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ABSTRACT. — In this paper we prove that aity* vector field defined on a three-dimensional
manifold can be approximated by one that is uniformly hyperbolic, or that exhibits either a
homoclinic tangency or a singular cycle. This proves an analogous statement of a conjectur
of Palis for diffeomorphisms in the context 6f-flows on three manifolds. For that, we rely on

the notion of dominated splitting for the associated linear Poincaré flow.
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On prouve que tout champ de vectedrsdéfini sur une variété de dimension
trois peut étre approché par un qui est uniformément hyperbolique ou bien par un qui
présente soit une tangence homocline soit un cycle singulier. Ceci prouve, dans le contexte d
flots C* sur les variétés de dimension trois, 'analogue d’une conjecture de Palis concernant le
difféomorphismes. On s’appuie sur la notion de décomposition dominée pour le flot linéaire de
Poincaré associé.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The quest to understand the asymptotic behavior of orbits of a large set of evolutior
laws has been guiding one important strain of the theory of dynamical systems. Ir
the sixties the notion of structural stable systems, first introduced by Andronov and
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Pontryagin thirty years before, meaning systems that are equivalent up to a continuou
global change of coordinates to all nearby ones, was at the center of the attempts 1
provide a typical model in the universe of dynamical systems.

In a series of papers written in that decade and in early seventies, Anosov, Pali
and Smale, Robbin, de Melo and Robinson, prove that uniform hyperbolicity and
transversality of stable and unstable manifolds imply structural stability. In the mid-
eighties, Mafié obtained the converse statement for diffeomorphisms, in a profounc
and very original work. Ten years later, Hayashi extended this result for flows. This
constitutes a remarkable page in the history of modern dynamics: The solution of the
Stability Conjecture, [16].

Recall that an invariant set of a flow X is hyperbolic if its tangent bundle splits into
three D X -invariant sub-bundlesE®, E* and[X], where vectors orE*® are uniformly
contracted in the future, the same fBf in the past, andX] is the flow direction.

A flow X is uniformly hyperbolic (or Axiom A) if its limit set is hyperbolic. For the
case of diffeomorphisms this concept is similar by considering only the first two sub-
bundles. For a complete description of uniform hyperbolicity see [17] and [24]. Yet
and remarkably so, at the second half of the sixties it was already clear that uniforr
hyperbolicity could not be present for every system of a dense subset in the universe c
all dynamics.

A key guestion was then: Is it possible to look for a general scenario for dynamics?
The search for such an answer, in particular the work of Newhouse on the coexistenc
of infinitely many sinks (see [10]), draw the attention to homaoclinic orbits. That is,
orbits that in the past and the future converge to the same periodic orbit, which ha:
been first considered by Poincaré almost a century before. Altogether, the examples
Newhouse gave rise to a rich family of new dynamics. The creation-destruction of suct
orbits is, roughly speaking, what its meant by homoclinic bifurcations; see [17] for a
formal definition. Based on these and other subsequent developments, Palis formulate
in the mid-nineties the following conjecture (see [17] and [14]):

CONJECTURE 1. —The diffeomorphisms exhibiting a homoclinic bifurcation ére
dense in the complement of the closure of the hyperbolic @nedl).

There has been substantial advances in this direction. The work of Pujals anc
Sambarino [21] is an important example: They provided a proof of the conjecture in
the case of diffeomorphisms defined on a compact surface i@ttepology.

In the setting of diffeomorphisms on two-dimensional manifolds, homoclinic bifurca-
tions arise from homoclinic tangencies. Recall that the stable and unstable manifolds c
a hyperbolic periodic poinp, W*(p) and W*(p), respectively, are immersed submani-
folds on the ambient space. A poipt W*(p) N W*(p) is a homoclinic point ify # p.

If these submanifols meet tangentialy at a homoclinic pgintve say such point is a
homaoclinic tangency.

Dealing with the above conjecture in the context of flows, another homoclinic
phenomenon involving singularities of the vector field must be considered: singular
cycles. Recall that a singular poiatof a vector fieldX is hyperbolic if the derivative
D, X has no eigenvalues which are purely imaginary, and in this case we have stable ar
unstable manifolds of, denoted byW* (o), and W* (o), respectively. It may happen
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thatg € W* (o) N W"(o) for g # o. In this case we say the vector field hasiagular
cycle, a concept that was first considered by Labarca and Pacifico [7]. In dimensior
three, these are all possible homoclinic bifurcations: homaoclinic tangencies and singula
cycles.

This work is intended to give a positive answer to the conjecture above, in the contex
of three-dimensional vector fields and tGé-topology. To be more precise, 181 be a
compact manifold of dimension three without boundary. Denot&’ b ) the space of
vector fields of clas€” (r > 1) defined onM.

THEOREM A. — Any vector fieldX e X*(M) can be approximated by another one
Y € XY(M) showing one of the following phenomena

(1) Uniform hyperbolicity with the no-cycles condition.

(2) A homoclinic tangency.

(3) A singular cycle.

As in the case of surface diffeomorphisms, our methods rely on a relaxed form
of hyperbolicity, first used by Mafié, Liao and Pliss in their attempts to characterize
structural stable diffeomorphisms. It is callédminated splittingand it strictly includes
the class partially hyperbolic systems (see [6], [1] and [25]). An invariani\skdr a
diffeomorphismf has a dominated splitting if its tangent bundle decomposes into two
Df-invariant sub-bundle$ys M = E & F and there are constants> 0 and A< (0, 1)
such that for alk € A:

| D" e | |1Pf " lE(reep|| < CA"; - Va0

There is a remarkable relationship between the absence of homoclinic tangencies ar
the existence of a dominated splitting. This fact is explored in [21] and more recently,
the same authors provided a rather complete description of the dynamics underlying
dominated splitting for surface diffeomorphisms on [22].

Still, the natural translation of this notion into the context of three-dimensional flows
is more limited. That is, a splitting of the kindi,M = E & [X] & F, where each
sub-bundle is one-dimensional, BxM = E @ F, where one is one-dimensional, both
exclude the scenarios depicted in the following example:

Consider an Anosov flomd on M and choose an infinite sequence of periodic orbits
with periods arbitrarily large, sayp,}. An application of Frank's Lemma (see [9] for
a flow version) allows us to perturlC{) the flow on eactp, by pushing the strong-
stable direction over the tangent direction of the orbitppfwithin the central stable
space defined bg* + [X]. In the same way, in another part of the orbitygf we push
the strong-unstable direction. Inductively, this process renders a segligrafesector
fields. Observe that no limit ofX,} can have an invariant splitting of any of the kind
as above. Also it is not possible to find a nearby flow exhibiting a homoclinic tangency,
since strong directions remain orthogonal to each other on each point.

Like hyperbolicity, the property of a dominated splitting is a condition on the action of
the derivative on the tangent bundle, which determines some dynamical behavior of th
transformation itself. In our case, we shall consider a condition not on the whole tangen
bundle but on its projection over a certain sub-bundle everywhere normal to the flow
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direction, to which the linear Poincaré flow is associated. We shall be precise about thi:
in the next section. However, such notion of dominated splitting for the linear Poincaré
flow can be obtained once we are far from homoclinic tangencies (see Theorem 6.2 fc
a precise statement).

On the other hand, Theorem A relies on a fundamental result related to the possibl
underlying dynamics of an invariant set provided with a dominated splitting. To explain
this, let us call an embedded two-dimensional tofus M anirrational torus if it is
invariant by the action oX’, it is normally hyperbolic and moreovex/ |7 is conjugated
to a linear irrational flow ors* x S*. Denote by PdtX) the set of periodic orbits aX,
and SingX) ={p e M | X(p) =0}, for a givenX € X" (M), M being a closed three-
manifold.

THEOREM B. — Let A be a compact invariant set for € X2(M) with a dominated
splitting and such thaBing(X) N A = ¢ and all points inPer(X) N A are hyperbolic
saddles, them\ = A U7, whereA is hyperbolic andZ is a finite union of irrational
tori.

The dominated splitting provides us with invariant foliations over the invariant set;
formed by central stable and central unstable manifolds (see Lemma&3&dri, such
leaves do not have a dynamical meaning at all. However, a kind of Denjoy’s property
asserts that smoothness of the vector field does not allow the existence of wanderin
intervals; moreover, it provides us the asymptotic behavior of local central manifolds.
This allows us to construct actual stable and unstable manifolds from the central one
(see Proposition 4.2 and Lemma 4.14). For that, we must establish a way to control hov
fast orbits get farther apart as we iterate; not as two points at certain flow-time but a
orbits of the linear Poincaré flow. In order to do that, it ought to be necessary to conside
a set of holonomy maps defined on transversal two-dimensional sections. These maj
together work as a kind of global Poincaré transformation and allow us to proceed, a
least locally, as in the case of a surface-diffeomorphism (see Section 2.2). In fact, mos
of our effort will be spent in order to achieve such setting. After that, some modifications
of the arguments of [21] are needed to conclude the proof of Theorem B. Indeed, [21] i
a key reference throughout this paper.

Further questions. Lorenz-like attractors (see [3]) are a kind of rich dynamics that
can appear from singular cycles. They are characterized by the presence of infinitel
many periodic orbits in any neighborhood of a singularity, in a robust way. The study
of this situation lead Morales, Pacifico and Pujals to define an adequate notion o
hyperbolicity, where singularities are involved, called singular hyperbolicity (see [9]).

This suggest a stronger statement of Theorem A, replacing Singular Cycle by Singula
Hyperbolic, on item (3); and a proof will certainly rely on an application of their
methods. However, some work has to be done before, in particular on the choice of th
dominated splitting over an invariant set which contains a singularity, since the linear
Poincaré flow it is not defined on equilibrium points. Nevertheless, it seems to be usefu
to consider also a splitting on the tangent bundle as in the way is done for singulal
hyperbolic sets.

The paper is structured as follows: In Section 2 we set up a useful notion of dominatec
splitting for invariant sets, related to the linear Poincaré flow. In Section 3 we construct
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central manifolds for sets with dominated splitting. The proof of Theorem B will be
there reduced to a Main Lemma. Section 4 is for proving dynamical properties of centra
manifolds. This is the kernel of this work. Section 5 is devoted to give a proof for the
Main Lemma and finally, in Section 6 we prove Theorem A.

