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ABSTRACT. – We study weakly convergent sequences of suitable weak solutions of heat flows
of harmonic maps or approximated harmonic maps. We prove a dimensional stratification for
the space-time concentration measure and verify that the concentration measure, viewed as a
generalized varifold, moves according to the generalized varifold flow rule which reduces to
the Brakke’s flow of varifold provided that the limiting harmonic map flow is suitable. We
also establish an energy quantization for the density of the limiting varifold.
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RÉSUMÉ. – Nous étudions des séquences faiblement convergentes de solutions faibles du
flot de chaleur d’applications harmoniques (éventuellement approximées). Nous prouvons une
stratification dimensionnelle pour la mesure de concentration de l’espace-temps et vérifions que
la mesure de concentration, vue comme une varifold generalisée, est sujette à la règle du flot
généralisé des varifolds qui se réduit à la règle du flot de Brakke pour autant que l’application
harmonique soit adéquate. Nous établissons aussi une quantification de l’énergie pour la densité
de de la varifold limite de la séquence.

1. Introduction

This is the third part of our project initiated in Lin and Wang [31] on the study of the
weakly convergent sequence of smooth (or certain classes of weak) solutions to the heat
equation of harmonic maps or approximated harmonic maps (i.e. the negative gradient
flow of the generalized Ginzburg–Landau functionals). The general situation for the
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heat flow of harmonic maps is as follows. Let un(x, t) :M × R+ → N be a sequence
of smooth solutions to the heat flow of harmonic maps from a m-dimensional compact
smooth Riemannian manifold M (with possibly nonempty smooth boundary ∂M) into a
compact smooth Riemannian manifold N ⊂Rk without boundary, namely,

∂tun −�un =A(un)(Dun,Dun), in M ×R+ (1.0)

where A(·)(·, ·) denotes the second fundamental form of N in Rk, such that un(x, t)

weakly converges to u(x, t) in H 1
loc(M×R+,Rk). By the Fatou’s lemma, we may assume

that
1
2
|Dun|2(x, t)dx dt→ 1

2
|Du|2(x, t)dx dt + ν (1.1)

and

|∂tun|2(x, t)dx dt→ |∂tu|2(x, t)dx dt + η (1.2)

as convergence of Radon measures on M ×R+ for some nonnegative Randon measures
ν, η supported on the so-called energy concentration set � ⊂ M × R+ (see [31]). It
is easy to check that ν = νt dt for some nonnegative Radon measures νt , t ∈ R+ (see,
Lemma 2.5 below). The main result of [31] is (see Lin [23] for the static cass) to
characterize the necessary and sufficient conditions, under which both ν and η vanish, in
terms of the existence (or non-existence) of harmonic and quasi-harmonic spheres into
N . In other words, the necessary and sufficient conditions for such weakly convergent
sequences to be strongly convergent. As a consequence of such a characterization is a
new proof of the classical theorem by Eells and Sampson [15] (without the nonpositive
curvature condition on N ) under a new set of necessary and sufficient conditions
(cf. [31]). In general, we showed in [31] that, without any extra assumption on N ,
both ν and η are supported on the energy concentration set �, which is closed and
has locally finite m-dimensional Hausdorff measure, Pm, with respect to the parabolic
metric on M × R+, and for Pm almost all such points in the energy concentration set
�, one has the m-dimensional density of ν (with respect to the parabolic metric) strictly
positive and finite. Moreover, for L1 a.e. t ∈R+, νt has the (m− 2)-dimensional density
(with respect to the Euclidean metric on M) positive and finite for Hm−2 a.e. x ∈M .
In fact, it was shown by Cheng [9] that for all t ∈ R+, the support of νt has locally
finite (m − 2)-dimensional Hausdorff measure. It is not very hard to generalize the
argument of Lin [23] to show that for L1 a.e. t ∈ R+, �t = � ∩ {t} and the support
of νt are (m − 2)-rectifiable. Here we shall adopt a different and conceptually much
easier approach in Section 4, namely the generalized varifold approach which is a natural
extension of the classical varifold concept of Almgren [3,4] and Allard [6]. Roughly, we
associate each un with a (m − 2)-generalized varifold Vun

on M × R+ and show that
Vun

converges to a (m− 2)-generalized varifold V = Vt dt , Vt has its generalized mean
curvature Ht ∈ L2‖Vt‖(M,Rm) for L1 a.e. t ∈ R+, and then the extension of Allard’s
rectifiablity result from classical varifolds to generalized varifolds yields that VtL({x ∈
M: �m−2(‖Vt‖, x) > 0}) is (m− 2)-rectifiable. This rectifiablity result of �t was also
proved in a recent paper of Li and Tian [29] for so-called strongly stationary weakly
heat flow of harmonic maps which are weak solutions of the heat flow (1.0) with energy
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monotonicity, energy inequality, and the small energy regularity properties, where they
verified the condition of Preiss’s rectifiablity theorem. As pointed out in [31], although
all the analysis in the present article and in [31,32] are for smooth solutions of the heat
equation of harmonic maps (or solutions to the gradient flow of the Ginzburg–Landau
functionals), the facts that we need are exactly these three properties stated above (see
also Section 7 below), therefore all the results of the present article and [31,32] remain
to be true for the class of weak solutions to the heat flow of harmonic maps satisfying
these three properties. For simplicity of descriptions, we will work for solutions to heat
flows of the Ginzburg–Landau functionals only and state some analogous conclusions in
Section 7 for this class of weak solutions of heat flows for harmonic maps.

One of the main results of the present paper is to show the pair (u, νt dt) satisfies
the so-called generalized varifold flow (see Definition 5.5 of Section 5 below for the
definition), as in the recent very interesting work by Ambrosio and Soner [1]. Moreover,
in the case that u is a suitable weak solution (e.g. u is smooth), i.e. satisfying the
standard energy equality in both local and global forms, then {νt}t�0 is a Brakke
flow of (rectifiable) varifolds, i.e. flow by the mean curvature in the varifold sense
defined by Brakke [8]. We point out that a weaker version of this fact was also shown
by [29] where a factor 1

2 is putted in front of the mean curvature square term of
the energy inequality (5.7). To improve the factor 1

2 to 1 and to establish that the
flow is actually the Brakke flow is one of the most difficult analytical points in all
such related analysis (see also discussions in [1], in particular §6 of [1]). To achieve
such a goal, one method is to establish the local almost conformal property of the
solution map restricted to the 2-dimensional plane orthogonal to the tangent plane of
the energy concentration set � (see Section 5 below). We also establish in Theorem 6.7
the energy quantization result in dimension large than two, which extends the main
result of our part II [32]. Note that, in the case N = Sk−1, Theorem 6.7 can be used
to give an alternative proof of the improvement of 1

2 to 1. However, the argument of
Section 5 is independent of N . The energy quantization in dimension at least 3 was
first established by Lin and Rivieré [27] for stationary harmonic maps into spheres, by
Lin and Wang [28] for approximated harmonic maps, and by Lin and Rivieré [28] for
Ginzburg–Landau vortices in R3. Our result here can be viewed as parabolic version
of [27,32].

Since we can treat smooth solutions to the heat flow of harmonic maps in almost the
same way as that of the heat equation of the generalized Ginzburg–Landau functional.
For simplicity, we will present our result in the context of solutions to the heat flow of
generalized Ginzburg–Landau functional and make remarks concerning the heat flow of
harmonic maps in Section 7. Now let us describe precisely the results and the structure
of the present article.

For ε > 0, we consider the (generalized) Ginzburg–Landau functional

Iε(u)=
∫
M

(
1
2
|Du|2 + 1

ε2
F(u)

)
dx
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where F ∈ C∞(Rk,R) satisfies:

F(p)=
{
d2(p,N), if d(p,N) � δ,
4δ2, if d(p,N) � 2δ.

Here d denotes the Euclidean distance in Rk and d(·,N) = inf{d(·,p): p ∈ N}. Note
that δ > 0 is chosen to be so small that d2(p,N) is smooth for p ∈N2δ ≡ {p: d(p,N) �
2δ}. Let uε ∈ C∞(M ×R+,Rk) be solutions to the heat equation

∂tuε −�uε = 1
ε2

f (uε) (x, t) ∈M ×R+ (1.3)

uε(x,0)= u0(x), x ∈M, (1.4)

where f (uε)=−(DF)(uε) and u0 ∈ C2(M,N) is a given map. We assume throughout
this paper that if N = Sk−1 then F(p) = 1

4 (1− |p|2)2 so that f (p) = p(1− |p|2) and
(1.4) becomes

∂tuε −�uε = 1
ε2

uε

(
1− |uε|2). (1.5)

It is easy to see that uε satisfies the following energy equality (see also Lemma 2.1
below):

sup
0<t<∞

( t∫
0

∫
M

|∂tuε|2 dx dt + Iε
(
uε(·, t))

)
= 1

2

∫
M

|Du0|2. (1.6)

It follows from (1.6) that for any ε ↓ 0 there exists a subsequence εn → 0 such that
un ≡ uεn → u weakly in H 1

loc(M × R+,Rk). Moreover, it was shown by Chen and
Struwe [13] (for ∂M = ∅) and Chen and Lin [11] (for ∂M �= ∅) that there exists a closed
subset � = {(�t, t): t > 0} ⊂M ×R+ (see the definition of � in Section 2 below) such
that uεn → u in H 1

loc ∩C1
loc(M ×R+ \�,Rk). In particular, u ∈C∞(M ×R+ \�,N) is

a smooth solution to the harmonic map flow equation (1.0). Let

eεn(un)(x, t)= 1

2
|Dun|2(x, t)+ 1

ε2
n

F (un)(x, t).

We will simply write e(un) for eεn(un) through this paper as long as there is no
ambiguity. We can assume that

e(un)(x, t)dx dt→ 1
2
|Du|2(x, t)dx dt + ν

and

|∂tun|2(x, t)dx dt→ |∂tu|2(x, t)dx dt + η

as convergence of Radon measures for two nonnegative Radon measures ν and η on
M ×R+.

The stratification for the singular set of area minimizing currents was studied
by Federer [16], who introduced a powerful scheme called the Federer’s dimension
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reduction argument (see also Almgren [3] and the appendix of [33]). White [37]
provided an abstract approach to obtain the stratification for a large class of variational
problems varying from minimizing currents, energy minimizing harmonic maps, and
mean curvature flows (see also [34] for the stratification for minimizing harmonic maps).
Motivated by these stratification results, we carry out the stratification for the parabolic
concentration set � in Section 3. The stratification Theorem 3.6 roughly says that the
subset �k , consisting of z0 ∈ � such that the Pλ-invariant subspace of any tangent
measure µ0 of µ at z0 has its dimension of vector space at most k, has Hausdorff
dimension measured in the parabolic metric at most k, for 0 � k � m.

In Section 4, we adopt the generalized (m− 2)-varifold concept, which is a natural
and very useful extension of the classical varifold concept studied by Almgren [3,4] and
Allard [6], to study the convergence problem in our case through a varifold approach.
Once we associate a sequence of generalized (m − 2)-varifolds, Vun

, for un’s, we can
consider the limiting generalized (m − 2)-varifold V = Vt dt of Vun

. In Section 4, we
show that for L1 a.e. t > 0, the first variation of Vt , δVt , is a Radon measure which is
absolutely continuous with respect to ‖Vt‖ and its generalized measure curvature

Ht = δVt

‖Vt‖ ∈L2
‖Vt‖
(
M,Rm

)
.

Therefore, �m−2(‖Vt‖, ·) exists for Hm−2 a.e. in M . We then show in Theorem 4.9 that
VtL{x ∈M: 0 < �m−2(‖Vt‖, x) <∞} is a (m− 2)-rectifiable varifold. This, combined
with the observation that for Hm−2 a.e. x ∈ �t �m−2(‖Vt‖, x) is positive and finite,
shows that �t is (m− 2)-rectifiable.

In Section 5, we continue our discussion from Section 4 and show, in Theorem 5.6,
that the pair (u, νt dt) satisfies a generalized varifold flow defined as in Definition 5.5
of Section 5. As a consequence of this generalized varifold flow, we show that if the
limiting map u is a suitable weak solution defined by Definition 5.9, which requires
that u satisfies the energy equality (both locally and globally), then the defect measure
{νt}t�0 is in fact a Brakke flow, i.e.,

Dtνt (φ)= lim sup
s→t

νs(φ)− νt (φ)

s − t
�−

∫
M

(
φ|Ht |2 − 〈(Tx�t )

⊥Dφ,Ht〉)dνt

for any t � 0 and φ ∈ C2
0(M,R+). One way to obtain the generalized varifold flow is

to apply the energy quantization Theorem 6.1, which however is only proved for sphere
targets at this stage. In Lemma 5.8 of Section 5, we provide another approach to improve
the so-called factor 1

2 to 1.
In Section 6, we consider the density function �m−2(‖Vt‖, ·). Under the extra

assumption that N = Sk−1 ⊂ Rk, we show a quantization result for �m−2(‖Vt‖, ·) in
Theorem 6.1 and Theorem 6.7, which roughly says that for almost all z0 = (x0, t0) ∈�,
�m−2(‖Vt0‖, x0) is the sum of energies of finitely many harmonic S2’s. This type of
result is obtained by estimating the norm of Dun in the Lorentz spaces L2,1 and L2,∞,
which is a highly nontrivial observation in dimension large than two and largely owns
its origin from Lin and Rivieré [27].
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Section 2 of the paper is devoted to the collection of some necessary facts needed
later, and in Section 7 we make a few remarks concerning either smooth solutions to the
heat flow of harmonic maps or the weak solutions satisfying energy inequality, energy
monotonicity inequality, and the ε0-regularity.

2. Basic estimates

This section is devoted to establishing some necessary facts needed for later sections.
First let us recall some useful notations from [11,13,35]. Let δ denote the parabolic
metric on M ×R+ defined by

δ((x, t), (y, s))=max
{|x − y|,√|t − s|}, ∀(x, t), (y, s) ∈M ×R+.

For 0 � l � m, let P l denote the l-dimensional Hausdorff measure on M ×R+ (or Rm×
R+) with respect to the parabolic metric δ, and Hl denotes the l-dimensional Hausdorff
measure on M (or Rm) with the Euclidean metric. For z0 = (x0, t0) ∈ Rm ×R+, let Gz0

denote the backward heat kernel:

Gz0(x, t)=
(
4π(t0 − t)

)−m
2 exp

(
−|x − x0|2

4(t0 − t)

)
, x ∈Rm, 0 < t < t0.

Let i(M) > 0 denote the injectivity radius of M . For 0 <R < {
√
t0

2 , i(M)}, let

SR(z0)=M × {t = t0 −R2},
TR(z0)=M × {t ∈R+: t0 − 4R2 � t � t0 −R2},

and

PR(z0)= BR(x0)× [t0 −R2, t0 +R2],
where BR(x0)⊂M denotes the geodesic ball with center x0 and radius R.

For solutions uε ∈ C∞(M × R+,Rk) to (1.3)–(1.4). Define two normalized energy
quantities as follows.

