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ABSTRACT. — The equation-s?Au + a.(x)u = u?~1 with boundary Dirichlet zero data is
considered in an exterior domait= R" \ & (w bounded anaV > 2). Under the assumption
thata, > ag > 0 concentrates round a point 8fase — 0, thatp > 2 andp < 2N /(N — 2)
whenN > 3, the existence of at least three positive distinct solutions is proved.
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RESUME. — Dans cet article on étude I'équatiore®Au + a,(x)u = u?~1 dans I'ouvert
extérieurQ = RN \ & (w borné etN > 2), avec la condition de Dirichlet = 0 surd2. En
supposant que, > ag > 0 se concentre autour d'un point du domafdeguands — 0, que
p > 2etquep <2N/(N — 2) quandN > 3, on démontre que le probléme posséde au moins

trois solutions distinctes.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
In this paper we consider the problem

—&’Au+a,(x)u=uP"t inQ,
(P.) u>0 in Q,
u=20 on o0g2,
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whereQ = RV \ @, w being a nonempty, bounded domain having smooth boundary
dw=0Q,N>2,¢cRT\ {0}, p>2and p <2N/(N — 2) whenN > 3. a, is a given
nonnegative function that, as— 0, concentrates round a poirg € 2, namelya, has

the form

ag(x)zao—i-oz(x_x()) 1.1
£
and satisfies

(Al) ap € RJ’_ \ {0}5 Xo € 97 O((x) P 05 o e LN/Z(RN)7 |O(|LN/2(RN) ;ﬁ 07

(Ay) /a(x) (14 |x|NT_1") dx <oo for somes € (1, 2].
RN
Problem(P.) has a variational structure: the solutions 8f) can be characterized as
the nonnegative functions that are critical points of the functia’gaHol(Q) —- R

T.(u) = /(82|VI/£|2 + a, (x)u?) dx
Q

constrained to lie on the manifold
M={uecHJRQ)||ulLrq =1}

However, it is well known that the unboundedness of the domain gives rise to a lack of
compactness, not allowing a straight application of the usual variational techniques. It
particular(P,) cannot be solved by minimization, in fact (see Section 2), the infimum of
Z. on M is not achieved, moreover the functiorfal does not satisfy the Palais-Smale
condition in every energy level (see [1] and [3] for a careful analysis of the compactnes:s
question). The study ofP.) needs subtle tools as the minimax theory together with
topological arguments.

In recent years problems lik&.) have been object of several researches, here we only
recall that, without any symmetry assumptionsgrhe existence of one solution foP,)
has been proved, first, in [3], in the caggx) = ao, then in [1], under more general
assumptions; multiplicity results have been obtained, wignr) = ag, in domains
having several holes [7,8,11,15] relating the number of solutionggfto the metric
and/or topological properties @2. We also remark that, for equations k' having
nonconstant, nonsymmetric coefficients, the existence of one positive solution has bee
stated in [2,4], while multiple solutions have been found in [13].

In this work, motivated by former results, [6,9], that emphasize the role that a
concentrating potential, can play in obtaining multiplicity of solutions for problems
like (P,) in bounded domains, we investigate the effect of such a potential ®Rhgm@an
unbounded exterior domain.

The result we obtain is stated in the following

THEOREM 1.1. — Leta, be as in(1.1) and let the assumption&;) and (A,) be
satisfied. Then there exists> 0 such that for every € (0, £) Problem(P,) has at least
three distinct solutiong ., uy ., us .. Moreover
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1 Ule
lim 7 ’ =, 12
¢—0 gN(1=2/p) 8<|M1,8|LP(S2)> " 2
. 1 Uz e
im T € e (m, 21-2/p,, , 1.3
£—0 gN(1-2/p) 8<|M2’g|LP(Q)> ( ) ( )
. 1 Uz
im 7 € _ 21—2/17m’ 1.4
e—0 gN(1=2/p) 8(|“3,le/7(9)> 4

where

m = inf { /UVMIZ + aou?] dx
RN
We remark that the above theorem gives the existence of at least three solution
whatever is, even the complement of a convex domain.
Itis worth observing, also, that the asymptotic energy estimates give some informatior
about the shape of the solutions. Indeed is a “single peak” solution, that is a function
that, suitably translated and scaled, tendsg, as 0, to a solution of the limit problem

