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ABSTRACT. – The equation−ε2�u + aε(x)u = up−1 with boundary Dirichlet zero data
considered in an exterior domain
 = R

N \ ω̄ (ω bounded andN � 2). Under the assumptio
that aε � a0 > 0 concentrates round a point of
 asε→ 0, thatp > 2 andp < 2N/(N − 2)
whenN � 3, the existence of at least three positive distinct solutions is proved.
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RÉSUMÉ. – Dans cet article on étude l’équation−ε2�u + aε(x)u = up−1 dans l’ouvert
extérieur
 = R

N \ ω̄ (ω borné etN � 2), avec la condition de Dirichletu = 0 sur ∂
. En
supposant queaε � a0 > 0 se concentre autour d’un point du domaine
 quandε→ 0, que
p > 2 et quep < 2N/(N − 2) quandN � 3, on démontre que le problème possède au m
trois solutions distinctes.

1. Introduction

In this paper we consider the problem

(Pε)

−ε2�u+ aε(x)u= up−1 in 
,
u > 0 in
,
u= 0 on ∂
,
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where
 = R
N \ ω̄, ω being a nonempty, bounded domain having smooth boun

∂ω = ∂
, N � 2, ε ∈ R
+ \ {0}, p > 2 and p <2N/(N − 2) whenN � 3. aε is a given

nonnegative function that, asε→ 0, concentrates round a pointx0 ∈
, namelyaε has
the form

aε(x)= a0 + α
(
x − x0

ε

)
(1.1)

and satisfies

(A1) a0 ∈ R
+ \ {0}, x0 ∈
, α(x)� 0, α ∈LN/2(RN

)
, |α|LN/2(RN) �= 0,

(A2)

∫
RN

α(x)e2|x|(1+ |x|N−1
2 σ

)
dx <∞ for someσ ∈ (1,2].

Problem(Pε) has a variational structure: the solutions of(Pε) can be characterized a
the nonnegative functions that are critical points of the functionalIε :H 1

0 (
)→R

Iε(u)=
∫



(
ε2|∇u|2 + aε(x)u2)dx

constrained to lie on the manifold

M= {
u ∈H 1

0 (
) | |u|Lp(
) = 1
}
.

However, it is well known that the unboundedness of the domain gives rise to a la
compactness, not allowing a straight application of the usual variational techniqu
particular(Pε) cannot be solved by minimization, in fact (see Section 2), the infimu
Iε onM is not achieved, moreover the functionalIε does not satisfy the Palais-Sma
condition in every energy level (see [1] and [3] for a careful analysis of the compac
question). The study of(Pε) needs subtle tools as the minimax theory together
topological arguments.

In recent years problems like(Pε) have been object of several researches, here we
recall that, without any symmetry assumption onω, the existence of one solution for(Pε)
has been proved, first, in [3], in the caseaε(x) ≡ a0, then in [1], under more gener
assumptions; multiplicity results have been obtained, whenaε(x) ≡ a0, in domains
having several holes [7,8,11,15] relating the number of solutions of(Pε) to the metric
and/or topological properties of
. We also remark that, for equations inRN having
nonconstant, nonsymmetric coefficients, the existence of one positive solution ha
stated in [2,4], while multiple solutions have been found in [13].

In this work, motivated by former results, [6,9], that emphasize the role th
concentrating potentialaε can play in obtaining multiplicity of solutions for problem
like (Pε) in bounded domains, we investigate the effect of such a potential when
 is an
unbounded exterior domain.

The result we obtain is stated in the following

THEOREM 1.1. – Let aε be as in(1.1) and let the assumptions(A1) and (A2) be
satisfied. Then there existsε̄ > 0 such that for everyε ∈ (0, ε̄) Problem(Pε) has at least
three distinct solutionsu1,ε, u2,ε, u3,ε. Moreover
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lim
ε→0

1

εN(1−2/p)
Iε

(
u1,ε

|u1,ε|Lp(
)
)
=m, (1.2)

lim
ε→0

1

εN(1−2/p)
Iε

(
u2,ε

|u2,ε|Lp(
)
)
∈ (
m,21−2/pm

)
, (1.3)

lim
ε→0

1

εN(1−2/p)
Iε

(
u3,ε

|u3,ε|Lp(
)
)
= 21−2/pm, (1.4)

where

m= inf
{ ∫

RN

[|∇u|2 + a0u
2]dx ∣∣∣∣ u ∈H 1(

R
N

)
, |u|Lp(RN) = 1

}
.

We remark that the above theorem gives the existence of at least three so
whatever
 is, even the complement of a convex domain.