2(uε, z0,R)=
∫

TR(z0)

η2(x)e(uε)(x, t)Gz0(x, t)dx dt,

3(uε, z0,R)=R2
∫

SR(z0)

η2(x)e(uε)(x, t)Gz0(x, t)dx,

for 0 < R < min{
√
t0

2 , i(M)}, here η ∈ C1
0(M) satisfies that η = 1 on Br0(x0), η = 0

outside B2r0(x0), and |Dη|� 2
r0

.
Now we recall the energy inequality, energy monotonicity inequality, and small energy

regularity from [13].
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LEMMA 2.1 (Energy equality). – Let uε ∈ C∞(M ×R+,Rk) solve (1.3)–(1.4). Then
we have, for any φ ∈ C1

0(M,R+) and 0 � t1 � t2 �∞,∫
M

e(uε)(x, t1)φ(x)dx −
∫
M

e(uε)(x, t2)φ(x)dx

=
t2∫

t1

∫
M

φ(x)|∂tuε|2(x, t)dx dt +
t2∫

t1

∫
M

Dφ(x)Duε · ∂tuε dx dt. (2.1)

In particular,

∫
M

e(uε)(x, t1)dx −
∫
M

e(uε)(x, t2)dx =
t2∫

t1

∫
M

|∂tuε|2(x, t)dx dt. (2.2)

LEMMA 2.2 (Energy monotonicity inequality). – Let uε ∈ C∞(M × R+,Rk) solve
(1.3)–(1.4). Then

2(uε, z0,R1)+ c

R2∫
R1

r−1
∫

Tr (z0)

(
η2 |(x − x0) ·Duε + 2(t − t0)∂tuε|2

|t0 − t| + η2 F(uε)

ε2

)
Gz0

� eC(R2−R1)2(uε, z0,R2)+CE0(R2 −R1), (2.3)

3(uε, z0,R1) � eC(R2−R1)3(uε, z0,R2)+CE0(R2 −R1), (2.4)

for z0 ∈ M × R+, 0 < R1 � R2 < min{
√
t0

2 , i(M)}. Here c,C > 0 depend only on
M,m,N , and E0 = 1

2

∫
M |Duε|2(x,0).

LEMMA 2.3 (ε0-regularity). – There exist ε0, δ0,C0 > 0 such that if, for some 0 <

R � min{
√
t0

2 , i(M)}, 2(uε, z0,R) � ε2
0 , then

sup
z∈Pδ0R(z0)

e(uε)(z) � C0(δ0R)−2. (2.5)

For εn ↓ 0, we assume that un ≡ uεn → u weakly in H 1
loc(M × R+,Rk). Then there

exist two nonnegative Radon measures ν, η on M ×R+ such that

e(un)(x, t)dx dt→ 1

2
|Du|2(x, t)dx dt + ν ≡ µ,

|∂tun|2(x, t)dx dt→ |∂tu|2(x, t)dx dt + η,

as convergence of Radon measures on M×R+. Moreover, if we define the concentration
set

� = ⋃
0<R<r0

{
z ∈M ×R+: lim

n→∞

∫
TR(z)

η2(x)e(un)Gz � ε2
0

}
,

where ε0 is given by Lemma 2.3. Then the following facts are known:
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FACT 2.4 ([13]). – � is closed and Pm(� ∩ PR(0)) � CR <∞, for any R <∞.

FACT 2.5 ([13]). – un→ u strongly in H 1
loc ∩C1

loc(M ×R+ \�,Rk).

FACT 2.6 ([13]). – u ∈ C∞(M × R+ \ �,N) is a weak solution of the heat flow of
harmonic maps (1.0).

FACT 2.7 ([9]). – For any t > 0, let �t =� ∩ {t}. Then Hm−2(�t ∩K) � CK <∞,
for any compact K ⊂M .

FACT 2.8 ([31]). – sing(u)∪ spt(ν)=�, sptη⊂�.

FACT 2.9 ([31]). – For any z ∈ M × R+,
∫
TR(z) η

2(x)Gz(x, t)dµ(x, t) is monotoni-
cally nondecreasing with respect to R. Hence

�m(µ, z)= lim
R↓0

∫
TR(z)

η2(x)Gz(x, t)dµ(x, t)

exists for all x ∈M ×R+ and is upper-semicontinuous function of z. In particular,

� = {z ∈M ×R+: ε2
0 � �m(µ, z) <∞}.

FACT 2.10 ([31]). – For Pm a.e. z ∈�,

�m(u, z)= lim
R↓0

R−m

∫
PR(z)

|Du|2(x, t)dx dt = 0, and �m(ν, z)=�m(µ, z).

FACT 2.11 ([31]). – un doesn’t converge to u strongly in H 1
loc(M × R+,Rk) if and

only if Pm(�) > 0 and there exists at least one harmonic S2 in N .

Now, we add two more lemmas needed later.

LEMMA 2.12. – Under the same notations as above, we have

lim
n→∞

∫
M×[t,T ]

1
ε2
n

F (un)(x, t)dx dt = 0, ∀0 < t < T <∞. (2.6)

Proof. – It follows from the Fact 2.5 that for any β > 0, we have

lim
n→∞

∫
M×[t,T ]\(�T

t )β

1
ε2
n

F (un)(x, t)dx dt = 0

where �T
t =

⋃T
s=t (�s ×{s}) and (�T

t )β = {z ∈M × [t, T ]: δ(z,�T
t ) � β}. It suffices to

show that

lim
n→∞

∫
(�T

t )β

1

ε2
n

F (un)(x, t)dx dt =O(β). (2.7)
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On the other hand, for any z0 ∈�T
t , (2.3) gives

2

(
µ,z0,

β

2

)
+ lim

n→∞

β∫
β
2

r−1
∫

Tr (z0)

1

ε2
n

F (un)Gz0 � eCβ2(µ, z0, β) (2.8)

for sufficiently small β > 0. Moreover, since limβ↓0 2(µ, z0, β) exists, we may assume
that ∣∣∣∣2(µ, z0, β)−2

(
µ,z0,

β

2

)∣∣∣∣=O(β), ∀β� 1.

Therefore we have

β∫
β
2

r−1 lim
n→∞

∫
Tr (z0)

1

ε2
n

F (un)Gz0 =O(β).

This, combined with the Fubini’s theorem, implies

lim
n→∞

∫
T
β
(z0)

1
ε2
n

F (un)Gz0 =O(β)

for some β ∈ (β

2 , β). In particular, we have

lim
n→∞

∫
Bβ

2
(x0)×[t0−β2,t0− β2

4 ]

1

ε2
n

F (un)=O(β).

This, combined with a simple covering argument, implies (2.7). ✷
LEMMA 2.13. – There exists a subsequence of n′ →∞ such that

e(un′)(x, t)dx→ µt, ∀t > 0,

as convergences of Radon measures, for a family of nonnegative Radon measures {µt}t>0

on M . In particular, µt = 1
2 |Du|2(x, t)dx + νt , µ= µt dt , and ν = νt dt .

Proof. – The idea here is similar to that of Brakke [8] (see also Ilmanen [20]). For
completeness, we outline it here. Let φ ∈C2

0(M,R+). Then (2.1) implies

d
dt

∫
M

φe(un)=−
∫
M

φ|∂tun|2 −
∫
M

DφDun∂tun

�C(φ)

∫
M

φ(x)|Dun|2(x, t)dx � C(φ)E0,
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where C(φ) = supφ>0
|Dφ|2

2φ � supφ>0 |D2φ| > 0 and E0 = E(un(·,0)) denotes the
energy of the initial data. Hence

∫
M

φe(un)−C(φ)E0t

is monotonically nonincreasing with respect to t > 0. Let B ⊂R+ be a countable dense
subset. By the weak compactness of Radon measures with locally bounded masses, and
a diagonal process, we can assume that

e(un)(x, t)dx→ µt, ∀t ∈ B.

Now, let {φi}i�1 be a countable dense subset in C2
0(M,R+). By the monotonicity of∫

M φe(un)−C(φ)E0t , there exists a co-countable set C ⊂R+ such that for any t ∈C and
i � 1, µs(φi) is continuous at t as a function of s ∈ B . For any fixed t ∈C, there exists a
further subsequence nj →∞ and a limit µt such that µnj

→ µt . Hence {µs(φi)}s∈B∪{t}
is continuous at t , for all i � 1. Hence µt is uniquely determined by µs for s ∈ B .
Therefore, µn→ µt . Note that R+ \C is countable, we can do another diagonal process
to show the result on R+. ✷

3. Dimension reduction and stratification of the concentration set

In this section, we will establish the stratification result for the energy concentration
set �. To do it, we consider the space, Tzµ, of all tangent measures of µ at each
z ∈ �. We show that for each µ0 ∈ Tzµ, µ0LRm+1− is invariant under the parabolic
dilation Pλ for all λ > 0. For each µ0 ∈ Tzµ, we then associate a nonnegative integer
d which is the dimension of the largest Pλ-invariant subspace inside M(�m(µ0)) =
{z ∈ Rm+1: �m(µ0, z)=�m(µ0,0)}. Using this integer, we can stratify � accordingly.
The proof of the stratification is based on an extension of the well-known Federer’s
dimension reduction argument [16,3], and [33]. We would also like to remark that a
similar scheme has been carried out by White [37] in an abstract way, with applications
to mean curvature flows.

For simplicity, we assume M =Rm in this section. Note that the norm of the parabolic
metric in Rm+1 is

‖(x, t)‖ =max
{|x|,√|t|}.

Define the parabolic dilation by

Pz0,λ(x, t)=
(
x − x0

λ
,
t − t0

λ2

)

for z0 = (x0, t0) ∈Rm+1 and λ > 0. Define the Euclidean dilation by

Dx0,λ(x)=
x − x0

λ
, x ∈Rm
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for x0 ∈Rm and λ > 0. Denote Rm+1+ =Rm×R+ and Rm+1− =Rm×R−. The Hausdorff
dimension of a subset S ∈Rm+1 is the Hausdorff dimension with respect to the parabolic
metric δ. We write � = {(�t, t): 0 < t < ∞}, here �t = � ∩ {t}. For εn > 0, let
un :Rm+1+ → Rk solve (1.3)–(1.4), with ε = εn. Recall that (2.4) implies that for 0 <

R2 � R1 <
√
t0

2 ,

3(un, z0,R1)−3(un, z0,R2)

� 1

2

R1∫
R2

∫
Rm

|2(t0 − t)∂tun − (x − x0)Dun|2
t0 − t

Gz0 dz (3.1)

where 3(un, z0,R)= R2 ∫
t=t0−R2 e(un)(x, t)Gz0(x, t)dx. By (1.6) and Lemma 2.5, we

can assume that

e(un)(x, t)dx dt→µ≡ µt dt

as convergence of Radon measures in Rm+1+ , for some nonnegative Radon measures
{µt}t>0 on Rm. From (1.6) and (3.1), we have

sup
(x,t,r)∈Rm×R+×R+

r−mµ
(
Pr(x, t)

)
<∞ (3.2)

and

�m(µ, z0)= lim
R↓0

R2
∫

t=t0−R2

Gz0 dµt0

exists for all z0 ∈Rm+1+ . Moreover, the Fact 2.9 implies that

� = {z ∈Rm+1
+ : ε2

0 � �m(µ, z) <∞}.
For z0 ∈� and λi ↓ 0, we define the parabolic rescalings of µ, Pz0,λ

−1
i
(µ), by

Pz0,λ
−1
i
(µ)(A)= λ−m

i µ
(
Pz0,λ

−1
i
(A)

)
, ∀ Borel A⊂Rm+1.

Then it follows from (3.2) that we can find a subsequence λi′ of λi and a nonnegative
Radon measure µ0 on Rm+1 such that

Pz0,λ
−1
i′
→µ0

as convergence of Radon measures on Rm+1.

DEFINITION 3.1. – For any z0 ∈ �, the tangent measure cone of µ at z0, Tz0(µ),
consists of all nonnegative Radon measures on Rm+1 obtained by

Tz0(µ)= {µ0: there exists a ri ↓ 0 such that Pz0,λ
−1
i
(µ)→ µ0}.
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Note that for any z0 ∈ � and µ0 ∈ Tz0(µ), we have µ0 = µ0
s ds and for any (x, t) ∈

Rm+1

�m
(
µ0, (x, t), r

)≡ r2
∫

s=t−r2

G(x,t)(y, s)dµ0
s (y)

is monotonically nondecreasing with respect to r . Hence

�m
(
µ0, (x, t)

)= lim
r↓0

�m
(
µ0, (x, t), r

)

exists for any (x, t) ∈Rm+1 and is upper semicontinuous.

LEMMA 3.2. – For any z0 ∈ � and µ0 ∈ Tz0(µ). Then µ0LRm+1− is invariant under
all parabolic dilations Pλ, i.e.,

Pλ

(
µ0LRm+1

−
)= µ0LRm+1

− . (3.3)

Proof. – It follows from Lemma 2.5 that µ0 = µ0
t dt . Therefore,

Pλ

(
µ0LRm+1

−
)=Pλ

({(
µ0

t , t
)
: t � 0

})
= {Dλ

((
µ0

t

)
, λ2t

)
: t � 0

}
= {Dλ

((
µ0

t

λ2

)
, t
)
: t � 0

}
.

Here Dλ(µ
0
t )(A) = λ2−mµ0

t (λA) for any borel set A ⊂ Rm. Hence, it suffices to show
that

Dλ

(
µ0

t

λ2

)=µ0
t , ∀t � 0. (3.4)

Since λ > 0 is arbitrary, it suffices to prove (3.4) for t =−1, which is equivalent to

λm−2
∫
Rm

φ(λx)G(λx,−1)dµ0
−λ−2(x)=

∫
Rm

φ(x)G(x,−1)dµ0
−1(x), (3.5)

for any φ ∈ C1
0(R

m) and G=G(0,0). On the other hand, we know that there exists λn ↓ 0
such that vn(x, t) = un(x0 + λnx, t0 + λ2

nt) satisfies (1.3), with εn replaced by εn = εn
λn

,
and

e(vn)(x, t)dx ≡ eεn(vn)(x, t)dx→ µ0
t , ∀t ∈R

as convergence of Radon measures on Rm. Then, for any R > 0,

R2
∫

t=−R2

Gdµ0
t = lim

n→∞R2
∫

t=−R2

e(vn)(x, t)G(x, t)dx

= lim
λn↓0

(Rλn)
2

∫
t=t0−R2λ2

n

Gz0(x, t)dµt

=�m(µ, z0).
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This, combined with (3.1), implies that, for any 0 < r1 < r2 <∞,

lim
n→∞

t=−r2
2∫

t=−r2
1

∫
Rm

∣∣xDvn + 2t∂tvn

∣∣2G= 0. (3.6)

Therefore, in oder to prove (3.5), it suffices to show

lim
n→∞

d
dλ

(
λm−2

∫
t=−1

φ(λx)G(λx,−1)e(vn)
(
x,−λ−2)dx

)
= 0. (3.7)

Note that

d
dλ

(
λm−2

∫
t=−1

φ(λx)G(λ, x,−1)e(vn)
(
x,−λ−2))

= d
dλ

( ∫
t=−1

φ(x)G(x, t)e
(
vλ
n

)
(x, t)dx

)

=−
∫

t=−1

GDφDvλ
n

d
dλ

vλ
n −

∫
t=−1

φ

(
∂tv

λ
n −

1
2
xDvλ

n

)
d

dλ
vλ
nG

=− 1
2λ

∫
t=−λ2

|yDvn + 2t∂tvn|2Gφ

(
y

λ

)
−

∫
t=−λ2

Dφ

(
y

λ

)
GDvn(yDvn + 2t∂tvn).

