1,2. (2.49)

It is clear that the above argument extends to j = 3,4 ifu € C([0, 1] : H'(R)).
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3. Proof of Lemma 2.3

We shall prove that if f € CS’I(RZ), see (2.13), then
||exxf|’L8(R2) < c||e“{8, + 83}f||L3/7(R2)’ CRY
for all A € R, with ¢ independent of A and the support of f.
We divide the proof into five steps.

Step 1. It suffices to consider the cases A = 41 in (3.1).

Proof. — To prove the claim we observe that the case A = 0 follows from the case
A # 0 by taking the limit as A — 0. So we can restrict ourselves to the case A # 0.
Consider the case A > 0 (the proof for A < 0 is similar). Assume that

||exf||L3(R2) <clle{d + 83}f||L3/7(R2) (3.2)
forall f € Cy' (R?) with ¢ independent of A.
Defining
f(xe, 1) = f(x/x,t/27), (3.3)
one has that
1
{8, +3}} fr(x, 1) = F(atf(x/x, t/23) 4+ 92 f (x/x, t/23)). (3.4)
From the change of variables
(v,s) = (x/A,t/2%), dxdr=2*dyds, (3.5)
(
it follows that
le* Fill s = 2475 1€™ Fll s = 2121 £l s, (3.6)

and

AHTI8
le* 40 + 933 fill o = == 140 + 873 F [ = 221 {05 + 373 Fll s B7)

A

Inserting (3.6)—(3.7) into (3.2) we obtain (3.1), which proves the claim.
Step 2. To prove (3.2) it suffices to establish the following inequality
lgllzs <cl[{9 + 07 — 307 + 30, — 1}g| 57 (3.8)

for any g € C3''(R?), see (2.13).
Proof. — Let
glx,t)y=¢e"f(x,t). (3.9)
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Since
e {8, + 3} f={8,+0; —302+30, — 1}g, (3.10)
we obtain (3.2).

Step 3. It suffices to prove the inequality (3.8) without the term in the left hand side
involving the derivatives of order 1 in the x-variable. In other words, to prove (3.8) it
suffices to show

Il s < c||{d: + 8] — 337 — 1} A s, (3.11)
for any h € C3'' (R?), see (2.13).
Proof. — Using the change of variables

y=x/3+t, s=t (x=30-y), t=s), (dyds=dxdt/3), (3.12)

and the notation

h(y,s)=g(x,1t) (3.13)
it follows that
oh 0 oh 0 0
A i A R (3.14)
ay ox as dx Ot

Thus, (3.8) can be written in the equivalent form

Al s <c {as—iatlaz—l}h . (3.15)
277 37 L8/7
Finally, making another change of variables
z:—%y, t=s (aj:—%ag, aj:%a)%, a,:as), (3.16)
it follows that (3.15) is equivalent to
Il s < c||{d; + 82 — 382 — 1}h| s, (3.17)

which proves the claim.

Step 4. We will need the following results (Lemmas 3.1-3.2). The first one is an
estimate of Strichartz type.

LEMMA 3.1.-

- <l fllesrmeys (3.18)
L3(R2)

H /ei(x,r)~(é£3)f(§, £7)d¢
R

where ~ denotes the Fourier transform.



202 C.E.KENIG ET AL. / Ann. L. H. Poincaré — AN 19 (2002) 191-208

Proof of Lemma 3.1. — Using the notation

0]

U(t)vo(X)=/ 050 (8) d = () (. 1), (3.19)

—00

the inequality (3.18) can be written as

t—t)f(,t)d <cll fllsrn gy (3.20)

L3(R2)

whose proof can be found in [2], (Lemma 2.1) or in [4], (Theorem 2.1). O

LEMMA 3.2. -
Al s <c|’{at+a)?+a}h|’L8/7a (3.21)
forany h € CS’I(RZ), see (2.13), with ¢ independent of a € R.