It is worth observing, also, that the asymptotic energy estimates give some inform
about the shape of the solutions. Indeedu1,ε is a “single peak” solution, that is a functio
that, suitably translated and scaled, tends, asε→ 0, to a solution of the limit problem

(P∞)


−�u+ a0u= up−1 in R

N ,
u > 0 in R

N ,
u(x)→ 0 as |x| →∞,

and, on the other hand,u3,ε must be a “two-peaks” solution, in fact its energy, suita
scaled, tends to the energy of a pairs of not interacting solutions of(P∞). About the last
solution,u2,ε, we can guess (but we have not a rigorous proof) that it, suitably sca
x0, asε→ 0, tends to a solution of

(Pα)


−�u+ (a0 + α(x))u= up−1 in R

N ,
u > 0 in R

N ,
u(x)→ 0 as |x| →∞

whose shape depends onα (see [13]).
Finally, we point out that we can look at problem(Pε) in a “dual” way: an equation

not depending onε, considered in an exterior domain whose complement, asε→ 0,
widens and becomes far and far from the relevant part (in the sense ofLN/2(RN)) of α.

Actually, considering, for instance
ε,x0 = {x ∈ R
N | εx + x0 ∈ 
} an easy scal

change shows that to any solution of(Pε) there corresponds, in a one to one way
solution of 

−�u+ (a0 + α(x))u= up−1 in 
ε,x0,

u > 0 in
ε,x0,

u= 0 on ∂
ε,x0.

Thus the conclusion of Theorem 1.1 can be expressed equivalently as follows:

THEOREM 1.2. – Leta0 andα satisfy(A1) and(A2). Let
n ⊂R
N be a sequence o

exterior domains such that for someyn ∈ R
N andrn→∞

B(yn, rn)⊂R
N \
n, B(x0, rn)⊂
n.
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Then there exists̄n ∈ N such that for alln > n̄ the equation−�u+ (a0 + α(x))u=
up−1 with zero Dirichlet boundary data in
n has at least three positive solutions,ū1,n,
ū2,n, ū3,n. Moreover

lim
n→+∞

∫

n
(|∇ū1,n(x)|2 + (a0 + α(x))ū2

1,n(x)) dx

|ū1,n|2Lp(
n)
=m,

lim
n→+∞

∫

n
(|∇ū2,n(x)|2 + (a0 + α(x))ū2

2,n(x)) dx

|ū2,n|2Lp(
n)
∈ (
m,21−2/pm

)
,

lim
n→+∞

∫

n
(|∇ū3,n(x)|2 + (a0 + α(x))ū2

3,n(x)) dx

|ū3,n|2Lp(
n)
= 21−2/pm.

The paper is organized as follows: Section 2 is devoted to introducing some not
and recalling some known results and useful relations; in Section 3 some usefu
are introduced and some basic asymptotic estimates are proved, Section 4 cont
proof of Theorem 1.1. Arguing as in proving Theorem 1.1, it is a simple matter t
the proof of Theorem 1.2.

2. Notations, known facts and useful remarks

Throughout the paper we make use of the following notations.
• Lp(D), 1 � p <+∞, D ⊆ R

N , denotes a Lebesgue space; the norm inLp(D) is
denoted by| · |p,D.

• H 1
0 (D), D ⊂R

N andH 1(RN) denote the Sobolev spaces obtained, respective
closure ofC∞

0 (D) andC∞
0 (R

N) with respect to the norms

‖u‖D =
[∫
D

(|∇u|2 + a0u
2)dx]1/2

, ‖u‖RN =
[ ∫

RN

(|∇u|2 + a0u
2)dx]1/2

.

• If D1 ⊂D2 ⊆R
N andu ∈H 1

0 (D1), we denote also byu its extension toD2 obtained
settingu≡ 0 outsideD1.

• Dε denotes the subset ofR
N {y ∈R

N | εy ∈D}, D ⊂R
N .

• B(y,ρ) denotes the open ball, ofR
N , having radiusρ and centered aty.

In what follows, without any loss of generality,we assumea0 = 1 andx0 = 0.
Setting

uε(x)= εN/pu(εx)
an easy computation shows that for everyu ∈H 1

0 (
) uε ∈H 1
0 (
ε), u ∈M if and only

if |uε|p,
ε = 1 and

Iε(u)=
∫



[
ε2|∇u|2 +

(
1+ α

(
x

ε

))
u2

]
dx

= ε(1−2/p)N
∫



[|∇uε|2 + (
1+ α(x))u2

ε

]
dx. (2.1)
ε
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Thus looking for critical points ofIε on M is equivalent to searching for critic
points of the “rescaled” energy functional

Eε(u)=
∫

ε

[|∇u|2 + (
1+ α(x))u2]dx

on the manifold

Mε = {
u ∈H 1

0 (
ε) | |u|p,
ε = 1
}
.

Let us set

mε = inf
{
Eε(u) | u ∈Mε

}
(2.2)

and

m= inf
{‖u‖2

RN
| u ∈H 1(

R
N

)
, |u|p,RN = 1

}
. (2.3)

The infimum in(2.3) is achieved(see [16] or [5]) by a positive functionw, that
is unique modulo translations(see [12]) and radially symmetric about the origin
decreasing when the radial co-ordinate increases and such that

lim|x|→+∞
∣∣Djw(x)

∣∣|x|N−1
2 e|x| = dj > 0, dj ∈R, j = 0,1 (2.4)

(see[5] and [10]).
On the contrary we have

PROPOSITION 2.1. – Letα satisfy(A1). Then

mε =m (2.5)

and the minimization problem(2.2)has no solution.