Here vλ
n(x, t) = vn(λx,λ

2t) and e(vλ
n)(x, t) = e εn

λ

(vλ
n)(x, t). Hence, integrating the

identity from 1 to λ and using (3.6), we see that (3.5) holds. ✷
From Lemma 3.2, we see that for any z0 ∈� and µ0 ∈ Tz0µ,

R2
∫

t=−R2

Gdµ0
t =�m

(
µ0,0

)=�m(µ, z0), ∀R > 0 (3.8)

and, for any z ∈Rm+1− and λ > 0,

�m
(
µ0, z

)=�m
(
µ0,Pλ(z)

)
. (3.9)

In general, we have

LEMMA 3.3. – For z0 ∈� and µ0 ∈ Tz0(µ), we have
(1) �m(µ0, z) � �m(µ0,0),∀z ∈Rm+1.
(2) If z ∈Rm+1 satisfies �m(µ0, z)=�m(µ0,0), then

�m
(
µ0, z+ v

)=�m
(
µ0, z+Pλv

)
, ∀λ > 0, v ∈Rm+1

− . (3.10)

Proof. – (1) For µ0 ∈ Tz0(µ), there exists ri ↓ 0 such that Pz0,ri (µ)→ µ0. For any
r > 0 and z= (x, t) ∈Rm+1, we have
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�m
(
µ0, z

)
��m

(
µ0, z, r

)
= lim

ri↓0
�m
(
Pz0,ri (µ), z, r

)
= lim

ri↓0
�m
(
µ,z0 + (rix, r2

i t
)
, r2

i r
)

��m(µ, z0)=�m
(
µ0,0

)
.

Here we have used the upper semicontinuity of �m(µ, ·, ·) in its last two variables.
(2) From the proof of (1), we see that if �m(µ0, z)=�m(µ0,0) then the inequalities

are all equalities. In particular, �m(µ0, z, r) is constant with respect to r > 0. Applying
the argument of Lemma 3.2, we see that �m(µ0, z + v) = �m(µ0, z + Pλ(v)) for any
v ∈ Rm+1− and λ > 0. ✷

For any z0 ∈� and µ0 ∈ Tz0(µ), denote

M
(
�m
(
µ0, ·))≡ {z ∈Rm+1: �m

(
µ0, z

)=�m
(
µ0,0

)}
,

V
(
�m
(
µ0, ·))≡M

(
�m
(
µ0, ·))∩ {t = 0},

and

W
(
�m
(
µ0, ·))≡ {x ∈Rm: �m

(
µ0, (y, s)

)=�m
(
µ0, (x + y, s)

)
,∀(y, s) ∈Rm+1

−
}
.

Then we have

PROPOSITION 3.4. – For z0 ∈ � and µ0 ∈ Tz0(µ), we have V (�m(µ0, ·)) =
W(�m(µ0, ·)). In particular, both V (�m(µ0, ·)) and W(�m(µ0, ·)) are subspaces of
Rm. Moreover, M(�m(µ0, ·)) is V (�m(µ0, ·)) or V (�m(µ0, ·)) × (−∞, a] for some
0 � a �∞ and �m(µ0, ·) is time-independent up to t = a.

Proof. – It is clear that W(�m(µ0, ·))⊂ V (�m(µ0, ·)), V (�m(µ0, ·)) is closed under
scalar multiplication, and nW(�m(µ0, ·)) ⊂ W(�m(µ0, ·)) for any integer n. For any
(x,0) �= (0,0) ∈ V (�m(µ0, ·)), v ∈Rm+1− , and λ > 0, we have

�m
(
µ0, (x,0)+ v

)=�m
(
µ0, (x,0)+Pλv

)
=�m

(
µ0,Pλ−1

(
(x,0)+Pλv

))
=�m

(
µ0,Pλ−1(x,0)+ v

)
so that

�m
(
µ0, (x,0)+ v

)=�m
(
µ0,Pλ−1(x,0)+ v

)
. (3.11)

Note that v −Pλ−1(x,0) ∈Rm+1− . Hence, replacing v by v −Pλ−1(x,0) gives

�m
(
µ0, (x,0)+ v−Pλ−1(x,0)

)=�m
(
µ0, v

)
. (3.12)

Taking λ into zero and using the upper semicontinuity of �m(µ0, ·), we obtain, from
(3.11) and (3.12),

�m
(
µ0, v

)=�m
(
µ0, (x,0)+ v

)
, ∀v ∈Rm+1

− .
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This implies that V (�m(µ0, ·))⊂W(�m(µ0, ·)). Hence V (�m(µ0, ·))=W(�m(µ0, ·))
and is a subspace of Rm.

Suppose that X = (x, t) ∈M(�m(µ0, ·)), with t < 0. Then, for any Y = (y, s) with
s � t and λ > 0, we have

�m
(
µ0,Pλ−1(Y )

)=�m
(
µ0, Y

)=�m
(
µ0,X+Pλ−1(Y −X)

)
.

Note that sλ−2 � s � t , for λ < 1. Hence replacing Y by Pλ(Y ), we get

�m
(
µ0, Y

)=�m
(
µ0,X+ Y −Pλ−1(X)

)
.

Taking λ into zero, we have �m(µ0, Y ) � �m(µ0,X + Y ). By substituting Y by
Y +Pλ−1(X), we also get

�m
(
µ0, Y +Pλ−1(X)

)=�m
(
µ0,X+ Y

)
this implies �m(µ0, Y ) � �m(µ0,X+ Y ). Therefore, we have

�m
(
µ0, Y

)=�m
(
µ0,X+ Y

)
, ∀X= (x, t), Y = (y, s), s � t < 0. (3.13)

This implies, by choosing Y = (n− 1)X,

�m
(
µ0,0

)=�m
(
µ0, (nx,nt)

)=�m
(
µ0,Pn(nx,nt)

)
=�m

(
µ0,

(
x,

t

n

))
� �m

(
µ0, (x,0)

)
.

Therefore, (x,0) ∈ V (�m(µ0, ·))=W(�m(µ0, ·)) and (0, t) ∈M(�m(µ0, ·)). In partic-
ular, �m(µ0, ·) is time-independent up to time t = 0.

If X = (x, t) ∈ V (�m(µ0, ·)), with t > 0, then we can prove similarly that �m(µ0, ·) is
time-independent up to time t . Let t = a � 0 be the maximal number such that �m(µ0, ·)
is time-independent up to t = a. Then one gets M(�m(µ0, ·)) = V (�m(µ0, ·)) ×
(−∞, a]. ✷

DEFINITION 3.5. – For z0 ∈� and µ0 ∈ Tz0(�), define dim(�m(µ0, ·)) by

dim
(
�m
(
µ0, ·))=

{
dim

(
V
(
�m
(
µ0, ·)))+ 2, if M

(
�m
(
µ0, ·))= V

(
�m
(
µ0, ·))×R

dim
(
V
(
�m
(
µ0, ·))), otherwise.

Now we are ready to prove the main theorem of this section.

THEOREM 3.6. – For 0 � k � m, let

�k = {z0 ∈�: dim
(
�m
(
µ0, ·))� k,∀µ0 ∈ Tz0(µ)

}
.

Then dim(�k) � k for 0 � k � m, and �0 is discrete. In particular, � = �0 ∪ (�1 \
�0) ∪ · · · ∪ (�m \ �m−1), and for Pm a.e. z ∈ �, there exists at least one µ0 ∈ Tz(µ)

such that

µ0 =�m(µ, z)
(
Hm−2LTm−2

)× (L1LR
)
.

Here Tm−2 ⊂Rm is a (m− 2)-plane.
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Proof of Theorem 3.6. – This is essentially an extension of the Federer’s dimension
reduction argument. It suffices to show that if Pd(�k) > 0 then d � k. Thus we only
consider such a d . First, denote Az,r = Pz,r(A) for A⊂Rm+1, z ∈Rm+1, and λ > 0. Let

C = {V ×R, or V : V ⊂Rm a subspace of dim(V ) � k − 2
}

∪ {V ×R−: V ⊂Rm a subspace of dim(V ) � k
}
.

Then we have

CLAIM 3.7. – For any z0 ∈ �k and r > 0 there exists η = η(z, ε) > 0 such that for
any ρ ∈ (0, ε)

({
w ∈ Pρ(z): �m(µ,w) � �m(µ, z)− η

})
z,ρ
⊂ ε-neighborhood of C, (3.14)

for some C ∈ C. Here ε-neighborhood is measured with respect to the parabolic metric δ.

For, otherwise, there exist ε0 > 0, z0 ∈�k , and ρi, ηi ↓ 0 such that

Bi ≡ {z ∈ P1(0): �m
(
Pz0,ρi

(µ), z
)
� �m(µ, z0)− ηi

}
�⊂ ε0-neighborhood of any C ∈ C.

On the other hand, we may assume that Pz0,ρi
(µ) → µ0 ∈ Tz0(µ) and Bi → B ⊂

M(�m(µ0, ·)) = {z ∈ Rm+1: �m(µ0, z) = �m(µ, z0)}. By Lemma 3.4, we know that,
among the four possibilities of M(�m(µ0, ·)), only M(�m(µ0, ·) = V (�m(µ0, ·)) ×
(−∞, a] for some a > 0 is not in C. However, even for such a possibility, we can find
ri ↓ 0 such that Pri (µ

0)→ µ1, and by the uppersemicontinuity

�m
(
µ1,w

)=�m
(
µ1,0

)=�m
(
µ0,0

)
, ∀w ∈ V

(
�m
(
µ0, ·))×R

this implies that M(�m(µ0, ·)) ⊂ M(�m(µ1, ·)) ∈ C. Therefore we get the desired
contradiction.

Now we proceed as follows. Let εi ↓ 0 and decompose �k =⋃i,q�1 �k,i,q , here �k,i,q

denotes points where �m(µ, ·) ∈ ((q − 1)εi, qεi) and Claim 3.7 holds with ε = εi .
Therefore, for each i, there exists qi � 1 such that Pd (�k,i,qi ) > 0. By the lower bound
for the upper density (cf. [16]), we know that there exist zi ∈�k,i,qi and ri ↓ 0 such that

Pd,∞((�k,i,qi )zi ,ri
)
� 10−d . (3.15)

Here Pd,∞ denotes the d-dimensional Hausdorff measure with size ∞. Moreover, for
each z ∈ (�k,i,qi )zi ,ri there exists Cz ∈ C such that

(
(�)k,i,qi

)
zi ,ri
− z⊂ εi-neighborhood of Cz.

We may assume that (�k,i,qi )zi ,ri →�∞
k . Then we have

�∞
k − z⊂Cz, ∀z ∈�∞

k , and Pd,∞(�∞
k ) � 10−d . (3.16)

For any C ∈ C, let �∞
k,j,C = {z ∈�∞

k : δ(Cz,C) � j−1}. Then for each j there exists Cj ∈
C such that �∞

k,j ≡�∞
k,j,Cj

has positive Pd -measure. Therefore, there exist zj ∈�∞
k,j and
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ρj ↓ 0 such that

Pd,∞((�∞
k,j

)
zj ,ρj

)
� 10−d . (3.17)

Assume that Cj → C∞ ∈ C and (�∞
k,j )zj ,ρj

→�∞. Then �∞ ⊂ C∞, Pd(�∞) > 0, and
�∞ − z ⊂ C∞ whenever z ∈ �∞. In particular, we have �∞ ⊂ C∞ ∩ (−C∞). But we
note that if C∞ = V∞ × R− for some vector subspace V∞ ⊂ Rm then C∞ ∩ (−C∞) =
V∞. Hence Pd(V∞) > 0 implies that Hd(V∞) > 0 so that d � k. For C∞ = V∞ or
V∞ ×R, we see C∞ ∩ (−C∞)= C∞ so that Pd(�∞) > 0 implies that Pd (C∞) > 0 so
that d � k again. ✷

4. Generalized varifolds and rectifiablity of the concentration set

In this section, we first recall some of the classical theory of varifolds, which was
studied by Almgren [3,4] and Allard [6] (see also Simon [33] for details), and at the
same time we also recall the notion of generalized varifolds, which was remarked by
Almgren [4] and recently adopted by Ambrosio and Soner [1] in their study of the
dynamics of Ginzburg–Landau equations with complex values, and Lin [24] in the study
of mapping problems.

For simplicity, we assume, throughout this section, that M = Rm. For 1 � l � m, let
Gl(m) denote the standard Grassmann manifold of l-dimensional unoriented planes in
Rm. For a bounded domain B ⊂ Rm, recall a l-varifold in B is just a Radon measure
in B×Gl(m), and let Vl(B) denote all l-varifolds in B. The weight ‖V ‖ of V ∈ Vl(B)

is π#(V ), where π(x,A)= x :B×Gl(m)→B. A set E ⊂ Rm is called l-rectifiable if
except a zero Hl measure subset E can be covered by countably many l-dimensional
C1 submanifolds of Rm. A V ∈ Vl(B) is said to be l-rectifiable varifold if there exist a
l-rectifiable set E ⊂ B and a locally Hl integrable and a positive function θ such that
V = δTxEθH

lLE for Hl a.e. in B, here TxE denotes the tangent plane of E at x and
δTxE denotes the Dirac mass at TxE. Let RVl(B) denote all l-rectifiable varifolds.

Now, we recall the definition of generalized varifolds from [1].

DEFINITION 4.1. – A l-dimensional generalized varifold V is a nonnegative Radon
measure on B×Al,m, where

Al,m = {A ∈Rm×m: A is symmetric, trace(A)= l,−lIm � A � Im
}
,

where Im denotes the identity matrix of order m. The class of all generalized l-varifolds is
denoted by V ∗l (B). Again, let ‖V ‖ denote the weight of v ∈ V ∗l (B). Since Gl(m)⊂Al,m,
we know that Vl(B)⊂ V ∗l (B).

DEFINITION 4.2. – For any given V ∈ V ∗l (B), the first variation of V , δV , is a
distribution on C1

0(B,Rm) defined by

δV (X)=−
∫

B×Al,m

DX(x) :AdV (x,A), ∀X ∈C1
0

(
B,Rm

)
. (4.1)

Here A : B =∑ij AijBij for A,B ∈ Rm×m. V is called stationary if δV = 0.
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Note that if δV is a Radon measure, that is, if

‖δV ‖(G)= sup
{|δV (X)|: X ∈C1

0

(
B,Rm

)
,‖X‖L∞ � 1, spt(X)⊂G

}
�C(G) <∞, ∀G � B. (4.2)

Then the Riesz Representation Theorem implies that

δV (X)=
∫
B

X(x)β(x)d‖δV ‖(x), ∀X ∈ C1
0

(
B,Rm

)
(4.3)

here β is a ‖δV ‖-measurable, Sm−1-valued function. If ‖δV ‖� ‖V ‖, then we have

δV (X)=
∫
B

〈H(x),X(x)〉d‖V ‖(x), ∀X ∈C1
0

(
B,Rm

)
, (4.4)

where H :B→ Rm is a ‖V ‖-measurable function, which we call the generalized mean
curvature of V .

Note also that the convergence of V ∈ V ∗l (B) is understood as weak convergence of
Radon measures on B×Al,m. Moreover, if Vn→ V , then δVn→ δV as distributions. In
particular, if supn ‖δVn‖(A) <∞, then

‖δV ‖(A) � lim inf
n→∞ ‖δVn‖(A) <∞, for A⊂B. (4.5)

To motivate the application of generalized varifolds to our problem, we give two
examples.

