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ABSTRACT. – In this paper we prove that anyC1 vector field defined on a three-dimensio
manifold can be approximated by one that is uniformly hyperbolic, or that exhibits eit
homoclinic tangency or a singular cycle. This proves an analogous statement of a con
of Palis for diffeomorphisms in the context ofC1-flows on three manifolds. For that, we rely
the notion of dominated splitting for the associated linear Poincaré flow.

RÉSUMÉ. – On prouve que tout champ de vecteursC1 défini sur une variété de dimensio
trois peut être approché par un qui est uniformément hyperbolique ou bien par u
présente soit une tangence homocline soit un cycle singulier. Ceci prouve, dans le conte
flotsC1 sur les variétés de dimension trois, l’analogue d’une conjecture de Palis concern
difféomorphismes. On s’appuie sur la notion de décomposition dominée pour le flot linéa
Poincaré associé.

1. Introduction

The quest to understand the asymptotic behavior of orbits of a large set of evo
laws has been guiding one important strain of the theory of dynamical system
the sixties the notion of structural stable systems, first introduced by Androno
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Pontryagin thirty years before, meaning systems that are equivalent up to a cont
global change of coordinates to all nearby ones, was at the center of the attem
provide a typical model in the universe of dynamical systems.

In a series of papers written in that decade and in early seventies, Anosov
and Smale, Robbin, de Melo and Robinson, prove that uniform hyperbolicity
transversality of stable and unstable manifolds imply structural stability. In the
eighties, Mañé obtained the converse statement for diffeomorphisms, in a pro
and very original work. Ten years later, Hayashi extended this result for flows.
constitutes a remarkable page in the history of modern dynamics: The solution
Stability Conjecture, [16].

Recall that an invariant set� of a flowX is hyperbolic if its tangent bundle splits in
threeDX-invariant sub-bundles,Es , Eu and [X], where vectors onEs are uniformly
contracted in the future, the same forEu in the past, and[X] is the flow direction.
A flow X is uniformly hyperbolic (or Axiom A) if its limit set is hyperbolic. For th
case of diffeomorphisms this concept is similar by considering only the first two
bundles. For a complete description of uniform hyperbolicity see [17] and [24]
and remarkably so, at the second half of the sixties it was already clear that un
hyperbolicity could not be present for every system of a dense subset in the univ
all dynamics.

A key question was then: Is it possible to look for a general scenario for dynam
The search for such an answer, in particular the work of Newhouse on the coexi
of infinitely many sinks (see [10]), draw the attention to homoclinic orbits. Tha
orbits that in the past and the future converge to the same periodic orbit, whic
been first considered by Poincaré almost a century before. Altogether, the exam
Newhouse gave rise to a rich family of new dynamics. The creation-destruction o
orbits is, roughly speaking, what its meant by homoclinic bifurcations; see [17]
formal definition. Based on these and other subsequent developments, Palis form
in the mid-nineties the following conjecture (see [17] and [14]):

CONJECTURE 1. –The diffeomorphisms exhibiting a homoclinic bifurcation areCr

dense in the complement of the closure of the hyperbolic ones(r � 1).

There has been substantial advances in this direction. The work of Pujal
Sambarino [21] is an important example: They provided a proof of the conjectu
the case of diffeomorphisms defined on a compact surface in theC1 topology.

In the setting of diffeomorphisms on two-dimensional manifolds, homoclinic bifu
tions arise from homoclinic tangencies. Recall that the stable and unstable manif
a hyperbolic periodic pointp, Ws(p) andWu(p), respectively, are immersed subma
folds on the ambient space. A pointq ∈Ws(p)∩Wu(p) is a homoclinic point ifq �= p.
If these submanifols meet tangentialy at a homoclinic pointq, we say such point is
homoclinic tangency.

Dealing with the above conjecture in the context of flows, another homoc
phenomenon involving singularities of the vector field must be considered: sin
cycles. Recall that a singular pointσ of a vector fieldX is hyperbolic if the derivative
DσX has no eigenvalues which are purely imaginary, and in this case we have sta
unstable manifolds ofσ , denoted byWs(σ ), andWu(σ ), respectively. It may happe
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thatq ∈ Ws(σ ) ∩ Wu(σ ) for q �= σ . In this case we say the vector field has asingular
cycle, a concept that was first considered by Labarca and Pacífico [7]. In dime
three, these are all possible homoclinic bifurcations: homoclinic tangencies and si
cycles.

This work is intended to give a positive answer to the conjecture above, in the c
of three-dimensional vector fields and theC1-topology. To be more precise, letM be a
compact manifold of dimension three without boundary. Denote byX r (M) the space o
vector fields of classCr (r � 1) defined onM .

THEOREM A. – Any vector fieldX ∈ X 1(M) can be approximated by another o
Y ∈X 1(M) showing one of the following phenomena:

(1) Uniform hyperbolicity with the no-cycles condition.
(2) A homoclinic tangency.
(3) A singular cycle.

As in the case of surface diffeomorphisms, our methods rely on a relaxed
of hyperbolicity, first used by Mañé, Liao and Pliss in their attempts to charact
structural stable diffeomorphisms. It is calleddominated splittingand it strictly includes
the class partially hyperbolic systems (see [6], [1] and [25]). An invariant set� for a
diffeomorphismf has a dominated splitting if its tangent bundle decomposes into
Df -invariant sub-bundlesT�M = E ⊕ F and there are constantsC > 0 and λ∈ (0,1)
such that for allx ∈�:

∥∥Df n|E(x)

∥∥∥∥Df −n|F(f n(x))

∥∥ <Cλn; ∀n� 0.

There is a remarkable relationship between the absence of homoclinic tangenc
the existence of a dominated splitting. This fact is explored in [21] and more rec
the same authors provided a rather complete description of the dynamics under
dominated splitting for surface diffeomorphisms on [22].

Still, the natural translation of this notion into the context of three-dimensional fl
is more limited. That is, a splitting of the kind:T�M = E ⊕ [X] ⊕ F , where each
sub-bundle is one-dimensional, orT�M = E ⊕ F , where one is one-dimensional, bo
exclude the scenarios depicted in the following example:

Consider an Anosov flowA onM and choose an infinite sequence of periodic or
with periods arbitrarily large, say{pn}. An application of Frank’s Lemma (see [9] f
a flow version) allows us to perturb (C1) the flow on eachpn by pushing the strong
stable direction over the tangent direction of the orbit ofpn within the central stable
space defined byEs + [X]. In the same way, in another part of the orbit ofpn, we push
the strong-unstable direction. Inductively, this process renders a sequenceXn of vector
fields. Observe that no limit of{Xn} can have an invariant splitting of any of the ki
as above. Also it is not possible to find a nearby flow exhibiting a homoclinic tang
since strong directions remain orthogonal to each other on each point.

Like hyperbolicity, the property of a dominated splitting is a condition on the actio
the derivative on the tangent bundle, which determines some dynamical behavior
transformation itself. In our case, we shall consider a condition not on the whole ta
bundle but on its projection over a certain sub-bundle everywhere normal to the
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direction, to which the linear Poincaré flow is associated. We shall be precise abo
in the next section. However, such notion of dominated splitting for the linear Poi
flow can be obtained once we are far from homoclinic tangencies (see Theorem
a precise statement).

On the other hand, Theorem A relies on a fundamental result related to the po
underlying dynamics of an invariant set provided with a dominated splitting. To ex
this, let us call an embedded two-dimensional torusT ⊂ M an irrational torus if it is
invariant by the action ofXt , it is normally hyperbolic and moreover,Xt |T is conjugated
to a linear irrational flow onS1 × S1. Denote by Per(X) the set of periodic orbits ofX,
and Sing(X) = {p ∈ M | X(p) = 0}, for a givenX ∈ X r(M), M being a closed three
manifold.

THEOREM B. – Let� be a compact invariant set forX ∈ X 2(M) with a dominated
splitting and such thatSing(X) ∩ � = ∅ and all points inPer(X) ∩ � are hyperbolic
saddles, then� = �̃ ∪ T , where�̃ is hyperbolic andT is a finite union of irrational
tori.

The dominated splitting provides us with invariant foliations over the invariant
formed by central stable and central unstable manifolds (see Lemma 3.2).A priori, such
leaves do not have a dynamical meaning at all. However, a kind of Denjoy’s pro
asserts that smoothness of the vector field does not allow the existence of wan
intervals; moreover, it provides us the asymptotic behavior of local central mani
This allows us to construct actual stable and unstable manifolds from the centra
(see Proposition 4.2 and Lemma 4.14). For that, we must establish a way to contr
fast orbits get farther apart as we iterate; not as two points at certain flow-time
orbits of the linear Poincaré flow. In order to do that, it ought to be necessary to co
a set of holonomy maps defined on transversal two-dimensional sections. Thes
together work as a kind of global Poincaré transformation and allow us to proce
least locally, as in the case of a surface-diffeomorphism (see Section 2.2). In fact
of our effort will be spent in order to achieve such setting. After that, some modifica
of the arguments of [21] are needed to conclude the proof of Theorem B. Indeed,
a key reference throughout this paper.

Further questions. Lorenz-like attractors (see [3]) are a kind of rich dynamics
can appear from singular cycles. They are characterized by the presence of in
many periodic orbits in any neighborhood of a singularity, in a robust way. The
of this situation lead Morales, Pacífico and Pujals to define an adequate not
hyperbolicity, where singularities are involved, called singular hyperbolicity (see [9

This suggest a stronger statement of Theorem A, replacing Singular Cycle by Si
Hyperbolic, on item (3); and a proof will certainly rely on an application of th
methods. However, some work has to be done before, in particular on the choice
dominated splitting over an invariant set which contains a singularity, since the
Poincaré flow it is not defined on equilibrium points. Nevertheless, it seems to be
to consider also a splitting on the tangent bundle as in the way is done for sin
hyperbolic sets.

The paper is structured as follows: In Section 2 we set up a useful notion of dom
splitting for invariant sets, related to the linear Poincaré flow. In Section 3 we con
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central manifolds for sets with dominated splitting. The proof of Theorem B wil
there reduced to a Main Lemma. Section 4 is for proving dynamical properties of c
manifolds. This is the kernel of this work. Section 5 is devoted to give a proof fo
Main Lemma and finally, in Section 6 we prove Theorem A.

2. Dominated splitting for invariant sets

This section is devoted to construct a useful notion of dominated splitting for inva
sets for flows. For that, we shall consider the linear Poincaré flow which acts on c
sub-bundle of the tangent space. At the end of this section, we shall obtain a fam
holonomy maps defined between pairs of two-dimensional sections each one tran
to the flow. This family of maps acts on the manifold in the same way the linear Poi
flow acts on the normal bundle.

Let M be a compact three-dimensional riemannian manifold without boun
Denote byXt the flow associated toX ∈ X 1(M), that is, a family of diffeomorphism
onM such thatXs ◦Xt =Xs+t for all s, t ∈ R, X0 = Id and dXt(p)/dt|t=0 =X(p), for
anyp ∈M .

2.1. The linear Poincaré flow

The vector fieldX induces two sub-bundles onTQM , say, [X]p = {v ∈ TpM|v =
αX(p), α ∈ R} andÑp = [X]⊥p , for anyp /∈ Sing(X). Denote byN = TQM

[X] the normal
bundle ofX overQ=M � Sing(X), the regular points ofX. For eacht ∈ R the tangen
map ofXt restricted toN ⊂ TQM induces an automorphism onN that commutes th
following diagram:

N Lt−→N
↓ ↓
Q

Xt−→Q.

The flow of automorphisms{Lt}t∈R is called thelinear Poincaré flowof the normal
bundleN . We took this notion from the work of Doering, [2], and it allows us to de
an adequate notion ofdominated splittingfor invariant sets of flows.

DEFINITION 1. – An invariant set� has a dominated splitting if there exists
splitting of the normal bundle of̃� = � � Sing(X), sayN�̃ = E ⊕ F and there are
numbersC > 0 andλ ∈ (0,1) such that: Lt(E(x)) = E(Xt(x)), Lt(F (x)) = F(Xt(x))

and ∣∣Lt |E(x)

∣∣∣∣L−t |F(Xt(x))

∣∣ � Cλt; ∀t � 0.

Fix an invariant set� for Xt and take a splitting ofN�̃ = E′ ⊕ F ′, not necessarily
invariant. For any numbera ∈ (0,1] we can define the following two cone field
pointwise. On eachx ∈ �̃ set:
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a (x)=

{
w ∈Nx |w = vE + vF , |vF | � a|vE |},

CF
a (x)=

{
w ∈Nx |w = vE + vF , |vE| � a|vF |}.

As in the hyperbolic case, it is not difficult to see that if this cone field is invariant u
the action ofLt we obtain a dominated splitting on� (see [12]). The following lemm
states this.

LEMMA 2.1. –If there existλ < 1, a > 0, and there is a splitting ofN� = E′ ⊕ F ′
such that

Lt
(
CF ′

a

) ⊂ CF ′
λta

(
Xt(x)

)
and L−t

(
CE′

a

) ⊂ CE′
λta

(
X−t (x)

)
for all t � 0, then� has a dominated splitting.

Moreover, the following lemma due to Doering (see Proposition 1.1 in [2]), as
that in the case of hyperbolicity, these two notions are coherent.

LEMMA 2.2. – Let � ⊂ M an invariant compact set forXt . � has a hyperbolic
structure forXt if and only if the linear Poincaré flow restricted over� is hyperbolic.

2.2. Holonomy maps

Let � ⊂ M be a compact invariant set with dominated splitting such that� ∩
Sing(X)= ∅. Givena ∈ (0,1] let Ua be a neighborhood of� in N , where is defined a
invarianta-cone field. Denote byNx(ε) the ball of radiusε > 0 onNx . Notice that there
exists a neighborhoodK such that

� ⊂ int(K)⊂ cl(K)⊂U1 ⊂M � Sing(X)

since Sing(X) is a closed set. Hence, there isε∗ > 0 such that the exponential ma
expx :Nx(ε

∗) → M is an isometry for any pointx ∈ K . Call Nx = expx(Nx(ε
∗)).