Proof. –Since we may considerH 1
0 (
ε) as a subspace ofH 1(RN),

mε �m.

To prove that the equality holds, we consider the sequence

wε,yn(x) :=
φε(x)w(x − yn)

|φε(x)w(x − yn)|p,
ε
(2.6)

whereyn ∈ 
ε, limn→+∞ |yn| = +∞, w is the function realizing (2.3) andφε(x) =
φ(εx) with φ :RN → [0,1] aC∞-function such that:φ(x)= 0 if x ∈ ω, 0� φ(x) � 1,
supp(1− φ) is compact, and we show that

lim
n→+∞Eε(wε,yn)=m. (2.7)

Indeed, using (2.4) it is not difficult to show that
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∣∣φε(x)w(x − yn)−w(x − yn)∣∣p,RN = o
(
1/|yn|), (2.8)∥∥φε(x)w(x − yn)−w(x − yn)∥∥RN

= o
(
1/|yn|). (2.9)

On the other hand, for every fixedη > 0, we can findρ = ρ(η) > 0 so that∣∣φε(x)w(x − yn)∣∣ 2N
N−2 ,
ε\B(yn,ρ) < η

and

|α|N/2,B(yn,ρ) < η,
if n is large enough; hence∫


ε

α(x)
[
φε(x)w(x − yn)]2

dx

=
∫

B(yn,ρ)

α(x)
[
φε(x)w(x − yn)]2

dx +
∫


ε\B(yn,ρ)
α(x)

[
φε(x)w(x − yn)]2

dx

� η
∣∣φε(x)w(x − yn)∣∣ 2N

N−2 ,R
N + η|α|N/2,RN

from which

lim
n→+∞

∫

ε

α(x)
[
φε(x)w(x − yn)]2

dx = 0 (2.10)

follows.
Hence (2.8), (2.9) and (2.10) give (2.7).
Let us now assume that the minimization problem (2.2) has a solutionu∗ � 0. Then

m� ‖u∗‖2
RN

= ‖u∗‖2

ε

� ‖u∗‖2

ε
+

∫

ε

α(x)
(
u∗(x)

)2
dx =m.

Thus we deduce

u∗(x)=w(x − y∗) for somey∗ ∈R
N

and, by(A1) andw(x) > 0 ∀x ∈R
N ,

0=
∫

ε

α(x)
(
u∗(x)

)2
dx =

∫

ε

α(x)w2(x − y∗) dx > 0,

a contradiction. ✷
The functionalEε constrained onMε does not verify globally the Palais-Sma

condition, however, as proved in [3], the compactness is preserved in some energy

LEMMA 2.2. – Let (un)n be a Palais-Smale sequence forEε constrained onMε, i.e.
un ∈Mε {

lim
n→∞Eε(un)= c,
lim ∇Eε |Mε

(un)= 0.

n→∞
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If c ∈ (m,21−2/pm) then(un)n is relatively compact.

The following lemma states a lower bound for the energy of a critical pointu of Eε
onMε that changes sign; the proof, that can be easily deduced using the definitionm,
can be found in [7].

LEMMA 2.3. – Letu ∈H 1
0 (
ε) be such that

|u|p,
ε = 1, Eε(u)= c, ∇Eε|Mε
(u)= 0.

Thenu+ �≡ 0 andu− �≡ 0 impliesc > 21−2/pm.

This lemma and the maximum principle ensure that critical points ofEε onMε in the
range(m,21−2/pm) give rise to positive solutions of problem(Pε).

3. Tools, preliminary remarks, basic estimates

For what follows we need to introduce some barycenter type function.
Foru ∈ Lp(RN) we set

ũ(x)= 1

|B(x,1)|
∫

B(x,1)

∣∣u(y)∣∣dy
|B(x,1)| being the Lebesgue measure ofB(x,1), and

û(x)=
[
ũ(x)− 1

2
max
RN

ũ(x)

]+
;

we then defineβ :Lp(RN) \ {0}→R
N by

β(u)= 1

|û|p
p,RN

∫
RN

x
[
û(x)

]p
dx. (3.1)

We remark thatβ is well defined for allu ∈ Lp(RN) \ {0}, becauseû �≡ 0 and has
compact support, moreoverβ is continuous.

We define also, for everyε > 0, another mapβε : Lp(RN) \ {0}→R
N by

βε(u)= 1

|u|p
p,RN

∫
RN

χ(x − x̄ε)
∣∣u(x)∣∣p dx (3.2)

wherex̄ε = x̄/ε, x̄ being a fixed point inω =R
N \
 andχ is the function

χ(x)= x

1+ |x| .

We remark thatβε is a continuous map inLp(RN) \ {0}; we observe also thatβε(w(x −
x̄ε))= 0.
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We put

B0 := inf
{ ∫

RN

[|∇u|2 + (
1+ α(x))u2]dx ∣∣∣ u ∈H 1(

R
N

)
,

|u|p,RN = 1, β(u)= 0
}

(3.3)

and, for allε > 0, we set

B0,ε := inf
{
Eε(u) | u ∈Mε, β(u)= 0

}
, (3.4)

Bx̄ε := inf
{
Eε(u) | u ∈Mε, β(u)= x̄ε}, (3.5)

B0,βε := inf
{
Eε(u) | u ∈Mε, βε(u)= 0

}
. (3.6)

We denote byLε the segment joining 0 and̄xε, i.e.