u e Hl(RN), |M|LV(RN) = l}

u>0 inRY,

—Au+agu=u’"t inRY,
(Poo)
u(x)—0 & |x| = oo,

and, on the other hands . must be a “two-peaks” solution, in fact its energy, suitably
scaled, tends to the energy of a pairs of not interacting solutionB.gf. About the last
solution,u, ., we can guess (but we have not a rigorous proof) that it, suitably scaled in
Xg, ase — 0, tends to a solution of

u>0 inRY,

—Au+ (ag+a@x)u=u?"t inRY,
(Po)
u(x) >0 as|x| = oo

whose shape depends er{see [13]).

Finally, we point out that we can look at problefR,) in a “dual” way: an equation
not depending ors, considered in an exterior domain whose complement, as0,
widens and becomes far and far from the relevant part (in the seds¥@iR")) of «.

Actually, considering, for instanc, ,, = {x € R" | ex + xo € } an easy scale
change shows that to any solution @) there corresponds, in a one to one way, a
solution of

u>0 in Q.
u=0 on €2 ;-

Thus the conclusion of Theorem 1.1 can be expressed equivalently as follows:

{ —Au+ (ap+a(x)u=uP"t inQ,,

THEOREM 1.2. — Letap anda satisfy(A;) and(A,). LetR2, ¢ RY be a sequence of
exterior domains such that for somge RY andr, — oo

B(ynvrn)CRN\an B(xOvrn)CQn-
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Then there exist8 € N such that for alln > 72 the equation—Au + (ag + a(x))u =
uP~1 with zero Dirichlet boundary data i, has at least three positive solutions, ,,
Upn, Uz ,. MoOreover

Ja, Vi1, ()% + (a0 + a(x))if , (x)) dx

lim — =m,
n=+00 lu1nlr,)
. (I Vit (x)? 4 (ao + a(x))it3,,(x)) dx
lim Ja, R 2n € (m,2v"%rm),
n—>+00 |u2,n|LP(Qn)
im Jo, (IVitz, (x) 1> + (a0 + a(x))i5 , (x)) dx _ol-2p,,
n——+00 |I’_t3,n|%P(S2,,) ’

The paper is organized as follows: Section 2 is devoted to introducing some notation:
and recalling some known results and useful relations; in Section 3 some useful tool
are introduced and some basic asymptotic estimates are proved, Section 4 contains t
proof of Theorem 1.1. Arguing as in proving Theorem 1.1, it is a simple matter to get
the proof of Theorem 1.2.

2. Notations, known facts and useful remarks

Throughout the paper we make use of the following notations.

e L?(D), 1< p <+o00, D CRY, denotes a Lebesgue space; the normhinD) is
denoted by - |, p.

e H}(D), D c RN and H(R") denote the Sobolev spaces obtained, respectively, as
closure ofC5°(D) andC§°(RY) with respect to the norms

1/2

1/2
lullp = {/(|Vu|2+aou2) dx| ,  ullgy = [/(|Vu|2+aou2) dx
D RN

o If DyCc D, CRYN andu e Hol(Dl), we denote also by its extension td, obtained
settingu = 0 outsideD;.

e D, denotes the subset B&" {y e RY | ey € D}, D C RV,

e B(y, p) denotes the open ball, &", having radius and centered at.

In what follows, without any loss of generalitye assumey = 1 andxg = 0.

Setting

u,(x) = eMPu(ex)

an easy computation shows that for everg H}(Q) u. € H} (), u € M if and only
if lugl, 0 =1and

Ig(u)z/[gzwm%r <1+a<f>>u2} dx
4 I

_ -2/pN / (Vi |2 + (14 a(x))u?) dx. (2.1)
QS
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Thus looking for critical points ofZ, on M is equivalent to searching for critical
points of the “rescaled” energy functional

E.(u) = /[|Vu|2+ (1+ a(x)u?] dx
Qe
on the manifold
M, ={ue Hy(Q) | |ul,q =1}
Let us set
me =inf{E.(u) |u € M,} (2.2)
and
m=inf{|lulZy |ue H'R"), |u],zv = 1}. (2.3)

The infimum in(2.3) is achieved(see[16] or [5]) by a positive functionw, that
is uniqgue modulo translationgsee[12]) and radially symmetric about the origin,
decreasing when the radial co-ordinate increases and such that

ﬂq|D%@Mﬂ%%m=@>Q djeR, j=0,1 (2.4)

(see€[5] and [10]).
On the contrary we have

PROPOSITION 2.1. — Leta satisfy(A;). Then
m,=m (2.5)

and the minimization problerf2.2) has no solution.