Moreover, for anyx ∈ K there isηx > 0 such thatXt(Nx) ∩Nx = ∅, for t ∈ (−ηx, ηx),
since there are no singularities in cl(K); and hence the functionx �→ ηx has a lower
bound, sayη∗ > 0. Define for anyx ∈U1 ands ∈ R the map

τ s
x :Ds

x ⊂Nx → R

using the Implicit Function Theorem, in such a way thatτ s
x (x) = s andXτsx (y)(y) ∈ Nxs ,

wherexs = Xs(x). Whenever we speak aboutDs
x , we are considering it as the maxim

domain of definition. In spite of this, set

Rs
x :Ds

x →Nxs

such thatRs
x(y) := Xτsx (y)(y), ∀y ∈ Ds

x . Notice DxR
s
x = Ls

x . Moreover, there exis
a neighborhoodVs ⊂ N of the zero-section, where we can define a transforma
Rs :Vs →N where

Vs � (x, v)
Rs�−→ (

Xs(x),exp−1
x

(
Rs

x

(
expx(v)

)))
.

s
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This transformation covers the flow onM , i.e. the following diagram commutes:

Vs
Rs−→N

↓ ↓
M

Xs−→M.

In fact, [Vs]x ⊃ exp−1
x (Ds

x), for all x ∈U1. Observe{Rt} is a local flow on
⋂

t∈RVt .

3. Central manifolds

Throughout this section we shall construct central-stable and central-unstable
ifolds for invariant sets with dominated splitting. Moreover, we shall see they a
classC2. Also we shall prove an analogous version of Pliss’ Lemma (see [18]
continuous-time dynamical systems. As a consequence of these, we shall obta
there are only a finite number of irrational tori contained in�. At the end, we shal
reduce the proof of Theorem B to a Main Lemma. LetX ∈ X 2(M) and� ⊂ M be a
compact invariant set with dominated splitting such that Sing(X)∩�= ∅. Also assume
that all periodic orbits in� are hyperbolic saddles. We begin establishing the follow
inequalities.

LEMMA 3.1. –If � is an invariant set as above, there exist constantsC > 0 and
σ ∈ (0,1) such that for everyx0 ∈� and for all t � 0 the following holds:

(1) |Lt |E(x0)||L−t |F(xt )|2 �Cσ t ,
(2) |Lt |E(x0)|2|L−t |F(xt )| �Cσ t .

Proof. –We only care about the first inequality since the other is analogous.
α ∈ (0,1). We claim there isT > 0 such that for anyx ∈�

|LT |E(x)|
|LT |F(x)|2 � α.

After the claim, it is not difficult to see how the lemma follows; we only have to no
that |Lt |E| = ∏α

j=1 |LjT |E||Lr |E| wheret = αT + r , and the same for the subspaceF .
Hence, setting

C = max
{∣∣Lr |E(x)

∣∣, ∣∣Lr |F(x)

∣∣;x ∈�, r ∈ [0, T ]},
we conclude

|Lt |E(x0)|
|Lt |F(xt )|2

� C
(
α1/t0

)t
.

However, if the claim do not happen then for allT > 0 there isxT ∈� such that

|LT |E(xT )|
|LT | T |2 � α.
F(x )
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T

∫ T

0 δxTs ds, wherexT
s =Xs(xT ) and consider a subsequen

µi := µTi converging to a measureµ, with supp(µ)⊂�. Observe the function|Lt |E(x)|
|Lt |F(xt )|2

is C1 with respect tot . Let

ϕ(x) = d

dt
log

( |Lt |E(x)|
|Lt |F(xt )|2

)∣∣∣∣
t=0

and notice it is continous onx. It is true that
∫
ϕ dµ � 0. In fact,

∫
ϕ dµ = lim

i→∞ϕ dµi = lim
1

Ti

Ti∫
0

ϕ
(
xs

Ti
)
ds = lim

i→∞
1

Ti
log

( |Lt |E(x)|
|Lt |F(xt )|2

)
.

Hence, the Theorem of Descomposition on Ergodic Measures implies there
ergodic measureν with supp(ν) ⊂ supp(µ) and such that

∫
ϕ dν � 0. Denote byλE =

λE(ν) = ∫
log |L1|E|dν, andλF = λF (ν) = ∫

log |L1|F |dν, the Lyapunov Exponent
of ν with respect toE andF , respectively. It is true thatλE < 0 andλF < 0, since∫
ϕ dν = λE − 2λF � 0 and the condition of domination impliesλE < λF . Hence

0 � λE − 2λF < λF − 2λF = −λF . ThereforeλE < 0 and so λF < 0. Now we claim
that the support ofν is contained in the orbit of some periodic point of the flow, t
must be a sink. Oseledets’ Theorem [13], asserts thatν-almost everywhere there is
unique invariant splittingE1 ⊕ [X] ⊕E2 for X1. For that and since the splittingE ⊕ F

is invariant byL1 we can callEi thatE ⊕ [X] = E1 ⊕ [X] andF ⊕ [X] = E2 ⊕ [X].
Denoteλ1, λ2, λ[X] = 0 their respective Lyapunov Exponents. Notice

λE =
∫

log
(
Lt |E)

dν =
∫

log
(
det

(
DX1|E⊕[X]

))
dν

=
∫

log
(
det

(
DX1|E1⊕[X]

))
dν = λ1 + λ[X] = λ1.

AnalogouslyλF = λ2; thereforeλ1 > 0 andλ2 > 0, and the claim follows. ✷
Now, our setting fits into the arguments of [6] to prove the existence of central s

and central unstable manifolds tangent to directionsE and F , respectively. This is
summarized in the following lemma.

LEMMA 3.2. – For eachε > 0 denote the intervalIε = (−ε, ε) and letEmb2(I1,M)

be the set ofC2 embeddings ofI1 onM . There exist two continous sections

5cs (cu) :�→ Emb2(I1,N )

such that, if we denoteWcs (cu)
ε (x) = 5cs (cu)(x)(Iε), respectively, they verify th

following properties:
(a) TxW

cs
ε (x)=E(x) andTxWcu

ε (x) = F(x).
(b) For all ε1 ∈ (0,1) there existsε2 > 0 such thatRt(Wcs

ε2
(x)) ⊂ Wcs

ε1
(xt ) and

R−t (Wcu
ε2
(x)) ⊂Wcu

ε1
(x−t ), for all t ∈ [0,1].
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Notice that5cs(x)(I1) ⊂ Nx since5cs is a section onN and the same for5cu. We
shall call the manifoldWcs

(ε) the (local) central stable manifold andWcu
(ε) the (local) centra

unstable manifold. Observe that the second part of the lemma implies the next cor

COROLLARY 3.3. – Givenε > 0 there isδ > 0 such that:
(a) If y ∈ Wcs

ε (x) and dist(xt , yt ) � δ for all t ∈ (0, t0), thenRt(y) ∈ Wcs
ε (xt ) for

t ∈ (0, t0).
(b) If y ∈ Wcu

ε (x) and dist(x−t , y−t ) � δ for all t ∈ (0, t0), thenR−t (y) ∈ Wcs
ε (x−t )

for t ∈ (0, t0).

It is not difficult to see that in our context it is true the following

COROLLARY 3.4. – Letx ∈� such that for someγ ∈ (0,1) we have
∣∣Lt |E(x)

∣∣ � γ t, for all t � 0.

Then there existsε > 0 such that|Rt(Wcs
ε (x))| → 0 as t → ∞; that means the centra

stable manifold is in fact a stable one.

3.1. Hyperbolic times of a point

It is possible to prove a version of Pliss’ Lemma [18] for flows. In this case, the p
is easier than in the case of diffeomorphisms; see [8].

THEOREM 3.5. – Given anyε > 0, A ∈ R andc > 0, there existsK > 0 such that if
H : [0, T ] → R is diferentiable,H(0)= 0, H(T ) < cT and inf(H ′) > A, then the set

Pε = {
τ ∈ [0, T ] |H(s)−H(τ) � (c + ε)(s − τ) for all s ∈ [τ, T ]}

has Lebesgue measure greater thanTK .

Proof. –Takeε > 0 and Aas in the hypothesis. DefineG(s) = H(s)− (c + ε)s. We
assumeG is of classC2 and it does not have degenerate critical points; that is,G′(x)= 0
if and only if G′′(x) �= 0. Actually we can assume all their critical values are differ
otherwise, an approximation ofG still works. SinceG(0) = 0 andG(T ) < −εT , it is
possible to define two (perhaps finite) sequences, say{ai} consisting of critical points o
G such thatG(x) < G(ai) for everyx > ai (if finite, set the last pointan+1 = T , if it is
not so, thenai → T ) and{bi} as the first numberb > ai such thatG(bi) = G(ai+1). Of
coursebi � ai+1. LetB = − inf G′, then by the Mean Value Theorem

G(ai)−G(bi)

B
� bi − ai.

On the other hand, the union
⋃

i(ai, bi) is contained inBε. In fact,

H(s)−H(τ)=H(s)− (c + ε)s − (
H(τ)− (c + ε)τ

) + (c + ε)(s − τ)

=G(s)−G(τ)+ (c + ε)(s − τ).

Hence,G(s)−G(τ)+ (c+ ε)(s − τ) < (c+ ε)(s − τ) if and only if G(s) <G(τ). Let
t ∈ (ai, bi), for somei. If for a givens > τ we haveG(s) = G(τ) thenτ = bi , because
bi is the first numberb > ai such thatG(b) =G(ai+1); a contradiction. Therefore,
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leb(Pε)�
n∑

i=1

(bi − ai) � 1

B

n∑
i=1

G
[
(ai)−G(bi)

]

= 1

B

n∑
i=1

[
G(ai)−G(ai+1)

] = 1

B

(
G(a1)−G(T )

)
.

Notice G(a1) � 0 since it is a global maximum. Therefore leb(Pε) � −G(T )

B
� εT

B
,

and then leb(Pε)T
−1 � εB−1. Finally G′(t) = H ′(t) − (c + ε) and B = inf(G′) =

(c+ ε)−A � c + ε −A, that is

leb(Pε)

T
� ε

c + ε −A
=:K.

COROLLARY 3.6. – Let X ∈ X 1(M) and let� be an invariant compact set wit
dominated splitting. Givenε > 0, γ < 1 and x ∈ �. If there is T > 0 such that
|LT |E(x)|< γ T , then there isK > 0 such that the set

Pε(x)= {
τ ∈ [0, T ] | |Ls−τ |E(x)| � (elog(γ )+ε)s−τ ∀s ∈ [τ, T ]} (1)

is such thatleb(Pε(x)) � KT , and hence non-empty.

Proof. –Recall the functionHE(t) = log(|Lt |E(x)|) is C1. Moreover d/dt (HE) =
〈DxtX(E),E〉, and hence|H ′(t)| � ||X||C1. Also remember

DRt
x(v)=DxX

t(v)− 〈DxX
t(v),X(x)〉

||X(x)||2 X(x).

COROLLARY 3.7. – Givenε > 0, γ < 1 and x0 ∈ � if there existst > 0 such that
|Ls|E(xt )|< γ s , for all s � 0, then forλ̃= elog(γ )+ε, the set

P(x0, λ̃)= {
τ ∈ R | ∣∣Ls|E(xτ )

∣∣ � λ̃s ∀s > 0
}

(2)

is unbounded.

We call the set on (2) the hyperbolic times ofx0 related toλ̃.

3.2. Reducing Theorem B to a Main Lemma

Now, it is not difficult to see that Theorem B follows from the Theorem 3.8 be
once we guarantee there can only be finitely many irrational tori on�.

THEOREM 3.8. – Let X ∈ X 2(M) and let� be a compact invariant forX set with
dominated splitting;also assume all periodic points in� are hyperbolic of saddle typ
andSing(X)∩�= ∅. Then one of the following happens:

(1) � is an hyperbolic set.
(2) There exist an irrational torusT ⊂�.

PROPOSITION 3.9. –There are only finitely many irrational tori on�.
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Proof. –Assume by contradiction there are infinitely many irrational tori, nam
{Tk}k∈N. Take numbersλ < γ1 < γ2 < 1 andc > 0 such that(1 + c)λ < 1. On each
Tk there exist a pointxk , and sometk > 0 such that

∣∣Lt
F(xk)

∣∣ � (1+ c)t , ∀t � tk

and then, by the domination condition we have

∣∣Lt
E(xk)

∣∣ � λt(1+ c)t < γ t
1, ∀t � tk.

An application of Theorem 3.5 imply there existTk > 0 such that foryk = XTk(xk),
|Lt |E(yk)| � γ t

2, for all t > 0. Hence, Corollary 3.4 let us conclude that eachyk has a
stable manifold of sizeε > 0.

Let y ∈� be an accumulation point of the{yk} and denote by?y ⊂Ny ⊂M an open
ball aroundy of radius smaller thanε/3. Still denoteyk the points on?y which are
immediate iterates of the trueyk . Actually, they also have stable manifolds of unifo
sizeε. Notice that it is not possibleTk ∩?y be a circle for infinitely manyk, because th
splitting on� is continuous. Moreover,Tk ∩?y is an arc that meets the boundary of
ball in two different connected components. So, it is not difficult to see there areTj and
yk ∈ Tk ∩?y , j �= k, thatTj ∩?y �= ∅ andWs

ε (y
k) ∩ Tj �= ∅. This contradiction prove

the proposition. ✷
In [21], they prove Theorem 3.8 is reduced to the next Main Lemma, and

arguments work for both, diffeomorphisms and vector fields. We only notice th
spite of Lemma 2.2, it is elementary to verify that if� is a compact invariant set wit
dominated splitting such that for everyx ∈� we have|Lt |E(x)| → 0 and|L−t |F(x)| → 0
ast → ∞, then� is a hyperbolic set.