2. Dominated splitting for invariant sets

This section is devoted to construct a useful notion of dominated splitting for invariant
sets for flows. For that, we shall consider the linear Poincaré flow which acts on certair
sub-bundle of the tangent space. At the end of this section, we shall obtain a family o
holonomy maps defined between pairs of two-dimensional sections each one transvers
to the flow. This family of maps acts on the manifold in the same way the linear Poincaré
flow acts on the normal bundle.

Let M be a compact three-dimensional riemannian manifold without boundary.
Denote byX'’ the flow associated t& € X1(M), that is, a family of diffeomorphisms
on M such thatX* o X' = X**" forall s, € R, X° = Id and dX’ (p)/dt|,—o = X (p), for
anypeM.

2.1. The linear Poincaré flow

The vector fieldX induces two sub-bundles dfy M, say,[X], = {ve T,M|v =
aX(p), x eR} and/\Tp = [X]Ii,, for any p ¢ Sing(X). Denote byN = % the normal
bundle ofX over Q = M ~ Sing(X), the regular points ok . For eachr € R the tangent
map of X’ restricted ta\V C Tp M induces an automorphism oy that commutes the

following diagram:

NN
Voo
0% 0.

The flow of automorphism$L’},cr is called thelinear Poincaré flowof the normal
bundle V. We took this notion from the work of Doering, [2], and it allows us to define
an adequate notion afominated splittindor invariant sets of flows.

DEFINITION 1.— An invariant setA has a dominated splitting if there exists a
splitting of the normal bundle oA = A \ SingX), sayN; = E & F and there are
numbersC > 0andi € (0,1) such that L' (E(x)) = E(X'(x)), L'(F(x)) = F(X'(x))
and

IL" e |L 7 [ Foxien] < CA'; V= 0.

Fix an invariant setA for X’ and take a splitting of\; = E’ @ F’, not necessarily
invariant. For any numbeu € (0, 1] we can define the following two cone fields
pointwise. On each € A set:
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CE(x)={weN; |w=vg+vF, [vrl <alvgl},
Crx)={weN;|w=vg+vp, [vg| <alvp|}.

As in the hyperbolic case, it is not difficult to see that if this cone field is invariant under
the action ofL’ we obtain a dominated splitting af (see [12]). The following lemma
states this.

LEMMA 2.1. —If there existh < 1, a > 0, and there is a splitting oN, = E' @ F’
such that
L'(cHycch (x'x) and L™(CF)ccCE,(X™'(x))
forall t > 0, thenA has a dominated splitting.

Moreover, the following lemma due to Doering (see Proposition 1.1 in [2]), asserts
that in the case of hyperbolicity, these two notions are coherent.

LEMMA 2.2.— Let A C M an invariant compact set fok’. A has a hyperbolic
structure forX’ if and only if the linear Poincaré flow restricted ovaris hyperbolic.

2.2. Holonomy maps

Let A C M be a compact invariant set with dominated splitting such that
Sing X) = @. Givena < (0, 1] let U, be a neighborhood of in \V, where is defined an
invarianta-cone field. Denote by, (¢) the ball of radius > 0 onA/,. Notice that there
exists a neighborhoo® such that

A Cint(K) ccl(K) c Uy C M~ Sing(X)

since SingX) is a closed set. Hence, theress > 0 such that the exponential map
exp, : N, (e*) — M is an isometry for any poink € K. Call N, = exp, (N, (s%)).
Moreover, for anyx € K there isn, > 0 such thatX’(N,) N N, =@, fort € (—n,, ny),
since there are no singularities in(kl); and hence the functiom — 7, has a lower
bound, say), > 0. Define for any € U; ands € R the map

.:D; CN,— R
using the Implicit Function Theorem, in such a way thity) = s and X% (y) € N,
wherex; = X*(x). Whenever we speak abolX, we are considering it as the maximal
domain of definition. In spite of this, set
R:D; — N,,
such thatR!(y) := X%0)(y), Yy € D$. Notice D,R! = L*. Moreover, there exist

a neighborhoodV, c A of the zero-section, where we can define a transformation
R*:V, — N where

Vs (x, v) — (X0 (x), exp L (RS (exp, (1))
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This transformation covers the flow ad, i.e. the following diagram commutes:

v, BN
2 J
M= M

In fact, [V], D exgjl(D;), for all x € U;. Observe{R'} is a local flow o, g V.

3. Central manifolds

Throughout this section we shall construct central-stable and central-unstable mar
ifolds for invariant sets with dominated splitting. Moreover, we shall see they are of
classC?. Also we shall prove an analogous version of Pliss’ Lemma (see [18]) for
continuous-time dynamical systems. As a consequence of these, we shall obtain th
there are only a finite number of irrational tori containedAn At the end, we shall
reduce the proof of Theorem B to a Main Lemma. et X?(M) andA C M be a
compact invariant set with dominated splitting such that g A = @. Also assume
that all periodic orbits im\ are hyperbolic saddles. We begin establishing the following
inequalities.

LEmMmMA 3.1.-If A is an invariant set as above, there exist constafits 0 and
o € (0, 1) such that for everyg € A and for allt > 0 the following holds

Q) 1L g IL™ | Py |2 < Ca,

(2) 1L gy IPIL ™ P < Co.

Proof. ~-We only care about the first inequality since the other is analogous. Take
a € (0,1). We claim there ig" > 0 such that for any € A

ILT gl
= E®L
[LT| pol?

After the claim, it is not difficult to see how the lemma follows; we only have to notice
that |L'|g| = [1j_y IL/"|elIL"|g| wherer = «T +r, and the same for the subspake
Hence, setting

C=maX{|Lr|E(x) ;xEA,I"G[O, T]},

L P

we conclude

|LI|E(XO)| 1/10\!
T SClr).
[L'F e

However, if the claim do not happen then for &lt> 0 there isx” € A such that

IL" | ger o
— " >a.
|LT|F(XT)|2
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Take the measurgs; = fo 8,1 ds, wherex! = X*(x™) and consider a subsequence
[; = 7, converging to a measuye, with suppu) C A. Observe the funct|0||q'L’;|'FE(—f*;l'2
is C* with respect ta. Let

d IL" | £l )
X — O _—
v = g(|Lt|m,>|2

and notice it is continous an. It is true that/ ¢ du > 0. In fact,

T;
. . [L' £l

du = lim ¢du; =Ilim / ds_Ilm—Io <7 .
/‘0 S ¥ o T, OO\ IL e 2

1

Hence, the Theorem of Descomposition on Ergodic Measures implies there is at
ergodic measure with suppv) C suppu) and such thaf ¢ dv > 0. Denote byry =
re(w) = [log|LYg|dv, and Ay = Ar(v) = [log|LY|z|dv, the Lyapunov Exponents
of v with respect toE and F, respectively. It is true thaty < 0 andiy < 0, since
Jodv =xg — 24 > 0 and the condition of domination implies; < Ar. Hence
O< Ag —20p < Ap — 20 = —Ap. ThereforeAr < 0 and so » < 0. Now we claim
that the support of is contained in the orbit of some periodic point of the flow, that
must be a sink. Oseledets’ Theorem [13], asserts ukamost everywhere there is a
unique invariant splittings; @ [X] @ E, for X*. For that and since the splitting & F
is invariant byL* we can callE; thatE @ [X]=E1® [X] andF & [X] = E> ® [X].
Denotei1, A2, Ax; = O their respective Lyapunov Exponents. Notice

AE:/Iog(L’|E)dv:/Iog(det(DX1|E@[x]))dv

= / |0g(det(DX1|El@[x])) dv=2x;+ Alx] = A1
Analogouslyi r = A,; thereforex, > 0 andi, > 0, and the claim follows. O

Now, our setting fits into the arguments of [6] to prove the existence of central stable
and central unstable manifolds tangent to directiégh@nd F, respectively. This is
summarized in the following lemma.

LEMMA 3.2. — For eache > 0 denote the interval, = (—¢, ¢) and letEm (11, M)
be the set o2 embeddings of; on M. There exist two continous sections

@ A > EmbP (11, N)

such that, if we denote¥ (W (x) = & (x)(l,), respectively, they verify the
following properties
(@) T.W&(x) = E(x) and T, W (x) = F(x).
(b) For all &1 € (0,1) there existse; > 0 such that R (W, (x)) € Wi (x,) and
RT(Wgi(x)) C WS (x—y), forall t € [0, 1].
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Notice that®“* (x)(I1) C N, since®* is a section onV and the same fo®“. We
shall call the manifoldV) the (local) central stable manifold amid; the (local) central
unstable manifold. Observe that the second part of the lemma implies the next corollary

COROLLARY 3.3. — Givene > Othere is§ > 0 such that

(@) If y e W (x) anddist(x,, y,) < § for all t € (0, 10), thenR'(y) € W (x,) for
t € (0, 1).

(b) If y e W (x) anddist(x_,, y_,) < 8 for all t € (0, 1p), thenR™"(y) € W (x_;)
fort € (0, 1p).

It is not difficult to see that in our context it is true the following

COROLLARY 3.4.—Letx € A such that for somg < (0, 1) we have
’Lt|E(X)| <)/t, forall r > 0.

Then there exists > 0 such that|R" (W< (x))| — 0 ast — oo; that means the central
stable manifold is in fact a stable one.

3.1. Hyperbolic times of a point

It is possible to prove a version of Pliss’ Lemma [18] for flows. In this case, the proof
is easier than in the case of diffeomorphisms; see [8].

THEOREM 3.5. — Given anys > 0, A € R andc¢ > 0, there existK > 0 such that if
H:[0, T] — R is diferentiable,H (0) =0, H(T) < ¢T andinf(H') > A, then the set

P.={te€l0,T]1|H(s)—H(x)<(c+e)(s—1)forallse[r,T]}

has Lebesgue measure greater tHaki.