Example 4.3. – For u ∈H 1(B,Rk), we define Vu(x)= 1
2δA(u)(x)|Du|2(x)dx, where

A(u)(x)=
{

Im − 2Du⊗Du

|Du|2 (x), if |Du|(x) �= 0,

Im−2, if |Du|(x)= 0.
(4.6)

Then it is clear that A(u)(x) ∈ Am−2,m. Hence Vu ∈ V ∗m−2(B). In fact, for any Borel set
B ⊂B×Am−2,m,

Vu(B)= 1

2

∫
π(B)

|Du|2(x)dx

where π(B)= {x ∈B: (x,Au(x)) ∈ B}. It is clear that δVu is given by

δVu(X)=−
∫
B

DX(x) :AdVu(x,A)

=−1
2

∫
B

DX(x) :A(u)(x)|Du|2(x)dx

=−1
2

∫
B

(|Du|2(x)div(X)− 2DiuDjuX
j
i

)
dx.
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In particular, if u ∈H 1(B,N) is a stationary harmonic map (see, Bethuel [7] and [23] for
the definition and discussion), then we have δVu = 0 so that Vu is a stationary generalized
(m− 2)-varifold in B.

Example 4.4. – For εn ↓ 0, let un ∈H 1(B,Rk) be critical points of Iεn(·), namely, un

satisfies

�un + 1
ε2
n

f (un)= 0, in B. (4.7)

Then it follows from [31] that

δVuεn
(X)=−

∫
B

divX
F(un)

ε2
n

, ∀X ∈C1
0

(
B,Rm

)
. (4.8)

In particular, if supn Iεn(un) < ∞, then we may assume that un → u weakly in
H 1(B,Rk) and

e(un)(x)dx→ 1
2
|Du|2(x)dx + ν

as convergence of Radon measures in B for some nonnegative Radon measure ν on B,
and Vun

weakly converges to a V ∈ V ∗m−2(B). Moreover, it follows from Lemma 2.4 that

lim
n→∞

∫
B

F(un)

ε2
n

= 0. (4.9)

Hence δVun
(X)→ 0 for any X ∈ C1

0(B,Rm) so that δV = 0 and V is stationary. In
Corollary 4.10 below, we show that ν is a (m− 2)-rectifiable Radon measure and V =
Vu + VR, where VR is the (m− 2)-rectifiable varifold, given by VR = δTx�θH

m−2L�,
here � is a closed (m− 2)-rectifiable set, and ν = θHm−2L�.

Now we start to discuss the generalized varifold flow, associated with solutions to
(1.3)–(1.4). For any εn ↓ 0, let un ∈ C∞(B× R+,Rk) solve (1.3) and satisfy (see also
(1.6) and Lemma 2.1):

sup
n

sup
0<t<∞

( t∫
0

∫
B

|∂tun|2 +
∫
M

e(un)(x, t)dx

)
� C <∞. (4.10)

For any such a un, we define a generalized (m − 2)-varifold Vn ∈ V ∗m−2(B × R+) as
follows

Vn(x, t,A)= δA(un)(x,t)(A)µn
t dt, ∀(x, t,A) ∈B×R+ ×Am−2,m,

where A(un) is defined by (4.6), and µn
t (x) = e(un)(x, t)dx. Let π(x,t) :B × R+ ×

Am−2,m → B × R+ be the projection map at (x, t). Then we know that the weight
‖Vn‖ = π(x,t)#(Vn) = µn

t dt . In particular, supn ‖Vn‖(G) <∞ for any compact subset
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G⊂B×R+. Therefore, we may assume that there exists a generalized (m−2)-varifold
V ∈ V ∗m−2(B×R+) such that

Vn→ V, ‖Vn‖ = µn
t dt→‖V ‖ (4.11)

as convergence of Radon measures. Moreover, by Lemma 2.5, we know that ‖V ‖ =
µt dt . We can also represent V = Vx,t‖V ‖ = Vx,tµt dt, where for each (x, t) ∈B× R+
Vx,t is a probability measure on Am−2,m. Note that for any compact subset G ∈B×R+,
L1 norm of −Dun∂tun on G is uniformly bounded. Hence we may assume that

−Dun∂tun dx dt→ σ

as convergence of Radon measures on B×R+, for some (signed) Radon measures σ on
B×R+. Since −Dun∂tun dx dt� e(un)(x, t)dx dt , we have

σ � µt dt = ‖V ‖. (4.12)

By the Riesz Representation Theorem, we know that there exists a Ht(x) ∈ L1‖V ‖(B×,

Rm) such that

σ (x, t)=Ht(x)µt (x)dt. (4.13)

Moreover, by the lower semicontinuity, we have

∞∫
0

∫
B

|Ht(x)|2 dµ(x, t) � lim inf
n→∞

∞∫
0

∫
B

∣∣∣∣Dun∂tun

e(un)

∣∣∣∣
2

e(un)dx dt

� 2 lim inf
n→∞

∞∫
0

∫
B

|∂tun|2(x, t)dx dt <∞. (4.14)

Here we have used the Schwartz inequality in the last step.

LEMMA 4.5. – For L1 a.e. t ∈ R+, Vt = Vx,tµt ∈ V ∗m−2(B) has its first variation
δVt � µt , and δVt =Htµt with Ht ∈ L2

µt
(B,Rm).

Proof. – For Y ∈ C1
0(B,Rm), γ ∈ C0(R+,R). Denote V n

t = VA(un)(x,t)µ
n
t ∈ V ∗m−2(B).

Then∫
R+

γ (t)δV n
t (Y )dt =−

∫
R+

γ (t)

∫
B

DY(x) :AdV n
t (x,A)

=−1

2

∫
R+

γ (t)

∫
B

DY(x) : (|Dun|2Im− 2Dun⊗Dun

)
(x, t)dx

−
∫

B×R+

γ (t)DY (x) :A(un)(x, t)
1
ε2
n

F (un)(x, t)dx dt = I + II.

For I , multiplying (1.3) by Y (x)Dun and integrating it by parts, we have
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R+

γ (t)dt
∫
B

Y (x)Dun∂tun

=
∫
R+

γ (t)dt
∫
B

(
�un + 1

ε2
n

f (un)

)
Y (x)Dun

=
∫
R+

γ (t)dt
∫
B

�unY (x)Dun +
∫
R+

γ (t)dt
∫
B

D

(
F(un)

ε2
n

)
Y (x)

=
∫
R+

γ (t)dt
∫
B

(
un,jun,lY

l
)
j
− YD

( |Dun|2
2

)
− un,jun,lY

l
j

+
∫
R+

γ (t)dt
∫
B

F(un)

ε2
n

div(Y )

=
∫
R+

γ (t)dt
∫
B

(
1
2
|Dun|2div(Y )− un,jun,lY

l
j

)
+
∫
R+

γ (t)dt
∫
B

F(un)

ε2
n

div(Y ).

Therefore,∫
R+

γ (t)

∫
B

δV n
t (Y )dt =−

∫
R+

γ (t)

∫
B

YDun∂tun

−
∫
R+

γ (t)

∫
{x∈B: |Dun|(x,t) �=0}

2
un,iun,j Y

j
i

|Dun|2
F(un)

ε2
n

.

By Lemma 2.4, we know that

lim
n→∞

∫
B×R+

|γ (t)||DY(x)|F(un)

ε2
n

(x, t)dx dt = 0.

Therefore, by taking n into infinity, we have∫
R+

γ (t)δVt(Y )dt = lim
n→∞

∫
R+

γ (t)dt
∫
B

Y (x)(−Dun∂tun)dx dt

=
∫
R+

γ (t)dt
∫
B

〈Ht(x), Y (x)〉dµt dt

so that for L1 a.e. t ∈R+, δVt =Htµt . ✷
For V ∈ V ∗m−2(B) and x ∈B, we define

�m−2(‖V ‖, x)= lim
r→0

‖V ‖(Br(x))

α(m− 2)rm−2
. (4.15)

Provided that the limit exists and α(m− 2)= |Bm−2
1 |.
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Now we state the monotonicity formula for generalized l-varifolds V ∈ V ∗l (B), whose
first variation is a Radon measure. Note that the same formula was shown by Allard
(Theorem 5.1 of [6]) for classical l-varifolds V ∈ Vl(B).

LEMMA 4.6. – Suppose that V ∈ V ∗l (B) and ‖δV ‖ is a Radon measure on B. Then,
for any a ∈ spt(‖V ‖) and 0 < r < dist(a, ∂B),

d

dr

(
r−l‖V ‖(Br(a))

)= r−l−2
∫

∂Br (a)

|S⊥(x)|2 dV (x,S)

− r−l−1 lim
ε↓0

δV
(
θε(|x|)x), (4.16)

where θε(|x|) ∈ C1
0(Br(a)) converges to the characteristic function of Br(a) as ε ↓ 0 and

|S⊥(x)|2 = |x|2 − |S(x)|2.

Proof. – The proof is exactly as same as that by Allard [5] for classical l-varifolds.
For θε(|x|) given by the lemma, one has

−δV
(
θε(|x|)x)=

∫
Br (a)×Al,m

θ ′(|x|)
(

1− |S
⊥(x)|2
|x|

)
dV (x,S)+ l‖V ‖(θε(|x|)).

This can easily seen to imply (4.16). ✷
As a consequence, we obtain the existence of �m−2(‖Vt‖, ·) for L1 a.e. t ∈ R+ as

follows.

COROLLARY 4.7. – Suppose that {Vt}t>0 is the family of generalized (m − 2)
varifolds obtained via (4.10)–(4.14). Then, for L1 a.e. t ∈R+, there exists a set Et ⊂B,
with Hm−2(Et ) = 0, such that �m−2(‖Vt‖, x) exists for any x ∈ B \ Et . Moreover,
�m−2(‖Vt‖, ·) is upper semicontinuous for x ∈B \Et .

Proof. – It follows from Lemma 4.5 that for L1 a.e. t ∈ R+, Ht ∈ L2‖Vt‖(B,Rm),
δVt =Ht‖Vt‖, and limn→∞

∫
B |∂tun|2(x, t) <∞. In particular,

‖δVt‖(Br(a)
)
� lim

n→∞

∫
Br(a)

|∂tunDun|

� 2
(‖Vt‖(Br(a))

) 1
2 lim
n→∞

( ∫
Br (a)

|∂tun|2
) 1

2

. (4.17)

Hence Lemma 4.6 implies,

d
dr

(
r2−m‖Vt‖(Br(a))

)
� r−m−2

∫
∂Br(a)

|S⊥(x)|2 dVt(x, S)

− 2
(
r2−m‖Vt‖(Br(a))

) 1
2

(
lim
n→∞ r2−m

∫
Br (a)

|∂tun|2
) 1

2
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� r−m−2
∫

∂Br(a)

|S⊥(x)|2 dVt(x, S)− r2−m‖Vt‖(Br(a)
)

− r2−m lim
n→∞

∫
Br(a)

|∂tun|2.

This implies that

d
dr

(
er r2−m‖Vt‖(Br(a))

)
� r−m−2

∫
∂Br(a)

|S⊥(x)|2 dVt(x, S)

− r2−m lim
n→∞

∫
Br (a)

|∂tun|2. (4.18)

If we let

Et =
{
a ∈B: lim

r→0
r2.5−m lim

n→∞

∫
Br(a)

|∂tun|2 � 1
}
.

Then, for any a ∈B \Et , there exists r0 = r0(a) > 0 such that for any 0 < r � r0

r2−m lim
n→∞

∫
Br (a)

|∂tun|2 � 2r−
1
2 .

Therefore, if we integrate (4.18) between 0 < r1 � r2 � r0, then we get(
er2r2−m

2 ‖Vt‖(Br2(a)
)+√r2

)− (er1r2−m
1 ‖Vt‖(Br1(a)

)+√r1
)

�
r2∫

r1

r−m−2
∫

∂Br(a)

|S⊥(x)|2 dVt(x, S). (4.19)

This implies that �m−2(‖Vt‖, a) exists for all a ∈ B \ Et . Moreover it is upper
semicontinuous for a ∈ B \ Et . Now we want to estimate the size of Et as follows.
In fact, a simple Vitali’s covering argument implies that Hm−2.5(Et) <∞. In particular,
Hm−2(Et )= 0. This completes the proof. ✷

Note that, by (2.7) and (2.10), �t has locally finite (m− 2)-dimensional Hausdorff
measure for any t > 0. Now we have

LEMMA 4.8. – For L1 a.e. t ∈R+, there exists a subset Ft ⊂�t , with Hm−2(Ft )= 0,

such that �m−2(‖Vt‖, x) � ε2
0
2 for all x ∈�t \ Ft . Here ε0 is given by Lemma 2.3.

Proof. – Define

G=
{
z ∈�: lim

r↓0
lim
n→∞ r2−m

∫
Pr(z)

|∂tun|2 � ε5
0

}
.

Here � is the concentration set defined in Section 2 and ε0 is given by Lemma 2.3. Then,
by the Vitali’s covering lemma, we have Pm−2(G) <∞. In particular, Pm(G) = 0.
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Therefore, for L1 a.e. t ∈ R+, Hm−2(Gt) = 0, here Gt = G ∩ {t} ⊂ �t . Let Ft =
Gt ∪ (Et ∩�t), here Et is given by Lemma 4.7. Then it is easy to see Hm−2(Ft) = 0.
Now we want to show that for any a ∈�t \ Ft , �m−2(‖Vt‖, a) is positive. In fact, there
exists ra > 0 such that

lim
n→∞ r2−m

∫
Pr (a)

|∂tun|2 < ε5
0, ∀0 < r � ra. (4.20)

Since a ∈�t , it follows from [9] or [31] that for any r ∈ (0, ra
2 ]

lim
n→∞ r2−m

∫
B2r (a)

e(un)
(
x, t − r2)� ε2

0

2
.

On the other hand, Lemma 2.1 implies∫
Br (a)

e(un)(x, t) �
∫

B2r (a)

e(un)
(
x, t − r2)− ∫

P2r (a)

|∂tun|2

−
(
r−2

∫
P2r (a)

|Dun|2
) 1

2
( ∫

P2r (a)

|∂tun|2
) 1

2

�
∫

B2r (a)

e(un)
(
x, t − r2)−Cε2.5

0 rm−2 � ε2
0

4
rm−2.

Here we have used the fact that r−m
∫
Pr (a)

|Dun|2 � C. This implies that, for all 0 < r �
ra , limn→∞ r2−m

∫
Br (a)

e(un)(x, t) � ε2
0
4 . Thus �m−2(‖Vt‖, a) � ε2

0
4 . ✷

THEOREM 4.9. – Under the same notations as above. For L1 a.e. t ∈ R+, VtL(�t ×
Am−2,m) is a (m− 2)-rectifiable varifold. In particular, �t is a (m− 2)-rectifiable set
in B.

Proof. – One can follow the proof of Theorem 5.5 of Allard [6]. Here we sketch
a slightly different proof. First, it follows from Lemma 4.8 that for L1 a.e. t ∈ R+,
there exists Gt ⊂ �t , with Hm−2(Gt) = 0, such that �m−2(‖Vt‖, x) is positive and
finite for any x ∈ �t \ Gt . We can also assume that Hm−2(�t \ Gt) > 0 (otherwise,
we have nothing to prove). Moreover, since �m−2(‖Vt‖, ·) is upper semicontinuous on
�t \Gt , �m−2(‖Vt‖, x) is Hm−2-approximately continuous for Hm−2 a.e. in �t \Gt . If
we represent Vt = Vx,t‖Vt‖, with Vx,t a probability measure on Am−2,m, then Vx,t is a
Hm−2-measurable function with valued in the space of probability measures on Am−2,m.
It is well-known that Vx,t is Hm−2-approximately continuous for Hm−2 a.e. x ∈ �t .
Therefore, for Hm−2 a.e. x0 ∈�t , the following four properties hold:

�∗,m−2(�t, x0)= lim sup
r↓0

r2−mHm−2(�t ∩Br(x0)
)
� 2−m−2, (4.21)

�m−2(‖Vt‖, ·) is Hm−2 approximately continous at x0,
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Vx,t is Hm−2 approximately continuous at x0,

lim
r↓0

∫
Br(x0)

|Ht |d‖Vt‖
rm−2

= |Ht(x0)|�m−2(‖Vt‖, x0) <∞. (4.22)

Based on these and the Geometric Lemma 2.4 of [23], we can assure that for any ri ↓ 0,
there exists a subsequence ri′ ↓ 0 such that

Dx0,ri′ (Vx,t)→ Vx0,tH
m−2LT (4.23)

for some (m− 2)-plane T ⊂ Rm, Now we want to show that T is independent of the
choice of {i′}. In fact, by (4.22), we have

lim
i′→∞

∥∥δ(Dx0,ri′ (Vx,t)
)∥∥= lim

r ′→∞ r3−m
i′ (Dx0,ri′ )#‖δVx,t‖ = 0.