MAIN LEMMA 1. – Let�0 ⊂M be a compact transitive invariant set forXt with a
dominated splitting such that�0 ∩ Sing(X)= ∅ and it is not an irrational torus neithe
a periodic orbit. If every properly contained invariant subset of�0 is hyperbolic, then
�0 is hyperbolic itself.

4. Asymptotical behavior of dynamical intervals

In order to obtain hyperbolicity over an invariant set with dominated splitting,
must show that the central manifolds on each point are actual stable and un
manifolds. This is the aim of this section. For that, we shall prove a Denjoy’s
property which roughly speaking states that smoothness on the vector fieldX do not
allow the existence of some kind of wandering intervals. (The precise statem
Proposition 4.2.) LetX ∈ X 2(M) and let� be compact invariant set with dominat
splitting such that Sing(X)∩�= ∅ and all periodic points in� are hyperbolic saddles
Consider the set

�+ := ⋂
t�0

X−t
(
cl(V )

);
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for some neighborhoodV such that!V ⊂ U1. RecallU1 is a neighborhood of� where
it is possible to define an extension of the invariant 1-cone field on� (see Section 2.1)
Notice that this induces an extension of the dominated splitting of� over�+.

We sayI ⊂ Nx or I ⊂ Nx are intervals if they are the image of a smooth funct
ϕ : [0,1] →Nx or Nx , respectively. Denote by|I | the length of the intervalI .

The following definitions collect the insight of central unstable manifolds and
property that will make them actual unstable manifolds.

DEFINITION 2. –LetI be an interval contained inNx0 for somex0 ∈ I and letδ > 0.
(1) We sayI is a-transversal to theE direction for somea ∈ (0,1] if TyI ⊂ CF

a (y) ⊂
Nx0 for anyy ∈ I . It is E-transversal if it isa-transversal to the directionE for
some0< a � 1.

(2) We sayI is a (δ,E)-interval if it is E-transversal,I ⊂ ⋂
t�0Vt and |Rt(I )| � δ

for all t � 0.

Although these definitions are stated for intervals contained in the normal bund
say an intervalI ⊂Nx onM isE-transversal or(δ,E)-transversal if the interval define
by Î := exp−1

x (I ) is. Notice if Î ⊂N is a(δ,E)-interval, then expx(Î )⊂�+.

Remark1. – For anyc > 0 there isδc > 0 such that ifI is a(δ,E)-interval associate
to x ∈ I with δ � δc then, for anyy ∈ I :

(1− c)t � |DyR
t
x|E(y)|

|Lt |E(x)| � (1+ c)t .

Also is true a similar statement with respect to theF -direction.

For (δ,E)-intervals contained in sets with dominated splitting we have st
manifolds, as we shall see on the next lemma. AnE-transversal interval which do no
grow its length on future iterations, it must contract exponentially along theE-direction.

LEMMA 4.1. – For anyγ ∈ (λ,1) there isδ1 > 0 such that ifI is a (δ,E)-interval,
I ⊂Nx , x ∈ I , with δ � δ1, then there ist0 > 0 such that

∣∣Ls|E(xt0)

∣∣ < γ s, ∀s � 0.

Moreover, for anyy ∈ Ît0 = expxt0(R
t0(I )) we have

∣∣DyR
s|E(xt0)

∣∣ < γ s, ∀s � 0

and hence, on any point of̂It0 we have a stable manifold of uniform size.

Proof. –Fix γ ∈ (λ,1) andλ2 < 1 such thatλλ−1
2 < γ . Let c > 0 and λ3 < 1 such that

(1 − c)λ2 < λ3. Takeδ1 � δc of Remark 1, and letI be a(δ,E)-interval with δ � δ1,
associated tox0 ∈ I .

We claim there ist0 > 0 such that|Ls|F(xt0)
| < λ−s

2 , for all s > 0. To prove the claim
suppose there exist a sequencest → ∞ ast → ∞ such that for allt � 0

∣∣Lst |F(xt )

∣∣ � λ
−st
2 .
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Since|Ît | � δc, we have:

(1− c)−s �
|DyR

s
xt
|F̃ (y)|

|Ls|F(xt )|
� (1+ c)s.

Then ∣∣DyR
st
xt
|F̃ (y)

∣∣ � (1− c)−st
∣∣Lst |F(xt )

∣∣ �
(
(1− c)λ2

)−st � λ
−st
3 .

It is a straight forward computation that then,|It+st | � λ
−st
3 |It |. If t is big enough, we

achieve a contradiction to|It+st | � δc. Hence, the claim follows.
Actually, we have proved that|Ls|E(xt0)

| � (λλ−1
2 )s , for all s � 0. Notice that ifc > 0

is such that(1+ c)λλ−1
2 < γ andδ > 0 is small enough that for anyy ∈ Ît0 ands � 0 we

have

(1− c)−s �
|DyR

s
xt
|E(y)|

|Ls|E(xt )|
� (1+ c)s,

then |DyR
s
xt
|E(y)| < γ s , for all y ∈ Ît0 and for all s � 0, as we required. Corollary 3

guarantees then stable manifolds on points ofÎt0 of uniform size. ✷
Maximal (δ,E)-intervals. Let I ⊂ Nx0 be a (δ,E)-interval associated to som

x0 ∈ I . Denote byIt := Rt(I ) for t ∈ R+. We seek for a family of(δ,E)-intervalsJt
such thatIt ⊂ Jt and alsoRt−s(Js)⊂ Jt for all 0< s < t , and anyt ∈ R+; being maximal
for these properties. In order to find it we appeal to Zorn’s Lemma in the following
Consider the set of functions fromR into the compact connected subsets of the nor
bundleN , denoted byP(N ):

F = {
J :R → P(N ) | J (s) ⊂Nxs , Is ⊂ J (s), J (s) is a(δ,E)-interval

andRt
(
J (s)

) ⊂ J (s + t), ∀s, t ∈ R+}
with the order relation:J � K if and only if J (s) ⊂ K(s), ∀s ∈ R+. Observe tha
the functionI (·) = R(·)(I ) belongs toF . Moreover, any totally ordered chain has
supremum inF , say,{J i ∈ F; i ∈ A}, thenJ∞(s) = ⋃

i∈A J i(s), defined for eachs ∈ R
belongs toF . Therefore, there is a maximal element onF denoted byJs := J (s). If
there is an intervalK̃ ⊂ Nxs such thatJs ⊂ K̃ for somes ∈ R+ and|Rt(K̃)| � δ for all
t � 0, then the familyK(t) := Jt for t < s andK(t) := Rt(K̃) for t � s belongs toF ;
contradicting the factJ (·) is a maximal element ofF .

Notice that Lemma 4.1 implies the existence ofδ0 > 0 such that if{Js} is a maximal
family of (δ,E)-intervals related to a(δ,E)-interval, sayI , with δ � δ0. Then, there
exist numberss > 0 andε0 > 0 such that for everyy ∈ Js , the center-stable manifo
Wcs

ε0
(y) is in fact a true stable manifold forRt , that is,|Rt(Wcs

ε0
(y))| → 0 ast → ∞.

Moreover there existC > 0 andγ ∈ (0,1) such that
∣∣Rt

xs

(
expxs

(
Ws

ε0
(y)

))∣∣ <Cγ t for any t ∈ R,

that is, expxs (W
s
ε0
(y)) is a local stable manifold forRt

xs
. We will denote alsoWs

ε0
(y) :=

expxs (Ŵ
s
ε0
(y)), except when it is relevant to remark the difference. For anys ∈P denote

by J ε
s := ⋃

y∈Js W
s
ε (y)⊂M .
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Let Î ⊂ Nx0 for somex0 ∈ Î be a(δ,E)-interval. Denote byIt = expx0
(Ît ) ⊂ M ,

whereÎt = Rt(Î ) andxt := Xt(x). Define theω-limit set of I0 asω(I0) = ⋃
y∈I0

ω(y);
whereω(y) is the usualω-limit set of y according to the flowXt .

PROPOSITION 4.2. – There isδ0 > 0 such that ifI is a (δ,E)-interval associated
to somex ∈ I for someδ < δ0, then there are two possibilities: ω(I) ⊂ Per(Xt) or
ω(I)= T , whereT is an irrational torus.

Proof. –Let λ < 1 be the number in the dominated splitting condition. Fixγ ∈ (λ,1)
and takeδ1 > 0 from Lemma 4.1. LetI0 ⊂ M be a(δ,E)-interval associated tox0 with
δ � δ1. Denote byIt =Rt

x(I0). Let {Ĵs | s ∈ R+} be a maximal family of(δ,E)-intervals
for Îs = exp−1

xs
(Is) constructed above and denoteJs = expxs (Ĵs) ⊂ M . Lemma 4.1

implies that there existt0 > 0 for which we have defined a stable manifold of sizeε0

on any point ofJt0. This fact together with Corollary 3.7 imply that the set of hyperb
times ofx0 related toγ ,P(xt0), is unbounded. Corollary 3.4 assert that for anys ∈P(xt0)

and on any point ofJs , we also have stable manifolds of sizeε0. Since we are intereste
on asymptotical properties ofI we shall assumet0 = 0; in fact, w(I) ⊂ w(Jt0). We
shall denote, by simplicityP = P(x0). The following situations requires two differe
arguments:

(I) There exist somet, s ∈P , t < s, for whichJ ε
s ∩ [Rt−s(Js)]ε �= ∅.

(II) For any t, s ∈ P , we haveJ ε
s ∩ [Rt−s(Js)]ε = ∅.

Let us first deal with case I. For that, we shall assume first that lims∈P |Ĵs| = 0. If we
can guarantee the hypothesis of the following lemma we shall conclude the the
Proposition 4.2 in this case.

LEMMA 4.3. –If there exists ∈ P and t > 0 such thatRt
xs
(Js) ⊂ J ε

s , then there is a
periodic orbitp ∈� such thatω(I)⊂ ω(J0)=O(p).

Proof. –Defineπ :J ε
s → Js , a projection along stable manifolds. Thenπ ◦Rt

xs
:Js →

Js is a continuous map of the interval. SinceRt
xs
(Js) ⊂ J ε

s , we seeπ(Rt
xs
(Js)) ⊂ Js .

Therefore, there isz ∈ Js such thatRt
xs
(z) ∈ Ws

ε (z); and this can only happen if bo
z,Rt

xs
(z) ∈ Ws(p) of some periodic pointp ∈ �. Moreover,p must be a sink an

ω(I)⊂ ω(J0)=O(p). ✷
The following two claims let us fit into the hypothesis of the previous lemma.

CLAIM 1. – There isδ′ > 0, s0 > 0 and c > 0 such that, ifJ̃ is a (δ′,E)-interval
satisfyingJ cε

s ∩ J̃ �= ∅, with s0 < s ∈P , thenJ̃ ⊂ J ε
s .

CLAIM 2. – There iss ∈ P , s > s0 and t > 0 in such a wayWcε(Js) ∩ Rt
xs
(Js) �= ∅,

andRt
xs
(Js) is a (δ′,E)-interval.

Proof of Claim1. – Let η1 > 0 such that(1+ η1)λ < 1. As we see in Remark 1, the
is δη1 > 0 such that ifK is a(δη1,E)-interval we have∀z, z0 ∈K

|DzR
t |E(z)|

|D Rt | | < (1+ η1)
t , ∀t � 0. (3)
z0 E(z0)
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Let us suppose there is̃J a (δη1,E)-interval such thatJ cε
s ∩ J̃ �= ∅ for somec > 0.

ObserveJ̃ ⊂ Dt
xs

, for all t � 0. Then there are pointsz0 ∈ J̃ and y0 ∈ Js such that
z0 ∈Ws

cε(y0). Moreover, for anyc > 0 there is a positiveηc > 0 such that

|Dz0R
t
xs
|E(z0)|

|DyRt
xs
|E(y)| < (1+ ηc)

t , ∀t � 0 (4)

since both points lay on the same stable manifoldWs
cε(y).

Notice that ifλ̃c = (1+ η1)(1+ ηc)λ < 1, inequalities (3) and (4) imply that on an
point of J̃ there are stable manifolds of sizeε′(λ̃c) > 0. Actually,ηc → 0 asc → 0 and
ε′(λ̃c) do not decreases. So,|Dz(R

t
xs
)|E(z)|< λ̃t

c for t � 0 and allz ∈ J̃ .

Fix c ∈ (0, 1
2) such thatλ̃c < 1 and takeε̃ > 0 such thatcε < ε̃ < (1 − c)ε and

ε̃ � ε′(λ̃c). Take s0 ∈ P in such a way that for anys > s0 we have 2|Js | < δ. Then
for all z ∈ J̃ ∩ J cε

s we haveWs
ε̃ (z)⊂ J ε

s andWs
ε̃ (z)∩ Js �= ∅.

On the other hand, there is some constantC > 0 such that for anyE-transversa
interval A ⊂ J̃ ε̃ we have|Rt(A)| � C|Rt(J̃ )| for any t � 0. Takeδ′ such thatδ/2 +
Cδ′ < δ. If J̃ is not properly contained inJ ε

s , there is aC2 extension of the intervalJs ,
namedJs ∪A with A ⊂ J̃ ε̃, which isE-transversal. Moreover,

Rt(Js ∪A) �
∣∣Rt

xs
(Js)

∣∣ + ∣∣Rt
xs
(A)

∣∣ � δ/2+Cδ′ < δ.