Lε = {
t x̄ε | t ∈ [0,1]}

and by

Aε := inf
{
Eε(u) | u ∈Mε, β(u) ∈Lε}. (3.7)

Fixed a pointζ ∈ ∂B(0,1) we denote by, = ∂B(ζ,2) i.e.

, = {
z ∈ R

N | |z− ζ | = 2
}
. (3.8)

For everyε > 0 andρ > 0 we define the operator

ψε,ρ :, × [0,1] →Mε

by

ψε,ρ[z, t](x)= φε(x)[(1− t)w(x − ρz)+ tw(x − ρζ )]
|φε(x)[(1− t)w(x − ρz)+ tw(x − ρζ )]|p,
ε

(3.9)

where φε is the cut-off function introduced in Proposition 2.1 to define the
quence (2.6).

We put for allz ∈R
N

wε,z(x)= φε(x)w(x − z)
|φε(x)w(x − z)|p,
ε

(3.10)

and we remark that∀z ∈,

ψε,ρ[z,0](x)=wε,ρz(x), ψε,ρ[z,1](x)=wε,ρζ (x).

We consider, also, for everyρ > 0, the operator

ψρ :, × [0,1] → {
u ∈H 1(

R
N

) | |u|p,RN = 1
}
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ψρ[z, t](x)= (1− t)w(x − ρz)+ tw(x − ρζ )
|(1− t)w(x − ρz)+ tw(x − ρζ )|p,RN . (3.11)

PROPOSITION 3.1. – Letα satisfy(A1). LetB0, B0,ε andm as defined, respectivel
in (3.3), (3.4), (2.3). Then the relation

B0,ε � B0>m (3.12)

holds for allε > 0.

Proof. –Clearly,∀ε > 0,B0,ε � B0 andB0 �m, so, in order to prove (3.12), we ha
to show that the equalityB0 =m cannot be true.

Arguing by contradiction, we assumeB0 = m. Hence a sequence of nonnegat
functions(un)n in H 1(RN) must exist so that

β(un)= 0 (a)

|un|p,RN = 1,
∫

RN

[|∇un|2 + (
1+ α(x))u2

n

]
dx→m (b)

 . (3.13)

Moreover(A1), (2.3) and (3.13)(b) imply limn→+∞ ‖un‖2
RN

=m.
Then, by the uniqueness of the solution of (2.3), a sequence of points(zn)n in R

N and
a sequence of functions(ϕn)n in H 1(RN) exist so that, up to a subsequence still deno
by (un)n,

un(x)=w(x − zn)+ ϕn(x), x ∈R
N,

lim
n→+∞ϕn(x)= 0 inH 1(

R
N

)
and inLp

(
R
N

)
and, by the same arguments of Proposition 2.1, limn→+∞ |zn| = +∞.

On the other hand

lim
n→+∞ sup

x∈RN

∣∣ũn(x + zn)− w̃(x)∣∣= 0,

and, as a consequence,∣∣β(
un(x)

)− β(
w(x − zn))∣∣→ 0 asn→+∞,

that is ∣∣β(
un(x)

)− zn∣∣→ 0 asn→+∞,
contradicting (3.13)(a). ✷

LEMMA 3.2. – Let ,, ψε,ρ , B0,ε be as defined, respectively, in(3.8), (3.9), (3.4).
Then for everyρ > 0 there existsερ > 0 such that for allε ∈ (0, ερ)

B0,ε � max
,×[0,1]Eε

(
ψε,ρ[z, t]). (3.14)
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Proof. –In view of (2.4), of the radial symmetry round 0 ofw(x) and of the fact tha
dist(ω̄ε,0)→+∞ asε→ 0, it is not difficult to verify that, for every fixedρ > 0,

lim
ε→0

max
,

∣∣β ◦ψε,ρ[z,0] − ρz∣∣= 0.

Thus, for all ε > 0 small enough,β ◦ ψε,ρ(, × {0}) is homotopically equivalent in
R
N \ {0} to ρ, and, then, there exists(ẑε, t̂ε) ∈, × [0,1] such thatβ ◦ψε,ρ[ẑε, t̂ε] = 0,

hence

B0,ε �Eε
(
ψε,ρ[ẑε, t̂ε]) � max

,×[0,1]Eε
(
ψε,ρ[z, t]). ✷

PROPOSITION 3.3. – Let α satisfy (A1), (A2) then there exist constantsρα > 0,
µα > 0 andε1> 0, such that for allε ∈ (0, ε1)

max
,×[0,1]Eε

(
ψε,ρα [z, t]

)
<µα < 21−2/pm, (3.15)

max
,
Eε

(
ψε,ρα [z,0]

)
< B0. (3.16)

Proof. –The proof is carried out in three steps.