Proof. —Since we may considdi}($2,) as a subspace @f*(R"),
me = m.

To prove that the equality holds, we consider the sequence

d)a(x)w(x - yn)
| (WX — ya)lp.

Wy, (X) 1= (2.6)

wherey, € Q,, lim,_ . |v,| = +00, w is the function realizing (2.3) and,(x) =
¢ (ex) with ¢ : RN — [0, 1] a C>-function such thaty (x) =0 if x € w, 0< ¢ (x) < 1,
supfal — ¢) is compact, and we show that

im E.(w,.,)=m. 2.7)

n——+00

Indeed, using (2.4) it is not difficult to show that
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’d)s(x)w(x - yn) - w(x - yn)|p’RN = O(l/lyan (28)
H(l)g(X)w(X - yn) - w(x - yn)HRN = 0(1/|yn|) (29)
On the other hand, for every fixed> 0, we can findp = p () > 0 so that

| ()W (x = )] 2 Q:\B(ynp) =

and

leeln /2. G0 <15
if n is large enough; hence

/ () [ W (x — y,)]2dx

Qe
= [ awp@ue-—wldrt [ a@biowe - ) dx
B(yn,p) Qe\B(Yn,p0)

< n’d)a(x)w(x - yn)’%’RN + 77|0(|N/2,RN

from which
lim /a(x) (6. ()w(x — yn)]?dx =0 (2.10)
n——+o0o
QS

follows.

Hence (2.8), (2.9) and (2.10) give (2.7).
Let us now assume that the minimization problem (2.2) has a solutign0. Then

2 2 2 2
m < |lutllgy = lu*llg, < llu*lg, +/a(X)(u*(X)) dx =m.
Qe

Thus we deduce
uw*(x) =w(x —y*) for somey* e RY
and, by(A1) andw(x) > 0Vx € RV,

0:/a(x)(u*(x))2dx = /a(x)wz(x — vy dx >0,
Qe Qe
a contradiction. O

The functional E. constrained onM, does not verify globally the Palais-Smale
condition, however, as proved in [3], the compactness is preserved in some energy rang

LEMMA 2.2.— Let(u,), be a Palais-Smale sequence &y constrained onV/,, i.e.
u, € M,
lim E.(u,) =c,
n_—>oo
lim VE8|M8 (Mn) =0.
n—oo
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If ¢ € (m, 2¥2/Pm) then(u,), is relatively compact.

The following lemma states a lower bound for the energy of a critical poiit E,
on M, that changes sign; the proof, that can be easily deduced using the definition of
can be found in [7].

LEMMA 2.3.-Letu € H}(Q,) be such that
lulp 0 =1, E.(u) =c, VE;um, (u) =0.

Thenu™ £0andu~ £ 0impliesc > 27%/7m.
This lemma and the maximum principle ensure that critical point&.afn M, in the

range(m, 21?/Pm) give rise to positive solutions of proble(®,).
3. Tools, preliminary remarks, basic estimates

For what follows we need to introduce some barycenter type function.
Foru e L?(RY) we set

- 1
i) = /!u(y)!dy
B(x,1)

|B(x, 1)| being the Lebesgue measureRix, 1), and
l +
nx) = {ﬂ(x) — —maxu (x)} ;
2 RV
we then defingg : L”(RV) \ {0} — R by

1
Blu) = / [i1(0]" dx. (3.2)
17 g

We remark thatg is well defined for allu € L”(RY) \ {0}, becausei £ 0 and has
compact support, moreovgris continuous.
We define also, for every > 0, another mag, : L?(R") \ {0} — R" by