Therefore

δ
(
Vx0,tH

m−2LT
)= 0

so that the constancy theorem for varifolds (see, Simon [33]) implies that Vx0,t = δT , i.e.
the Dirac mass at T . In particular, T is unique. This proves that VtL(�t ×Am−2,m) is a
(m− 2)-rectifiable varifold. In particular, �t = spt(‖Vt‖) is a Hm−2-rectifiable set. ✷

Finally, we derive some consequences of the Theorem 4.9. Let us first consider the
critical points of the Ginzburg–Landau functional.

COROLLARY 4.10 (Continuation of Example 4.4). – Under the same assumptions
as in Example 4.4. There exist a closed (m − 2)-rectifiable set � ⊂ B and a Hm−2-
measurable function ε2

0 � θ <∞ on B such that
(1) ν(x)= θ(x)Hm−2L� for Hm−2 a.e. x ∈�, and

Vun
→ V ≡ Vu+ V (�, θ) (4.24)

as convergences of generalized (m− 2)-varifolds on B, here

V (�, θ)= δTx�θH
m−2L�.

Moreover, V is stationary, i.e., for any Y ∈C1
0(B,Rm),

∫
B

1

2
|Du|2div(Y )− ∑

1�ij�m

uiujY
j
i +

∫
�

div�(Y )θ dHm−2 = 0. (4.25)

(2) If, in addition, N = Sk−1. Then

θ(x)=
lx∑

i=1

E
(
φj , S

2), for Hm−2 a.e. x ∈�. (4.26)

Here 1 � lx <∞ and φj :S2 → Sk−1 are nontrivial harmonic maps for 1 � j � lx .
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(3) If, in addition, N = S2. Then θ(x)= 4πnx for some positive integer nx , for Hm−2

a.e. x ∈�. In particular, 1
4π V (�, θ) is an integral (m− 2)-varifold.

Proof. – It follows from the static versions of Lemmas 2.1–2.3 for un that the
concentration set is given by

� = {x ∈B: ε2
0 � �m−2(‖V ‖, x) <∞}= {x ∈B: �m−2(‖V ‖, x) > 0

}
.

Moreover, as in Example 4.4, δV = 0. Therefore, Theorem 4.9 implies

V L
{
(x,A): �m−2(‖V ‖, x) > 0,A ∈Am−2,m

}= δTx��
m−2(‖V ‖, x)Hm−2L�

is a (m− 2)-rectifiable varifold. In particular, � is a (m− 2)-rectifiable set. Moreover,
since un→ u in C1

loc(B \�,Rk), we have

V L(B \�)×Am−2,m = 1
2
δA(u)|Du|2(x)dx.

Therefore, we obtain (4.24) and (4.25). This proves (1).
The conclusion of (2) comes from the Theorem B of [32] (one can also see Section 6

below). Part (3) follows from (2) and the fact that any nontrivial harmonic map from S2

to S2 has energy equal to 4πn for some positive integer n. ✷
Recall that a stationary harmonic map u ∈ H 1(B,N) is a weakly harmonic map,

which satisfies∫
B

|Du|2div(X)− 2
∑

1�ij�m

uiujX
i
j = 0, ∀X ∈C1

0

(
B,Rm

)
. (4.27)

By quoting the result by Lin and Riviere [27], we can obtain

COROLLARY 4.11. – Let {un} ⊂ H 1(B,N) be stationary harmonic maps. Assume
that un → u weakly in H 1(B,N), 1

2 |Dun|2(x)dx → 1
2 |Du|2(x)dx + ν for some

nonnegative Radon measure ν on B, and Vun
→ V as convergence of generalized

(m− 2)-varifolds. Then
(1) There exist a (m−2)-rectifiable close set � ⊂B and a Hm−2 measurable function

ε2
0 � θ <∞ on B such that ν(x)= θ(x)Hm−2L�(x) for Hm−2 a.e. x ∈�.

(2) V = Vu+ V (�, θ) and is stationary, i.e., for any Y ∈C1
0(B,Rm),

∫
B

1
2
|Du|2divY − ∑

1�ij�m

uiujY
j
i +

∫
�

div� Yθ dHm−2 = 0. (4.28)

(3) If, in addition, N = Sk−1. Then θ(x)=∑lx
i=1 E(φj , S

2) for Hm−2 a.e. x ∈�, here
1 � lx <∞ and φj :S2 → Sk−1 is a nontrivial harmonic map. Furthermore, if k = 3,
then θ(x) = 4πnx for some positive integer nx , for Hm−2 a.e. x ∈ �. In particular,

1
4π V (�, θ) is an integral (m− 2)-varifold.
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5. Generalized varifold flows and the Brakke flow

In this section, we will prove that the limiting pair (u, νt dt) satisfies the generalized
varifold flow, which will be defined below. The generalized varifold flow implies that
{νt}t�0 is a Brakke flow of (m− 2)-rectifiable varifolds, under the extra assumption that
u is in the class of “suitably weak solutions” to the heat flow of harmonic maps, which
requires that the energy equality (2.1) holds. Similar notion of suitably weak solutions
to the Navie–Stokes equations was introduced by Cafferalli, Nirenberg and Kohn [12].
A stronger class of weak solutions behaving like parabolic stationary harmonic maps
was introduced by Chen, Li and Lin [10] and Feldman [17].

We will use the same notations in Section 4 throughout this section. We first apply
Theorem 4.9 to express the varifold Vt for L1 a.e. t > 0.

LEMMA 5.1. – For L1 a.e. t > 0, we have

Vt = 1
2
δA(u(·,t ))|Du|2(x, t)dx + V

(
�t,�

m−2(‖Vt‖, ·)). (5.1)

Proof. – It follows from Lemmas 4.5–4.8 that for L1 a.e. t > 0, δVt = Ht‖Vt‖,
Ht ∈ L2‖Vt‖(B,Rm), ε2

0 � �m−2(‖Vt‖, x) <∞ for Hm−2 a.e. x ∈�t , here �t = � ∩ {t}
and � is defined by Section 2. Therefore, Theorem 4.9 implies that VtL(�t ×Am−2,m)

is a (m− 2)-varifold and

VtL�t = δTx�t
�m−2(‖Vt‖, x)Hm−2L�t = V

(
�t,�

m−2(‖Vt‖, ·)).
Since, on B \�t , we have un→ u in C1

loc so that Vun(·,t )→ Vu(·,t ) on B \�t . Therefore,

VtL(B \�t)= 1
2
δA(u(·,t ))|Du|2(x, t)dx.

Combining these two facts, we obtain (5.1). ✷
The next Lemma shows that generically Ht(x) ∈ (Tx�t)

⊥.

LEMMA 5.2. – For L1 a.e. t > 0, we have

Ht(x)⊥ Tx�t , for Hm−2 a.e. x ∈�t . (5.2)

Proof. – This can be proved by the Young measure method. Let Mmk denote the set of
m× k matrices and consider Radon measures Wn on B×R+ ×Mmk by

Wn(x, t,A)= δ Dun|Dun| (x,t)
(A)e(un)(x, t)dx dt.

Define φ :Mmk →Am−2,m by φ(A)= Im− 2AtA. Then we see that φ#(Wn)= Vun
, here

Vun
is the generalized (m− 2)-varifold on B×R+×Am−2,m defined in Section 4. Since

we can assume that Vun
→ V = Vx,tµt dt and Wn→W =Wx,tµt dt for some probability

measures Vx,t on Am−2,m, and Wx,t on Mmk , we then have Vx,t = φ#(Wx,t ). Since, for
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L1 a.e. t > 0, Lemma 5.1 holds. Therefore, for L1 a.e. t > 0, Vx,t = δTx�t
for x ∈�t . In

particular, for Hm−2 a.e. x ∈�t ,∫
Mmk

(
Im − 2AtA

)
dWx,t (A)=

∫
Am−2,m

AdVx,t(A)= Tx�t .

For any unit vector e ∈ Tx�t , we then have

1= 〈Tx�t(e), e〉
=
〈
e,

∫
Mmk

(
Im − 2AtA

)
dWx,t(A)(e)

〉

= 1− 2
∫

Mmk

|A(e)|2 dWx,t (A).

Hence, for Hm−2 a.e. x ∈ �t , |A(e)| = 0 for Wx,t a.e. A ∈Mmk . This implies that for
Hm−2 a.e. x ∈ �t , the support of Wx,t is contained in E(A)≡ {A= (A1, . . . ,Ak)

t :
span{A1, . . . ,Ak} ⊂ (Tx�t)

⊥}. Note also that if we define Zn = δ Dun|Dun|
∂tunDun dx dt ,

then Zn�Wn. Therefore, if we assume that Zn→ Z on B×R+ ×Mmk , then Z�W

and there exists a vector valued function Zx,t on Mmk such that Z = Zx,tWx,tµt dt . Since
(πx,t)#Zn = ∂tunDun dx dt→−Ht(x)µt dt , we have

−Ht(x)=
∫

Mmk

Zx,t (A)dWx,t (A).

We now claim that for Hm−2 a.e. x ∈ �t , Zx,t(A) ∈ spt(Wx,t ), which clearly implies
Ht(x) ∈ (Tx�t )

⊥. In fact, since ∂tunDun ∈E( Dun

|Dun|), we have

∫
Mmk

dist
(
A,

dZn

d‖Zn‖
)

d‖Zn‖(A)= 0

taking n into infinity and by the lower semicontinuity, this gives

∫
Mmk

dist
(
A,

dZ
d‖Z‖

)
d‖Z‖ = 0.

This also implies that for Wx,t a.e. A ∈Mmk , Zx,t(A) ∈ spt(Wx,t). ✷
Now we prove an energy inequality for the limiting Radon measures ν, η. Assume

that

e(un)(x, t)dx→ 1
2
|Du|2(x, t)dx + νt ,

|∂tun|2(x, t)dx dt→ |∂tu|2(x, t)dx dt + η

for some Radon measures {νt}t>0 on B and η on B×R+. Then
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PROPOSITION 5.3 (Energy inequality). – Under the same notations as above. We
have, for any 0 < t1 < t2 <∞ and φ ∈ C1

0(B,R+),∫
B

1
2
φ(x)|Du|2(x, t2)+ νt2(φ)−

∫
B

1
2
φ(x)|Du|2(x, t1)− νt1(φ)

�−
∫

B×[t1,t2]

(|∂tu|2φ +Dφ∂tuDu
)

−
∫
�

t2
t1

(
φ dη− 〈(Tx(�t)

)⊥
Dφ,Ht

〉
d‖Vt‖dt. (5.3)

Here νt(φ)= ∫B φ(x)dνt(x), �
t2
t1 =� ∩Rm × [t1, t2], and (Tx�t )

⊥ denotes the normal
space of �t at x.

Proof. – By taking n into infinity in the equality (2.1), we have∫
B

1
2
φ(x)|Du|2(x, t2)+ νt2(φ)−

∫
B

1
2
φ(x)|Du|2(x, t1)− νt1(φ)

=−
∫

B×[t1,t2]
φ|∂tu|2 −

∫
�

t2
t1

φ dη+
∫

B×[t1,t2]
〈Dφ,Ht〉d‖Vt‖dt. (5.4)

Sine ∂tunDun → ∂tuDu strongly in L2
loc(B × R+ \ �), Ht dµt = −∂tuDudx on

B×R+ \�. Therefore, by Lemma 5.2, we have∫
B×[t1,t2]

〈Dφ,Ht〉d‖Vt‖dt =−
∫

B×[t1,t2]
Dφ∂tuDu+

∫
�

t2
t1

〈Dφ,Ht〉dµt

=−
∫

B×[t1,t2]
Dφ∂tuDu+

∫
�

t2
t1

〈
(Tx�t )

⊥Dφ,Ht

〉
dµt .

This gives (5.3). ✷
COROLLARY 5.4. – Under the same notations as above. We have, for any 0 < t1 <

t2 <∞ and φ ∈ C1
0(B,R+),∫

B

1
2
φ(x)|Du|2(x, t2)+ νt2(φ)−

∫
B

1
2
φ(x)|Du|2(x, t1)− νt1(φ)

�−
∫

B×[t1,t2]

(|∂tu|2φ +Dφ∂tuDu
)

−
∫
�

t2
t1

(
1
2
|Ht |2φ − 〈(Tx(�t)

)⊥
Dφ,Ht

〉)
d‖Vt‖dt. (5.5)
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Proof. – It suffices to prove
∫
�

t2
t1

φ dη � 1
2

∫
�

t2
t1

|Ht |2φ dνt dt. (5.6)

To see it, we note that, for Pm a.e. z0 = (x0, t0) ∈�, by the Schwartz inequality, we have

|Ht0(x0)|2 � lim
r↓0

lim
n→∞

( | ∫Pr(z0)
∂tunDun|∫

Pr(z0)
e(un)

)2

� 2 lim
r↓0

lim
n↓∞

∫
Pr (z0)

|∂tun|2∫
Pr(z0)

e(un)
.

Hence

|Ht0(x0)|2 dµ(z0)� 2 lim
r↓0

lim
n→∞

∫
Pr(z0)

|∂tun|2

= 2 lim
r→0

( ∫
Pr(z0)

|∂tu|2 + η
(
Pr(z0)

))

� 2 dη(z0).

This gives (5.6). ✷
Now we give the definition of generalized varifold flow for a pair (v, ηt dt).

DEFINITION 5.5. – Let v ∈ H 1
loc(B × R+,N) ∩ L∞(R+,H 1(B,N)) and {ηt}t�0 be

nonnegative Radon measures on B. We say that the pair (v, ηt dt) is a generalized
varifold flow, if the following holds

(1) v is a weak solution to the heat equation of harmonic maps, i.e. satisfies (1.0) in
the sense of distribution.

(2) For L1 a.e. t ∈ R+, ηt = ‖Vt‖ for some (m− 2)-rectifiable varifold Vt ∈ Vm−2(B),
δVt =Ht‖Vt‖, and Ht ∈ L2‖Vt‖(B,Rm).

(3) For any 0 � s � t <∞ and φ ∈C1
0(B,R+), we have∫

B

1
2
|Dv|2(x, t)φ(x)+ ηt (φ)−

∫
B

1
2
|Dv|2(x, s)φ(x)− ηs(φ)

�−
t∫

s

∫
B

(|∂tv|2φ +Dφ∂tvDv
)

−
t∫

s

∫
At

(
φ(x)|Ht(x)|2 − 〈(TxAt )

⊥Dφ,Ht(x)
〉)

dηt dt. (5.7)

Here At = spt(ηt ).

One of the main theorem of this section is to show that the limiting pair (u, νt dt)
obtained from the limiting process of sequences of solutions to the heat flow of the
Ginzburg–Landau functional, i.e. solutions to (1.3)–(1.4), is a generalized varifold flow.
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THEOREM 5.6. – Under the same notations as above. The limiting pair (u, νt dt) is a
generalized varifold flow.