Step1. There existsρ1> 0 such that∀ρ > ρ1

max
,×[0,1]

∫
RN

[∣∣∇ψρ[z, t]∣∣2 + (
1+ α(x))(ψρ[z, t])2]

dx := µ̂ρ < 21−2/pm. (3.17)

The argument is very similar to that of Lemma 3.5 in [8] so we only sketch it fo
reader’s convenience.

We define

Nρ[z, t] =
∫

RN

[∣∣∇(
(1− t)w(x − ρz)+ tw(x − ρζ ))∣∣2

+ (
1+ α(x))((1− t)w(x − ρz)+ tw(x − ρζ ))2]

dx,

Dρ[z, t] =
∣∣(1− t)w(x − ρz)+ tw(x − ρζ )∣∣p

p,RN
.

To verify (3.17) we must prove that ifρ is large enough

max
,×[0,1]

Nρ[z, t]
(Dρ[z, t])2/p < 21−2/pm. (3.18)

Taking into account that−�w+w=mwp−1 in R
N we obtain

Nρ[z, t] = [
(1− t)2 + t2]m+ 2t (1− t)mηρ + 2t2θρ + 2(1− t)2δρ

where

ηρ =
∫
N

w(x − ρz)p−1w(x − ρζ ) dx =
∫
N

w(x − ρz)w(x − ρζ )p−1 dx,
R R
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θρ =
∫

RN

α(x)
∣∣w(x − ρζ )∣∣2dx,

δρ =
∫

RN

α(x)
∣∣w(x − ρz)∣∣2dx.

Using Lemma 2.2 of [1], (2.4) and condition(A2) we then deduce

lim
ρ→+∞ηρ

[
2ρ

N−1
2 e2ρ]= C1> 0,

lim
ρ→+∞ θρ

[
ρ
N−1

2 σ e2ρ]= C2 � 0,

lim
ρ→+∞ δρ

[
ρ
N−1

2 σ e2ρ]= C3 � 0,

that allow to obtain

Nρ[z, t] = [
(1− t)2 + t2]m+ 2t (1− t)mηρ + g(ρ)

with g(ρ)= o(ηρ), becauseσ ∈ (1,2].
On the other hand, using Lemma 2.7 of [8] we get

Dρ[z, t]� [
(1− t)p + tp]+ (p− 1)

[
(1− t)p−1t + tp−1(1− t)]ηρ.

Hence

Nρ[z, t]
(Dρ[z, t])2/p � [(1− t)2 + t2]

[(1− t)p + tp]2/pm+ 2γ (t)mηρ + o(ηρ)

where

γ (t)= (1− t)t
[(1− t)p + tp]2/p

{
1− p− 1

p

(1− t)2 + t2
(1− t)p + tp

[
(1− t)p−2 + tp−2]}.

Now γ (1/2) < 0, so there exists a neighbourhoodI (1/2) such thatγ (t) < c < 0
∀t ∈ I (1/2) and

max
{

Nρ[z, t]
(Dρ[z, t])2/p

∣∣∣ z ∈,, t ∈ I(1

2

)}
� 21−2/pm+ 2cmηρ + o(ηρ) < 21−2/pm (3.19)

for ρ large enough. Moreover the relation

lim
ρ→+∞max

{
Nρ[z, t]

(Dρ[z, t])2/p
∣∣∣ z ∈,, t ∈ [0,1] \ I (1/2)

}

=mmax
{ [(1− t)2 + t2]
[(1− t)p + tp]2/p

∣∣∣ t ∈ [0,1] \ I (1/2)
}
< 21−2/pm

holds and together with (3.19) gives (3.18) as desired.
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Step2. There existŝρ � ρ1 such that∀ρ � ρ̂

max
,

∫
RN

[∣∣∇ψρ[z,0]∣∣2 + (
1+ α(x))(ψρ[z,0])2]

dx < B0. (3.20)

Since (3.12) holds and∫
RN

[∣∣∇ψρ[z,0]∣∣2 + (
1+ α(x))(ψρ[z,0])2]

dx

=
∫

RN

[∣∣∇w(x − ρz)∣∣2 + (
1+ α(x))w(x − ρz)2]dx

=m+
∫

RN

α(x)w(x − ρz)2dx,

to prove (3.20) we only need the relation

lim|ξ |→+∞

∫
RN

α(x)w(x − ξ)2dx = 0

that follows, easily, arguing as in Proposition 2.1 to prove relation (2.10).

Step3. Let ρα � ρ̂ andµα ∈ (µ̂ρα ,21−2/pm) be fixed, then there existsε1 > 0 such
that (3.15)and(3.16)hold for all ε ∈ (0, ε1).