1
Bo(u) = / X — E)|u )| dx (3.2)
| |pRN

wherex, = x /¢, x being a fixed point i =R" \ Q andy is the function

XX =37

We remark thap, is a continuous map in? (R") \ {0}; we observe also that, (w(x —
X)) =0
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We put

Bo:=inf{ /[qul2 + (1+a(x))u2] dx ‘ ue Hl(RN),
RN
s =1 pa=0b @3

and, for alle > 0, we set

Boe :=inf{E.(u) |u € M, B(u) =0}, (3.4)
B, :=inf{E.(u) |u€M,, Bu)==x.}, (3.5)
Bog, := inf{Eg(u) lueM,, B.(u)= 0}. (3.6)

We denote by, the segment joining O ang, i.e.
L.={tx, |t €[0,1]}

and by
Ag :=inf{E,(u) |ueM,, Bu)eL,}. 3.7)
Fixed a point; € 3 B(0, 1) we denote by =3 B(Z, 2) i.e.

T={zeR"||z-¢|=2}. (3.8)
For everys > 0 andp > 0 we define the operator
Ve p X x[0,1] = M,

by

__ $WIA-Dwlx — pz2) +1wlx — pf)]
[ (O[(L = DHw(x — pz) + 1w(x — pO)lp 0,

where ¢, is the cut-off function introduced in Proposition 2.1 to define the se-

guence (2.6).
We put for allz ¢ RY

1//5,,0[2, t](x)

(3.9)

W, . (x) = ¢ (Dw(x —2) (3.10)

|pe () w(x — 2)[p.e

and we remark thatz ¢
Ws,,o[zv Ol(x) = ws,pz(x)v T/fs,p[L 1(x) = ws,p{(x)-
We consider, also, for evegy > 0, the operator

v, Z x[0,1] - {ue H'(RY) | |u|, gy =1}
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defined by
1-nNw(x — pz) +1wlx —pg)
(1= Dw(x — pz) +1w(x — pg)|,ry

PROPOSITION 3.1. — Letw satisfy(A1). Let By, By . andm as defined, respectively,
in (3.3), (3.4), (2.3). Then the relation

Volz, t1(x) =

(3.11)

Bo. > Bo>m (3.12)

holds for alle > 0.

Proof. —Clearly,Ve > 0, By . > By and By > m, so, in order to prove (3.12), we have
to show that the equalitify = m cannot be true.

Arguing by contradiction, we assum8, = m. Hence a sequence of nonnegative
functions(u,), in HY(R") must exist so that

lB(un) =0 (a)

3.13
il p v =1, /[|Vun|2+ (1+a(x))us] dx —m (b) ( )

RN

Moreover(A1), (2.3) and (3.13)(b) imply lin 4 ||“n”fw =m.
Then, by the uniqueness of the solution of (2.3), a sequence of geintsin RN and
a sequence of function®,), in H*(R") exist so that, up to a subsequence still denoted

by (i),
u,(x) =wx —z,) + @u(x), XG]RNa
lim ¢,(x)=0 in H*(RY) and inL” (R")
and, by the same arguments of Proposition 2.1, lim,, |z,,| = +oc0.
On the other hand

lim Sup’ﬂn(x +z,) — @(x)’ =0,

n——+0o0
TOO L eRN

and, as a consequence,
|B(un(x)) — B(w(x —z,))| >0 asn — +oo,

that is
|B(un(x)) — 24| >0 asn — +oo,
contradicting (3.13)(a). O
LEMMA 3.2. - Let X, . ,, Bo. be as defined, respectively, (8.8), (3.9), (3.4).
Then for every > 0 there existg, > 0 such that for alle € (0, ¢,)

Bo.: < max E,(Ve,plz,1]). (3.14)
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Proof. —In view of (2.4), of the radial symmetry round 0 ef(x) and of the fact that
dist(w,, 0) > 400 ase — 0, it is not difficult to verify that, for every fixe@ > 0,

!ILnomz;XmlB © wa,p[Z, 0] — pz| =0.