Proof. —Takee > 0 and Aas in the hypothesis. Defir@(s) = H(s) — (¢ + €)s. We
assumes is of classC? and it does not have degenerate critical points; that'is;) = 0
if and only if G”(x) # 0. Actually we can assume all their critical values are different,
otherwise, an approximation @f still works. SinceG(0) =0 andG(T) < —eT, itis
possible to define two (perhaps finite) sequences{gaygonsisting of critical points of
G such thatG (x) < G(a;) for everyx > q; (if finite, set the last point,, ., =T, if it is
not so, theny; — T') and{b;} as the first numbeb > a; such thatG(b;) = G(a;+1). Of

courseb; < a; ;1. Let B=—inf G’, then by the Mean Value Theorem
G(a;) — G(b;
% <b—a

On the other hand, the uniqy, (a;, b;) is contained inB,. In fact,
H(s)—H@)=H(s)—(c+&)s— (H()—(c+e)t) +(c+e)(s — 1)
=Gls)—G@)+(c+e)s—r1).

Hence,G(s) —G(t)+ (c+e)(s — 1) < (c+¢&)(s — 1) ifand only if G(s) < G(7). Let
t € (a;, b;), for somei. If for a givens > t we haveG(s) = G(r) thent = b;, because
b; is the first numbeb > a; such thatG (b) = G(a;,1); a contradiction. Therefore,
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n 1 n
leb(Pe) >} (bi —an) > & ; Gl(a) — G(by)]

i=1

1 n 1
== > [G@) — Gaw)] = 2 (Glay) - G(T)).
i=1

Notice G(a;) > 0 since it is a global maximum. Therefore (&) > =¢L > L,
and then lebP,)T~1 > ¢B~L. Finally G'(t) = H'(t) — (¢ + ¢) and B = inf(G) =
(c+e)—A>c+e— A, thatis

Ieb(73£)> e
T “c+e—A

COROLLARY 3.6.— Let X € X1(M) and let A be an invariant compact set with
dominated splitting. Giverz > 0, y <1 and x € A. If there isT > 0 such that
ILT || < yT, then there ik > 0 such that the set

Po(x)={r €0, T1| L | g < (%9 " Vs e [r, T} (1)

is such thateb(P.(x)) > KT, and hence non-empty.

Proof. —Recall the functionHg(t) = log(|L!||) is Ct. Moreover ddt(Hg) =
(D, X(E), E), and henceH'(t)| < || X||c1. Also remember

(D: X' (v), X (x))
[1X ()12

DR (v) = D, X" (v) — X (x).

COROLLARY 3.7.- Giveng > 0, y <1 and xg € A if there exists > 0 such that
IL* |z | < ¥, for all s > 0, then fori = €°90)+¢  the set

P(xo, A) = {T €R||L*|gony| < A° Vs > 0} (2)

is unbounded.

We call the set on (2) the hyperbolic timesxgfrelated toi.
3.2. Reducing Theorem B to a Main Lemma

Now, it is not difficult to see that Theorem B follows from the Theorem 3.8 below,
once we guarantee there can only be finitely many irrational toA on

THEOREM 3.8. — Let X € X?(M) and let A be a compact invariant foX set with
dominated splittingalso assume all periodic points i are hyperbolic of saddle type
andSing(X) N A = @. Then one of the following happens

(1) A is an hyperbolic set.
(2) There exist an irrational toru§” C A.

PROPOSITION 3.9. —There are only finitely many irrational tori on.
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Proof. —Assume by contradiction there are infinitely many irrational tori, named
{7 }ren. Take numbers. < y; < y» < 1 andce > 0 such that(1 + ¢)A < 1. On each
T, there exist a point¥, and some; > 0 such that

|LtF(xk)’ <(A+0of, Vizy
and then, by the domination condition we have
’LtE(xk)’ <MA+0 <y, Vizg.

An application of Theorem 3.5 imply there exift > 0 such that fory* = X7k(x*),
[L'| k| < y5, for all £ > 0. Hence, Corollary 3.4 let us conclude that eathhas a
stable manifold of size > 0.

Lety € A be an accumulation point of tHe*} and denote by, C N, C M an open
ball aroundy of radius smaller tham/3. Still denotey* the points onZ, which are
immediate iterates of the trug. Actually, they also have stable manifolds of uniform
sizee. Notice that it is not possibl&; N X, be a circle for infinitely many, because the
splitting on A is continuous. Moreovefl; N X, is an arc that meets the boundary of the
ball in two different connected components. So, it is not difficult to see therg;aaed
Y eTyNE,, j#k thatT; N X, # ¥ and W: (y*) N 7; # @. This contradiction proves
the proposition. O

In [21], they prove Theorem 3.8 is reduced to the next Main Lemma, and their
arguments work for both, diffeomorphisms and vector fields. We only notice that in
spite of Lemma 2.2, it is elementary to verify thatAfis a compact invariant set with
dominated splitting such that for everye A we have|L!|g )| — 0 and|L™|g)| — 0
asr — oo, thenA is a hyperbolic set.

MAIN LEMMA 1.-— Let Ao C M be a compact transitive invariant set far with a
dominated splitting such thaty N Sing(X) = ¥ and it is not an irrational torus neither
a periodic orbit. If every properly contained invariant subset/Agf is hyperbolic, then
Ao is hyperbolic itself.

4. Asymptotical behavior of dynamical intervals

In order to obtain hyperbolicity over an invariant set with dominated splitting, one
must show that the central manifolds on each point are actual stable and unstabl
manifolds. This is the aim of this section. For that, we shall prove a Denjoy’s like
property which roughly speaking states that smoothness on the vectoXfigtd not
allow the existence of some kind of wandering intervals. (The precise statement is
Proposition 4.2.) LetX € X?(M) and letA be compact invariant set with dominated
splitting such that Sin@{) N A = @ and all periodic points i\ are hyperbolic saddles.
Consider the set

AT =) X7 (cl(V));

t>0
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for some neighborhood such thatV c U;. RecallU; is a neighborhood of\ where
it is possible to define an extension of the invariant 1-cone field gsee Section 2.1).
Notice that this induces an extension of the dominated splitting ofer A*.

We sayl c N, or I C N, are intervals if they are the image of a smooth function
¢:10,1] — N, or N,, respectively. Denote by | the length of the interval.

The following definitions collect the insight of central unstable manifolds and the
property that will make them actual unstable manifolds.

DEFINITION 2.—Let] be an interval contained iV, for somexg € I and lets > 0.

(1) We say! isa-transversal to the direction for some: € (0, 1] if 7,/ C CF (y) C
N,, foranyy e I. Itis E-transversal if it isa-transversal to the directiott for
some0<a < 1.

(2) We sayl is a (8, E)-interval if it is E-transversal,l C (5o V; and |R'(1)| < 8
forall r > 0.

Although these definitions are stated for intervals contained in the normal bundle, we
say aninterval C N, on M is E-transversal o(s, E)-transversal if the interval defined
by .= exp;l(l) is. Notice if I Cc NV is a(8, E)-interval, then exp(/) C A™.

Remark 1. — For any > 0 there isS. > 0 such thatiff is a(8, E)-interval associated
tox e I with § < 8. then, for anyy € I:

D,R!
| Yy xlE(}’)| <(1+c)t

[L' £l

Also is true a similar statement with respect to fhalirection.

(1-0o'<

For (8, E)-intervals contained in sets with dominated splitting we have stable
manifolds, as we shall see on the next lemma.Atransversal interval which do not
grow its length on future iterations, it must contract exponentially alongrtikrection.

LEMMA 4.1.— For anyy € (4, 1) there isé; > 0 such that if/ is a (§, E)-interval,
I C N, x € I,with§ < 81, then there iy > 0 such that

IL°|e@g| <¥°, Vs >0
Moreover, for anyy € ,, = exp, (R"(I)) we have
|DyR* ey <¥®, Vs =0

and hence, on any point aig we have a stable manifold of uniform size.

Proof. —Fix y € (1, 1) andA, < 1 such thamz‘1 < y.Letc>0and )% < 1 such that
(1—c)Ay < A3. Taked; < 8. of Remark 1, and lef be a($, E)-interval with§ < 81,
associated tag € 7.

We claim there iso > 0 such thalL*| 7| < 47", for all s > 0. To prove the claim
suppose there exist a sequence> co ast — oo such that for alk > 0

L pep| 2 227
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Since|/,| < 8., we have:
IDy R} |y

1-0"<
[L5| el

<(1+0)".

Then
IDyRY | = (L= ) L% [py| = (L= 0)h2) " = 25"

It is a straight forward computation that the#,, ;| > A3 |[,|. If ¢ is big enough, we
achieve a contradiction td, ., | < é.. Hence, the claim follows.
Actually, we have proved thaleE(x,oﬂ < (Mgl)s, for all s > 0. Notice that ifc > 0

is such that1 + c)Mgl < y ands > 0 is small enough that for anye f,o ands > 0 we
have

IDy Ry, £
IL* £
then|DyR; gyl < y*, forally € f,o and for alls > 0, as we required. Corollary 3.4

guarantees then stable manifolds on pointgobf uniform size. 0

(1-07< <(1+0¢),

Maximal (8, E)-intervals. Let I C N,, be a (8, E)-interval associated to some
xo € 1. Denote byl, := R'(I) for t € R*T. We seek for a family of$, E)-intervals J,
suchthatl, c J, and alsaR'~*(J;) C J, forall0 < s < ¢, and any € R*; being maximal
for these properties. In order to find it we appeal to Zorn’s Lemma in the following way:
Consider the set of functions frof into the compact connected subsets of the normal
bundleN/, denoted byP (N):

F={J:R— PWN)|J(s) TNy, I, CJ(s), J(s)isa(s, E)-interval
andR'(J(s)) C J(s +1), Vs, 1 € R*}

with the order relation:J < K if and only if J(s) C K(s), Vs € R*. Observe that
the function(-) = R“(I) belongs toF. Moreover, any totally ordered chain has a
supremum inF, say,{J’ € F;i € T'}, thenJ*®(s) = U, J' (s), defined for each € R
belongs toF. Therefore, there is a maximal element ndenoted byJ; := J(s). If
there is an intervak C N, such that/; c K for somes € R* and|R'(K)| < for all

t > 0, then the familyK (1) := J, for t < s and K (r) := R'(K) for ¢ > s belongs taF;
contradicting the facf () is a maximal element of.