Because of the choice ofρα, the inequalities (3.17) and (3.20) hold true whenρ = ρα.
Then in order to obtain (3.15) and (3.16) it is enough to observe that for all compa
K ⊂, × [0,1]

lim
ε→0

max
(z,t)∈K

Eε
(
ψε,ρα [z, t]

)
= max
(z,t)∈K

∫
RN

(∣∣∇ψρα [z, t]∣∣2 + (
1+ α(x))(ψρα [z, t])2)

dx. (3.21)

In fact, letεn and(zn, tn) ∈ K be such that limn→+∞ εn = 0 and limn→+∞(zn, tn) =
(z0, t0) ∈K , then in view of (2.4) and of the fact that dist(ωεn,0)→+∞ it is not difficult
to see that

lim
n→+∞ψεn,ρα [zn, tn] =ψρα [z0, t0] in H 1(

R
N

)
hence

lim
n→+∞Eεn

(
ψεn,ρα [zn, tn]

) = ∫
RN

(∣∣∇ψρα [z0, t0]
∣∣2 + (

1+ α(x))(ψρα [z0, t0])2)
dx

so (3.21) and the claim easily follow.✷
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PROPOSITION 3.4. – Let Bx̄ε be as defined in(3.5). Let α satisfy(A1). Then there
exists a constantCx̄ > m such that the relation

Bx̄ε � Cx̄ > m (3.22)

holds for allε > 0.

Proof. –To prove the claim, we argue by contradiction; so, we assume that a seq
(εn)n exists such thatBx̄εn →m, asn→+∞. We can also assumeεn→ 0, asn→+∞,
otherwise we get a contradiction at once, observing thatεn � λ > 0 for someλ ∈ R

implies x̄εn ∈ ω̃λ := ∪ε�λωε and

Bx̄εn � Cλ := inf
{ ∫

RN

(|∇u|2 + (
1+ α(x))u2)dx ∣∣∣ u ∈H 1(

R
N

)
, |u|p,RN = 1,

β(u) ∈ ω̃λ
}
,

and that, in view of the boundedness ofω̃λ, arguing as in Proposition 3.1, it is not difficu
to concludeCλ > m.

So a sequence of nonnegative functions(un)n, un ∈ H 1
0 (
εn), must exist, such tha

Eεn(un)→m, εn→0 asn→+∞, |un|p,
εn = 1 and β(un) = x̄/εn. Hence there exis
sequences(zn)n in R

N and(ϕn)n in H 1(RN) such that, up to a subsequence,

un(x)=w(x − zn)+ ϕn(x) ∀x ∈R
N, (3.23)

and

lim
n→+∞ϕn(x)= 0 strongly inH 1(

R
N

)
and inLp

(
R
N

)
.

So by the continuity ofβ, we infer∣∣∣∣ x̄εn − zn
∣∣∣∣= ∣∣β(un)− zn∣∣→0 asn→+∞

from which the relation

lim
n→+∞dist(
εn, zn)=+∞

follows. Thus, for anyR > 0 and forn large enough,B(zn,R)∩
εn = ∅ that implies∫
B(zn,R)

∣∣un(x)∣∣dx = 0.

The above relation contradicts the relation

lim
n→+∞

∫
B(zn,R)

∣∣un(x)∣∣dx = ∫
B(0,R)

w(x) dx > 0

that follows from the properties ofw and (3.23). ✷
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PROPOSITION 3.5. – Let α satisfy (A1). Let Aε, B0, wε,z, Cx̄ be as defined
respectively in(3.7), (3.3), (3.10)and in Proposition3.4. LetR ∈R,R > 0 be chosen so
thatB(0,R)⊂
. Then there existsε2> 0 such that

m<Aε � max|z|=R/2εEε(wε,z) <min(B0,Cx̄ ) (3.24)

for all ε ∈ (0, ε2).

Proof. –Clearly, for every fixedε, by the same arguments of Proposition 2.1,m<Aε.
Let us, now, observe that, in view of (2.4), of the radial symmetry ofw and of the fact

that dist(∂B(0,R/2ε), ω̄ε)→+∞ asε→ 0, we have

lim
ε→0

max|z|=R/2ε
∥∥wε,z(x)−w(x − z)∥∥RN

= 0 (3.25)

and

lim
ε→0

max|z|=R/2ε
∣∣β(wε,z)− z∣∣= 0. (3.26)

(3.25) implies limε→0 max|z|=R/2ε Eε(wε,z)=m and this relation, with (3.12) an
(3.22), gives the third inequality for smallε.

As a consequence of (3.26), for smallε, the map

z→β(wε,z)

is homotopic to the identity mapi on ∂B(0,R/2ε) by the homotopy

K(θ, z)= θβ(wε,z)+ (1− θ)z, 0 � θ � 1, (3.27)

andK(θ, z) /∈ {0, x̄ε}, ∀θ ∈ [0,1] ∀z ∈ ∂B(0,R/2ε).
Then there exists̃z ∈ ∂B(0,R/2ε) such thatβ(wε,z̃) ∈Lε, hence the relation

Aε �Eε(wε,z̃)� max|z|=R/2εEε(wε,z)

gives the second inequality.✷
PROPOSITION 3.6. – Letα satisfy(A1). LetB0,βε be as defined in(3.6). Letµ be a

constant such thatµ ∈ (m,21−2/pm) then there existsεµ > 0 such that

B0,βε > µ (3.28)

for all ε ∈ (0, εµ).
Proof. –The claim follows from the asymptotic estimate

lim
ε→0

B0,βε = 21−2/pm

that can be obtained arguing exactly as in Lemma 3.3 and Remark 3.4 of [15].✷
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LEMMA 3.7. – Let,,ψε,ρ ,B0,βε be as defined respectively in(3.8), (3.9), (3.6). Then
for everyε > 0 there existsρ̂ε > 0 such that for allρ > ρ̂ε