The last inequality contradicts the fact ofJs being maximal(δ,E)-interval, and give us
the claim. ✷

Proof of Claim2. – Actually, in the previous argument we could takes0 big enough
in such a way that|Js | < δ′ andλs0 < c also. The intersection property (hypothesis
case I) implies

J cε
s ∩Rt

xs
(Js) �= ∅

for some positivet . SinceRt
xs
(Js) is a(δ′,E)-interval we are done. ✷

Now we assume lim sups∈P |Js | > 0. Considering any convergent subsequence
obtain a limit intervalJs → J provided of a stable manifolds, say,J ε := ⋃

z∈J Ws
ε (z) for

anyε < ε0. There is no harm if we assume thatJ ε0 lies in someNx for somex ∈ J ∩�.

LEMMA 4.4. –If p ∈ J ε ∩ Per(Xt) thenp is hyperbolic andω(J )⊂ Per(Xt).

Proof. –Notice thatp ∈ �+. Let us suppose it is a hyperbolic saddle. Observe
J ∩ Wu

ε (p) is non-empty and transversal. Then, the Inclination Lemma (λ-Lemma in
[15]) implies that|Wu

ε (p)| � δ, since|Rt
x(J )| � δ for all t � 0. Hence, there must b

two periodical sinksp1,p2 bounding a cylinder that contains the orbit ofp. Therefore,
if y ∈ J theω-limit of y is eitherp1, p2 or p. A similar argument implies the thesis
the case ofp being a sink or a saddle node, and these are the only possibilities;
p ∈ J ε has a stable manifold.

Hence, we assume there are no periodic orbits passing throughJ ε. Notice that the
set ∂J ε consists of boundary of two kinds:∂s(J ε) := ⋃

z∈∂J Ws
ε (z) and ∂u(J ε) :=

∂(J ε)� ∂s(J ε). This distinction allows us to make the next definition.
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DEFINITION 3. – If a setA is such thatA ∩ J ε �= ∅ we say A is stably contained o
J ε if A∩ ∂u(J ε)= ∅, and we denote it byA⊂s J ε. We also define, for positiveε and ε̃,
the numberρ(J ε, J ε̃)= ρ ∈ R+ as the first time such thatRρ

x (J
ε)∩ J ε̃ �= ∅.

PROPOSITION 4.5. – There exists two subintervals̃L ⊂ L ⊂ J such thatw(J ) =
w(L), numbers0< t0 < t1 andη > 0 such that:

(1) Rt0
x (L

η)⊂s Lη for t0 = ρ(Lη,Lη), andRt0
x (L

η)∩ L̃η = ∅.
(2) Rt1

x (L̃
η)⊂s L̃η for t1 = ρ(L̃η, L̃η).

Before we prove this proposition we need a lemma.

LEMMA 4.6. – LetL⊂ J be an interval, not containing a periodic orbit:
(1) If there existsM > 0 such thatRs

x(L)∩L= ∅ for all s <M then there isε′ > 0
such thats0 = ρ(Lε′

,Lε′
) >M .

(2) Given anyc ∈ (0,1). If M as above is such that2λM < c(1− λη∗), then there is
c′ ∈ (0, c) such thatt0 = ρ(Lε′

,Lc′ε′
) andRt0

x (Lε′)⊂s Lc′ε′ .

Proof. –Item (1). Fix someM > 0 such thatRs
x(L)∩ L = ∅ for all s � M . Takeε ∈

(0, ε0), sets0 = ρ(Lε,Lε) > 0 and assumes0 <M . By hypothesis,Rs0
x (L)∩L= ∅; then

there isε1 > 0 such thatRs0
x (L

ε1)∩Lε1 = ∅. Notice thats1 = ρ(Lε1,Lε1) > s0 +η∗ > s0.
Repeating this argument a finite number of times we obtain someε′ := εk > 0 and
ρ(Lε′

,Lε′
) >M which is what we wanted to prove.

Item (2). Take anyc ∈ (0,1). Since 2λM < c(1 − λη∗) there isc1 > 0 such that
c1 + 2λM

1−λη∗ < c. As in the previous item, lets0 = ρ(Lε′
,Lε′

) > M . We shall construc
two sequences of numbers inductively, say{ci, si}i∈N. c1 is already given. Define fo
i � 1: si = ρ(Lε′

,Lciε
′
) and fori � 2: ci = inf{b > 0 |Rsi−1

x (Lε)⊂s Lbε}.
Let I = min{i ∈ N | si = si+1} (or equivalentlyci+1 � ci ), with the conventionI = ∞

if the set is empty. Observe that fori < I we haveci+1 > ci and alsosi+1 < si ; since
at the time we consider a wider box aroundL it is possible we catch some previo
returns to it. Notices1 � s0 sincec1 < c < 1. On the other hand, fori < I , we have
ci � 2λsi−1 + ci−1, that is the maximal stable width of the return plus the width of
ε′ci−1-box aroundL. Hence

ci � 2ε
i−1∑
j=1

λsj + c1.

Inductively, for all i ∈ {j, . . . , I } we have thatsj � s0 andcj < c. We claim thatci < c

and hence,si � s0 sinceLciε
′ ⊂ Lε′

. Since we havesj − sj+1 > 0, thensj − sj+1 > η∗,
and therefore,si−r � s0 + (r − 1)η∗ for r ∈ {1, . . . , i − 1}. Hence,

ci � 2ε
i−2∑
r=0

λs0+rη∗ + c1 <
2ελM

1− λη∗
+ c1 < c,

that is what we claimed.
Sinces0 � s1 andsi < s1 − iη∗, there must be somei such thatsi = si+1. Therefore

I <∞. Takec′ = cI , andt0 := sI = ρ(Lε′
,Lc′ε′

). ✷
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COROLLARY 4.7. – Denote byL̂= {z ∈L | Lε′ ∩Rt0
x (L

ε′
) �= ∅}, and setL̃= L� L̂.

ThenL̃ is an interval and there isc′′ > 0 such thatc′′ ∈ (c′, c) andRt1
x (L̃

ε′
)⊂s L̃c′′ε0.

Proof. –L̃ is an interval since there are no periodic orbits passing throughJ ε. To
obtain the second part of the corollary denote byd1 = c′ (from the previous lemma) an
observer1 = ρ(L̃ε′

, L̃d1ε
′) > t0 >M . Then, we can apply the same arguments with

interval L̃ instead ofL. ✷
LEMMA 4.8. – If there is no periodic orbit onJ then for anyM > 0 there is a

subintervalL⊂ J such thatRs
x(L)∩L= ∅ for s � M .

Proof. –Let us suppose that for 0< s0 <M , the first return ofJ ε into itself, happens
thatRs0

x (J ) ∩ J �= ∅. Since there is no periodic orbit inJ we know one of the border
of J , sayJ+, must return inside the box. We callz ∈Rs0

x (J )∩J the farthest point toJ+.
Let w ∈ J such thatRs0

x (w)= z ∈ J .
It is important we verifyRs0

x ([w,J+]ε) ⊂ J ε. This will guarantee we do not lose a
point of the box and so, no point ofω(I). LetL= J � [w,J+] and we seek for the firs
return of the box onL, that iss1 > 0 such that:

Rs1
x

(
Lε

) ∩Lε �= ∅.

Observe now thatRs
x(L)∩L= ∅ for s � s0 + η∗.

If now we can sayRs
x(L) ∩ L = ∅ for s < M , we are done. However, if it does n

happen we repeat the above construction onL, obtaining another subintervalL′ ⊂ L⊂ J

for which

Rs
x(L

′)∩L′ = ∅; ∀s � s2 + η∗.

Sinces2 � s1 + η∗ � s0 + 2η∗ we are sure to reachM in finite steps. Observe the wa
we cut the intervalJ to obtainL guarantee that any orbit ofJ is traced by one ofL. ✷

Now, we can give a proof for Proposition 4.5.

Proof of Proposition 4.5. –Fix somec < 1 and takeM > 0 big enough such tha
2λM < (1 − λη∗). Using Lemma 4.8 setL ⊂ J such thatRs

x(L) ∩ L = ∅ for all s � M

andω(L)= ω(J ). Now, Lemma 4.6 says there existsε0 > 0 such thatρ(Lε0,Lε0) >M

and there exists 0< c′ < c such thatRt0
x (L

ε0)⊂s Lc′ε0 wheret0 = ρ(Lε0,Lc′ε0).
Moreover, on Corollary 4.7 we defined the set

L̂= {
z ∈L | Lε ∩Rt0

x

(
Lε

) �= ∅}
.

Denote byL̃=L�L̂; and so, there isc′′ > 0 such thatc′ < c′′ < c andRt1
x (L̃

ε0)⊂s L̃c′′ε0,
wheret1 = ρ(L̃ε0, L̃c′′ε0).

Take η = c′′ε0. Since c′ < c′′ < c we know thatLc′ε0 ⊂ Lc′′ε0 ⊂ Lε0 and then
ρ(Lε0,Lc′ε0)= ρ(Lε0,Lc′′ε0)= ρ(Lη,Lη). Hence we have found that

(1) Rt0
x (L

η)⊂s Lη andRt0
x (L

η)∩ L̃η = ∅, for t0 = ρ(Lη,Lη).
(2) Rt1

x (L̃
η)⊂s L̃η, wheret1 = ρ(L̃η, L̃η).

This is what we wanted to prove to conclude Proposition 4.5.✷
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Now, we are ready to construct an irrational torus and then finish the proof in c
Let D0 := Lη and t0 = ρ(D0,D0), given on Proposition 4.5. RecallD0 ⊂ Nx ⊂ M

for some x ∈ �+. Moreover, we can think there is?, an extension ofNx where
Rt0

x (D0) ⊂ ?. DefineP0 :D0 → ? asP0(·) = Rt0
x (·). Recall that the orbit of no poin

of D0 falls into a singularity. SinceRt0
x (D0) ∩D0 �= ∅, there is a pointz ∈ D0 such that

P0(z) ∈ D0. Therefore, we can extend the functionτ t0
x (·) to D1 := D0 ∪ P0(D0). In this

way we obtain an extension ofP0 calledP1 :D1 →?.
By induction, we can repeat this procedure until we find someñ ∈ N such that

Di ∩
⋃
j�ñ

Sj �= ∅ (5)

where S1 = {Xs(y) | y ∈ D0 ands ∈ [0, τ s
x (y))}, and Sj is defined inductively. If

Di ∩ Sj �= ∅ for 1< j < ñ thenDñ−j ∩ S1 �= ∅. Taken = ñ − j . We can thinkDn is
glued smoothly toD0. In fact, this is possible since there is a functionτ ∗ :Dn ∩ S1 →
R− ∪ {0}, the time a point on the intersection spent to flow back toD0, that is: for
y ∈ Dn ∩ S1, Xτ∗(y)(y) ∈ D0. Moreover, we can extend the domain ofτ ∗ to some of
the lastDn ∪ Dn−1 ∪ · · ·, and glueing this function with the zero function defined
the first boxes of the sequenceD0 ∪D1 ∪ · · ·. Observe that

⋃
i�n τ

∗(Di) is a connected
smooth surface embedded inM . Observe the intersection ofDn andD0 corresponds to
the first return ofL̃η into itself, calledt1 in Proposition 4.5. HenceDn ⊂s D0, and more
important, there is such̃n in (5) and this process of extension stops.

By now, we restrict our attention toD0: D0 splits into three rectangles,A ∪ C ∪ B

defined asA = (Rt0
x )

−1(D0 ∩ D1), B = (Rt1
x )

−1(D0 ∩ Dn) andC the region inD0 in
betweenA and B. Denote byG :D0 → D0 the first return map of the flow toD0

and notice thatG(A) = D0 ∩ D1 andG(B) = D0 ∩ Dn. Moreover, we notice also tha
Rt0

x (C) ⊂ D1 andRt1
x (C) ⊂ Dn. Denote byD̃0 := D0 ∪ Rt0

x (C) ∪ Rt1
x (C), and conside

G̃ : D̃0 → D̃0, the corresponding first return map. Observe that stillG̃(A)=D0∩D1 and
G̃(B)=D0 ∩Dn. Also G̃(C)=Rt0

x (C) andG̃(Rt0
x (C))=Rt1

x (C); the only missing par
is the image ofRt1

x (C). It is not difficult to see that the orbit of points inC pass through
D0 near the inner border points ofG̃(A) andG̃(B) (see Fig. 1)

LEMMA 4.9. –If there there is no periodic orbit passing throughD0 thenG̃|
R
t1
x (C)

is
continuous.

Proof. –If it is not the case, the rectangleC splits into at least two sub-rectangle
call CA andCB those sharing part of its boundary withA andB, respectively. Observ

Fig. 1.
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G̃(Rt1
x (CA)) = G(CA) and is connected tõG(B), and G̃(Rt1

x (CB)) = G(CB) and is
connected toG̃(A). Note that in both cases the other stable boundary must reac
stable boundary ofD0. In fact, if not, we are missing some points ofD0 that actually
passes in the formed gap, and this is not possible sinceG̃ is a true first return map tõD0.

It is not difficult to see that in this setting eitherπ ◦ G|A∪B :A ∪ B → J or
π ◦ G|CA∪CB

:CA ∪ CB → J is onto. Therefore there existsz ∈ J that G(z) ∈ Ws
η(z),

and hence we obtain a periodic orbit inD0 which is a contradiction. HencẽG|
R
t1
x (C)

is
continuous and so,G|C is too. ✷

Therefore, the domain ofPn, the setD0 ∪ · · · ∪ Dn, is an embedded ring. It is no
difficult to verify that Pm

n (D0 ∪ · · · ∪ Dn) → S̃ asm → ∞ where S̃ is an invariant
circle. Finally note that the saturated ofS̃ by the flow,T = {Xt(y) | y ∈ S̃ and t ∈ R}
is an embedded torus onM ; hencew(I) ⊂ w(J ) = T . Moreover,Pn|S̃ corresponds to
the Poincaré first return map ofXt to S̃. SincePn is a diffeomorphism of the circl
without periodic points, it is conjugated to an irrational rotation (see [5]). There
the restriction ofXt to T is conjugated to a linear irrational flow on the torus. Here
conclude the proof of Proposition 4.2 in the case I.