Proof. – By comparing (5.5) and (5.7), we know that in order to show the pair (u, νt dt)
is a generalized varifold flow, it suffices to improve the 1

2 factor in front of the term∫ t

s

∫
�t

φ(x)|Ht(x)|2 of (5.5) to 1. In other word, we need to prove

LEMMA 5.7. – Under the same notations as above.∫
�s

t

φ(x)|Ht(x)|2 dνt(x)dt �
∫
�s

t

φ(x)dη(x, t) (5.8)

for any 0 < t � s <∞ and φ ∈ C1
0(B,R+).

Before we prove Lemma 5.7, we would like to remark that (5.8) also follows from the
energy quantization Theorem 6.1 of Section 6 below, which is only proved at present
under the assumption that N = Sk−1 however. Here we present a different proof of it,
which is valid for all manifold N .

LEMMA 5.8. – For Pm a.e. z= (x, t) ∈�, we have

lim
r↓0

lim
n→∞ r−m

∫
Pr(z)

(|Dxun|2 − |Dyun|2)dx dt = 0, (5.9)

lim
r↓0

lim
n→∞ r−m

∫
Pr(z)

DxunDyun dx dt = 0. (5.10)

Here (x, y) is the coordinate function of (Tx�t )
⊥.

Proof. – First note from the proof of Theorem 6.1 of Section 6 below that for Pm a.e.
z0 = (x0, t0) ∈�, the following properties hold:

lim
r↓0

lim
n→∞ r−m

∫
Pr (z0)

e(un)=�m−2(‖Vt0‖, x0), (5.11)

lim
r↓0

r2−m

∫
Pr(z0)

|∂tun|2 = 0, (5.12)

lim
r↓0

(
r2−m

∫
Pr (z0)

|∂tu|2 + r−m

∫
Pr(z0)

|Du|2
)
= 0, (5.13)

lim
r↓0

lim
n→∞ r−m

∫
Pr(z0)

|Dzun|2 = 0, (5.14)

where z is any vector in the (m− 2)-plane Tx0�t0 ⊂Rm.
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For any such z0 = (x0, t0), we identify Tx0�t0 = {(0,0)} × Rm−2 and write the
coordinate of Rm as Rm = {(x, y, z): (x, y) ∈R2, z ∈Rm−2}.

For rn ↓ 0, let vn(x, t) = un(x0 + rnx, t0 + r2
nt) :P2(0)→ Rk. Then we know that vn

solves (1.3), with εn replaced by εn = εn
rn
→ 0, and

vn(x, y, z, t)→ constant in C1
loc

(
Rm+1 \Rm−2 ×R,Rk

)
,

e(vn)(x, y, z, t)dx dy dzdt→�m−2(‖Vt0‖, x0)
(
Hm−2LRm−2)× (L1LR

)
, (5.15)

(|Dxvn|2 − |Dyvn|2)(x, y, z, t)dx dy dzdt→ α(z, t)Hm−2LRm−2 ×L1LR, (5.16)

DxvnDyvn(x, y, z, t)dx dy dzdt→ β(z, t)Hm−2LRm−2 ×L1LR (5.17)

as convergences of Radon measures on P2(0), for some measurable functions α,β on
Rm−2 ×R. Observe that (5.9) and (5.10) are equivalent to

∫
Bm−2

1 ×(−1,1)

α(z, t)dzdt =
∫

Bm−2
1 ×(−1,1)

β(z, t)dzdt = 0. (5.18)

In order to prove (5.18), we need the Pohozaev identity for vn as follows. For X ∈
C1

0(B
m
2 ,Rm), multiplying the equations of vn by X(x, y, z)Dvn(x, y, z), we get

∫
P2(0)

∂tvnDvnX =
∫

P2(0)

e(vn)div(X)−∑
i,j

vn,ivn,jX
j
i . (5.19)

Note that (5.12) implies

lim
n→∞

∫
P2

∂tvnDvnX = 0

and Lemma 2.4 implies

∫
P2(0)

e(vn)div(X)=
∫

P2(0)

1
2
|Dvn|2div(X)+O

(
n−1).

Hence, for X = (X1,X2, . . . ,Xm) ∈ C1
0(B

m
2 ,Rm), we have∫

P2(0)

1
2
|Dvn|2div(X)=

∫
P2(0)

1
2
|Dvn|2(X1

x +X2
y

)+ m∑
j=3

∫
P2(0)

1
2
|Dvn|2Xj

j

− ∑
3�ij�m

∫
P2(0)

vn,ivn,jX
j
i −

∑
3�i�m

∫
P2(0)

vn,i

(
vn,xX

1
i + vn,yX

2
i

)

− ∑
3�j�m

∫
P2(0)

vn,j

(
vn,xX

j
x + vn,yX

j
y

)
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−
∫

P2(0)

(|vn,x |2X1
x + |vn,y |2X2

y

)+ vn,xvn,y

(
X2

x +X1
y

)+O
(
n−1)

= I1 + I2 + I3 + I4 + I5 + I6 +O
(
n−1).

It follows from (5.14) that

I3 + I4 + I5 =O
(
n−1).

Hence ∫
P2(0)

1
2
|Dvn|2div(X)

=
∫

P2(0)

1

2
|Dvn|2(X1

x +X2
y

)+ m∑
j=3

∫
P2(0)

1

2
|Dvn|2Xj

j

−
∫

P2(0)

(|vn,x |2X1
x + |vn,y |2X2

y

)+ vn,xvn,y

(
X2

x +X1
y

)+O
(
n−1). (5.20)

By choosing X = (0,0,X3, . . . ,Xm), we then get

∫
P2(0)

1

2
|Dvn|2div(X)=

m∑
j=3

∫
P2(0)

1

2
|Dvn|2Xj

j +O
(
n−1) (5.21)

this, combined with (5.19) and (5.20), implies∫
P2(0)

1
2

(|vn,x |2 + |vn,y |2)(X1
x +X2

y

)

=
∫

P2(0)

(|vn,x |2X1
x + |vn,y |2X2

y

)+ vn,xvn,y

(
X2

x +X1
y

)+O
(
n−1). (5.22)

In particular, one has∫
P2(0)

(|Dxvn|2 − |Dyvn|2)(X2
y −X1

x

)− 2
∫

P2(0)

DxvnDyvn

(
X2

x +X1
y

)=O
(
n−1).

Therefore, we get ∫
Bm−2

2 ×(−4,4)

(α(z, t)
(
X2

y −X1
x

)− 2β(z, t)
(
X2

x +X1
y

)= 0 (5.23)

for any X1,X2 ∈ C1
0(B

m
2 ). Now choosing X1(x, y, z) = xφ(x, y, z) and X2 = 0 for

suitable cut-off function φ ∈ C1
0(B

m
2 ), one can see
∫

Bm−2
1 ×(−1,1)

α(z, t)dzdt = 0.
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Similarly, by choosing X2(x, y, z)= yφ(x, y, z) and X1 = 0, we obtain

∫
Bm−2

1 ×(−1,1)

β(z, t)dzdt = 0.

This completes the proof of Lemma 5.8. ✷
Proof of Lemma 5.7. – Note that Lemma 5.8 guarantees that for Pm a.e. z0 =

(x0, t0) ∈�

∫
Pr (z0)

|fn|2 =
∫

Pr (z0)

|gn|2 = 1+O
(
r, n−1), ∫

Pr(z0)

fn · gn =O
(
r, n−1). (5.24)

Here

fn =
√

2Dxun

(
∫
Pr (z0)

(|Dxun|2 + |Dyun|2)) 1
2

, gn =
√

2Dyun

(
∫
Pr(z0)

(|Dxun|2 + |Dyun|2)) 1
2

.

Therefore, applying the Parseval’s inequality, we have

lim
r↓0

lim
n→∞

∫
Pr(z0)

|∂tun|2 � lim
r↓0

lim
n→∞

( ∫
Pr (z0)

∂tunfn

)2

+
( ∫

Pr(z0)

∂tungn

)2

substituting fn and gn into the inequality and using the fact that

lim
r↓0

lim
n→∞ r−m

∫
Pr(z0)

|Dzun|2 = 0

we have

lim
r↓0

lim
n→∞

(
∫
Pr(z0)

∂tunDun)
2∫

Pr(z0)
|Dun|2 � lim

r↓0
lim
n→∞

1
2

∫
Pr(z0)

|∂tun|2. (5.25)

On the other hand, we know that for Pm a.e. z0 = (x0, t0) ∈�,

|Ht0(x0)|2 dµt(z0) � lim
r↓0

lim
n→∞2

| ∫Pr(z0)
∂tunDun|2∫

Pr (z0)
|Dun|2 .

Therefore, we have

|Ht0(x0)|2 dµ(x0, t0)� lim
r↓0

lim
n↓∞

∫
Pr (z0)

|∂tun|2 dx dt

= lim
r↓0

∫
Pr(z0)

|∂tu|2 + η
(
Pr(z0)

)= lim
r↓0

η
(
Pr(z0)

)
.
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This clearly implies

∫
�s

t

φ(x)|Ht(x)|2 dµt(x)dt �
∫
�s

t

φ(x)dη(x, t), ∀φ ∈C1
0(B,R+). ✷

Once Lemma 5.7 is proved, we see easily that Theorem 5.6 is proved as well. Now we
introduce the notion of suitably weak solution to the heat equation of harmonic maps.

DEFINITION 5.9. – A map u ∈H 1
loc(B×R+,N) ∩L∞(R+,H 1(B,N)) is a suitably

weak solution to the heat equation of harmonic maps, if:
(1) It is a weak solution to the heat equation of harmonic maps (1.0).
(2) It satisfies the energy conservation law as follows. For any 0 � t1 < t2 <∞ and

φ ∈ C1
0(B,R+), ∫

B

1
2
|Du|2(x, t2)φ(x)−

∫
B

1
2
|Du|2(x, t1)φ(x)

=−
t2∫

t1

∫
B

(|∂tu|2(x, t)φ(x)+Dφ∂tuDu
)
. (5.26)

We would like to remark that it is easy to check that any smooth solution to (1.0) is a
suitably weak solution.

A direct consequence of Theorem 5.6 is

COROLLARY 5.10. – Under the same assumptions as in Theorem 5.6. If, in addition,
that the weak limiting map u ∈ H 1

loc(B × R+,N) is a suitably weak solution to (1.0).
Then, the defect measures {νt}t�0 satisfies: for any 0 � s � t <∞ and φ ∈C1

0(B,R+),

νt(φ)− νs(φ) �−
t∫

s

∫
�t

(
φ(x)|Ht(x)|2 − 〈(Tx�t )

⊥Dφ(x),Ht (x)
〉)

dνt(x)dt. (5.27)

Now we want to show that (5.27) actually implies that {νt}t�0 is a Brakke flow.
First, let us recall the definition of Brakke flow given by Illmann [20], which is slightly
stronger than the original definition by Brakke [8].

DEFINITION 5.11 ([8,20]). – Let ν be a Radon measure in B and φ ∈C2
0(B,R+), we

set

B(ν,φ)=−
∫
B

(
φ|H |2− 〈(Txν)

⊥Dφ,H
〉)

dν

provided that the following three conditions hold
(1) ν = ‖V ‖ in {φ > 0} for some V ∈RVm−2(B),
(2) δV =H‖V ‖ in {φ > 0},
(3) H ∈ L2‖V ‖({φ > 0},Rm).

Otherwise, we set B(ν,φ)=−∞.
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DEFINITION 5.12 ([8,20]). – Let {µt }t�0 be Radon measures on B. We say that
{µt}t�0 is a Brakke flow if

Dtµt (φ)≡ lim sup
s→t

µs(φ)−µt(φ)

s − t
� B(µt , φ) (5.28)

for all t � 0 and φ ∈ C2
0(B,R+).

THEOREM 5.13. – Under the same assumption as Theorem 5.6. If, in addition, that
u ∈ H 1

loc(B × R+,N) is a suitably weak solution to (1.0). Then {νt}t�0 is a Brakke
flow.

Proof. – First it follows from Section 4 and Lemma 5.2 that for L1 a.e. t ∈ R+, we

have (a): νt = ‖Vt‖ for some Vt ∈ RVm−2(B); (b): �m−2(‖Vt‖, x) � ε2
0
4 for Hm−2 a.e.

x ∈�t ; (c): δVt =Ht‖Vt‖ with Ht ∈ L2‖Vt‖(B,Rm); (d): Ht(x)⊥ Tx‖Vt‖ for Hm−2 a.e.
x ∈ �t . Now we argue that (a)–(d) and (5.27) are sufficient to show (5.28) for {νt}t�0.
To see it, let us check the upper right derivative D+ of νt for t � 0, the proof for lower
right derivative is similar for t > 0. Let

L= lim sup
s↓t

− 1
s − t

s∫
t

∫
B

(
φ|Ht |2 − 〈Dφ,Ht〉)dνt dt.

Note that (5.27) implies L � D+νt (φ). If L=−∞, then D+νt(φ)=−∞ so that (5.28)
holds automatically. Hence we assume that L>−∞ and D+νt(φ) >−∞. Let si ↓ t be
such that

lim
i→∞−

1
si − t

si∫
t

∫
B

(
φ|Ht |2 − 〈Dφ,Ht〉)dνt dt = L (5.29)

and ti ∈ (t, si) be such that (a)–(d) hold at ti and

∫
B

(
φ|Hti |2 −

〈
(Tx�ti )

⊥Dφ,Hti

〉)
dνti �−L+O

(
i−1). (5.30)

By the compactness theorem of Allard [6], we may assume that Vti → V in {φ > 0} ×
Gm−2,m for some V ∈ RVm−2(B). Moreover, by the result of Ilmanen [20] (cf. also
Lemma 2.5 of Section 1), we know that ‖V ‖ = νt . There exists a H ∈ L2‖V ‖(B,Rm)

such that δV =H‖V ‖ =Hνt and∫
B

(
φ|H |2 − 〈Tx�t,H 〉)dνt

� lim inf
i→∞

∫
B

(
φ|Hti |2 −

〈
(Tx�ti )

⊥Dφ,Hti

〉)
dνti =−L.
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Therefore

D+νt (φ) � L �−
∫
B

(
φ|H |2 − 〈Tx�t ,H 〉)dνt = B(νt, φ). ✷

We end this section with the following remark.

Remark 5.14. – (1) It follows from Proposition 5.3 of Ambrosio and Soner [2] that
the Brakke flow is also a distance solution to the mean curvature flow. Therefore, under
the condition that u is a suitable weak solution, Theorem 5.13 implies that {νt}t�0 is a
distance solution to the mean curvature flow.

(2) Under the assumption that u is a suitable weak solution. If ν0 = αHm−2LI0

for some α > 0 and a closed (m − 2)-dimensional Riemannian manifold I0. Let
{It}t∈[0,T ) is the smooth mean curvature flow. Then there exists a nonincreasing function
α : [0, T )→[0, α] such that νt = α(t)Hm−2LIt for t ∈ [0, T ) (see Proposition 4.5 of [1],
and also [25,22]).

6. Energy quantization of the energy density function

Throughout this section, we assume that N = Sk−1 ⊂ Rk and m � 3. We will show
that, for Pm a.e. z0 = (x0, t0) ∈�, the density function �m−2(‖Vt0‖, x0) is the finite sum
of energies of harmonic S2’s (i.e., nontrivial harmonic maps from S2). In the static case,
this type of quantization result was first obtained by Lin and Rivieré [27] for stationary
harmonic maps, and then Lin and Wang [32] for critical points for Ginzburg–Landau
functionals. Our results here can be viewed as the parabolic extension of that of [27,
32]. For m= 2, this type of quantization result is called as energy identity or bubbling
phenomena by people (see, [34] and [32] references therein). Let’s consider the heat
flow of the Ginzburg–Landau functional here, the corresponding result for the heat flow
of harmonic maps is treated in Section 7.