Proof of Lemma 3.2. — Using the notation introduced in (3.19) we recall the decay
estimate

c
U @) voll 3wy < W lvoll £3/7(w)> (3.22)

which follows by interpolating the estimates

1T (@Dvoll 2 = llvoll 2, U (@)voll > I |1/3 llvoll - (3.23)

An homogeneity argument, similar to that given in step 1, shows that it suffices to
consider only the case |a| = 1. We thus need to prove the multiplier estimate

1 ~
‘ (mh@ ) H( h(% T)) <cllhllpso. (3.24)

L8
Let . denotes the operator
(e e lNe o) 1
Sih(x.t) = / / D g, T dr ds. (3.25)
Let
T
bi(s) = / e™ ——dr, (3.26)
T+i
—0Q
so that

oo oo

Sih(x,t) = / ( /(h(-,t—s))A(S)eiSS3eixSdé)bi(s)ds. (3.27)

—0oQ —0oQ
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Thus,
Sih(x,t) = / U@s)h(-,t —s)by(s)ds. (3.28)
Note that
bxllL> < c, (3.29)

which combined with (3.22) leads to

o
ds
ISkl < [ bt =)l . (3.30)
—00
Now 1/8 =7/8 — 3 /4, and so fractional integration completes the proof. O
Step 5. To complete the proof of Lemma 2.3 we just need to prove (3.11), i.e.
I2llzs < c|| {0 + 0] — 307 — 1}h| 5 (3.31)

for any h € C3'' (R?), see (2.13).
Taking Fourier transform, in space and time variables, in the left hand side of (3.31)
we get

lir —ig® +38% — l]fz(é,r). (3.32)
We consider the pair of points
1 /1y
Pe=(5,7) =% (ﬁ’ (ﬁ) ) (3.33)

where the symbol in (3.32) vanishes. We recall that 4 has compact support so its Fourier
transform has an analytic continuation to C2. Hence, it suffices to prove (3.31) for any
h € S(R?) with h vanishing at Py.

So we are then reduced to showing the multiplier inequality

1 AV
Mh = h <cllh , 3.34
| L3 ®2) H(i(t e 1321 ) LR cllihllLsr we) ( )
for such A’s.
It suffices to prove (3.34) assuming that
supph C {(¢,7): & >0}, (3.35)

since the proof for the case

supph C {(&,7): & <0}, (3.36)
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is similar.
We now recall a variant of Littlewood—Paley theory. Let

Lif(&, 1) = xupn(E =& 17275 f &, ), (3.37)

where k € 7Z and x,(-) is the characteristic function of the set A. Then for each
p € (1,00) we have

(3.38)

(Zizusr) "

keZ

I fllLr w2y = ‘ .
LP(R2)

Thus it suffices to establish (3.34) for each L& with a constant independent of k, since
using Minkowski’s integral inequality (8/7 < 2 < 8) one has that

172
I Mh]|,s :‘ (Z |Lk(Mh>|2>
keZ+ L
1/2 1/2
- \ (Z |M<Lkh>|2> < (Z ||M<Lkh)||ig)
keZ+ L8 keZ+
1/2 1/2
<e( T Lahlfan ) <e| (S ma) | <elbllnn. 639
keZ+ keZ+ L3

Therefore, we shall prove the multiplier estimate (3.34) when
supph C {(5,7): £ 20,275 < g — £ <27} (3.40)

We split the proof of (3.40) in two cases.
Case 1. k < 0. In this case, if £ € suppfz then

362 — 1|~ & —&f|1E + &5 1 ~27% (3.41)

Using Lemma 3.1 we just need to bound the multiplier
1 1
(T —E3)+362—1 i(r—&3%)+2°2%
3 272 _ (382 1)
(it - &) 4382 - 1)(i(r — &%) +27%)’

Using the change of variables 7 = A + £ write

co %0 i, 0)-(E,7) (7 =2k _ (2s2 R
/ / . e (2 (367 —1)) hE. ) de dr
o (i(t

(3.42)

— &) +382 - D((r — &) +27%)

A R € S VP .
__/_/ (i + 382 — 1)(ir +272k) h(E, 1 +&%)dé dn
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? T i) -2k _ (3£2 _ 1)) .
- 46“( (ik+3g2(_ 1)(1;52—%)))}‘(5%%3) dé) da
= d(x,1). (3.43)
Defining
2% _ (382 _ 1)
(ir + 3862 — 1) (ir + 2720
and using Lemma 3.1 and Minkowski’s integral inequality we get

hi(€,7) = h(E, T+ 1), (3.44)

o0
1952 < / 1l 572y dA (3.45)
—00

Now for XA and k fixed we consider the multiplier in (3.44) in the variable &, with & > O,
|& — &) | =~ 27,1382 — 1| =~ 272k, From Mihlin-Hoérmander multiplier theorem (see [10,
p. 263]) it follows that its norm is bounded by

2—2k
(for more details, see [7], [8]).
Hence,
o0 o0 2—2]( _
/ 175l 37 m2y dA < € / W”}U”LW(RZ) dA < Al s w2y, (3.47)
00 —00

since h »(x, 1) =e " h(x, t), which combined with (3.45) yields the proof of case 1, i.e.
k <O0.