B0,βε � max
,×[0,1]Eε

(
ψε,ρ[z, t]). (3.29)

Proof. –In view of (2.4), of the radial symmetry ofw and by the definition (3.2) o
βε, it is not difficult to verify that, for every fixedε > 0,

lim
ρ→+∞max

z∈,
∣∣βε ◦ψε,ρ[z,0] − χ(ρz− x̄ε)∣∣= 0.

Hence, for allρ large enough, the setβε ◦ψε,ρ(, × {0}) is homotopically equivalent in
R
N \{0} to ρ, and, then, there exists(z̄ρ, t̄ρ) ∈,×[0,1] such thatβε ◦ψε,ρ(z̄ρ, t̄ρ)= 0,

thus

B0,βε �Eε
(
ψε,ρ(z̄ρ, t̄ρ)

)
� max
,×[0,1]Eε

(
ψε,ρ[z, t]). ✷

PROPOSITION 3.8. – Let α satisfy(A1) and letµ be so thatµ ∈ (m,21−2/pm). For
everyε > 0 there existsρ̄ε,µ > 0 such that for allρ � ρ̄ε,µ

max
,×[0,1]Eε

(
ψε,ρ[z, t])< 21−2/pm, (3.30)

max
,
Eε

(
ψε,ρ[z,0])<µ. (3.31)

Proof. –The proof is carried out in three steps.

Step1. For everyε > 0 there existsρ̄ε,1> 0 such that for allρ > ρ̄ε,1

max
,×[0,1]

∫

ε

[∣∣∇ψε,ρ[z, t]∣∣2 + (
ψε,ρ[z, t])2]

dx � 21−2/pm. (3.32)

The proof of this step is just Lemma 3.5 in [8].

Step2. For everyε > 0 there existsρ̄ε,2> ρ̄ε,1 such that

max
,

∫

ε

[∣∣∇ψε,ρ[z,0]∣∣2 + (
ψε,ρ[z,0])2]

dx � µ (3.33)

holds for allρ > ρ̄ε,2.

By (2.4), the shape ofw and the choice ofφε we have

lim|z|→+∞
∥∥φε(x)w(x − z)−w(x − z)∥∥RN

= 0

from which

lim
ρ→∞max

[∥∥ψε,ρ[z,0]∥∥2
RN

− ∥∥w(x − ρz)∥∥2
RN

]= 0

,
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that implies

lim
ρ→+∞max

,

∫

ε

[∣∣∇ψε,ρ[z,0]∣∣2 + (
ψε,ρ[z,0])2]

dx =m.

Step3. For everyε > 0 there existsρ̄ε > ρ̄ε,2 such that(3.30)and (3.31)hold for all
ρ > ρ̄ε.

Taking into account that|φε(x)[(1− t)w(x−ρz)+ tw(x−ρζ )]|p,
ε � c > 0, arguing
as in Proposition 2.1 to prove (2.10) it is not difficult to see that

lim
ρ→+∞ max

,×[0,1]

∫

ε

α(x)
(
ψε,ρ[z, t](x))2

dx = 0.

Hence

lim
ρ→+∞ max

,×[0,1]

[
Eε

(
ψε,ρ[z, t])− ∫


ε

[∣∣∇ψε,ρ[z, t]∣∣2 + (
ψε,ρ[z, t])2]

dx

]
= 0

that, with (3.32) and (3.33), gives (3.30) and (3.31).✷
4. Proof of Theorem 1.1

To prove the theorem we show that, for smallε, Eε has onMε three distinct critica
values, lying in the energy range(m,21−2/pm), to which there correspond at least th
distinct solutions of(Pε), positive by Lemma 2.3.

In what followsρα, µα are the constants whose existence is stated in Propositio
moreover we choosēε = min(ερα , ε1, ε2, εµα) whereε1, ε2 are, respectively, the numbe
found in Propositions 3.3 and 3.5 andερα , εµα are as stated in Lemma 3.2 a
Proposition 3.6.