The main theorem of this section is

THEOREM 6.1. – For Pm a.e. z0 = (x0, t0) ∈�,

�m−2(‖Vt0‖, x0)=
lz0∑
i=1

E
(
φi, S

2) (6.1)

for some 1 � lz0 <∞, here φi :S2 → Sk−1 (1 � i � lz0) are nontrivial harmonic maps.

Proof. – Let us first list all the necessary facts needed, which can be found from
Sections 3, 5, and [31]. The following properties hold: For L1 a.e t0 ∈ R+,

lim
n→∞

∫
B

|∂tun|2(x, t0)dx <∞, (6.2)

lim
r↓0

lim
n→∞ r2−m

∫
Br(x)

|∂tun|2 <∞, for Hm−2 a.e. x ∈�t0 (6.3)
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and, for Pm a.e. z0 = (x0, t0) ∈�,

ε2
0 � �m−2(‖Vt0‖, x0) <∞, (6.4)

lim
r↓0

lim
n→∞ r2−m

∫
Pr(z0)

|∂tun|2 = 0, (6.5)

�m(µ, z0) is Pm approximately continuous at z0, (6.6)

lim
r↓0

lim
n→∞ r−m

∫
Pr(z0)

|DT un|2 = 0, ∀T ∈ Tx0�t0, (6.7)

lim
r↓0

r−m

∫
Pr(z0)

|Du|2 + r2|∂tu|2 = 0, (6.8)

and, for L1 a.e. t0 ∈R+, we have, for Hm−2 a.e. x0 ∈�t0 ,

�m−2(‖Vt0‖, x0) is Hm−2 approximately continuous at x0. (6.9)

Let us now pick up a z0 = (x0, t0) ∈� such that (6.2)–(6.9) all hold. Moreover, we may
assume that Tx0�t0 = {(0,0)} ×Rm−2 = {(0,0, Y ): Y ∈ Rm−2}, and write x = (X,Y ) ∈
R2 × Rm−2 for x ∈ Rm. For any rn ↓ 0, define the rescaling maps vn :P2(0)→ Rk by
letting vn(x, t)= un(x0 + rnx, t0 + r2

nt). Then, we have,

lim
n→∞

∫
P1(0)

|DYvn|2 + |∂tvn|2 = 0,

vn→ constant weakly in H 1(P2(0),R
k
)
,

e(vn)(X,Y, t)dX dY dt→ νt dt

(6.10)

as convergence of Radon measures on P2(0). Similar to [31], we have

CLAIM 6.2. – νt dt =�m−2(‖Vt0‖, x0)H
m−2LRm−2 ×L1LR, on P1(0).

To see this, let φ ∈ C1
0(B

2
1 ,R+) and define fn, gn, hn :Rm−2 ×R→R+ by

fn(Y, t)=
∫
B2

1

e(vn)(X,Y, t)φ(X)dX, gn(Y, t)=
∫
B2

1

|∂tvn|2(X,Y, t)dX

and

hn(Y, t)=
∫
B2

1

|DYvn|2(X,Y, t)dX.
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Then (6.10) implies

lim
n→∞

∫
Bm−2

1 ×(−1,1)

gn(Y, t)+ hn(Y, t)dY dt = 0. (6.11)

For 1 � j � m− 2, Yj and t-derivative of fn are as follows.

d
dYj

fn(Y, t)=
∫
B2

1

(
DXvnD

2
XYj

vn − 1
ε2
n

f (vn)DYj
vn

)
φ +

∫
B2

1

DYi
vnD

2
YiYj

vnφ

=−
∫
B2

1

φ

(
�Xvn + 1

ε2
n

f (vn)

)
DYj

vn

−
∫
B2

1

DXφDXvnDYj
vn +

∫
B2

1

DYi
vnD

2
YiYj

vnφ

=−
∫
B2

1

φ∂tvnDYj
vn −

∫
B2

1

DXφDXvnDYj
vn + d

dYi

∫
B2

1

φDYi
vnDYj

vn

= f 1,j
n + div(Y,t)f

2,j
n . (6.12)

Here

f 1,j
n (Y, t)=−

∫
B2

1

(DXφDXvnDYj
vn + φ∂tvnDYj

vn)

and

f 2,j
n (Y, t)=

(∫
B2

1

φDY1vnDYj
vn, . . . ,

∫
B2

1

φDYm−2vnDYj
vn,0

)
.

d
dt

gn(Y, t)=−
∫
B2

1

(
�Xvn + 1

ε2
n

f (vn)

)
∂tvnφ

−
∫
B2

1

DXφDXvn∂tvn +
∫
B2

2

φDYi
vnDYi

(∂tvn)

=−
∫
B2

1

|∂tvn|2φ −
∫
B2

1

DXvnDXφ∂tvn + d
dYi

∫
B2

1

φDYi
vn∂tvn

= g1
n + div(Y,t)g

2
n. (6.13)

Here

g1
n(Y, t)=−

∫
B2

1

(|∂tvn|2φ +DXvnDXφ∂tvn

)
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and

g2
n(Y, t)=

(∫
B2

1

φDY1vn∂tvn, . . . ,

∫
B2

1

φDYm−2vn∂tvn,0
)
.

Note that (6.10) implies

lim
n→∞

2∑
i=1

(∥∥f i
n

∥∥
L1(Bm−2

1 ×(−1,1))+
∥∥gi

n

∥∥
L1(Bm−2

1 ×(−1,1))

)= 0. (6.14)

Based on (6.12), (6.13), and (6.14), we can apply the Allard’s strong constancy
Lemma [5] as in [23] or [31] to conclude the Claim 6.2. Moreover, one has

lim
n→∞

∥∥fn(Y, t)−�m−2(‖Vt0‖, x0)
∥∥
L1(Bm−2

1 ×(−1,1)) = 0. (6.15)

Therefore, for any δ > 0, there exists Eδ ⊂ Bm−2
1 × (−1,1) with |Eδ|� 1− δ such that

lim
n→∞ sup

(Y,t)∈Eδ

∣∣fn(Y, t)−�m−2(‖Vt0‖, x0)
∣∣= 0. (6.16)

In order to prove that �m−2(‖Vt0‖, x0) is the sum of energies of finitely many harmonic
S2’s, it suffices to prove that fn(Y, t) converges to the sum of energies of finitely many
harmonic S2’s, for (Y, t) ∈ Eδ . Now we define the local Hardy–Littlewood maximal
function for a function f ∈ L1(Bm−2

1 × (−1,1)), with respect to the parabolic metric in
Rm−2 ×R, as follows

M(f )(Y, t)= sup
{
r−m

∫
Pr(Y,t)

(f )(z, s)dy ds,Pr(Y, t)⊂ Bm−2
1 × (−1,1)

}
.

Then the weak (1,1) estimates implies that there exists Fn
δ ⊂ Bm−2

1 × (−1,1), with
|Fn

δ |� 1− δ, such that

lim
n→∞M(gn + hn)(Y, t)= 0, ∀(Y, t) ∈ Fn

δ , (6.17)

lim
n→∞M(fn)(Y, t)�C�m−2(‖Vt0‖, x0), ∀(Y, t)∈ Fn

δ , (6.18)

lim
n→∞M(pn)(Y, t)= 0, ∀(Y, t) ∈ Fn

δ , (6.19)

where

pn(Y, t)=
∫
B2

1

1
ε2
n

F (vn)(X,Y, t)dX

here εn = εn
rn
→ 0. Now we try to prove that for any (Y, t) ∈Eδ ∩ Fn

δ

lim
n→∞fn(Y, t)=

l∑
j=1

E
(
φj , S

2) (6.20)
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for some 1 � l <∞, here φj :S2 → Sk−1 (1 � j � l) are nontrivial harmonic maps.
Step 1. First Bubble.
This step has been carried out in [31]. Here we give a slightly different proof. For any

given (Yn, tn) ∈Eδ ∩ Fn
δ , let Xn ∈ B2

1
2

and δn > 0 be such that

∫
B2

δn

e(vn)(X,Yn, tn)dX = ε2
0

C(m)
=max

{ ∫
B2

δn
(X)

e(vn)(X,Yn, tn)dX: X ∈ B2
1
2

}
. (6.21)

Here ε0 > 0 is given by Lemma 2.3 and C(m) > 0 is a large constant to be chosen. It
is not difficult to see that Xn → 0 and δn → 0 (cf. [23] and [31]). Moreover, as in [23]
and [31], we can apply (6.12)–(6.14) to get, for any X ∈ B2

1
2
,

(2δn)
−m

∫
B2

2δn
(X)×Bm−2

2δn
(Yn)×(tn−4δ2

n,tn+4δ2
n)

e(vn)(X,Y, t)dX dY dt � ε2
0 (6.22)

and

δ−m
n

∫
B2

δn
(X)×Bm−2

δn
(Yn)×(tn−δ2

n,tn+δ2
n)

e(vn)(X,Y, t)dX dY dt � ε2
0

2
. (6.23)

We let

wn(X,Y, t)= vn

(
Xn + δnX,Yn + δnY, tn+ δ2

nt
)
.

Then Lemma 2.3 implies

wn→w in C1
loc

(
R2 ×Bm−2

2 × (−4,4),Rk
)
.

Moreover, (6.14) implies that ∂tw =DYw = 0 so that w(X,Y, t)= w(X) : R2 → Sk−1

is a harmonic map with positive and finite energy, which can be lifted to a nontrivial
harmonic map from S2 to Sk−1, named as φ1. By repeating all the possible blowing-up
at different points and scales, we can get

�m−2(‖Vt0‖, x0)= lim
n→∞fn(Yn, tn) �

l∑
j=1

E
(
φj , S

2) (6.24)

for some l = lz0 � �m−2(‖Vt0‖, x0)/ε
2
0, and some nontrivial harmonic maps φj :S2 →

Sk−1 (1 � j � l).
Step 2. (6.24) is an equality.
To achieve this, it suffices to show that there is no energy concentration over the

neck regions between two bubbles at the same point. This step is very similar to that
of [32]. The idea is to use the interpolation between L2,1 and L2,∞ norms of Dvn over
the neck region, which has been recently explored by Lin and Riviere [27] in the context
of stationary harmonic maps in higher dimensions, and [28,32] in the context of critical
points of Ginzburg–Landau functionals. For completeness, we sketch it here. First, we
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observe that by an induction argument on l it suffices to show that (6.24) is an equality
for l = 1 (cf. [14] for m= 2 and [27,32] for m � 3 for the induction argument).

CLAIM 6.3. – For any ε > 0 and sufficiently large R > 0, we have
∫

B2
2r (Xn)\B2

r (Xn)

e(vn)(X,Yn, tn)dX � ε2, ∀Rδn < r <
1
2
. (6.25)

For, otherwise, one can argue exactly as in [32] to conclude that one can rescale vn

suitably to get a second bubble, which would contradict with l = 1.
Now one can apply the Allard’s strong constancy lemma (cf. [5] and [32]) and Lemma

2.3 to conclude that

e(vn)(X,Y, t)� Cε2

|X−Xn|2 + |Y − Yn|2 + |t − tn|2 (6.26)

for 2Rδn � |X−Xn|� 1
4 , |Y − Yn|� |X−Xn|

2 , |t − tn|� |X−Xn|2
4 . In particular, we have

e(vn)(X,Y, t)� Cε2

|X−Xn|2 (6.27)

for 2Rδn � |X−Xn|� 1
4 , |Y −Yn|� Rδn, |t− tn|� R2δ2

n. Hence, if we let wn(X,Y, t)=
vn(Xn + δnX,Yn+ δnY, tn + δ2

nt), then we have

e(wn)(X,Y, t)� Cε2

|X|2 , ∀2R � |X|� 1
4δn

, |Y |� R, |t|� R2. (6.28)

This implies that Dwn(·, Y, t) ∈ L2,∞(B2
(4δn)−1 \B2

2R) for any (Y, t) ∈ Bm−2
R ×(−R2,R2),

and

sup
(Y,t)∈Bm−2

R
×(−R2,R2)

‖Dwn(·, Y, t)‖L2,∞(B2
(4δn)−1\B2

2R) � Cε. (6.29)

Here L2,∞ denotes the Lorentz space with index (2,∞) (see Ziemer [38] for the
definition). Now we try to estimate the L2,1 norm of D wn

|wn|(·, Y, t) over B2
(4δn)−1 .

CLAIM 6.4. – For Pm a.e. (Y, t) ∈ Bm−2
R × (−R2,R2), D wn

|wn|(·, Y, t) ∈L2,1(B2
(4δn)−1).

Moreover, ∫
Bm−2

R
×(−R2,R2)

∥∥∥∥D wn

|wn|(·, Y, t)
∥∥∥∥
L2,1(B2

(4δn)−1 )

dY dt

� Cδ−m
n

∫
B2

1
2
(Xn)×Bm−2

Rδn
(Yn)×(tn−R2δ2

n,tn+R2δ2
n)

|Dvn|2 + |∂tvn|2 � C. (6.30)

Proof. – It is very similar to the proof of Theorem B in [32]. Here we only sketch the
outline. For any t ∈ (−R2,R2), denote ωn(X,Y )=wn(X,Y, t) :B2

(2δn)−1 ×Bm−2
2R →Rk.
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Then we have

�ωn + 1
ε2
n

(
1− |ωn|2)ωn = ln

where ln(X,Y )= ∂twn(X,Y, t).
For 1 � i, j � k, let αij

n be the 1-forms defined by αij
n = dωi

nω
j
n − ωi

n dωj
n. Then

d∗αij
n =�ωi

nω
j
n −�ωj

nω
i
n

= linω
j
n − ljnω

i
n ≡Hij

n , (6.31)

�αij
n = dHij

n + 2d∗
(
dωi

n ∧ dωj
n

)
. (6.32)

Now, let ω̃n :Rm→Rk be an extension of ωn such that

‖Dω̃n‖L2(Rm) � C‖Dωn‖L2(B2
(2δn)−1×Bm−2

2R ) (6.33)

and H
ij

n :Rm → R be an extension of Hij
n such that H

ij

n = 0 outside B2
(2δn)−1 × Bm−2

2R .
Let F ij

n ∈H 1(Rm,∧2(Rm)) solve

�Fij
n = 2 dω̃i

n ∧ dω̃j
n. (6.34)

Then, we know from [32] that F ij
n ∈W 2,1(Rm,∧2(Rm)) and∥∥D2F ij

n

∥∥
L1(Rm)

�C
∥∥dω̃i

n ∧ dω̃j
n

∥∥
H1(Rm)

�C‖Dω̃n‖2
L2(Rm)

�C‖Dωn‖2
L2(B2

(2δn)−1×Bm−2
2R )

, (6.35)

where H1 denotes the Hardy space of Rm. Let Gij
n ∈H 1(Rm,R) solve

�Gij
n =H

ij

n . (6.36)

Then, we have that D2Gij
n ∈ L2(Rm) and

∥∥D2Gij
n

∥∥
L2(Rm)

� C
∥∥Hij

n

∥∥
L2(Rm)

� C‖∂twn‖L2(B2
(2δn)−1×Bm−2

2R ). (6.37)

In particular, we have, by the Hölder inequality,

∥∥D2Gij
n

∥∥
L1(B2

(2δn)−1×Bm−2
2R )

�C
∥∥D2Gij

n

∥∥
L2(B2

(2δn)−1×Bm−2
2R )

(
Rm−2δ−2

n

) 1
2

�C
(
Rm−2δ−2

n

) 1
2 ‖∂twn‖L2(B2

(2δn)−1×Bm−2
2R ). (6.38)

Note that

αij
n = dGij

n + 2 d∗
(
F ij

n

)+Kij
n ,
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where Kij
n is a harmonic 1-form with j ∗(αij

n − 2d∗F ij
n − dGij

n )= 0, and j : ∂(B2
(2δn)−1 ×

Bm−2
3R
2

)→ Rm denotes the inclusion map. By choosing R > 0 suitably and using the

Fubini’s theorem, we may assume that

∥∥αij
n

∥∥
L1(∂(B2

(2δn)−1×Bm−2
3R
2

))
� CR−1‖Dωn‖L1(B2

δ−1
n

×Bm−2
2R ),

∥∥∣∣D2Gij
n

∣∣+ ∣∣D2F ij
n

∣∣∥∥
L1(∂(B2

(2δn)−1×Bm−2
3R
2

))

� CR−1∥∥∣∣D2Gij
n

∣∣+ ∣∣D2F ij
n

∣∣∥∥
L1((B2

δ
−1
n

×Bm−2
2R ))

.