Now we deal with the case II, that is:J ε
s ∩ [Rt−s

x (Js)]ε = ∅, for all t, s ∈ P ; but first,
we shall exploit this disjointness property to measure the area of the strip defined
family {Js}.

Remark2. – For any setA ⊂Nx ⊂M , define

S(A)=
{
Xs(z) | z ∈A, s ∈

[
−η∗

2
,
η∗
2

]}
.

There is a constantK > 0 only depending on||X||C1 such that ifA = J ε, for some
intervalJ andε > 0 thenS(J ) := S(J ε) is such thatK Vol(S(J )) � |J |.

LEMMA 4.10. – For anys ∈P we have that:

∞∫
0

∣∣Rt
xs
(Js)

∣∣dt <+∞,

and hence,|Rt
xs
(Js)| → 0 as t → ∞.

Proof. –Fix somes ∈ P and denote byJ = Js andx = xs . Notice that for alll, t ∈P
such that|l − t| � η∗ we have:

S
(
Rl

x(J )
) ∩ S

(
Rt

x(J )
) = ∅. (6)

Let us calculate the integral
∫ ∞

0 |Rt
x(J )|dt . For that, first observe

∫
P |Rt

x(J )|dt �
K Vol(M). In fact, let Q be a partition ofP of elements of diameter less thanη∗.
Remark 2, together with the disjointness property on (6) imply:

∫
P

∣∣Rt
x(J )

∣∣dt �
∑
Q∈Q

∫
Q

∣∣Rt
x(J )

∣∣dt � K
∑
Q∈Q

Vol
(
S
(
RtQ

x (J )
))

�K Vol(M)

wheretQ ∈Q ∈Q.
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Now arrange the elements ofQ in an ascending way, sayQ = {[ai, bi]}, i ∈ N, such
thatbi−1 < a1 and(bi−1, ai)∩Q = ∅ for anyQ ∈ Q andi ∈ N. Notice that there exist
γ̃ > 0 such that|Lai−s |E(xs)| � γ̃ ai for anys ∈ (bi−1, ai); otherwise, there must be a po
of P betweenbi−1 andai , which is impossible. Using the fact that

∣∣Lai−s|E(x)

∣∣∣∣Lai−s|F(x)

∣∣−1 � λai−s

we obtain that∀t ∈ (0, ai − bi−1):

∣∣L−t |F(xai )

∣∣ �
(
γ̃ −1λ

)t
.

By a similar argument to the one we use in the proof of Lemma 4.1 the
µ ∈ (0,1) such that|DzR

−t
xai

|F̃ (z)| < µt , for any t ∈ (0, ai − bi−1), z ∈ Rai
x (J ), where

F̃ (z)= Tz(R
ai
xai
(J )).

Hence,
∣∣R−t

xai

(
Rai

x (J )
)∣∣=

∫

R
ai
x (J )

∣∣Dz

(
R−t

xai

)|F̃ ∣∣dz �µt
∣∣Rai

x (J )
∣∣.

Therefore,
ai−bi−1∫

0

∣∣Rai−t
x (J )

∣∣dt �
∣∣Rai

x (J )
∣∣
ai−bi−1∫

0

µt dt � |Rai
x (J )|

− logµ
.

A similar argument of disjointness used to bound the integral over the hyperbolic
implies

∑
i |Rai+1

x (J )|<K Vol(M). Therefore,

∫
R+

∣∣Rt
x(J )

∣∣ � K Vol(M)

(
1− 1

logµ

)
.

Finally, the function log|Rt
x(J )| is uniformly continuous ont ; hence|Rt

x(J )| → 0 as
t → ∞. ✷

The following lemma measures how much the orbits of the flowXt differ from the
orbits byRt .

LEMMA 4.11. – There exists a constantC > 0 such that if an intervalI ⊂Dt
x for all

t � 0 then, for anyy,w ∈ Rr
x(I ), andr, s � 0 we have the following inequality:

∣∣τ s
xr
(y)− τ s

xr
(w)

∣∣ � C

∞∫
r

∣∣Rt
x(I )

∣∣dt.

Proof. –Recall that:

τ s
xr
(y)=

[s]−1∑
τ 1
xi+r

(
Ri

xr
(y)

) + τ s−[s]
x[s]+r

(
R[s]

xr
(y)

)
,

i=0
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then

∣∣τ s
xr
(y)− τ s

xr
(w)

∣∣ �
[s]−1∑
i=0

∣∣τ 1
xi+r

(
Ri

xr
(y)

) − τ 1
xi+r

(
Ri

xr
(w)

)∣∣

+ ∣∣τ s−[s]
x[s]+r

(
R[s]

xr
(y)

) − τ s−[s]
x[s]+r

(
R[s]

xr
(w)

)∣∣.
Now, the functionτ 1 is uniformly Lipschitz with some constantC > 0. Hence,

�C

[s]−1∑
i=0

∣∣Ri
xr
(Ir)

∣∣ + ∣∣R[s]
xr
(Ir)

∣∣ �C

∞∫
r

∣∣Rt
x0
(I0)

∣∣dt

and then the lemma follows.✷
Let us assume there aret0 < t1, and t0, t1 ∈ P such thatJ ε

t0
∩ J ε

t1
�= ∅. In this case

we shall obtain a sequence of times on which this intersection is at a small e
scale that allow us to control the limit. For that, callZ = J ε

t0
∩ J ε

t1
, and observe tha

Rt1−t0
x0

(Z)⊂ J ε
t1

, sinceRt1−t0
x0

(J ε
t0
)⊂ J ε

t1
. This implies the existence of certaint∗ > 0 such

thatRt∗
xt1
(J ε

t1
) ∩ J ε

t1
�= ∅. Remember it is necessary to fix a destination section any

we define someRs
y . In this case we select the timet∗ in such a way thatxt∗ lie in some

smooth extension of the section overxt1. Moreover, we can take this extension in suc
way the tangent space onxt∗ is exactlyNx∗

t
.

Let t2 = t1 + t∗ and setC(t1) := J ε
t1

. Notice thatC(t1) ⊂ Dt∗
xt1

, thenRt2−t1
xt1

(C(t1)) ∩
C(t1) �= ∅, by construction. Now setC(t2) := Rt2−t1

xt1
(C(t1)). Inductively, taketi+1 =

ti + t̃∗, such thatRti+1−ti
xti

(C(ti)) ∩ C(ti) �= ∅, and denoteC(ti+1) := Rti+1−ti
xti

(C(ti)) (see
Fig. 2).

Notice that|ti+1 − ti | > η∗, since any point must flow away certain amount of ti
before it returns into a neighborhood of it (Section 2.2). For anyj, i ∈ N such thatj < i,
Lemma 4.11 implies that for eachs > 0 andy ∈R

ti−tj
xtj

(Jtj ) we have that

∣∣τ s
xtj
(y)− s

∣∣�C

∞∫
ti−tj

∣∣Rt
xtj
(Jtj )

∣∣dt.

Fig. 2.
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Hence, forj large enough we have that for ally ∈R
ti−tj
xtj

(Jtj ),

∣∣τ s
xtj
(y)− s

∣∣ � η∗
3
. (7)

Fix j ∈ N such that also verifies thatCε0λ
j/(− log(λ)) < η∗/3. We may suppos

xti → z ∈ M , as i → ∞. Hence, Lemma 4.10 implies thatR
ti−tj
xtj

(Jtj ) = Jti → z, as

i → ∞. Moreover,R
ti−tj
xtj

(C(tj )) → z, asi → ∞. However, the inequality on (7) onl
implies that

lim
i→∞Xti−tj (y) ∈

{
Xt(z) | t ∈

[
−η∗

3
,
η∗
3

]}
(8)

for anyy ∈ Jtj . Moreover (8) is also valid for anyy ∈R
tj−t1
xtj

(J
ε0
t1 ) since

∣∣τ s
xj
(y)− s

∣∣ �
∣∣τ s

xj
(y)− τ s

xj
(w)

∣∣ + ∣∣τ s
xj
(w)− s

∣∣

for anyy ∈R
tj−t1
xt1

(Ws
ε0
(ŵ)), whereŵ ∈ Jt1 andR

tj−t1
xt1

(ŵ)=w.
On the other hand, we know thatC(tj )∩C(tj+1) �= ∅, that is

R
tj−t1
t1

(
J ε
t1

) ∩R
tj+1−t1
t1

(
J ε
t1

) �= ∅.
This implies that there existŝw1, ŵ2 ∈ Jt1 such that

Rt∗
xt1

(
Ws

ε (ŵ2)
) ⊂Ws

ε0
(ŵ1),

sinceWcs
ε0
(ŵk) = Ws

ε0
(ŵk), for both,k = 1,2; and hence, they are coherent because

center stable manifolds are dynamically defined.
Let ŵ3 = Rt∗

xt1
(ŵ2) ∈ Ws

ε0
(ŵ1). Denote bywk = R

tj−t1
xt1

(ŵk) ∈ C(tj ), for k = 2,3.

Notice there iss > η∗ such thatXs(w2)=w3. Hence, limi→∞ Xti−tj (w3)=Xl(z), where
|l|< η∗/3. On the other hand

lim
i→∞Xti−tj

(
Xs(w2)

) =Xl′(Xs(z)
) ∈

{
Xt(z) | t ∈

[
−η∗

3
,
η∗
3

]}
,

sinces > η∗/3 it implies thatz is periodic.
Finally, if for any t, s ∈P happens thatJ ε

s ∩ J ε
t = ∅, by a similar calculation as in th

proof the Lemma 4.10, we obtain
∫
P

|Js |ds <+∞ and hence, |Js| → 0 ass → ∞.

Therefore, if we prove that there exists a sequence of times{si}i∈N such that|Jsi | = δ,
we get a contradiction. Now, like in Schwartz’ proof of Denjoy’s Lemma we have
for all Js maximal there existst > 0 such that|Rt

xs
(Js)| = δ. It is only left to verify that

t + s is a hyperbolic time. However, if it is not the case, like in the proof of Lemma
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the interval must increase its length contradicting the fact of the length beingδ. Here we
finish the proof of Proposition 4.2.

Once we have proved Proposition 4.2, it is not difficult to verify the follow
corollary, regarding that only a finite number of irrational tori can exist on an admis
neighborhood of� (see Section 3).

COROLLARY 4.12. – If we assume that� has a dominated splitting and it does n
contain an irrational torus, there isδ0 > 0 and a neighborhoodV of � where for any
(δ,E)-interval, I ⊂ V with δ < δ0, we have thatω(I)⊂ Per(Xt |V ).

All these properties are still valid for(δ,F )-intervals, considering the flow-tim
backwards.

4.2. Dynamically defined local invariant manifolds

Assume� is a compact invariant set ofXt with a dominated splitting, not containin
an irrational torus. As we see in Corollary 4.12, there isδ0 > 0 such that any (δ,E)-
interval, δ < δ0 hasω(I) ⊂ Per(Xt |V ) for some appropriate admissible neighborho
V .

LEMMA 4.13. – There existsδ3 ∈ (0, δ0) such that if any periodic pointp ∈ � has
one of its connected components ofWu(p) − {p}, sayW , such that|Rt

p(W)| � δ3 for
all t � 0, then the other endpoint which is notp is periodic and it is not hyperbolic o
saddle type. Moreover, it is a sink or a non-hyperbolic periodic point.

Proof. –Let U1 ⊃ � be a neighborhood where it is defined an extension of
invariant cone field of�. Let δ3 < δ0 be a positive number such that any ball of rad
δ3 centered on a point of� is contained inU . Take a periodic pointp andW as in the
hypothesis of the lemma. There is a numbertp > 0 such thatR

tp
p (W) = W . In fact, tp

is the period ofp or twice. Notice thatW is a (δ3,E)-interval. Sinceq ∈ V1 it is well
defined the directionF(q) = Tq(W) and |Ltq |F(q)| � 1 and hence, by the dominatio
condition we have that|Ltq |E(q)| � λ < 1. Hence, ifp is hyperbolic it must be a sink.

The following lemma is a fundamental application of Proposition 4.2.

LEMMA 4.14. – For all ε ∈ (0, δ0) there isγ = γ (ε) > 0 such that:
(1) For all t > 0 we have that:

(a) R−t
x (Wcu

γ (x))⊂Wcu
ε (x−t ).

(b) Rt
x(W

cs
γ (x)) ⊂Wcs

ε (xt ).
(2) Givenγ̃ ∈ (0, γ (δ0)) we have:

(a) |R−t
x (Wcu

γ̃ (x))| → 0 as t → ∞, or x ∈ Wu(p) for some periodic pointp
andp ∈Wcu

γ̃ (x).
(b) |Rt

x(W
cs
γ̃ (x))| → 0 as t → ∞, or x ∈Ws(p) for some periodic pointp and

p ∈Wcs
γ̃ (x).

Proof. –We shall only prove the statement for central unstable manifold sinc
same argument works for the central stable manifolds. For item 1 takeδ0 from
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Proposition 4.2 and letε < δ0. Recall that Corollary 3.3 assert there is 0< δ < δ0

such that if: |R−s(Wcu
ε (x))| < δ for s ∈ [0, t], then R−s(Wcu

ε (x)) ⊂ Wcu
ε (x−s) for

s ∈ [0, t]. Arguing by contradiction, assume the statement of item (1) does not
Then there exist a sequence of numbersγn → 0, pointsxn ∈ � and timesmn → ∞
such that|R−mn(Wcu

γn
(xn))| > δ. We should be more precise on how this bound

exceeded; that is,|R−s(Wcu
γn
(xn))| � δ for s ∈ (0,mn), and |R−mn(Wcu

γn
(xn))| = δ.