Thus, for alle > 0 small enoughg o ¥, ,(X x {0}) is homotopically equivalent in
RM\ {0} to p ¥ and, then, there exist§,, 7,) € = x [0, 1] such that8 o Ve plZe, £.]1=0,
hence

BO,& < E; (1//6,,0[2& fa]) < ET[%)E] E, (v/s,p[zv t]) O

PrROPOSITION 3.3. — Let « satisfy (A1), (A2) then there exist constanig, > 0,
e > 0ande; > 0, such that for alle € (0, 1)

1-2/p
ET[%E] E; (Ws,pa [z, t]) < g <2 n, (3.15)

mngs(wg,pa [z,0]) < Bo. (3.16)
Proof. —The proof is carried out in three steps.
Stepl. There existe; > 0 such thatvp > p;

ET[%/UWO[L N2+ (L4 a @) (Yolz, 1)) dx = i, < 25 %7m. (3.17)

RN

The argument is very similar to that of Lemma 3.5 in [8] so we only sketch it for the
reader’s convenience.
We define

N,[z,t]= / IV (@ = Dw(x — p2) + 1w (x — pO)|°
RN
+ (14 a(0) (L= Dwx — p2) + 1w(x — p0))?] dx,
Dylz,t1=|1—Dw(x — pz) + 1w(x — PC)’ZRM

To verify (3.17) we must prove that if is large enough

N,[z, 1]
£x[0.1] (D, [z, t])?/?

<21=2rpy, (3.18)
Taking into account that Aw + w = mw?~* in R we obtain
Nolz,t1=[(1 = )%+ t*]m + 2t (L — tymn, + 220, + 2(1 — 1)%5,

where

o= [ wix =2yt = pydr = [wi = poyw - peytax,
RN RN
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0= [ at)lwix = po)l*dx,

RN
8y = /oz(x)]w(x - ,oz)|2dx.
RN
Using Lemma 2.2 of [1], (2.4) and conditigi,) we then deduce
. N1
pﬂmoo n,[207 €] =C1>0,
. N-1
JNim 6,[p77° €] =C2>0,

lim 8,[p 7 ° €] =C3>0,

p——+00

that allow to obtain
Nz, t1=[(1 = )%+ t3Jm + 2t (L — t)mn, + g(p)

with g(p) = 0(n,), because < (1, 2].
On the other hand, using Lemma 2.7 of [8] we get

Dylz, 112 [L—=0F +tP ]+ (p =D [A =)t + 7L —1)]n,.

Hence
N,lz,1] [(1—1)%+1?]
DLz, ()77 < e tp]z/pm + 2y (t)mn, + 0(n,)
where
B 11—t p—11—1?+1? =2, p-2
v = (A —1)P +1P]?/P {1_ p A—0)p+rr (@=07 ]}'

769

Now y(1/2) < 0, so there exists a neighbourhoddl/2) such thaty(r) <c¢ <0

vVt € 1(1/2) and

N,lz,t 1
max{ﬂ‘zez, teI(—)}
(Dp[Zat])2/p 2
<28y 2cmn, +0(n,) < 212

for p large enough. Moreover the relation

. Nylz, t]

plrroomaX{W ‘ z€EX, te [0, 1]\1(1/2)}
B [(1—1)2+17] 1-2/p
_mmax{ i ’te [0, 1]\1(1/2)} <21 2ry

holds and together with (3.19) gives (3.18) as desired.

(3.19)
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Step2. There exist$ > p; such thatvp > p

mzax/ [V, L2. 012 + (1 + &) (¥,[z. O1)?] dx < Bo. (3.20)

RN

Since (3.12) holds and

/ (V9,12 012 + (14 () (W, [z, O] dx

RN
= /HVW(X - ,OZ)]2 + (14 a@x)wx — pz)?] dx
RN
=m+ /oz(x)w(x — pz)2dx,

RN

to prove (3.20) we only need the relation

ls|inloo/oz(x)w(x —£)2dx=0
RN

that follows, easily, arguing as in Proposition 2.1 to prove relation (2.10).

Step3. Let p, > p and u, € (f1,,, 2Y%Pm) be fixed, then there exists > 0 such
that(3.15)and(3.16)hold for all ¢ € (0, &1).