Case 2. k > 0. In this case, if £ € suppfz then
362 — 1| x| — £ ||E + &5 | ~ |6 — &, | ~27%. (3.48)
In this case we use Lemma 3.2 to substract

1

R (3.49)

and argue exactly as before. The corresponding multiplier to (3.44) in this case is

2741382
BRI (3.50)
(ir + 382 — D(ir +27%)
which by Mihlin—-Hormander multiplier theorem has norm bounded by
2—k
(3.51)

C|M2+2—2k'
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4. Further results

In this section we extend Lemma 2.3 to higher order operators of the form considered
in (1.16).

LEMMA 4.1.-If f € C°(R?), then for j € Z*

1™ Fllgry < clle® (o + 07 3 oy 4.1
for all . € R, with ¢ independent of . € R,
1 2 2
p=2, 4.2)

. == _+.77
2j+1 ¢qg @Qj+Dp
and where (p, p), (g, q’) are dual exponents, i.e. 1/p+1/p = 1.

Proof. — From the steps 1 and 2 in the proof of Lemma 2.3 one has that to establish
(4.2) it suffices to show that

I fllarr < cllifd, + P(ax)}fIIL;/qu 4.3)
where
P(z)=(z— ¥ (4.4)
Define g = g(x,1t) as
{0, + PO ) }v(x, 1) = g(x,1). 4.5)

Taking Fourier transform in the x-variable in (4.5) we get

90§, 1)+ P(&)v(g, 1) =g, 1). (4.6)

Since v has compact support we conclude that 9(¢, T) = 0 for any T with |T| large
enough. Thus, from (4.6) it follows that

3 (eP®D) (&, 1) =e P&, 1), (4.7)
and
t
V(E, 1) = X Re(P(iE))}O}(S)/e_(l_S)P(ié)é(éas)ds
-0
o0
e Retrien<0(€) / =P ) ds. 4.8)
t
Hence,

t

v(x,t):/ K+(x—y,t—s)g(y,s)dyds—//K_(x—y,t—s)g(y,s)dyds

—00 —00 t —o0

=L,g—L_g, 4.9)
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with
o0
K (x, 1) = xu: 1>0y(1) / e ETIPO) o Re(p e >0)(E) dE (4.10)
—0o0
and
o0
K_(x,1) = xp: 1<0)(2) / e ETIPOD) o Re(pie)) <0y (E) dE. (4.11)
—0o0

We need the following results.

LEMMA 4.2. — There exists a constant ¢ = c(j) such that
K (x,0)] </t (4.12)

Proof. — We consider the case of K. In this case the oscillatory part of the integral in
(4.10) is given by the phase function ¢ (§) = Im(P (i§)). We observe that

V(&) = (=1)/ (27 + D), (4.13)

and

|3 (e P19) | dE < ¢, (4.14)
{§: Re(P(i§)) 20}

where c; depends on the numbers of changes of sign of Re(P (i§)). Hence, the proof of
(4.12) follows from Van der Corput’s lemma (see [10], Corollary in p. 334). O

LEMMA 4.3.— For each p > 2 there exists a constant ¢ such that

(0.9]
c
[ Ke—y0sdy| < e Iy @19
—00 LY
Proof. — For p =2 we use Plancherel theorem to get
00 2 00
—_ iE) A 2
[ Ki=308000] = [ e wrionsa©le O b < gl
—00 L)ZC —0o0
(4.16)

The case p = oo follows from Lemma 4.2. Using the Riesz—Thorin theorem one
extends the result to p € (2,00). O

Finally the proof of Lemma 4.1 follows by combining (4.15), Minkowski’s integral
inequality, and Hardy—Littlewood—Sobolev inequality. O
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