Notice that Lemma 4.1 implies the existenceSgt 0 such that if{ J;} is a maximal
family of (8, E)-intervals related to &, E)-interval, sayl, with § < §y. Then, there
exist numbers > 0 andegg > 0 such that for every € J;, the center-stable manifold
W (y) is in fact a true stable manifold fak’, that is, |[R" (W, (y))| — 0 ast — oc.
Moreover there exist' > 0 andy € (0, 1) such that

]R;S (exp,, (Wgo(y)))| < Cy" foranyreR,

that is, exp, (W, (»)) is a local stable manifold foR; . We will denote alsdV; (y) :=

exg%(Wgo(y)), except when it is relevant to remark the difference. ForsaayP denote
by J& :=Uye,, Wi(») C M.
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4.1. Denjoy’s like property

Let I C N,, for somexqo € I be a(s, E)-interval. Denote byl, = exp, (I,) C M,
wherel, = R'(I) andx, := X' (x). Define thew-limit set of o asw (Io) = U, @(»);
wherew (y) is the usuab-limit set of y according to the flowx”.

PROPOSITION 4.2. — There isdg > 0 such that if/ is a (8, E)-interval associated
to somex € I for somes < &g, then there are two possibilitieso (7)) C PerX’) or
w(I)="T,where7 is an irrational torus.

Proof. —Let A < 1 be the number in the dominated splitting condition. ig (A, 1)
and takes; > 0 from Lemma 4.1. Lefo C M be a(s, E)-interval associated tey with
5 < 81 Denote byl, = R (Ip). Let{J, | s € RT} be a maximal famlly ofé, E)-intervals
for I, = exp‘l(l) constructed above and denafg = exp, (J) c M. Lemma 4.1
implies that there exisp > 0 for which we have defined a stable manifold of sige
on any point of/,,. This fact together with Corollary 3.7 imply that the set of hyperbolic
times ofxg related toy, P(x,,), is unbounded. Corollary 3.4 assert that for aryP (x,,)
and on any point of;, we also have stable manifolds of sizge Since we are interested
on asymptotical properties af we shall assumey = 0; in fact, w(I) C w(J,). We
shall denote, by simplicity® = P(xo). The following situations requires two different
arguments:

() There exist some, s € P, t < s, for whichJ¢ N [R'™*(J,)]* # 0.

() Foranyz,s € P, we have/ N[R™°(Jy)]* =0
Let us first deal with case I. For that, we shall assume first thatiny,| = 0. If we
can guarantee the hypothesis of the following lemma we shall conclude the thesis o
Proposition 4.2 in this case.

LEMMA 4.3. —If there exists € P andr > 0 such thatR;x(Js) C J¢, then there is a
periodic orbit p € A such thatw (1) C w(Jy) = O(p).

Proof. —Definer : J¢ — J;, a projection along stable manifolds. Ther R} :J; —
Js Is a continuous map of the interval. Sin&¢ (J;) C J;, we seer (R} (J;)) C J;.
Therefore, there ig € J; such thatR| (z) € W;(z); and this can only happen if both
z, R, (z) € W*(p) of some perlodlc pomtp € A. Moreover, p must be a sink and
w(l) Cw(Jo)=0(p). O

The following two claims let us fit into the hypothesis of the previous lemma.

CLAM 1. - '[here isé’ > 0, so > 0 and c> 0 such that, if/ is a (&8', E)-interval
satisfyingJ* N J # @, withsg < s € P, thenJ C J¢.

CLAIM 2.— There iss € P, s > so andz > 0 in such a wayW., (J;) N R (Jy) # ¥,
and R} (Jy) is a (', E)-interval.

Proof of Claiml. —Let n; > 0 such tha{l + n1)A < 1. As we see in Remark 1, there
is 8,, > 0 such that ifK is a(3,,, E)-interval we haveyz, zo € K
|ID.R'|g)l

<@+4+n)", V=0 (3
[D R | g (20l
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Let us suppose there i a (3,,, E)-interval such that/® N J # ¢ for somec > 0.
ObserveJ C Df for all + > 0. Then there are pointgy € J and yg € J; such that
20 € W2.(30). Moreover for any > 0 there is a positive. > 0 such that

|Dzo xle(zo)|

<@A+n)", Vi=0 (4)
IDy R £yl

since both points lay on the same stable manifft(y).

Notice that ifA. = (1+ n1) (1 + 7o) < 1, inequalities (3) and (4) imply that on any
point of J there are stable manifolds of siz&.) > 0. Actually, 5. — 0 asc — 0 and
¢'(%.) do not decreases. S). (R )|l <Al fort>0andallz e J.

Fix c e (0, %) such thati, < 1 and takez > 0 such thatce < & < (1 — ¢)e and

< €' (A.). Takesg € P in such a way that for any > s, we have 2J,| < §. Then
for alzeJn J we haveW! (z) C JZ andWi(z) N J; # 0.

On the other hand, there is some constﬁrtt> 0 such that for anyE-transversal
interval A C J¢ we have|R'(A)| < C|R'(J)| for any > 0. Takes’ such thats/2 +
C8' < 5. If J is not properly contained id?, there is aC? extension of the interval,,
named/, U A with A C J¢, which is E-transversal. Moreover,

R'(J;UA) <|R, (J)|+ |R, (A)| <8/2+ C8§ <.

The last inequality contradicts the fact &f being maximal$, E)-interval, and give us
the claim. O

Proof of Claim2. —Actually, in the previous argument we could takebig enough
in such a way thatJ;| < § andA* < ¢ also. The intersection property (hypothesis of
case ) implies

JENR, (Jy) # 0
for some positive. SinceR;, (J;) is a(§’, E)-interval we are done. O

Now we assume limsypy |Js| > 0. Considering any convergent subsequence we
obtain a limit interval/; — J provided of a stable manifolds, sa, := .., W} (z) for
anye < gg. There is no harm if we assume th&p? lies in someN, for somex € J N A.

LEMMA 4.4.—If p € J® NPerX") thenp is hyperbolic andv (J) C PerX").

Proof. —Notice thatp € A*. Let us suppose it is a hyperbolic saddle. Observe that
J N W¥(p) is non-empty and transversal. Then, the Inclination Lemirhgmma in
[15]) implies that|W*(p)| < 8, since|R.(J)| < § for all + > 0. Hence, there must be
two periodical sinksp1, p, bounding a cylinder that contains the orbit @f Therefore,
if y € J thew-limit of y is eitherp,, p, or p. A similar argument implies the thesis in
the case ofp being a sink or a saddle node, and these are the only possibilities; since
p € J¢ has a stable manifold.

Hence, we assume there are no periodic orbits passing thréugNotice that the
set 9J° consists of boundary of two kindst*(J°) := ..y, WS(2) and 3“(J°) :=
a(J%) ~ 9*(J*®). This distinction allows us to make the next definition.
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DEeFINITION 3.—If a setA is such thatA N J¢ £ ¢ we say A is stably contained on
JEiFANI(JT®) = (ZJ and we denote it by c* J¢. We also define, fpr positiveand,
the numberp (J¢, J¢) = p € RT as the first time such tha? (J¢) N J* # @.

PROPOSITION 4.5. — There exists two subintervals ¢ L ¢ J such thatw(J) =
w(L), numberd <ty < t; andn > 0 such that

(1) Ro(L") c* L" for to = p(L", L"), and R®(L") N L" = .

(2) R(L"y c* L" for ty = p(L", L").

Before we prove this proposition we need a lemma.

LEMMA 4.6.— LetL C J be an interval, not containing a periodic orbit

(1) If there existsM > 0 such thatR; (L) N L =¢ for all s < M then there ig’ > 0
such thatsg = p(L¢', L) > M.

(2) Given anyc € (0,1). If M as above is such tha&\” < ¢(1— A™), then there is
¢ € (0, ¢) such thatrip = p(L*, L¢*") and R™(L,) C* L.

Proof. —Item (1). Fix someM > 0 such thatR} (L) N L =¢ for all s < M. Takes €
(0, 9), setso = p(L*, L*) > 0 and assume < M. By hypothesisR:°(L) N L = @; then
there ise; > 0 such thatR$°(L) N L = @. Notice thats; = p (L, L*1) > 5o+ 1, > So.
Repeating this argument a finite number of times we obtain sgme ¢, > 0 and
(L, L*") > M which is what we wanted to prove.

Item (2). Take anyc € (0,1). Since 2™ < ¢(1 — A™) there isc; > 0 such that
c1 + % < ¢. As in the previous item, leto = p(L¢', L¢") > M. We shall construct
two sequences of numbers inductively, day, s;};en. ¢1 IS already given. Define for
i>1:5;=p(L%, L5y and fori > 2: ¢; = inf{b > 0| R%-1(L?) C® L**).

Let7 =min{i e N|s; =s;,1} (or equivalentlyc; 1 < ¢;), with the conventior? = co
if the set is empty. Observe that for< I we havec;, 1 > ¢; and alsos;;; < s;; since
at the time we consider a wider box arounhdit is possible we catch some previous
returns to it. Notices; > sg sincec; < ¢ < 1. On the other hand, far < I, we have
¢; < 20%-1 + ¢;_4, that is the maximal stable width of the return plus the width of the
¢’c;_1-box aroundL. Hence

i-1
¢ <2 Z)\Sf + c1.
j=1
Inductively, for alli € {j, ..., 7} we have thak; > so andc; < c. We claim thatc; < ¢
and hences; > so sinceL%¢" C L. Since we have; —s; 1 > 0, thens; — s;.1 > 1.,
and thereforey;_, > so+ (r — Dn, forr € {1,...,i — 1}. Hence,

i=2 2e M
¢; <28y AT 4oy < +c1<ec,
XX rz:% 1 1_ 1

that is what we claimed.
Sincesg < s1 ands; < s; — in,, there must be somiesuch thats; = s; 1. Therefore
[ < o00. Takec =¢;, andrg:=s; = p(LF, L°%). O
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COROLLARY 4.7.—Denote byl ={z € L | L N R(L*') # ¥}, and setl. = L ~ L.
ThenL is an interval and there ig” > 0 such thatc” € (¢’, ¢) and R'*(L®) c® L¢"*.

Proof. —L is an interval since there are no periodic orbits passing thralighlo
obtain the second part of the corollary denotelby= ¢’ (from the previous lemma) and
observer; = p(L¢, I:dlg/) > top > M. Then, we can apply the same arguments with the
interval L instead ofL. O

LEMMA 4.8. — If there is no periodic orbit on/ then for anyM > O there is a
subintervalL C J such thatR{(L)NL =@ fors < M.