Because of the choice @f,, the inequalities (3.17) and (3.20) hold true wheg p,.
Then in order to obtain (3.15) and (3.16) it is enough to observe that for all compact se
K c¥x[0,1]

lim max E Z,t
e—>0(z,1)ekK s(ws,pa[ ])

= max [ (19, 2.1 + (L+ @) (¥, [2.11)7) v (3.21)

(z,t)eK
RN
In fact, lete, and(z,,t,) € K be such that linL, . &, =0 and lim,_, 1o (z,, t,) =
(zo, t0) € K, then in view of (2.4) and of the fact that dist_, 0) — +o0 itis not difficult
to see that

n?

im Ve, po[2ns 1] = ¥y, [20,00] in HY(RY)

n—+00

hence

0o, (Vo Lz 1) = [ (V0,120,101 + (1 @) (8, 20, 0]))
RN

n

s0 (3.21) and the claim easily follow.O
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PROPOSITION 3.4. — Let B;, be as defined i1t3.5). Let« satisfy (A1). Then there
exists a constar; > m such that the relation

Bi >Ci >m (3.22)

holds for alle > 0.

Proof. —To prove the claim, we argue by contradiction; so, we assume that a sequenc
(e4)n €Xists such tha;, — m, asn — +o0. We can also assumg — 0, asn — +o0,
otherwise we get a contradiction at once, observing that A > 0 for somei € R
impliesx,, € w, :=U,>,, and

Bs, =Cy = inf{ /(|Vu|2 + (1 +a(x))u?) dx ’ ue HY(RY), lul, gy =1,
RN

ﬁ(u)e@},

and that, in view of the boundedness:gf arguing as in Proposition 3.1, itis not difficult
to concludeC, > m.

So a sequence of nonnegative functigns),,, u, € Hol(an), must exist, such that
E,, (u,)—>m, g, — 0 asn — +00, |u,lpq,, =1and B(y) = x/e,. Hence there exist
sequencesz,), in RY and(g,), in HX(R") such that, up to a subsequence,

u,(x) =wx —z,) +@a(x) Vxe RN, (3.23)
and
lim ¢.(x)=0 strongly inH'(R") and inL? (RV).

So by the continuity o, we infer

X
8_ — n| = ’,B(un) _Zn’_>0 asn — 400

from which the relation
nﬂrﬂoo dist(<2,,, z,) = +00
follows. Thus, for anyR > 0 and forn large enoughB(z,, R) N 2., = ¢ that implies
]u,,(x)] dx =0.
B(zu,R)

The above relation contradicts the relation

lim /’un(x)|dx: / wx)dx >0

n—+00
B(zn,R) B(O,R)

that follows from the properties ab and (3.23). O
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PROPOSITION 3.5. — Let « satisfy (A;). Let A, By, w.,, C; be as defined
respectively ir(3.7), (3.3), (3.10and in PropositiorB3.4. LetR € R, R > 0 be chosen so
that B(0, R) C Q. Then there exists, > 0 such that

m<A, < max E.(w..) <min(By,Cz) (3.24)
|z|=R/2¢

forall ¢ € (0, &5).

Proof. —Clearly, for every fixed, by the same arguments of Proposition 2:1x A,.
Let us, now, observe that, in view of (2.4), of the radial symmetry @ind of the fact
that disto B(0, R/2¢), w,) — +0o0 ase — 0, we have

IIm0 | |max [|we, . (x) — w(x — Z)HRN =0 (3.25)
E—> Vé
and
I|mOI |max |B(we;) —z| =0. (3.26)
E—> Vé

(3.25) implies lim_,omax;=g/2 E.(w, ) =m and this relation, with (3.12) and
(3.22), gives the third inequality for small
As a consequence of (3.26), for smalithe map

2= pws,)
is homotopic to the identity majpon d B(0, R /2¢) by the homotopy
K@®,2) =0B(w: ) +(1-0)z, 0<6<1], (3.27)

andC(0, z) ¢ {0, x.}, V0 € [0, 1] Vz € 9B(0, R/2¢).
Then there exist§ € d B(0, R/2¢) such thaiB(w, ;) € L., hence the relation

As < Es(ws,Z) m]?/)é E (ws z)

gives the second inequality.0

PROPOSITION 3.6. — Letw satisfy(A;). Let By g, be as defined i(3.6). Let u be a
constant such that € (m, 21-2/?m) then there exists, > 0 such that

Bos. > it (3.28)

forall e € (0, ¢,).