Let us write In = R−mn(Wcu
γn
(xn)). At least for a subsequence, we can assume

yn := X−mn(xn) → z ∈ � and alsoIn converges to some intervalI transversal to theE
direction. Notice|I | � δ andz ∈ cl(I ). By construction:I ⊂ Dom(Rt)= Vt for all t � 0
and|Rt(I )| � δ0 for all t � 0. Hence is a(δ,E)-interval. Now, sincez ∈ cl(I ) we know
ω(z) = p ∈ Per(Xt) as Proposition 4.2 says. On the other hand,p is hyperbolic since
p ∈ �. Thereforez ∈ Ws(p). Observe that one connected component ofWu(p) � {p}
has length less thanδ. In fact,Wu(p) is the limit of the intervals|In| � δ andz ∈ cl(I ).
Hence, the previous lemma implies the other end point must be a periodic point a
an hyperbolic saddle. It may happen thatIn ∩ Ws(p) �= ∅ for n >> 1. In this case we
get a contradiction with the Inclination Lemma, since this intersection is transv
and Rmn(In) = R−mn(Rmn(Wcu

γn
(xn))) → 0 as n → ∞. Hence,In ∩ Ws(p) = ∅ for

n arbitrarily large. In this case,ω(yn) ⊂ � is the other endpoint of the connect
component ofWu(p) � {p} of length less thanδ. Thenω(yn) is a periodic sink or a
non-hyperbolic periodic point. This is a contradiction since all periodic points in� are
hyperbolic of saddle type, concluding the proof of item (1).

To prove item (2): Takeδ < δ(γ0), and letx ∈� be a point such that there existsη > 0
and a sequence of timestk → ∞ in such a way|R−tk (Wcu

γ (x))| � η. Last item guarantee
that η < δ0, since|R−t (Wcu

γ (x))| � δ0 for any t � 0. As in the previous case, we c
obtain a sequence of intervalsIk := R−tk (Wcu

γ (x)) converging to some(η,E)-interval
calledI , wherez ∈ cl(I ), andz ∈�. Hencez ∈Ws(p) for some periodic pointp ∈� of
saddle type. ObserveI is transversal toWs(p), even in the casez /∈ Int(I ). Avoiding a
contradiction with the Inclination Lemma we have that|Wu(p)| � η � δ0. If z ∈ Int(I ),
asyk := Xtk(x) → z we concludeyk ∈ Ws(p). Otherwise we get a contradiction sin
both connected components ofWu(p) � {p} have length less thanδ0, and henceω(x)

must be a sink or a non-hyperbolic periodic point. Supposez �= p. Then fork >> 1
all yk = X−tk (x) are contained in some fundamental neighborhood ofWs(p). This is
a contradiction, sinceWs(p) do not have self-intersections. Hencez = p. Therefore
yk ∈Ws

loc(p). Otherwiseω(x) must be a sink or a non-hyperbolic periodic point. Hen
x = p, proving item (2) in casez ∈ int(I ).

It is left to verify the case whenz /∈ int(I ). Observe:R−tk (Wcu
γ (x)) ∩ Ws(p) = Ik ∩

Ws(p) and this intersection is not empty; otherwise, we find a contradictio
a similar way as in the proof of item (1). Combining the following two fac
|Rt(R−tk (Wcu

γ (x)))| � δ0 for t ∈ (0, tk) and X−tk (x) → z as k → ∞ we conclude
x ∈ Wu(p). Moreover x ∈ Wu

δ0
(p). If p /∈ Wcu

γ (x), as yk → p when k → ∞ and
|R−tk (Wcu

γ (x))| do not converges to 0 we have thatR−tk (Wcu
γ (x)) ∩ Ws(p) �= {p} for

k >> 0, and in particularI ⊂ Ws(p), a contradiction. Hencep ∈ Wcu
γ (x), and we are

done. ✷
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5. Proof of Main Lemma

In this section we shall give a proof for the Main Lemma, stated on Section 3. B
we do that, some effort will be spent constructing two-dimensional boxes around c
points with nice properties of recurrence. These boxes shall allow us to treat the pr
in a very similar way as in the case of diffeomorphisms on surfaces. On the other
under the hypothesis of the Main Lemma, we shall obtain more dynamical prop
on the central stable and central unstable manifolds. Let us begin defining the st
box around a point in�; when� has a dominated splitting, and the notion of distort
along thecs-direction on such boxes.

Let x ∈ � be given. For any two intervalsJ ⊂ Wcu
γ (x) and T ⊂ Wcs

γ (x), both
containing the point(x,0) ∈ Nx , we call the box, or(J, T )-box, aroundx the set
BT (J )= expx(T ×J ), with boundaries:∂cs(BT (J ))= expx(∂T ×J ) and∂cu(BT (J ))=
expx(T × ∂J ). Observe that if the size of the box, say|T | + |J | is small enough, the
∂cs(BT (J )) is transversal to theE-direction and also∂cu(BT (J )) is transversal to th
F -direction. Also we can assume that for anyy ∈ �, ∂α(BT (J )) ∩ Wα

γ (y) are relative
open sets forα = cs, cu. If BT (J ) is a box andx ∈ T ′ ⊂ T , we sayBT ′(J ) is a sub-box
of BT (J ) if it is a box and∂csBT ′(J ) ⊂ ∂csBT (J ). For simplicity, we shall denote onl
Bε(J ), whenT ⊂Wcs

ε (x).

DEFINITION 4. –A boxBε(J ) has distortionC > 0, or precisely distortion along th
cs-direction, if for any two intervalsJ1, J2 ⊂ Bε(J ), both transversal to theE direction
and whose end points lie in∂csBε(J ) happens that:

1

C
� l(J1)

l(J2)
� C.

An equivalent way to obtain such distortion is by means of a projection a
some foliation close to theE-direction defined on the box. Precisely, letF cs be the
foliation obtained by integrating someC1 vector fieldY defined onBε(J ) such that
Y (p) ∈ CE

a (p), for all p ∈ int(Bε(J )) and forp ∈ ∂cu(Bε(J )), Y (p) ∈ Tp∂
cu(Bε(J )).

If we denote byK = K(J1, J2) the projection along the leaves ofF cs between the two
intervalsJ1, J2, then the boxBε(J ) has distortionC if there existsC > 0 such that
1/C � ||K′|| � C.

In [21] they guarantee distortion on a dynamical box if it is provided of some bo
on the sum of the length of the pre-images of the leaves of the foliation on the box
is still valid in our context, since the generalized Poincaré transformation, behave
a diffeomorphism (see Corollary 3.5 of [21]), and it can be stated as follows:

COROLLARY 5.1. – There existsτ(< δ2) such that if for somez ∈ Bε(J ) ∩ � and
n > 0 we have ∣∣∣∣Lt

E(z−t )
(z)

∣∣∣∣ < λt
1, for 0 � t � n

and the boxB(n) := B(R−n
z (J (z))) satisfies that:

(1) Rn
z−n

(B(n))⊂ Bε(J ) andRn
z (∂

csB(n))⊂ ∂csBε(J ),
(2) Rt

z−n
(R−n

z (J (z))) has diameter less thanτ , for 0� t � n,
then there existsC1 such thatB(R−n

z (J (z))) has distortionC1.
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Using this corollary, we can prove more dynamical properties for central manifo

LEMMA 5.2. – Assume� is transitive and every proper compact invariant sub
of � is hyperbolic, then either|R−t

x (Wcu
γ (x))| → 0 as t → ∞ for any x ∈ � or the

directionF is expanding(that is,|L−t |F(x)| → 0 as t → ∞).

Proof. –Observe� is not a periodic orbit of the flow. Suppose there isx ∈ � such
that limsup|R−t

x (Wcu
γ (x))| > 0. Lemma 4.14 implies there is a periodic orbitp ∈ � such

that one of the components ofWu(p)− {p} has length less thanδ0. Also Lemma 4.13
implies the endpoint of this componentq �= p, is a sink or a non-hyperbolic period
point, and so,q /∈�.

Since� is transitive and non-trivial, there isx0 ∈�� Per(Xt) such thatx0 ∈Ws(p).
Moreover, there is a small neighborhood ofx0, call it U ⊂ Np divided into two
components byWcs(x0) ⊂ Ws(p), where on one side, say the “upper” one, we h
the sameω-limit as q.

Takeλ < λ1 < λ2 < λ3 < 1, andc > 0 such thatλλ−1
1 < λ2 and(1+ c)λ2 < λ3. Take

δ̃ > 0 such that ifI is a(δ,E)-interval onz for δ < δ̃, then for ally ∈ I we have:

(1− c)t � |Lt |F(y)|
|DRt

y|F̃ (y)|
� (1+ c)t

whereF̃ (y) = TyI .
Let Bε(J ) be a box forx0 contained inU and even so small such that

Rt
x0

(
Bε(J

+)
) ∩Bε(J

+)= ∅, ∀t �= 0

and |R−t
x0
(J (y))| � δ, for anyy ∈ Bε(J ) ∩ � and t � 0; whereδ + ε < η < τ (τ from

Corollary 5.1 andη the size of the box).
For any givenz ∈ Bε(J )∩� denote byJ+(z)= J (z)∩Bε(J

+) and for it we have:

R−t
z

(
J+(z)

) ∩Bε(J
+)= ∅, ∀t > 0.

Let Bε1(J ) be a sub-box for a positiveε1 < ε/4. We claim there isK > 0 such that
for anyz ∈ Bε1(J )∩�: ∫

t�0

∣∣R−t
(
J+(z)

)∣∣dt � K

for anyz ∈ Bε1(J )∩�.
Once established this claim, the argument on the proof of Lemma 3.5.2 o

concludes the thesis of the lemma.
Let us prove the claim. Fix an arbitrary pointz ∈ Bε1(J )∩�. And consider the set

Mz = {
m ∈ R+ | ∣∣Lt |E(z−m)

∣∣ � λt
2, ∀t ∈ [0,m]}.

Corollary 5.1 implies that for anym ∈Mz the box

B(m)= Bε1

(
R−m

z

(
J+(z)

))
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has distortionC. In fact, it is true thatRmi
z−m

(B(m)) ⊂ Bε(J ) andRmi
z−m

(∂cuB(mi)) ⊂
∂cuBε(J ). Notice also that form,n ∈Mz,m �= n, thenB(m)∩B(n)= ∅. Takeε2 = ε1/4.
For eachy ∈� consider the three dimensional cube (defined on Section 2):

S(y) := S
(
Bε2

(
Wcu

γ/2
(y)

))
.

Since� is compact, it can be covered by a finite number of these cubes:

� ⊂
k0⋃
k=0

S(yk).

For eachm ∈ Mz, the pointz−m belongs to someS(yk). Denote byJ (m) := B(m) ∩
S(yk). If the size of the boxη is small enough,J (m) is a non-empty interval containe
in B(m). Notice there are constantsK1,K2 > 0 only depending onη∗ such that

∣∣J (m)
∣∣ �K1

∣∣Wcu
γ/2

(yk)
∣∣ � K2 Vol

(
S(yk)

)
.

Since we have distortionC onB(m), we have

1

C
� |J (m)|

|R−m
z (J+(z))| �C

and hence, ∣∣R−m
z

(
J+(z)

)∣∣ �C
∣∣J (m)

∣∣.
Therefore,

∫
Mz

∣∣J (t)∣∣dt � K

k0∑
k=0

η∗/2∫
−η∗/2

∣∣Xt
(
Wcu

γ/2
(yk)

)∣∣dt � K Vol(M).

Now we have to bound the integral in the gaps ofMz. LetM,m ∈Mz such thatM >m

andMz∩(m,M)= ∅ (perhapsM = ∞). Fort ∈ (m,M), we have that|Lt |E(z−m−t )| � λt
1.

Then, the dominated splitting condition implies:

∣∣L−t |F(z−m)

∣∣ �
(
λλ−1

1

)t � λt
2

and hence, ∣∣DR−t
y |F̃ (y)

∣∣ � λt
3,

whereF̃ (y) = TyR
−m
z (J+(z)). DenoteJm =R−m

z (J+(z)), then

M∫
m

∣∣Rt(Jm)
∣∣ dt � 1

1− λ3
|Jm|.

Hence,
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∫
t�0

∣∣Rt
(
J+(z)

)∣∣dt �
∫
Mz

∣∣Rt
(
J+(z)

)∣∣dt + ∑
j

Mj∫
mj

∣∣Rt(Jmj
)
∣∣dt

�K Vol(M)+ 1

1− λ3

∑
j

|Jmj
|.

where{(mj,Mj )} denotes all the gaps ofMz. However,mj ∈ Mz and hence, the bo
B(mj) has distortionC. Hence, we can bound the last sum above

∑
j |Jmj

| �C Vol(M),
proving the claim.

An analogous result holds also for center stable manifolds, allowing us to con
that for allx ∈� we have both, ast → ∞:

∣∣R−t
x

(
Wcu

γ (x)
)∣∣ → 0 and

∣∣Rt
x

(
Wcs

γ (x)
)∣∣ → 0.

In the sequel, we shall takeγ � γ1.

COROLLARY 5.3. –Givenε > 0 there exists somet0 � 0 such that for anyx ∈� and
t � t0 we have: ∣∣R−t

x

(
Wcu

γ (x)
)∣∣ � ε and

∣∣Rt
x

(
Wcs

γ (x)
)∣∣ � ε.

5.1. Returns

Let Bε(J ) be a box and supposex ∈ J ∩ �. Recall that for anyy ∈ Bε(J ) ∩ � we
have definedJ (y) = Wcu

γ (y) ∩ Bε(J ). Given a neighborhoodV , we consider the set o
points whose entire orbit stays onV and they are asymptotic to�

�̃= {
y ∈ V | dist

(
5t(x),�

) → 0 ast → ±∞}
.