Proof. —Let us suppose that for 9 so < M, the first return of/¢ into itself, happens
that R7°(J) N J # . Since there is no periodic orbit i we know one of the borders
of J, sayJ*, must return inside the box. We cale R:°(J) N J the farthest pointto'*.
Letw € J such thatR{*(w) =z € J.

It is important we verifyR:([w, J*]°) C J*. This will guarantee we do not lose any
point of the box and so, no point af(/). Let L = J ~ [w, J*] and we seek for the first
return of the box orL, that iss; > 0 such that:

RE(LE) N LE £,

Observe now thak; (L) N L =@ for s <o+ 1.

If now we can sayR:(L) N L =§ for s < M, we are done. However, if it does not
happen we repeat the above constructiori. pabtaining another subinterval c L c J
for which

RIULYNL =@; Vs <sp+ 1.

Sinces, > s1 + 1. > so + 21, We are sure to reachM in finite steps. Observe the way
we cut the intervall to obtainL guarantee that any orbit dfis traced by one of.. O

Now, we can give a proof for Proposition 4.5.

Proof of Proposition 4.5. Fix somec < 1 and takeM > 0 big enough such that
2M < (1= a"). Using Lemma 4.8 set C J such thatR!(L)NL =¢ forall s <M
andw (L) = w(J). Now, Lemma 4.6 says there exists> 0 such thajp (L®°, L) > M
and there exists & ¢’ < ¢ such thatR(L®) C* L<*0o whereto = p(L®0, L¢%0),

Moreover, on Corollary 4.7 we defined the set

L={zeL|L*NRY(L*)#0}.

Denote byl = L~ L; and so, there is’ > O such that’ < ¢ < ¢ andR'* (L) c* L%,
wheret; = p (L0, L"%).

Take n = ¢"gp. Since ¢’ < ¢’ < ¢ we know thatL<® c L<® c L® and then
p (Lo, L€%0) = p(L®, L<"0) = p(L", L"). Hence we have found that

(1) R(L") * L" andRO(L") N L" = @, for to = p(L", L").

(2) Ra(L") c* L", wheret; = p(L", L").
This is what we wanted to prove to conclude Proposition 415.
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Now, we are ready to construct an irrational torus and then finish the proof in case |
Let Do := L" and ¢y = p(Dg, Dg), given on Proposition 4.5. Recaldlo ¢ N, C M
for somex € AT. Moreover, we can think there i¥, an extension ofN, where
R®(Dg) C X. Define Py: Dy — X as Po(-) = R(-). Recall that the orbit of no point
of Dy falls into a singularity. Sinc&°(Dg) N Do # @, there is a point € Dy such that
Py(z) € Do. Therefore, we can extend the functiofi(-) to Dy := Do U Po(Dy). In this
way we obtain an extension @ called P;: D; — X.

By induction, we can repeat this procedure until we find saneN such that

DinlJS;#0 ()

j<i

where S1 = {X*(y) | y € Dgands € [0, 7}(y))}, and S; is defined inductively. If
DiNS;#WPforl<j<nthenD;_; NS #¢. Taken =n — j. We can thinkD, is
glued smoothly taDy. In fact, this is possible since there is a functioit D, N 1 —

R~ U {0}, the time a point on the intersection spent to flow backDg that is: for

y € D, N Sy, X7V (y) € Dg. Moreover, we can extend the domain ©f to some of
the lastD, U D,_1 U ---, and glueing this function with the zero function defined on
the first boxes of the sequené® U D, U ---. Observe that);, t*(D;) is a connected
smooth surface embedded M. Observe the intersection @, and Dy corresponds to
the first return ofi,, into itself, calleds; in Proposition 4.5. Henc®, c* Dy, and more
important, there is suchin (5) and this process of extension stops.

By now, we restrict our attention tbgy: Dg splits into three rectanglegt U C U B
defined asA = (R°)~1(Do N D1), B = (RY)~1(Dy N D,) and C the region inDy in
betweenA and B. Denote byG: Dy — Dq the first return map of the flow td®q
and notice thatG(A) = Dy N D, andG(B) = Dy N D,.. Moreover, we notice also that
R(C) c D1 andR2(C) C D,. Denote byDq := Do U R®(C) U R1(C), and consider
G : Dy — Dy, the corresponding first return map. Observe thatGii) = Dy D; and
G(B) = DN D,. Also G(C) = R"9(C) andG(R®(C)) = R'*(C); the only missing part
is the image ofR!1(C). It is not difficult to see that the orbit of points @ pass through
Do near the inner border points 6f(A) andG (B) (see Fig. 1)

LEMMA 4.9. —If there there is no periodic orbit passing throudh thenG|Rr1(C) is
continuous. ’

Proof. —If it is not the case, the rectangte splits into at least two sub-rectangles,
call C, andCp those sharing part of its boundary withand B, respectively. Observe

R (C) C B

"
()

Ry (C)

Fig. 1.
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G(R*(C4)) = G(C,) and is connected i@ (B), and G(R*(Cp)) = G(Cp) and is
connected taG(A). Note that in both cases the other stable boundary must reach the
stable boundary oDo. In fact, if not, we are missing some points b that actually
passes in the formed gap, and this is not possible sinisea true first return map 0.

It is not difficult to see that in this setting either o Gjsup:A U B — J or
7 0 Glc,ucy :Ca U Cp — J is onto. Therefore there existse J that G(z) € W, (2),
and hence we obtain a periodic orbit f#% which is a contradiction. Henog|
continuous and s@;|¢ istoo. O

RO '

Therefore, the domain aof,, the setDy U --- U D, is an embedded ring. It is not
difficult to verify that P (Do U --- U D,) — S asm — oo where S is an invariant
circle. Finally note that the saturated §fby the flow,7 = {X'(y) | y € S andr € R}
is an embedded torus avf; hencew (/) C w(J) = 7. Moreover, P, |s corresponds to
the Poincaré first return map of’ to S. Since P, is a diffeomorphism of the circle
without periodic points, it is conjugated to an irrational rotation (see [5]). Therefore,
the restriction ofX’ to 7 is conjugated to a linear irrational flow on the torus. Here we
conclude the proof of Proposition 4.2 in the case I.

Now we deal with the case II, that ig; N [R.™(J,)]° =@, for all z, s € P; but first,
we shall exploit this disjointness property to measure the area of the strip defined by thi
family {J;}.

Remark?2. — Forany seA C N, C M, define

_ N s
S(A)_{X(z)lzeA se{ - 2]}

There is a constank > 0 only depending on|X||-: such that ifA = J¢, for some
interval J ande > 0 thenS(J) := S(J*) is such thatk Vol(S(J)) > |J]|.

LEMMA 4.10. — For anys € P we have that

o
/|R,’CX(JS)] dr < +o0,
0

and hence|R; (J;)| — O0ast — oo.

Proof. —Fix somes € P and denote by = J; andx = x,. Notice that for all,z € P
such that/ — ¢| > n, we have:

S(RL()) NS(RL()) = 1. (6)

Let us calculate the integrgl® |R%(J)|dr. For that, first observe, |R.(J)|dr <
K Vol(M). In fact, let @ be a partition ofP of elements of diameter less than.
Remark 2, together with the disjointness property on (6) imply:

/|R’(J)ydt Z/ny(J)|dt K ) Vol(S(Rie(J))) < K Vol(M)
0eQp QeQ

wheretp € Q € Q.
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Now arrange the elements &f in an ascending way, sa@ = {[«;, b;1}, i € N, such
thath;,_1 <ai; and(b;_1,a;) N Q =@ forany Q € Q andi € N. Notice that there exists

y > 0suchthatL~*|g,)| = y* foranys € (b;_1, a;); otherwise, there must be a point
of P betweerb,;_; anda;, which is impossible. Using the fact that

L9 | | L | < A7
we obtain thav'r € (0,a; — b;_1):

> (7).

L7 Py

By a similar argument to the one we use in the proof of Lemma 4.1 there is
w € (0,1) such that| D, R " |z, | < u', for anyr € (0,a; — b;_1), z € RY(J), where

F(2) =T.(R§ ().

Hence,
|R" (RE(D))| / |D, (R SRS
RY(D)
Therefore,
a;—bi_1 a;—b;_1 @
Rl <|RE] [ opar< HDL
0 0 ~logn

A similar argument of disjointness used to bound the integral over the hyperbolic times
implies}"; [R%+1(J)| < K Vol(M). Therefore,

1
R.(J gKVlM(l——).
R[y (] < K Vol (1 o

Finally, the function logR’ (/)| is uniformly continuous om; hence|R'(J)| — O as
t—>o00. O

The following lemma measures how much the orbits of the flowdiffer from the
orbits by R’.

LEMMA 4.11. —There exists a constaat > 0 such that if an interval C D', for alll
t > 0then, for anyy, w € R%.(I), andr, s > 0 we have the following inequality

T () = (w)| < c/|R;(1>|dz.

Proof. —Recall that:

[s]-1

T (y) = Z o (R, )+ PRV (),
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then
[s]—1

LGRS MUDIES Z!xw R, () =7, (R, (w)]

_+_|_L.s [s] (R[s (y)) s~ s( s](w)>|

Now, the functionz? is uniformly Lipschitz with some constait > 0. Hence,

-1

[s] o
<C IR, U]+ [RYU)| <€ [ IR (o)
i=0 ;

and then the lemma follows.O

Let us assume there arg< 11, andr, 11 € P such thatJ,f) NJ:#9. In this case
we shall obtain a sequence of times on which this intersection is at a small enoug}
scale that allow us to control the limit. For that, cZll= J;; N Jfl, and observe that
RIL70(Z) C J, sinceRiL™0(J;) C J;:. This implies the existence of certaih> 0 such
that Rgl(J;i) NnJg #0. Remember it is necessary to fix a destination section any time
we define some;. In this case we select the timein such a way that; lie in some
smooth extension of the section owgr. Moreover, we can take this extension in such a
way the tangent space ap is exactly\,:.