Proof. —The claim follows from the asymptotic estimate
lim Bo g, =2%"m
e—0 i

that can be obtained arguing exactly as in Lemma 3.3 and Remark 3.4 of [15].



G. CERAMI, R. MOLLE / Ann. I. H. Poincaré — AN 20 (2003) 759-777 773

LEMMA 3.7.—LetX, ¥, ,, Bo . be as defined respectively(®.8), (3.9), (3.6). Then
for everys > 0 there exists, > 0 such that for allp > p,

Bo,p. < max Ex(Veplz.11). (3.29)

Proof. —In view of (2.4), of the radial symmetry ab and by the definition (3.2) of
Be, it is not difficult to verify that, for every fixed > 0,

lim  maxB; o v (2, 01 = x(pz — %) = 0.
Hence, for allp large enough, the st o ¥, ,(X x {0}) is homotopically equivalent in
RN\ {0} to p= and, then, there exist§,, 7,) € = x [0, 1] such tha, o . ,(Z,,,) =0,
thus
BO,/SS < Es (Wa,p(zpa fp)) < ET[%)J(.] Ea (Ws,,o[Z, l]) O
PROPOSITION 3.8. — Let« satisfy(A;) and letu be so thatu € (m, 22=%/7m). For
everye > O there exist, , > 0 such that for allp > p, ,

1-2/p
Jmax Ee(Ve,lz. 1) <27 m, (3.30)
mEaXES(d/&p[Z, 0]) < u. (3.31)

Proof. —The proof is carried out in three steps.

Stepl. For everye > 0 there exist$, ; > 0 such that for allp > p; 1

Jmax / [V nlz, AP + (e plz, 11)7] dx < 2527, (3.32)
1,

The proof of this step is just Lemma 3.5 in [8].
Step2. For everye > 0 there exist9, » > p. 1 such that
mzax/uwg,p[z, 01 + (Y plz. O1)?] dx < (3.33)
Qe

holds for all p > p ».

By (2.4), the shape ab and the choice op. we have

im |[ge()w(x —2) —wx —2)||zgv =0

|z]—>+00
from which

lim_mex[|y.,o[z, Ol [y — [[w(x = p2)|[fx] =0

P—>00
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that implies

lim max/ﬂvwg,p[z, 011 + (Ve [z, 0)*] dx = m.
Qe
Step3. For everye > 0 there exists, > p. > such that(3.30)and (3.31) hold for all
P > Pe.
Taking into account that, (x)[(1—t)w(x — pz) +tw(x — p&)]l,.0. = ¢ > 0, arguing
as in Proposition 2.1 to prove (2.10) it is not difficult to see that

lim  max /a(x)(wg,p[z,z](x))zdx:

p—~+00 £ [0,
Qg
Hence

lim max [Eg(l/fg,p[z,t]) —/[[Vl/fg,p[z,t]]2+ (I/fg,p[z,t])z] dx| =0

p—+00 £x[0,1]
Qe
that, with (3.32) and (3.33), gives (3.30) and (3.31)n

4. Proof of Theorem 1.1

To prove the theorem we show that, for smgllE, has onM, three distinct critical
values, lying in the energy range:, 2-%”m), to which there correspond at least three
distinct solutions of P,), positive by Lemma 2.3.

In what follows p,, 1., are the constants whose existence is stated in Proposition 3.3,
moreover we choose= min(e,,, €1, €2, £,,) Whereey, e, are, respectively, the numbers
found in Propositions 3.3 and 3.5 ang , ¢, are as stated in Lemma 3.2 and
Proposition 3.6.