Notice that�̃ also has dominated splitting since it is contained inV . Although it is not
compact, the arguments in Lemmas 4.14 and 5.2 apply, and so, there are centra
and central unstable manifolds on points of�̃ dynamically defined.

DEFINITION 5. –For δ > 0, we say the boxBε(J ) is δ-adapted if for everyy ∈
Bε(J )∩� the following conditions are satisfied:

(1) |R−t
x (J (y))| � δ for all t � 0,

(2) R−t
x (J (y))∩Bε(J )= ∅ or R−t

x (J (y))⊂ Bε(J ), for all t � 0.

Before we prove the existence of adapted boxes for certain points on�, we need to
recognize some configuration that implies the presence of periodic orbits in a box,
following lemma states.

LEMMA 5.4. – Let J ⊂ Wcu
γ (x) be an interval, for somex ∈ � and assumeWcu

γ (x)

is dynamically defined . Suppose there ist > 0 such thatR−t
x (J ) ∩ J �= ∅. Then, the

α-limit of x is a periodic orbit. Hencex is periodic.

This lemma is also true replacingcu by cs, α-limit by ω-limit and takeing positive
iterations.
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Proof. –Suppose there ist > 0 such thatRt
x(J )∩ J �= ∅, thenxt ∈Wcu

γ (x). Therefore
there is a sequencetk → ∞ such thatxtk ∈ Wcu

γ (x) and thatxtk → x ask → ∞. Since
Wcu

γ (x) is dynamically defined, fork big enough:R−tk
x (Wcu

γ (x)) ⊂ Wcu
γ (x), and hence

α(x) is a periodic orbit. Moreoverx is periodic. ✷
LEMMA 5.5. –For anyδ small and any pointx ∈�� Per(Xt) there existsδ-adapted

boxes associated tox.

Proof. –Let x ∈� be a non-periodic point. Notice that condition (1) of the definit
is easily satisfied if the height of the box is small enough. So, we are only interes
condition (2). In spite of the previous lemma, there is an intervalJ ⊂Wcu

γ (x) for which
5−t (J )∩ J = ∅, for anyt > 0.

Given some order relation onJ we can splitJ into two intervals according tox, say
J+ = {y ∈ J | y > x} andJ− = {y ∈ J | y < x}. Now we define

A+ = {
y ∈ J+ | ∃z ∈ �̃,Wcs

γ (z)∩ J+ = {y}}

and the corresponding set forJ−. Let {εk > 0}k∈N be a decreasing sequence of numb
converging to 0, and letBεk be a sequence of boxes aroundJ such thatBεk+1 ⊂ Bεk

and
⋂

k Bεk = J . For anyy ∈ A+ and any positive integerk we denote byU(y, εk) the
connected component ofWcu

2γ (z)∩Bεk(J ) which containsy. Consider also

I (y, εk)= {
(z, n) | z ∈ Bεk(J )∩�,n > 0 and such that

R−n
x

(
J (z)

) ∩U(y, εk) �= ∅}
.

If there exist pointsy+ ∈ J+ andy− ∈ J−, and there is an integerk with #I (y±, εk)=
0 then the boxBεk(J

′) around J ′ = (y−, y+) is δ-adapted. Notice∂csBεk (J
′) =

U(y−, εk) ∪ U(y+, εk). Actually, we only need #I (y, εk) < ∞ for somey ∈ J since
then, for somek′ > k we obtain #I (y, ε′

k) = 0. So, we shall assume #I (y, εk) = ∞ for
anyk andy ∈A+ ∪A−, for instance takey ∈A+ and we seek for a contradiction. If th
setK := {n | ∃(z, n) ∈ I (y, εk)} is bounded for somek then it is bounded for the sam
y and anyk′ > k. In fact I (y, εk′) ⊂ I (y, εk). Hence, for somek′ big enough one mus
have eitherI (y, εk) = ∅ or R−t

x (J ) ∩ J �= ∅ for somet > 0, which is a contradiction
Therefore, the setK is unbounded for any(y, εk). As a consequence, for anyy ∈ A+
there are sequenceszn ∈ Bεn(J ) andmn → ∞ such that

R−mn
x

(
J (zn)

) ∩U(y, εn) �= ∅.

Observe|R−mn
x (J (zn))| → 0 asn → ∞; otherwise there is a limit pointz of the sequenc

{zn} whose backward orbit shadows anyzn until time−mn and shadowsx for the entire
past too. Therefore, limsupt→∞|R−t

x (Wcu
γ (z))|> 0, which is a contradiction. Hence, th

sequenceR−mn
x (zn) converges toy ∈ �. Actually, A+ ⊂ �. Notice that if there is som

y ∈ A+ ∩Ws(p) for somep ∈ Per(Xt) we achieve a contradiction again. In fact, in su
case, for k big enough, the setU(y, εk) must be contained in some fundamental dom
of Ws(p). On the other hand, we can takeεn0 small enough thatO(p) ∩ Bεn0

(J ) = ∅.
Nevertheless, forn big, yn = R−mn

x (J (zn)) ∩ Ws(p) and thenyn → O(p) asn → ∞.
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However,

Rmn
xmn

(yn) ∈Rmn
x−mn

(
R−mn

x

(
J (zn)

)) = J (zn)⊂ Bεn(J )⊂Bεn0
(J )

which is a contradiction. Therefore, no point onA+ belongs to the stable manifold of
periodic point in�.

Take somey ∈ A+, (zn, n) ∈ I (y, εk) andmn > 0, such that for anyw ∈ J (zn) ∩ �̃

we have

Wcs
γ

(
R−mn

x (w)
) ∩ J ⊂ J+.

Consider a mapπ :A+ → A+ defined as follows: For eachz ∈ A+, let w = Wcs
γ (z) ∩

J (zn). Then defineπ(z) :=Wcs
γ (R−mn

x )(w)∩J . By construction, dist(Rt
x(z),R

t
x(w))→

0 and dist(R−t
x (zn),R

−t
x (w)) → 0 as t → ∞. Then,w ∈ �̃ and hence this map

well defined. Moreover, it is continuous and monotone. This implies that there
w0 ∈ A+ ⊂ J such thatπ(w0) = w0, that is,R−mn

x (w0) belongs toWcs
γ (w0). As in the

proof of Lemma 5.4 this situation implies that theα-limit of w0 is a periodic orbit as
well for the α-limit of y. Hencex must be periodic. This contradiction implies th
there isy+ ∈ A+ such thatI (y+, εk) = ∅. Hence, ifx is accumulated on both sides
Wcs

γ (x) we are done. Ifx is accumulated only on one side, the arguments of the pro
Lemma 3.6.1 in [21] apply directly. ✷

We shall refer to those points accumulated only on one side of the box as bou
points of �̃. Notice that ifBε(J ) is an adapted box, then any sub-box is adapted
As a consequence of the previous argument, for any non-periodic pointx ∈ �, small
adapted boxes can be taken in such a way∂cu(Bε(J )) is contained in some central stab
manifolds, unless the pointx is a boundary point of̃�.

Consider an adapted boxBε(J ) associated to somex ∈ �. If there isz ∈ Bε(J ) ∩�

such thatz−t ∈ Bε(J ) (t > 0) for the first time, we say(ψz,Dψ) is a return of Bε(J ) if
Dψ is the connected component which containz of D−t

z ∩ Bε(J ) andψz = R−t
z |Dψ

.
Notice the holonomy map is defined on some normal section that contains th
Denote byR = R(Bε(J ),�) the set of all returns associated toBε(J ). For ψ ∈ R
we say |ψ ′| < ξ < 1 if and only if for any y ∈ J (z), z ∈ Dψ ∩ � we have tha
|DR−t

z |F̃ (y)|< ξ , whereF̃ (y)= TyW
cu
γ (z).

Let ψ ∈ R. If y ∈ Dψ ∩ � thenJ (y) ⊂ Dψ ; so, it is saturated by central unstab
manifolds and hence, is a vertical strip; since any pointỹ ∈ J (y) shadowsy until
time τ−t

z (ỹ). On the other hand, ifDψ ⊂s Bε(J ), then the imageBψ := img(ψ) is an
horizontal strip, i.e. intersects both components of∂sBε(J ), by continuity.

Also we sayψ > ϕ for ψ,ϕ ∈R if ψ ◦ϕ−1 is obtained by flowing the orbits a negati
amount of time. Remember we are considering first returns for the past.

LEMMA 5.6. –For ψ1,ψ2 ∈ R, if ψ1 �= ψ2, thenDψ1 ∩ Dψ2 is not a domain of a
return if the intersection does not contains∂u(Bε(J )).

Proof. –Takeϕ ∈R(Bε(J ),�) such thatDϕ =Dψ1 ∩Dψ2. SinceDϕ ∩ ∂uBε(J )= ∅
thenBϕ is an horizontal strip. Nowψ1(Dϕ)⊂ Bψ1 ⊂ Bε(J ) sinceDϕ ⊂Dψ1. Sinceϕ is
a return, there isz ∈ Dϕ such thatϕ(z) is the first return ofz to Bε(J ). Henceψ1 > ϕ.
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Observeψ1 ◦ ϕ−1(Bε(J ))⊂ Bε(J ), because it is an adapted box. This is a contradic
to the fact of� being transitive and not a single periodic orbit.✷

DEFINITION 6. –An adapted boxBε(J ) is well adapted if there is a sub-boxBε′(J )
and two disjoint vertical stripsS1, S2 such that

Bε(J ) �Bε′(J )= S1 ∪ S2,

each one satisfies either: Si ∩ � = ∅ or Si is a domain of someψi ∈ R(Bε(J ),�), for
whichψi(Si) is an horizontal strip.

LEMMA 5.7. – Given any x ∈ � � Per(Xt), there exists well adapted box
associated tox of arbitrarily small size.

Proof. –Let Bε(J ) be a small adapted box associated tox ∈ � � Per(Xt), for some
J ⊂Wcu

γ (x). We shall prove there is a sub-boxBε′(J ) which is well adapted (ε′ � ε). It
is important to remark that sub-boxes are not necessarily symmetric with respecJ ,
that is, we shall only need to find an intervalT ⊂Wcs

ε (x), x ∈ T , such thatBT (J ) have
the desired properties. We split the proof in two parts:

First we shall assume that for allε′ � ε:

Bε′(J ) �= {
y ∈ J (z) | z ∈ cl

(
Bε′(J )

) ∩�
}
.

For instance, this happens on the right side of the boxB+
ε′ (J ). That is, for anyε′ � ε:

B+
ε′ (J ) �= {

y ∈ J (z) | z ∈ cl
(
B+

ε′ (J )
) ∩�

}
. (9)

So, there is somew ∈ Wcs
ε (x) on the right hand ofx such thatw /∈ J (z) for any

z ∈ cl(B+
ε′ (J )) ∩ �. According to this order we havex < w on Wcs

ε (x). Definewz =
J (z)∩Wcs

ε (x) for any suchz.
If w > wz for all z then S2 = B+

ε′ (J ) � B(x,w̃z)(J ) is a vertical strip containe
B+

ε′ (J ), wherew̃z = sup{wz; z} and such thatS2 ∩ � = ∅ as the definition requires
Otherwise, there isz ∈ cl(B+

ε′ (J )) ∩ � such thatwz > w. Let w0 = inf{wz | wz > w}.
Hence, reducing the right side of the boxBε′(J ) to B(x,w0)(J ) we have thatS2 =
B+

ε′ (J )� B(x,w̃z)(J ) andS2 ∩�= ∅.
Now we shall see that the left side of the box also verify (9). In fact, assum

contradiction that for someε′ > 0

B−
ε′ (J )= {

y ∈ J (z) | z ∈ cl
(
B−

ε′ (J )
) ∩�

}
. (10)

We claim there isψ ∈R such that

Dψ ∩B−
ε′ (J ) �= ∅ and Dψ ∩ (

∂uB−
ε′ (J ) � J

) = ∅.
If the claim holds, thenBψ is an horizontal strip that crosses allBε(J ) and in particular

Bψ ∩B+
ε (J ) �= ∅. This is a contradiction to (9). Therefore, (9) holds also for the left

of the box. Repeating the argument we have done for the right side on the left sid
obtain the desired sub-box ofBε(J ) which is well adapted.
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To prove the claim, first notice there areψ ∈R such thatDψ ∩B−
ε′ (J ) �= ∅, since there

are points of� on the left side of the box and� is transitive. If there is only one retur
thenB−

ε′ (J ) ⊂ Dψ and alsoBψ ⊂ (B−
ε′ (J ) � J ), sinceXt(J ) ∩ J = ∅, ∀t �= 0 and also

Bψ satisfies (10). This is a contradiction to the transitivity of the set�. Hence, there ar
at least two returns on the left side of the box.

Suppose there are two differentψ1,ψ2 ∈R such that

(
∂u

(
B−

ε′ (J )
))

� J
) ⊂Dψ1 ∩Dψ1,

ψ1 < ψ2 and there is no other return precedingψ2 exceptψ1. Notice Bψ1 � Dψ1.
Moreover,Bψ1 ⊂ (B−

ε′ (J ) � J ), sinceB+
ε (J ) ∩� have holes as we assumed in (9) a

Xt(J )∩ J = ∅ for any t �= 0. AlsoDψ1 ⊂ B−
ε′ (J ) since, in the other caseB−

ε′ (J ) ⊂Dψ1

contradicting again the transitivity of�. NoticeDψ1 ⊂ Dψ2 sinceψ1 <ψ2 and they are
different returns. Therefore there existsz ∈ B−

ε′ (J )�Dψ1 that returns intoB−
ε′ (J ) before

ψ2 by a continuous extension ofψ1. However,z ∈Dψ2 �Dψ1. This contradiction prove
our claim.

Now is left to prove the lemma in case that

Bε(J )= {
y ∈ J (z) | z ∈ cl

(
Bε(J )

) ∩�
}
.