Letr, =1 +t* and setC(#1) := J. Notice thatC(z;) C D)’:l, then Rjgl"l(C(tl)) N
C(t1) # @, by construction. Now se€ () := Rjgl—’l(C(tl)). Inductively, taker;,; =
t; +t*, such thatRi+7" (C(t;)) N C(;) # ¥, and denoteC (t; 1) := R+~ (C(t;)) (see
Fig. 2). ' ’

Notice that|t; 1 — t;| > 7., Since any point must flow away certain amount of time
before it returns into a neighborhood of it (Section 2.2). For ariye N such thatj < i,
Lemma 4.11 implies that for eash> 0 andy € R o (Ji;) we have that

oo
7, 0 =sl<C [ IR, ()]
ti—t;

Rt C(t2)

Ttq

/ Tty 4t>

thl
JtEo } Z C(tl) = Jt61
v

t1—to
R;

Fig. 2.
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Hence, for; large enough we have that for alle Ry, " (J;,),
S s
[T () —s| <+ 7
j 3

Fix j € N such that also verifies thafeg)’/ /(—log(L)) < 1./3. We may suppose

x, — z € M, asi — oo. Hence, Lemma 4.10 implies thaﬁ,’},j_”'(],j) =J, >z, as

i — co. Moreover, R, " (C(t;)) — z, asi — oco. However, the inequality on (7) only
implies that '

lim X0 (y) € {X’(z) Ite [—% %]} ®)

for any y e J,,. Moreover (8) is also valid for any € R\ " (J;°) since

72,00 = 5| <[z, ) = 75, )| + [, (w) =

for anyy e R, (W, (i), whered € J,, andRY, * () = w.

On the other hand, we know that(z;) N C(¢;;1) # ¥, that is
Ry NRTTHIE) #0.
This implies that there exists;, w, € J;, such that
R, (W?(2)) C W3, (i),

since W5 () = W, (y), for both,k = 1, 2; and hence, they are coherent because the
center stable manifolds are dynamically defined.

Let i3 = RI (iz) € W5, (ib1). Denote bywy = Ry, ™ (i) € C (1), for k =23,
Notice there is > 1, such thatX* (w,) = ws. Hence, lim_, o, X~ (w3) = X'(z), where
lI| < n4/3. On the other hand

I|m Xti—tj (XS(w2)) — Xl/(Xs(Z)) e {X’(Z) | 1t e |:—n_3*, %:| }v

sinces > n,/3 it implies thatz is periodic.
Finally, if for anyz, s € P happens thai’ N J° = ¢, by a similar calculation as in the
proof the Lemma 4.10, we obtain

/|Js|ds<+oo and hence, |J;| — 0 ass — oo.
P

Therefore, if we prove that there exists a sequence of timésy such that J;, | = 4,
we get a contradiction. Now, like in Schwartz’ proof of Denjoy’s Lemma we have that
for all J; maximal there exists > 0 such thatR} (J;)| = 4. Itis only left to verify that
t + s is a hyperbolic time. However, if it is not the case, like in the proof of Lemma 4.10
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the interval must increase its length contradicting the fact of the length Belhgre we
finish the proof of Proposition 4.2.

Once we have proved Proposition 4.2, it is not difficult to verify the following
corollary, regarding that only a finite number of irrational tori can exist on an admissible
neighborhood ofA (see Section 3).

COROLLARY 4.12. —If we assume thah has a dominated splitting and it does not
contain an irrational torus, there i8; > 0 and a neighborhood’ of A where for any
(8, E)-interval, I C V with § < 8y, we have thatv (1) C Per(X'|y).

All these properties are still valid fo(s, F)-intervals, considering the flow-time
backwards.

4.2. Dynamically defined local invariant manifolds

AssumeA is a compact invariant set af’ with a dominated splitting, not containing
an irrational torus. As we see in Corollary 4.12, therégs- O such that any (3, F)
interval, § < 8o hasw(I) C PerX'|y) for some appropriate admissible neighborhood
V.

LEMMA 4.13. — There existds € (0, §g) such that if any periodic poinp € A has
one of its connected componentsWf (p) — {p}, say W, such that|R;,(W)| < 83 for
all + > 0, then the other endpoint which is nptis periodic and it is not hyperbolic of
saddle type. Moreover, it is a sink or a non-hyperbolic periodic point.

Proof. —Let U; > A be a neighborhood where it is defined an extension of the
invariant cone field ofA. Let §3 < 8o be a positive number such that any ball of radius
83 centered on a point ok is contained inU. Take a periodic poinp andW as in the
hypothesis of the lemma. There is a numhgs 0 such thatkR)y (W) = W. In fact, ty
is the period ofp or twice. Notice thatW is a (83, E)-interval. Sinceg € V; it is well
defined the direction(¢) = T,(W) and|L"|f,| < 1 and hence, by the domination
condition we have thetL| g, | < A < 1. Hence, ifp is hyperbolic it must be a sink.

The following lemma is a fundamental application of Proposition 4.2.

LEMMA 4.14. —For all ¢ € (0, &p) there isy =y (¢) > 0 such that
(1) For all + > 0 we have that
(@) R(WH(x)) C W (x—y).
(b) RL(WS (x)) C WE (x,).
(2) Giveny € (0, v (5p)) we have
€)) |R;’(WV9” (x))| > 0ast — oo, or x € W"(p) for some periodic poinp
andp e W3 (x).
(b) |R,’C(W}§‘Y (x))| — 0ast — oo, or x € W*(p) for some periodic poinp and
pEWI(x).

Proof. —We shall only prove the statement for central unstable manifold since the
same argument works for the central stable manifolds. For item 1 dgkieom
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Proposition 4.2 and let < §p. Recall that Corollary 3.3 assert there is<®5 < &g

such that if: |[R™*(W(x))| < 8 for s € [0,¢], then R™*(W*(x)) C W (x_y) for

s € [0,¢]. Arguing by contradiction, assume the statement of item (1) does not hold.
Then there exist a sequence of numbgys— 0, pointsx” € A and timesm, — oo

such that|R™" (W3 (x"))| > 6. We should be more precise on how this bound is
exceeded; that iSLR_‘Y(W)fj‘(x”)H < § for s € (0,m,), and |R™"(Wyi(x")| = .

Let us write I, = R (Wi(x™)). At least for a subsequence, we can assume that
y' = X" (x") — z € A and alsol,, converges to some intervaltransversal to thé&
direction. Noticg /| < § andz € cl(1). By construction: ¢ Dom(R") =V, forallt >0
and|R!(I)| < &g for all r > 0. Hence is &8, E)-interval. Now, since; € cl(1) we know

w(z) = p € PerX") as Proposition 4.2 says. On the other hamds hyperbolic since

p € A. Thereforez € W*(p). Observe that one connected componenWdi p) \ {p}

has length less thah In fact, W*(p) is the limit of the intervalg/,| < § andz € cl(1).
Hence, the previous lemma implies the other end point must be a periodic point and nc
an hyperbolic saddle. It may happen thiath W*(p) # @ for n >> 1. In this case we

get a contradiction with the Inclination Lemma, since this intersection is transversal
and R™(I,) = R~ (Rm"(W;f(x”))) — 0 asn — oo. Hence, I, N W*(p) = @ for

n arbitrarily large. In this casep(y") C A is the other endpoint of the connected
component ofW*(p) ~ {p} of length less tha. Thenw(y") is a periodic sink or a
non-hyperbolic periodic point. This is a contradiction since all periodic points are
hyperbolic of saddle type, concluding the proof of item (1).

To prove item (2): Také < §(yo), and letx € A be a point such that there exists- O
and a sequence of timgs— oo in such a way R~ (WS (x))| = n. Last item guarantees
thatn < 6o, since|R"(W;”(x))| < & for anyt > 0. As in the previous case, we can
obtain a sequence of intervalg:= R~ (W;"(x)) converging to somen, E)-interval
called, wherez € cl(I), andz € A. Hencez € W*(p) for some periodic poinp € A of
saddle type. Observeis transversal taV*(p), even in the case ¢ Int(/). Avoiding a
contradiction with the Inclination Lemma we have theét* (p)| < n < 8o. If z € Int(1),
asy, := X'*(x) — z we concludey, € W*(p). Otherwise we get a contradiction since
both connected components Bt (p) \ {p} have length less thady, and hencev (x)
must be a sink or a non-hyperbolic periodic point. Supposep. Then fork >> 1
all y, = X% (x) are contained in some fundamental neighborhoodVéfp). This is
a contradiction, sincév*(p) do not have self-intersections. Henge= p. Therefore
yi € Wii.(p). Otherwisew (x) must be a sink or a non-hyperbolic periodic point. Hence,
x = p, proving item (2) in case € int(/).

It is left to verify the case when ¢ int(1). Observe:R‘fk(W;” )NWs(p)=ILnN
W*(p) and this intersection is not empty; otherwise, we find a contradiction in
a similar way as in the proof of item (1). Combining the following two facts:
|R’(R"k(W;“(x)))| <& for r € (0,1) and X *(x) — z ask — oo we conclude
x € W"(p). Moreoverx € Wy (p). If p ¢ Wi"(x), asy, — p whenk — oo and
|R"k(W;“ (x))| do not converges to 0 we have thfat’k(W;”(x)) N Ws(p) # {p} for
k >> 0, and in particulad c W*(p), a contradiction. Hence < WVC” (x), and we are
done. O



A. ARROYO, F. RODRIGUEZ HERTZ / Ann. |. H. Poincaré — AN 20 (2003) 805-841 829

5. Proof of Main Lemma

In this section we shall give a proof for the Main Lemma, stated on Section 3. Before
we do that, some effort will be spent constructing two-dimensional boxes around certair
points with nice properties of recurrence. These boxes shall allow us to treat the probler
in a very similar way as in the case of diffeomorphisms on surfaces. On the other hand
under the hypothesis of the Main Lemma, we shall obtain more dynamical properties
on the central stable and central unstable manifolds. Let us begin defining the standal
box around a point im\; when A has a dominated splitting, and the notion of distortion
along thecs-direction on such boxes.

Let x € A be given. For any two intervald C Wyt (x) and T C Wi (x), both
containing the point(x, 0) € N,, we call the box, or(J, T)-box, aroundx the set
By (J) =exp, (T x J), with boundariesd* (Br(J)) = exp, (0T x J) ando“(Br(J)) =
exp, (T x daJ). Observe that if the size of the box, s@y| + |/| is small enough, then
3 (Br(J)) is transversal to thé&-direction and als®““(Br(J)) is transversal to the
F-direction. Also we can assume that for ang A, 9*(Br(J)) N Wy (y) are relative
open sets fore = c¢s, cu. If By(J)isabox andc € T’ C T, we sayBr/(J) is a sub-box
of By (J) ifitis a box ando“ By (J) C 3 By (J). For simplicity, we shall denote only
B.(J), whenT C W& (x).