We remark that, by the results of Section 3, for allε ∈ (0, ε̄) the following inequalities
hold

m<Aε � max|z|=R/2εEε(wε,z) <min(B0,Cx̄ ),

max
,
Eε

(
ψε,ρα [z,0]

)
<B0 � B0,ε � max

,×[0,1]Eε
(
ψε,ρα [z, t]

)
<µα < B0,βε < 21−2/pm. (4.1)

and, fixedε ∈ (0, ε̄), for all ρ > max(ρ̂ε, ρ̄ε,µα , ρα) (ρ̂α and ρ̄ε,µα being the number
whose existence is stated in Lemma 3.7 and Proposition 3.8, respectively)

max
,
Eε

(
ψε,ρ[z,0])<µα < B0,βε � max

,×[0,1]Eε
(
ψε,ρ[z, t])< 21−2/pm. (4.2)

We consider a fixedε ∈ (0, ε̄) and we carry out the proof in three steps: first we pro
in Step 1, the existence of a critical valuec1,ε satisfying

Aε � c1,ε � max|z|=R/2εEε(wε,z),
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then, in Step 2, we show that another critical levelc2,ε exists so that

B0,ε � c2,ε � max
,×[0,1]Eε

(
ψε,ρα [z, t]

)
,

finally, in Step 3, we state the existence of a third critical levelc3,ε � B0,βε .
The above levels are distinct because, by (4.1), (4.2),

m< c1,ε < B0 � c2,ε < µα < c3,ε < 21−2/pm.

Moreover, since, by (3.25), limε→0 max|z|=R/2ε Eε(wε,z)=m, and, by Proposition 3.6
the asymptotic estimate limε→0B0,βε = 21−2/pm holds, using again (4.1), we deduce

lim
ε→0

c1,ε =m, lim
ε→0

c2,ε ∈ [B0,µα] ⊂ (
m,21−2/pm

)
, lim

ε→0
c3,ε = 21−2/pm,

that, with (2.1), imply (1.2)–(1.4).
In what follows, for a givenγ ∈R, we setEγε = {u ∈Mε |Eε(u)� γ }.
Step1. Let us denote bySR,ε = max|z|=R/2εEε(wε,z). We assume, by contradictio

that {
u ∈Mε |Aε �Eε(u)� SR,ε, ∇Eε|Mε

(u)= 0
} =∅.

Since the pair(Eε,Mε) satisfies the Palais-Smale condition, using a well kno
deformation lemma (see f.i. [17]), we find a positive numberδ1 > 0 and a continuou
mapη : [0,1] ×ESR,ε

ε →E
SR,ε
ε such that

η(0, u)= u, ∀u ∈ESR,ε
ε ,

η
(
1,ESR,ε

ε

)⊆EAε−δ1
ε . (4.3)

Then we define∀θ ∈ [0,1] and∀z ∈ ∂B(0,R/2ε) the continuous map

G(θ, z)=
{K(2θ, z) 0 � θ � 1/2,
β(η(2θ − 1,wε,z)) 1/2 � θ � 1,

K being the map defined in (3.27). By the definition ofK, G(θ, z) /∈ {0, x̄ε} ∀θ ∈
[0,1/2] ∀z ∈ ∂B(0,R/2ε), moreover, by the relations (4.1)SR,ε < min(B0,Cx̄ ) �
min(B0,ε,Bx̄ε ), G(θ, z) /∈ {0, x̄ε} ∀θ ∈ [1/2,1], ∀z ∈ ∂B(0,R/2ε). Hence, taking into
account thatK(0, z)= z ∀z ∈ ∂B(0,R/2ε), we deduce the existence ofẑ ∈ ∂B(0,R/2ε)
such that

G(1, ẑ)= β ◦ η(1,wε,ẑ) ∈Lε. (4.4)

On the other hand by (4.3) and (3.7)

G
(
1, ∂B(0,R/2ε)

)∩Lε = ∅,
that contradicts (4.4).

Step2. SetQρα,ε = max,×[0,1]Eε(ψε,ρα [z, t]). We assume, by contradiction, that{
u ∈Mε | B0,ε �Eε(u)� Qρα,ε, ∇Eε |Mε

(u)= 0
} = ∅,
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then, arguing as in the previous step, we find a numberδ2> 0 and a continuous functio
σ :E

Qρα,ε
ε →E

B0,ε−δ2
ε such that

σ (u)= u ∀u ∈EB0,ε−δ2
ε , (4.5)

furthermore, by (3.12) and (3.16),δ2 can be chosen in such a way that

max
,
Eε

(
ψε,ρα [z,0]

)
< B0,ε − δ2. (4.6)

Setting

,̃ = , × [0,1]
∼

where∼ identifies the points(z,1), we define a mapH on ,̃ by

H[z, t] = β(
σ

(
ψε,ρα [z, t]

))
.

Sinceε < ερα , by Lemma 3.2, (4.5) and (4.6),H maps∂,̃ in a set homotopically
equivalent toρα, (and then to,) in R

N \ {0}. MoreoverH is continuous, so a poin
(z̃, t̃) ∈ ,̃ must exist, for which

0=H(z̃, t̃)= β(
σ

(
ψε,ρα [z̃, t̃]

))
.

This is impossible becauseσ (,̃) ⊂ σ (E
Qρα,ε
ε ) ⊂ E

B0,ε−δ2
ε and by (3.4), so we are i

contradiction.

Step3. Considering a fixedρ >max(ρ̂ε, ρ̄ε,µα, ρα), taking into account (4.2) and usin
the same argument displayed in Step 2, we deduce, as desired, that{

u ∈Mε | B0,βε �Eε(u)� max
,×[0,1]Eε

(
ψε,ρ[z, t]), ∇Eε|Mε

(u)= 0
} �= ∅.
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