Take ψ+ and ψ− ∈ R such thatD+ ⊂ B+
ε (J ), D− ⊂ B−

ε (J ) and thatBψ+ , Bψ−
are horizontal strips. It is not difficult to see that we can find two periodic inter
J (w+)⊂D+ andJ (w−)⊂D−, that is

ψ±
(
J (w±)

) ⊂ J (w±).

Cutting the box along both intervals we obtain the desired well adapted box, provin
lemma. ✷
5.2. Proof of Main Lemma

Let�0 ⊂M be a non-trivial compact invariant set provided with a dominated spli
which is not an irrational torus. Assume that any compact invariant subset of�0 is
hyperbolic. We shall prove�0 is hyperbolic. In order to do that, we need to prove bo
|L−t |F(z0)| → 0 and|Lt |E(z0)| → 0 ast → ∞ for any z0 ∈ �0. We shall prove only the
former limit. The latter is analogous.

First assume�0 is not a minimal set. Recall a compact invariant set is minimal if
only if any orbit is dense. Let us state the following two lemmas. For a proof see
Lemma 3.7.4 and Lemma 3.7.2 respectively.

LEMMA 5.8. – Let Bε(J ) be a well adapted box such that#R(Bε(J ),�) is not
bounded. Then, there exists a returnψ0 ∈ R(Bε(J ),�) such that the adapted bo
Bψ0 = Img(ψ0) satisfies that for everyψ ∈R(Bψ0,�) we have|ψ ′|< 1

2.
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LEMMA 5.9. – LetBε(J ) be an adapted box such that for anyψ ∈ R(Bε(J ),�) we
have|ψ ′| � ξ < 1. Then, for everyy ∈ Bε(J )∩�0 we have

∞∫
0

∣∣R−t
(
J (y)

)∣∣dt <∞

and therefore|DyR
−t |F(y)| → 0 as t → ∞.

Notice that|DyR
−t |F(y)| → 0 ast → ∞ implies |L−t |F(y)| → 0 ast → ∞.

By hypothesis there isx ∈�0 such thatx /∈ ω(x). Lemma 5.7 implies the existence
a small well adapted boxBε(J ) associated tox such thatBε(J )∩ {X−t (x) | t > 0} = ∅.
Notice #R(Bε(J ),�0) = ∞, since�0 is transitive. Therefore combining Lemma 5
and Lemma 5.9 we conclude that there exists a sub-boxB0 (= Img(ψ0) of the Lemma
5.8) where, for ally ∈ B0 ∩ �0 we have|DyR

−t |F(y)| → 0 as t → ∞, and hence
|L−t |F(y)| → 0 ast → ∞, as we have remarked above.

Now takez0 ∈ �0, if α(z0) �= �0, then by hypothesis it is a hyperbolic set. Theref
|L−t |F(z0)| → 0 ast → ∞. On the other hand, ifα(z0) = �0, then there ism > 0 such
thatz−m ∈ B0. Then|L−t |F(z−m)| → 0 ast → ∞, and this is what we wanted to prove

For the case�0 is minimal, we have to use a different argument. Also we need
lemmas whose proof can be found in [21] (see Lemma 3.7.5 and Lemma 3.7.6).

LEMMA 5.10. – There isx0 ∈ �0 and an adapted box of arbitrarily small siz
associated tox0 such thatBε(J

+)∩�0 = ∅ or Bε(J
−)∩�0 = ∅.

LEMMA 5.11. – LetBε(J ) be an adapted box such thatBε(J
+)∩�0 = ∅. Then there

existsK > 0 such that∀y ∈ Bε(J )∩�0

∞∫
0

∣∣R−t
(
J+(y)

)∣∣dt < K

and moreover, there isJ1(y), J+(y) ⊂ J1(y) ⊂ J (y) where both components ofJ1(y)−
J+(y) have length bounded away from zero independently ofy and someK̃ > 0 where

∞∫
0

∣∣R−t
(
J1(y)

)∣∣dt < K̃.

In spite of these, notice thatB = ⋃
y∈Bε(J )∩�0

J1(y) is a two-dimensional open s
contained in some transversal section to the flow where for anyy ∈ B ∩�0 we have:

∞∫
0

∣∣R−t
(
J1(y)

)∣∣ dt < K̃

and hence|L−t |F(y)| → 0 ast → ∞.
Let z0 ∈ �0. There is somem > 0 such thatz−m ∈ B. Then |L−t |F(z−m)| → 0 as

t → ∞. This finishes the proof of the Main Lemma.
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6. Proof of Theorem A

Finally, on this section we shall give the proof of Theorem A. For that, conside
two subsets of the space of vector fields,X 1(M):

H = {
X ∈ X 1(M) | Sing(X)∩ cl

(
Per(X)

) �= ∅}
T g = {

X ∈X 1 |X has a homoclinic tangency
}
.

DefineU =X 1(M)� cl(H ∪ T g) (the closure is on theC1-topology). The setU consist
of all vector fields which are notC1-approximated by a homoclinic bifurcation. Deno
by Perh(X) the set of hyperbolic periodic orbits ofXt of saddle type; we shall prove th
for elements inU , the closure of this set has a dominated splitting.

GivenX ∈ X 1(M) and any pointp ∈ Perh(X), let Ẽs
p(X) and Ẽu

p(X) be the stable
and unstable 2-dimensional subspaces ofTpM , invariant for the derivative of the flow
respectively. We can defineEs

p = Ẽs
p ∩Np andEu

p = Ẽu
p ∩Np, sinceX(p) �= 0 for any

p ∈ Perh(X).

Remark3. – For p ∈ Perh(X) we haveL
tp
p = DpX

tp |Np
, where tp denotes the

period ofp. Moreover,Es
p andEu

p are invariant byL
tp
p and alsoR

tp
p :Np → Np is a

diffeomorphism. Actually, this is the usual Poincaré first return map onp.

The next lemma relates the angle1 between the stable and unstable spaces
hyperbolic periodic points of saddle type and the existence of a dominated splittin

LEMMA 6.1. – LetX ∈ X 1(M). If there existsγ > 0 and a neighborhoodV(X) ofX
such that for anyY ∈ V(X) we have

angle
(
Es

p,E
u
p

)
> γ ; ∀p ∈ Perh(Y )

then,cl(Perh(X)) has a dominated splitting.

Proof. –To show the existence of a dominated splitting on cl(Perh(X)) one must
proceed to verify that the splitting on Perh(X) given by the stable and unstable spa
on periodic points is in fact dominated. Then, one can easily extend such splitting
closure. To see that, we remark that the argument of the proof of Lemma 2.0.1 o
relies only on some estimates on the eigenvalues of the derivative on periodic po
our case, all these estimates remain true forR

tp
p for eachp ∈ Perh(X), since each retur

map is a diffeomorphism (see Remark 3). Finally, in [4] we can see how to pertu
flow in order to obtain the desired Poincaré maps.✷

Now we can state the fundamental relation between homoclinic tangencies a
existence of a dominated splitting.

THEOREM 6.2. – If X is a Kupka–Smale vector field inU , then thecl(Perh(X)) has
a dominated splitting.

It is not difficult to see that the proof of Theorem 6.2 reduces to prove the follo
lemma:

1 See [21] for definition.
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LEMMA 6.3. –Let X ∈ U be a Kupka–Smale vector field onM . Then there exists
neighborhoodV(X) of X and a numberγ > 0 such that∀Y ∈ V(X) and∀p ∈ Perh(Y )
we have

angle
(
Es

p(Y ),E
u
p(Y )

)
> γ.

Proof. –See the proof of Lemma 2.2.2 in [21], and consider Remark 3.✷
Let P(X) be the non-wandering set ofX and denote byP0(X) andF0(X) the sets

of attracting and repelling periodic orbits, respectively. LetP0(X)= P(X)� (P0(X)∪
F0(X)∪ Sing(X)).

PROPOSITION 6.4. – There isU1 ⊂ U an open and dense set such that for anyY ∈ U1,
P0(Y ) is closed and it has a dominated splitting.

Proof. –The functionA that associates to each vector fieldX the set cl(Perh(X)) is
lower semi-continuous, since hyperbolic periodic orbits cannot be destroyed by
perturbations.

Call G1 the resiudal set of continuity points ofA. Denote byG2 the set of Kupka–
Smale flows onM (i.e. periodic orbits and singularities are hyperbolic, and the st
and unstable manifolds are in general position) and setG3 = {X |P(X)= cl(Per(X))∪
Sing(X)}, which is also residual (see [19]). Hence,G=G1 ∩G2 ∩G3 is a residual set

LEMMA 6.5. – For anyX ∈ G∩ U , we haveP0(X)= A(X).

Proof. –In order to see thatP0(X) ⊂ A(X), suppose there isq ∈ P0(X) � A(X).
Let U be an open set such thatA(X) ⊂ U such thatq /∈ cl(U). Let N ⊂ U be a
neighborhood ofX whereA(Y )⊂ U for anyY ∈ N . SinceX ∈G3, there is a sequenc
{pn} ⊂ Per(X) ∪ Sing(X) such thatpn /∈ cl(U) andpn → q. Since #Sing(X) < ∞ and
q /∈ A(X) thenpn ∈ P0(X) ∪ F0(X) for all n. Without lost of generality we may thin
pn ∈ P0(X) for all n. Let us recall the following theorem due to Pliss.

THEOREM 6.6 (Pliss, [18]). –Let X ∈ X 1(M) and suppose there is an infini
sequence{pn} ⊂ P0(X), then for anyε > 0 there isY ∈ X 1(M), ε-C1-close toX and
somen ∈ N such thatpn is a non-hyperbolic periodic orbit ofY .

It is not difficult to see that if we take a very small perturbation of the mapY ,
we can assumepn is an hyperbolic periodic orbit of saddle type. Hence we h
found someY ∈ N with a hyperbolic periodic orbit of saddle typepn outsideU ;
contradicting the fact ofA(Y ) ⊂ U . ThereforeP0(X) ⊂ A(X). On the other hand, t
proveA(X)⊂P0(X) we claim thatP0(X) is closed. If it is not the case, it happens t
cl(P0(X)) ∩ Sing(X) �= ∅. Since cl(P0(X)) ⊂ A(X), we have found a contradiction
the fact thatA(X) ∩ Sing(X) = ∅, provingP0(X) is a closed set and hence the lem
follows. ✷

SinceX ∈ G ∩ U , we haveP0(X) = cl(Perh(X)). As a consequence of Theorem 6
we know thatP0(X) has a dominated splitting. Take an admissible neighborhoodU of
P0(X), that is, a neighborhoodU such that there isU(X) a neighborhood ofX such that
for anyY ∈ U(X) the maximal invariant set ofY in U also has a dominated splitting. W
can assumeU(X)⊂ U . SinceX ∈G1 it is a continuity point ofA, given a neighborhoo
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U0 of P0(X) such thatU0 ⊂ cl(U0) ⊂ U , we can assume that for allY ∈ U(X) verify
that cl(Perh(Y ))⊂U0.

Let us prove that for allY ∈ U(X) we haveP0(Y ) ⊂ U . If it is not the case, ther
is Y ∈ U(X) andx ∈ P0(Y ) ∩ (M � U). Notice x is not a periodic point and is non
wandering. Moreover,x cannot be accumulated by points inP0(Y )∪ F0(Y ), otherwise,
as in the proof of the Lemma 6.5, we can find an hyperbolic periodic orbit of saddle
outsideU0, which is impossible.

Now theC1-Closing Lemma [19] allow us to find̃Y close toY having a periodic orbi
passing throughx. Actually, perturbing a bit more if necessary, this orbit is hyperboli
saddle type. This is a contradiction to the continuity ofA onX. Hence, for allY ∈ U(X),
the setP0(Y ) has a dominated splitting. Finally, the setU1 = ⋃

X∈GU(X) verifies the
proposition. ✷

Now we can give a proof of Theorem A.

Proof of Theorem A. –Given X ∈ U , Proposition 6.4, together with Theorem
imply there is aC2-Kupka–Smale vector fieldY ∈ U1 arbitrarily close toX such that
P0(Y ) = � ∪ T , where� is hyperbolic andT is a finite union of irrational torus
However, the existence of such torus is not generic, even in theC2 topology. Hence
making a small perturbation if necessary, we obtain thatP0(Y ) is hyperbolic.

Now we claimP(Y ) is hyperbolic. For that, we just need to guarantee thatP0(Y ) ∪
F0(Y ) is a finite set. In fact, for instance, suppose #P0(Y )= ∞. LetU be a neighborhoo
of P0(Y ) where the maximal invariant set onU is hyperbolic. Notice we can takeU
in such a way all periodic orbits inU are of saddle type. On the other hand, all
a finite number of periodic attracting orbits must belong toU . In fact, cl(P0(Y )) �
P0(Y ) ⊂ P0(Y ) ⊂ U , by definition. This is a contradiction. Therefore #P0(Y ) < ∞.
This argument applies also toF0(Y ). Hence, we concludeP(Y ) is hyperbolic.

It is left to proveP(Y )= cl(Per(X)) and that there are no cycles. SinceL(Y )⊂P(Y ),
the limit set ofY is hyperbolic too and so, the periodic orbits are dense on it. By a r
of Newhouse [11], we only need to verify the absence of cycles onL(Y ) in order to
concludeL(Y )= P(Y ). Since there are no singularities of the flow involved, the in
of all saddle periodic orbits is one. And sinceY is Kupka–Smale vector field, all th
invariant manifolds are in general position. Hence there are no cycles.

Now, we have already prove thatX can be approximated byY either: Uniformly
hyperbolic with no-cycle condition, exhibiting a homoclinic tangency, orX belongs to
the classH . However, ifX ∈ H , it is an easy consequence of Hayashi’s Connec
Lemma [4] that there isY ∈ X 1(M) arbitrarily close toX showing a singular cycle
concluding the proof of Theorem A.✷
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