DEFINITION 4.—A boxB,(J) has distortionC > 0, or precisely distortion along the
cs-direction, if for any two intervald/;, J> C B.(J), both transversal to th& direction
and whose end points lie #f* B, (J) happens that

1 < 1(J1) .

C ()

An equivalent way to obtain such distortion is by means of a projection along
some foliation close to thé&-direction defined on the box. Precisely, &t* be the
foliation obtained by integrating somgé* vector fieldY defined onB,(J) such that
Y(p) € CE(p), for all p € int(B.(J)) and forp € 3““(B.(J)), Y (p) € T,0"(B.(J)).

If we denote bylT = I1(J1, J2) the projection along the leaves &7 between the two
intervals Jy, J,, then the boxB,(J) has distortionC if there existsC > 0 such that
/c<m<c.

In [21] they guarantee distortion on a dynamical box if it is provided of some bound
on the sum of the length of the pre-images of the leaves of the foliation on the box. This
is still valid in our context, since the generalized Poincaré transformation, behaves like
a diffeomorphism (see Corollary 3.5 of [21]), and it can be stated as follows:

COROLLARY 5.1. — There existg (< §,) such that if for some € B.(J) N A and
n > 0we have

Ly @] <Ay, for0O<r<n
and the boxB(n) := B(R;"(J(z))) satisfies that
Q) R} (B(n)) C B:(J) and R (0“°B(n)) C 9“ B.(J),
(2) R (R7"(J(2))) has diameter less than for 0 < <n,
then there exist€’; such thatB(R"(J (z))) has distortionC;.
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Using this corollary, we can prove more dynamical properties for central manifolds.

LEMMA 5.2. — AssumeA is transitive and every proper compact invariant subset
of A is hyperbolic, then eithefR"(W;*(x))| — 0 ast — oo for any x € A or the
direction F is expandingthat is,|L~'|F (x)| — 0 ast — 00).

Proof. —ObserveA is not a periodic orbit of the flow. Suppose therexis A such
that IimsupR;’(W;" (x))| > 0. Lemma 4.14 implies there is a periodic orpiE A such
that one of the components & (p) — {p} has length less thady. Also Lemma 4.13
implies the endpoint of this componeqt#£ p, is a sink or a non-hyperbolic periodic
point, and sog ¢ A.

SinceA is transitive and non-trivial, there ig € A ~ Per(X") such thatcg € W*(p).
Moreover, there is a small neighborhood xaf, call it U c N, divided into two
components byw< (xq) € W*(p), where on one side, say the “upper” one, we have
the samew-limit asg.

Takel < A1 < A2 < Az < 1, andc > 0 such thaia;! < 1, and(1+ ¢)A, < A3. Take
8§ > 0 such that ifl is a (8, E)-interval onz for § < &, then for ally € I we have:

[L'| p(yl

(L—¢) < 7O
|DRy|1?‘(y)|

<A+o)f

whereF (y) =T,1.
Let B.(J) be a box forxg contained inU and even so small such that

R (B.(JD))NB.(JY) =0, Vt#0

and|R(J(y)| <4, foranyy € B.(J) N A andt > O; wheres + & <n < 7 (r from
Corollary 5.1 and; the size of the box).
For any givery € B,(J) N A denote byJ " (z) = J(z) N B.(J") and for it we have:

R'(J*()NB.(JT)=0, Vt>0.

Let B.,(J) be a sub-box for a positive; < £/4. We claim there iX > 0 such that
foranyz € B, (J) N A:

/ R (J*@)|dr < K
t>0

foranyz € B, (J) NA.

Once established this claim, the argument on the proof of Lemma 3.5.2 of [21]
concludes the thesis of the lemma.

Let us prove the claim. Fix an arbitrary point B.,(J) N A. And consider the set

M, ={m e R" | |L'|g_,| <AH, Vi €[0,m]}.
Corollary 5.1 implies that for any: € M, the box

B(m) = B,,(R;"(J*(2)))
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has distortionC. In fact, it is true thatR? (B(m)) C B.(J) and R" (3 B(m;)) C
9°“B.(J). Notice also that fom, n € M,, m # n,thenB(m) N B(n) = (. Takeg, = ¢1/4.
For eachy € A consider the three dimensional cube (defined on Section 2):

S(y) := S(Be,(Wy7,(»))-
SinceA is compact, it can be covered by a finite number of these cubes:

ko

Ac|JSoo.

k=0

For eachn € M_, the pointz_,, belongs to somé&(y,). Denote byJ (m) := B(m) N
S(y). If the size of the box; is small enough/J (m) is a hon-empty interval contained
in B(m). Notice there are constanks;, K, > 0 only depending on.. such that

|/ (m)| < Ka| Wy (vi)| < K2Vol(S(y1)).

Since we have distortio@ on B(m), we have

1 < [J(m)|

C TR
and hence,

|[R7" (I ()| < C|J(m)].
Therefore,

ko Nx/2
/yJ(t)|dt KZ /|X’ Wl (v))|dr < K Vol (M).

_’7*/2

Now we have to bound the integral in the gapa6f Let M, m € M, such thatM > m
andM_ N (m, M) = ¥ (perhapsVf = oo). Fort € (m, M), we have thatL!|g.. , | =2
Then, the dominated splitting condition implies:

L™ pe] < () <0

and hence,
’DR |F(y)| )‘é’
whereF (y) = T,R;™(J*(z)). DenoteJ,, = R7"(J*(z)), then

T 1
R'(J)|dt < ———|Jnl.
J IR Gl < 5=1

Hence,
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/yR (@) |dz</yR (J* @) |dr+Z/|Rf(Jm,)|dt

I>O J mj

KVoI(M)+—Z|JmJ

where{(m;, M;)} denotes all the gaps d¥.. However,mj € M, and hence, the box
B(m) has distortionC. Hence, we can bound the last sum abdVelJ,,; | < C Vol(M),
proving the claim.

An analogous result holds also for center stable manifolds, allowing us to conclude
that for allx € A we have both, as— oc:

[RI (W' ()| >0 and |RL(WS(x))| — 0.

In the sequel, we shall take < y,.

COROLLARY 5.3. —Givene > Othere exists somg > 0 such that for anyx € A and
t > to we have

|R;’(W;”(x))] <e and ]R;(W;S(x)ﬂ <e¢
5.1. Returns

Let B.(J) be a box and supposee J N A. Recall that for anyy € B.(J) N A we
have defined/ (y) = W (y) N B:(J). Given a neighborhood’, we consider the set of
points whose entire orbit stays dhand they are asymptotic

A ={yeV|dist(d'(x), A) — 0ast — +oo}.

Notice thatA also has dominated splitting since it is containedinAlthough it is not
compact, the arguments in Lemmas 4.14 and 5.2 apply, and so, there are central stat
and central unstable manifolds on pointsfoflynamically defined.

DEFINITION 5.—For § > 0, we say the boxB.(J) is §-adapted if for everyy e
B.(J) N A the following conditions are satisfied

(D) IR (J(y)I < ésforallr >0,

(2 R7I(J(y)NB(J)y=90or R(J(y)) C B.(J), forall t > 0.

Before we prove the existence of adapted boxes for certain points, @e need to
recognize some configuration that implies the presence of periodic orbits in a box, as th
following lemma states.

LEMMA 5.4.—LetJ C W (x) be an interval, for some € A and assumeV (x)
is dynamically defined . Suppose there is 0 such thatR_"(J) N J # @. Then, the
a-limit of x is a periodic orbit. Hence is periodic.

This lemma is also true replacing by cs, a-limit by w-limit and takeing positive
iterations.
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Proof. —Suppose there is> 0 such that| (/) N J # @, thenx, € W;* (x). Therefore
there is a sequenag — oo such thatx, e Wyt (x) and thaty, — x ask — oo. Since
Wy (x) is dynamically defined, fok big enough:R " (W*(x)) C W;*(x), and hence
a(x) is a periodic orbit. Moreovet is periodic. O

LEMMA 5.5. —For anyé small and any point € A < PerX") there exist$-adapted
boxes associated to

Proof. —Let x € A be a non-periodic point. Notice that condition (1) of the definition
is easily satisfied if the height of the box is small enough. So, we are only interested or
condition (2). In spite of the previous lemma, there is an intesval W (x) for which
o (J)ynJ =9, foranyr > 0.

Given some order relation ah we can split/ into two intervals according te, say
JtT={yeJ|y>x}andJ™ ={y e J|y<x}. Now we define

At={yeJ"|Fze A, WS)NJ ={y}}

and the corresponding set fér. Let {s; > O};cn be a decreasing sequence of numbers
converging to 0, and leB,, be a sequence of boxes arounidsuch thatB, ,, C B,,
and(; B, = J. For anyy € A* and any positive integer we denote byU (y, &) the

connected component w;; (2) N B, (J) which containsy. Consider also

I(y,&0) ={(z,n) |z € B, (J)N A, n > 0 and such that
R"(J())NU(y, &) #0}.

If there exist pointg* € J* andy~ € J—, and there is an integérwith #1 (y*, &;) =
0 then the boxB, (J') around J' = (y~,y") is §-adapted. Noticed B, (J) =
U(y~,e) UU(y", er). Actually, we only need #(y, s;) < oo for somey € J since
then, for some&’ > k we obtain # (y, ¢;) = 0. So, we shall assumd &, ;) = oo for
anyk andy € AT U A~, for instance take € A™ and we seek for a contradiction. If the
setK :={n|3(z,n) € I(y, &)} is bounded for some then it is bounded for the same
y and anyk’ > k. In fact I (y, err) C I(y, ). Hence, for somé&’ big enough one must
have either (y, &) =¥ or R;'(J) N J # ¥ for somer > 0, which is a contradiction.
Therefore, the sek is unbounded for anyy, ;). As a consequence, for anye A™*
there are sequencese B,, (J) andm, — oo such that

R (J(za)) NU(y, &) # 0.