We remark that, by the results of Section 3, forsadl (0, £) the following inequalities
hold

m< A, < Izlml?'/)é E.(w, ;) < min(By, Cz),

mEaXEs (1//6,,00, [z, 0]) <Bo < BO,S X ET[%)E] E; (ws,pa [z, t])

< g <Bop, <2Y%Pm. (4.1)

and, fixede € (0, ¢), for all p > max(p;, pe ., P«) (P« @Ndp, ,, being the numbers
whose existence is stated in Lemma 3.7 and Proposition 3.8, respectively)

mEang(x/fg,p[z, 0]) < ta < Bop, < max Ee(Yeplz,t]) <2%Pm.  (4.2)

We consider a fixed € (0, £) and we carry out the proof in three steps: first we prove,
in Step 1, the existence of a critical valug, satisfying

A < C1e < ma/x E, (ws 2,

[z|=R
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then, in Step 2, we show that another critical lexg! exists so that

BO,S < < _Max E; (ws,pa [z, l]),
¥ x[0,1]

finally, in Step 3, we state the existence of a third critical leyel> By ..
The above levels are distinct because, by (4.1), (4.2),

m<cre <Bp< e <y <C3¢ < 212/,

Moreover, since, by (3.25), lim,o max;—z/2: E:(w, ) = m, and, by Proposition 3.6,
the asymptotic estimate limo Bo s, = 2'~%/”m holds, using again (4.1), we deduce

lim Cle =Mm, lim Co¢ € [Bo’ /’La] C (m’ 21_2/pm)’ lim C3.= 21—2/pm’
e=>0 e=>0 e—>0

that, with (2.1), imply (1.2)—(1.4).
In what follows, for a givery e R, we setE} ={u e M, | E.(u) <y}.

Stepl. Let us denote bysg . = max,—g/2 E. (w, ;). We assume, by contradiction,
that

{M €M, | A: < Ec(u) < SR,Sv VE&\ME (u) = 0} =.

Since the pair(E,, M,) satisfies the Palais-Smale condition, using a well known

deformation lemma (see f.i. [17]), we find a positive numbger 0 and a continuous

mapn : [0, 1] x ES* _ ES®¢ such that

n(O,u) =u, YueES*r,
n(1, ESre) C EA, (4.3)
Then we defin&0 € [0, 1] andVz € d B(0, R/2¢) the continuous map

(K@28.2) 0<6<1/2,
60.2)= {ﬂ(n(ZG “Lw.) 12<6<1,

K being the map defined in (3.27). By the definition /6f G(6, z) ¢ {0, x.} V6 €
[0,1/2] Vz € aB(0, R/2¢), moreover, by the relations (4.19z. < min(Bp, C;z) <
min(Bo., Bz,), G0, z) ¢ {0, x.} VO € [1/2,1], Vz € dB(0, R/2¢). Hence, taking into
account that’(0, z) = z Vz € dB(0, R/2¢), we deduce the existence & 9 B(0, R/2¢)
such that

G,2)=Bon(l,wsz) € L,. (4.4)
On the other hand by (4.3) and (3.7)

G(1,9B(0, R/2)) N L, =,

that contradicts (4.4).
Step2. SetQ,,, . = Maxs jo,1) E: (V¢ p, [z, t]). We assume, by contradiction, that

{I/t €M, | BO,& SE.(u) < Q,oa,sm VE€|ME(M) = 0} =,
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then, arguing as in the previous step, we find a numjper0 and a continuous function

o ESQ"‘“ — Ef 0:7% gich that

o(u)=u Yue EB:"% (4.5)
furthermore, by (3.12) and (3.16) can be chosen in such a way that

MaxE, (V. p, [z, 01) < Bo,. — 8. (4.6)

Setting

f:=E><[O,1]

~

where~ identifies the pointgz, 1), we define a map{ on = by
Hlz, t]= ﬁ(o— (Wa,pa [z, t]))

Sincee < ¢,,, by Lemma 3.2, (4.5) and (4.6} mapsd¥ in a set homotopically
equivalent top, > (and then toX) in RY \ {0}. MoreoverH is continuous, so a point
(z,1) € © must exist, for which

0="HE, 1) = B(0 (Ve 2. 1])).
This is impossible because(X) c o (ES%*y ¢ EF~* angd by (3.4), so we are in
contradiction.

Step3. Considering a fixeg > max(p;, 0. 4, P ), taking into account (4.2) and using
the same argument displayed in Step 2, we deduce, as desired, that

{I/t EM, | BO,;‘}S < E(u) < ET[%)E] E; (wa,p[za t])v VES|M5 () = 0} # @.
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