Therefore, by the well-known estimate on harmonic functions, we have∥∥DKij
n

∥∥
L1(B2

(4δn)−1
×Bm−2

R
)

� C
(
Rm−2δ−2

n

) 1
2

( ∫
B2

δ
−1
n

×Bm−2
R

(|Dwn|2 + |∂twn|2)dX dY
) 1

2

. (6.39)

Hence it follows from the embedding result, W 1,1(R2)⊂L2,1(R2) (cf. Heléin [19]), that
we have, for Hm−2 a.e. Y ∈ Bm−2

R , that αij
n (·, Y ) ∈L2,1(B2

(4δn)−1) and

∥∥αij
n (·, Y )

∥∥
L2,1(B2

(4δn)−1 )
�C

∥∥Dαij
n

∥∥
W 1,1(B2

(4δn)−1 )

�C
∥∥∣∣D2Gij

n

∣∣+ ∣∣D2F ij
n

∣∣+ ∣∣DKij
n

∣∣∥∥
L1(B2

(4δn)−1 )
.

Therefore ∫
Bm−2

R

∥∥αij
n (·, Y )

∥∥
L2,1(B2

(4δn)−1 )
dY

� CRm−2δ−2
n

∫
B2

δ−1
n

×Bm−2
2R

(|Dwn|2 + |∂twn|2)(X,Y, t)dX dY. (6.40)

Hence, by the duality between L2,1 and L2,∞ and (6.25), we obtain∫
(B2

(4δn)−1\B2
2R)×Bm−2

R

∣∣αij
n

∣∣2(X,Y )dX dY

�
∫

Bm−2
R

∥∥αij
n (·, Y )

∥∥
L2,1(B2

(4δn)−1 )

∥∥αij
n (·, Y )

∥∥
L2,∞(B2

(4δn)−1\B2
2R)

dY

� sup
Y∈Bm−2

R

∥∥αij
n (·, Y )

∥∥
L2,∞(B2

(4δn)−1\B2
2R)

∫
Bm−2

R

∥∥αij
n (·, Y )

∥∥
L2,1(B2

(4δn)−1 )
dY
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� CεRm−2δ−2
n

∫
B2

δ
−1
n

×Bm−2
R

(|Dwn|2 + |∂twn|2)(X,Y, t)dX dY. (6.41)

Observe that
∑

ij |dωi
nω

j
n−ωi

n dωj
n|2 = |ωn|2|D ωn

|ωn| |2 and |ωn|� 1
2 on B2

δ−1
n
×Bm−2

2R . This,

plus integration over t ∈ (−R2,R2), yields∫
(B2

(4δn)−1\B2
2R)×Bm−2

R
×(−R2,R2)

∣∣∣∣D wn

|wn|
∣∣∣∣
2

(X,Y, t)dX dY dt

� CεRm−2δ−2
n

∫
B2

δ−1
n

×Bm−2
R

×(−R2,R2)

(|Dwn|2 + |∂twn|2). (6.42)

Finally, we need to control the L2 norm of D|wn|. To do it, write wn = ρnθn, with ρn � 1
2

and θn valued in Sk−1, then one has

�ρn + ε−2
n

(
1− ρ2

n

)
ρn − ρn|Dθn|2 = ∂twnθn. (6.43)

Multiplying both side by (1 − ρn) and integrating it over (B2
(4δn)−1 \ B2

2R) × Bm−2
R ×

(−R2,R2), we obtain∫
(B2

(4δn)−1\B2
2R)×Bm−2

R
×(−R2,R2)

|Dρn|2

� Cε−2
n

∫
B2

δ
−1
n

×Bm−2
R

×(−R2,R2)

(
1− ρ2

n

)2

+C

∫
(B2

(4δn)−1\B2
2R)×Bm−2

R
×(−R2,R2)

(∣∣∣∣D wn

|wn|
∣∣∣∣
2

+ |∂twn|2
)
+ boundary terms

� Cε+O
(
n−1).

Here we have used (6.17)–(6.19) to show that the boundary term converges to zero. In
particular, we get

R−m

∫
(B2

(4δn)−1\B2
2R)×Bm−2

R
×(−R2,R2)

|Dwn|2(X,Y, t)dX dY dt � Cε. (6.44)

This, combines with the Allard’s strong constancy lemma (see, [23,32]), implies
∫

B2
(4δn)−1 (Xn)\B2

2R(Xn)

|Dwn|2(X,Yn, tn)dx � Cε. (6.45)

This finishes the proof of Step 2. Therefore the proof of Theorem 6.1 is complete. ✷
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Now we discuss the quantization result at time infinity for sequences of solutions
to (1.5)–(1.6). Let un ∈ C∞(B× R+,Rk) solve (1.5) and (1.6). By adopting the same
notations as Section 4, we know that for Vun(t) = δA(un)(·,t )e(un)(x, t)dx,

δVun(t)(X)=
∫
B

∂tun(x, t)Dun(x, t)X(x)dx

− 2
∫
B

DX : Dun⊗Dun

|Dun|2
F(un)

ε2
n

(x, t)dx (6.46)

for any X ∈ C1
0(B,Rm). Note also that, by (1.6) and Lemma 2.4, we can find tn ↑ ∞

such that

lim
n↑∞

tn+1∫
tn−1

∫
B

|∂tun|2 dx dt +
∫
B

|∂tun|2(x, tn)dx = 0, (6.47)

lim
n↑∞

∫
B

1
ε2
n

F (un)(x, tn)dx = 0. (6.48)

We may assume that un(tn)→ u∞ weakly in H 1(B,Rm),

e(un)(x, tn)dx→ µ∞ ≡ 1
2
|Du∞|2(x)dx + ν∞

for some nonnegative Radon measure ν∞ on B. Moreover, Vun(tn) → V∞ in V ∗m−2(B)

so that ‖V∞‖ = µ∞. It follows from (6.46)–(6.48) that δV∞ = 0. Therefore, (4.16) of
Lemma 4.6 implies, for all a ∈ spt(‖V∞‖) and 0 < r � R < dist(a, ∂B),

R2−m‖V∞‖(BR(a)
)− r2−m‖V∞‖(Br(a)

)
�

∫
BR(a)\Br(a)

|y − a|−m−4∣∣S⊥(y)∣∣2 dV (y,S). (6.49)

In particular, �m−2(‖V∞‖, x) exists for all x ∈ spt(‖V∞‖). Now define

�1
∞ =

{
x ∈B: �m−2(‖V∞‖, x) � ε2

1

}
,

�2
∞ =

{
x ∈B: lim

r↓0
lim
n↑∞ r2−m

∫
Pr (x,tn)

|∂tun|2(z)dz > 0
}
.

Then, by (6.47) and the Vitali’s covering argument, we have

Hm−2(�1
∞
)
<∞, Hm−2(�2

∞
)= 0.

Now we need a slice-type ε0-regularity result.
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CLAIM 6.5. – There exist ε1 > 0 and δ1 > 0 such that for any x ∈B if

r2−m

∫
Br (x)

e(un)(x, tn)dx � ε2
1, r2−m

∫
Pr(x,tn)

|∂tun|2(z)dz � ε4
1. (6.50)

Then

(δ1r)
2 sup
Bδ1r (x)

e(un)(x, tn) � Cε2
1. (6.51)

Proof. – It follows from Lemma 2.1 that, for any tn − r2 � t � tn

r2−m

∫
Br(x)

e(un)(x, tn)− r2−m

∫
B r

2
(x)

e(un)(x, t)

�−r2−m

∫
Pr (x,tn)

|∂tun|2(z)dz−C

(
r−m

∫
Pr(x,tn)

|Dun|2
) 1

2
(
r2−m

∫
Pr(x,tn)

|∂tun|2
) 1

2

�−Cε2
1.

Here we have used (3.2). Therefore, we have, for all t ∈ [tn − r2, tn]
(
r

2

)2−m ∫
B r

2
(x)

e(un)(x, t)dx � Cε2
1

so that we have (
r

2

)−m ∫
P r

2
(x,tn)

e(un)(z)dz � Cε2
1.

Therefore, by choosing ε1 sufficiently small and applying Lemma 2.3, we obtain (6.51).

CLAIM 6.6. – �∞ =�1∞∪�2∞ is closed and has finite Hm−2 measure, and un→ u∞
in C1

loc(B \�∞,Rk).

Proof. – For any x0 ∈B \�∞, there exist r0 > 0 and n0 $ 1 such that for n � n0

r2−m
0

∫
Br0 (x0)

e(un)(x, tn)dx � r2−m
0 ‖V∞‖(Br0(x0)

)+ ε2
1 � 2ε2

1,

r2−m
0

∫
Pr0 (x0,tn)

|∂tun|2(z)dz � ε4
1.

Therefore, Claim 6.5 implies that for n � n0, supBδ1r0 (x0)
e(un)(x, tn) � Cε2

1 . Hence

Bδ1r0(x0)∩�∞ = ∅ so that �∞ is closed and un→ u∞ in C1
loc(B\�,Rk). Note also that

this and (6.47) imply that u∞ is a weakly harmonic map whose singular set is contained
in �∞. Now we are ready to state the energy quantization theorem at time infinity.
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THEOREM 6.7. – Under the same notations as above. We have (1) �∞ is a closed
(m− 2)-rectifiable set. (2) If, in addition, that N = Sk−1. Then, for Hm−2 a.e. x ∈�∞,
there exist 1 � lx � E0

ε2
0

and lx -many harmonic S2’s, {φj }lxj=1, such that

�m−2(‖V∞‖, x)=
lx∑

j=1

E
(
φj , S

2). (6.52)

Proof. – (1) follows from the fact that V∞ is stationary and Theorem 4.9. (2) It is very
similar to that of Theorem 6.1. One can also view it as a L2-perturbation argument of
that of [32]. The only difference we need to make is to replace (6.7) by the following:
for Hm−2 a.e. x0 ∈�∞,

lim
r↓0

lim
n↑∞ r2−m

∫
Br(x0)

|DT un|2(x)dx = 0, (6.53)

for all T ∈ Tx0�∞. (6.53) follows from the Hm−2-approximate continuity of
�m−2(‖V∞‖, ·) at x0 and the monotonicity inequality (6.49) (one can see Lemma 2.4
of [23] or §3 of [32]). Then one can follows lines by lines of the proof of theorem 6.1 to
show (6.52). ✷

7. Final remarks

In this section, we consider the class A consisting all of the weak solutions u ∈
H 1

loc(B × R+,N) ∩ L∞(R+,H 1(B,N)) to the heat equation of harmonic maps (1.0),
which satisfy (1) the Pohozaev identity: (cf. also (5.19))

∫
B×R+

∂tuDuX(x)=
∫

B×R+

1

2
|Du|2div(X)− ∑

1�ij�m

uiujX
i
j (7.1)

for any X ∈ C1
0(B,Rm); (2) the energy inequality (2.1); (3) the ε0-regularity Lemma 2.3.

Note that the class of weak solutions satisfying both (7.1) and (2.1) was introduced by
Feldman [17], which was shown to satisfy Lemma 2.3 for N = Sk−1 by [10] and [17]
independently. Since the partial regularity was not proven for general manifold N yet,
we henceforth add the property (3) in the definition of the class A. The goal of this
section is to point out that all the results from Sections 3–6 are remaining to be true for
the class A, and the proofs are almost the same or slightly easier.

As calculated in [17], any u ∈ A satisfies the energy monotonicity inequality (2.3)
and (2.4) with e(uε) replaced by 1

2 |Du|2 and F(uε) replaced by 0. Now suppose that
{un} ⊂A satisfy the same initial value u(x,0)= u0(x) for a u0 ∈C1(B,N)

sup
0<t<∞

( t∫
0

∫
B

|∂tun|2 +E
(
un(·, t))

)
� E(u0). (7.2)
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Then, as before, one assumes

1

2
|Dun|2(x, t)dx dt→ 1

2
|Du|2(x, t)dx dt + ν ≡ µ,

|∂tun|2(x, t)dx dt→ |∂tu|2(x, t)dx dt + η

for two nonnegative Radon measures ν = νt dt and η on B× R+. If we define � as in
Section 2, with e(un) replaced by 1

2 |Dun|2, then Facts 2.4–2.11 all remain to be true.
For z0 ∈�, one can consider the tangent cone measure space, Tz0(µ), the same way as

in Section 3 and Lemma 3.2–Proposition 3.4 remain to hold. In particular, one can define,
exactly as same as Definition 3.5, dim(�m(µ0, ·)) for any µ0 ∈ Tz0(µ). Therefore, we
can obtain the same stratification for � as in Theorem 3.6, namely

THEOREM 7.1. – For any sequence un ⊂A as above. Let

�k = {z0 ∈�: dim�m
(
µ0, ·)� k,∀µ0 ∈ Tz0(µ)

}
for 0 � k � m.

Then dim(�k) � k for 0 � k � m and �0 is discrete.

One can also associate a generalized (m− 2)-varifold Vun
for each un as in Section 4.

If we let V denote the generalized varifold limit of Vun
, then all the results from Section 4

remain to be true for V . In particular,

THEOREM 7.2. – For L1 a.e. t ∈ R+, VtL(�t × Am−2,m) is a (m − 2)-rectifiable
varifold. In particular, �t is a (m− 2)-rectifiable set.

For the generalized varifold flow, all the results from Section 5 remain true for A. For
example, we have

THEOREM 7.3. – Under the same notations as above. If, in addition, u is a suitable
weak solution to the heat equation of harmonic maps. Then {νt}t�0 is a Brakke flow.

Finally, we can prove an energy quantization for the density function of Vt as follows.
The proof is similar to that of Theorem 6.1 and in fact is slightly easier. One can also
modify the proof of [27] to show the following result.

THEOREM 7.4. – If, in addition, that N = Sk−1. Then, for Pm a.e z0 ∈�,

�m−2(‖Vt0‖, x0)=
lx0∑
j=1

E
(
φj , S

2) (7.3)

for some 1 � lx0 <∞ and {φ}lx0
j=1 harmonic S2’s.

Remark 7.5. – We conjecture that Theorems 6.1, 6.7, and 7.4 are true for any
Riemannian manifold N .

Remark 7.6. – We believe that the concentration set � is also (m− 1)-rectifiable set
with respect to the Euclidean metric on M ×R+. The stratification Theorem 3.6 may be
useful to attack this problem.
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