Observg R ™ (J(z,))| — 0 asn — oo; otherwise there is a limit pointof the sequence
{z.} whose backward orbit shadows anyuntil time —m,, and shadows for the entire
past too. Therefore, IimSl,ugoolR;’(W;” (2))| > 0, which is a contradiction. Hence, the
sequenceR, " (z,) converges to € A. Actually, At C A. Notice that if there is some

y € ATNW?3(p) for somep € PeX") we achieve a contradiction again. In fact, in such
case, for k big enough, the €1y, ¢;) must be contained in some fundamental domain
of W*(p). On the other hand, we can takg small enough tha®©(p) N B, (J) =0.
Nevertheless, fon big, y, = R (J(z,)) N W*(p) and theny, — O(p) asn — oo.
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However,

R (y,) € RY"

Xmp X—mp

(R (4 @) = J ) © B, (1) C Boyy ()

which is a contradiction. Therefore, no point ari belongs to the stable manifold of a
periodic point inA.

Take somey € A™, (z,,n) € I(y, &) andm, > 0, such that for anw € J(z,) N A
we have

WS (R (w)) NJ CJT.

Consider a mapr : At — A" defined as follows: For eache A™, let w = Wi N
J(zn). Then definer (z) := W (R™)(w) N J. By construction, disiR: (z), R'.(w)) —

0 and distR;"(z,), R;"(w)) — 0 ast — oco. Then,w € A and hence this map is
well defined. Moreover, it is continuous and monotone. This implies that there exists
wo € AT C J such thatr (wg) = wo, that is, R (wg) belongs toW7* (wo). As in the
proof of Lemma 5.4 this situation implies that thdimit of wg is a periodic orbit as

well for the «-limit of y. Hencex must be periodic. This contradiction implies that
there isy* € A" such that/ (y*, &;) = ¥. Hence, ifx is accumulated on both sides of
W (x) we are done. If is accumulated only on one side, the arguments of the proof of
Lemma 3.6.1 in [21] apply directly. O

We shall refer to those points accumulated only on one side of the box as boundan
points of A. Notice that if B,(J) is an adapted box, then any sub-box is adapted too.
As a consequence of the previous argument, for any non-periodic pa@nk, small
adapted boxes can be taken in such a #f&yB, (J)) is contained in some central stable
manifolds, unless the pointis a boundary point of\.

Consider an adapted badx.(J) associated to somee A. If there isz € B.(J) N A
such that_, € B.(J) (t > 0) for the first time, we sayy .., D) is areturn of B,(J) if
D, is the connected component which containf D' N B.(J) and ¢, = R'|p,.
Notice the holonomy map is defined on some normal section that contains the box
Denote byR = R(B.(J), A) the set of all returns associated B(J). For y ¢ R
we say Y| <& < 1 if and only if for anyy € J(z), z € D, N A we have that
|DRZ‘I|F(y)| <&, whereF(y) =T,W;"(z).

Lety e R. If y e Dy, N A thenJ(y) C Dy; so, it is saturated by central unstable
manifolds and hence, is a vertical strip; since any pgirt J(y) shadowsy until
time 7,/ (y). On the other hand, iD, C* B.(J), then the imageB, :=img(y) is an
horizontal strip, i.e. intersects both component$‘d, (J), by continuity.

Also we sayy > ¢ for ¢, ¢ € R if ¥ o1 is obtained by flowing the orbits a negative
amount of time. Remember we are considering first returns for the past.

LEMMA 5.6. —For vy, Y2 € R, if ¥1 # Y2, then Dy, N Dy, is not a domain of a
return if the intersection does not contai®é(B,(J)).

Proof. —Takeg € R(B.(J), A) such thatD, = Dy, N Dy,. SinceD, N 3“B,(J) =
then B, is an horizontal strip. Now1(D,,) C By, C B,(J) sinceD, C Dy,. Sincegp is
areturn, there is € D, such thatp(z) is the first return ot to B.(J). Hencey > ¢.
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Observeyr; o 9 1(B,(J)) C B,(J), because it is an adapted box. This is a contradiction
to the fact ofA being transitive and not a single periodic orbita

DEFINITION 6.—An adapted boxB.(J) is well adapted if there is a sub-bd¥. (J)
and two disjoint vertical strips;, S, such that

B (J)\ B (J) = 51U Sz,

each one satisfies eithe$; N A =@ or S; is a domain of som&; € R(B.(J), A), for
which; (S;) is an horizontal strip.

LEMMA 5.7.— Given anyx € A ~ PerX"), there exists well adapted boxes
associated ta of arbitrarily small size.

Proof. —Let B,(J) be a small adapted box associated:te A ~ Per(X"), for some
J C Wit (x). We shall prove there is a sub-b®x (J) which is well adapteds( < &). It
is important to remark that sub-boxes are not necessarily symmetric with respgct to
that is, we shall only need to find an inten&alc W:*(x), x € T, such thatBy(J) have
the desired properties. We split the proof in two parts:

First we shall assume that for all < ¢:

Boa(J)#{yeJ(@) |zecl(Bs(J)) NA}.
For instance, this happens on the right side of the Box/). That is, for any’ < &:
Bi(J)#{yeJ@ |zecl(Bf(J))NA}. 9)

So, there is somev € W< (x) on the right hand ofx such thatw ¢ J(z) for any
z e cl(B}(J)) N A. According to this order we have < w on W< (x). Definew, =
J(z) N WS (x) for any such.

If w> w, for all z then S, = B/ (J) \ B(.5)(J) is a vertical strip contained
B (J), wherew, = supw,; z} and such thaS, N A = ¢ as the definition requires.
Otherwise, there is € cl(B/ (J)) N A such thatw, > w. Let wo = inf{w, | w, > w}.
Hence, reducing the right side of the bd/ (J) to B ., (J) we have thatS; =
B (J) \ By (J) andS; N A = 4.

Now we shall see that the left side of the box also verify (9). In fact, assume by
contradiction that for som& > 0

B (J)={yeJ@|zecl(B;(J))NA}. (10)
We claim there ig) € R such that
Dy, NB,(J)#@® and Dy N (3“B,(J)~J)=0.
If the claim holds, themB,, is an horizontal strip that crosses AJI(/) and in particular
By, N B} (J)#@. This is a contradiction to (9). Therefore, (9) holds also for the left side

of the box. Repeating the argument we have done for the right side on the left side, wi
obtain the desired sub-box &£ (J) which is well adapted.
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To prove the claim, first notice there apec R such thatD,, N B, (J) # @, since there
are points ofA on the left side of the box and is transitive. If there is only one return,
thenB_ (J) C Dy and alsoBy, C (B, (J) ~ J), sinceX'(J)NJ =@, Vt #0 and also
By, satisfies (10). This is a contradiction to the transitivity of the/setence, there are
at least two returns on the left side of the box.

Suppose there are two differefit, y» € R such that

(8”(38_/(]))) ~ J) C D‘/flleffl’

Y1 < ¥ and there is no other return precedifig excepty;. Notice By, ¢ Dy,.
Moreover, By, C (B_ (J) \ J), sinceB}(J) N A have holes as we assumed in (9) and
X'(JynJ =¢foranyr #0.Also Dy, C B, (J) since, in the other cask, (J) C Dy,
contradicting again the transitivity of. Notice D, C Dy, sincey; < ¥, and they are
different returns. Therefore there exists B_, (/) \ Dy, that returns inta3_ (J) before
¥ by a continuous extension gf,. However,z € Dy, \ Dy, . This contradiction proves
our claim.

Now is left to prove the lemma in case that

B.(J)={yeJ() |zecl(B.(J))NA}.

Take ¥4 and y_ € R such thatD, C Bf(J), D_ C B;(J) and thatBy,, B,_
are horizontal strips. It is not difficult to see that we can find two periodic intervals
J(wy)c Dy andJ(w_) C D_, thatis

Vi (J(we)) CJ(wa).

Cutting the box along both intervals we obtain the desired well adapted box, proving the
lemma. O

5.2. Proof of Main Lemma

Let Ag C M be a non-trivial compact invariant set provided with a dominated splitting
which is not an irrational torus. Assume that any compact invariant subsag aé
hyperbolic. We shall prove\q is hyperbolic. In order to do that, we need to prove both:
L™ F(zq)]l = O @and|L!|g ;| — O ast — oo for anyzg € Ao. We shall prove only the
former limit. The latter is analogous.

First assume\ g is hot a minimal set. Recall a compact invariant set is minimal if and
only if any orbit is dense. Let us state the following two lemmas. For a proof see [21],
Lemma 3.7.4 and Lemma 3.7.2 respectively.

LEMMA 5.8.— Let B.(J) be a well adapted box such th#&#R(B.(J), A) is not
bounded. Then, there exists a retugiy € R(B.(J), A) such that the adapted box
By, = Img(yy) satisfies that for every: € R(By,, A) we havey’| < 1.
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LEMMA 5.9.— Let B.(J) be an adapted box such that for attye R(B.(J), A) we
have|y'| < & < 1. Then, for every € B.(J) N Ag we have

o]

/|R—’(J(y))|dt <00

0

and thereforg DyR™"|p(,)| — O ast — oo.

Notice that| Dy R™| ()| — 0 ast — oo implies|L™| ()| — 0 ast — oo.

By hypothesis there is € Ag such thatx ¢ w(x). Lemma 5.7 implies the existence of
a small well adapted boR, (/) associated ta such thatB,(J) N {X"(x) |t > 0} = 4.
Notice #R(B.(J), Ag) = 0o, Since Ag is transitive. Therefore combining Lemma 5.8
and Lemma 5.9 we conclude that there exists a sub&yo¢= Img(yo) of the Lemma
5.8) where, for ally € By N Ag we have|D,R™"|p,)| = 0 ast — oo, and hence
L™ |F(y| — 0 ast — oo, as we have remarked above.

Now takezg € Ag, if «(z9) # Ao, then by hypothesis it is a hyperbolic set. Therefore
L™ F(q| = 0 ast — oo. On the other hand, it (zo) = Ao, then there isn > 0 such
thatz_,, € Bo. Then|L™'|p_, | = 0 ast — oo, and this is what we wanted to prove.

For the case\ is minimal, we have to use a different argument. Also we need two
lemmas whose proof can be found in [21] (see Lemma 3.7.5 and Lemma 3.7.6).

LEMMA 5.10. — There isxg € Ag and an adapted box of arbitrarily small size
associated ta;g such thatB.(J ") N Ag=@ or B.(J7)N Ag=0.

LEMMA 5.11. —LetB.(J) be an adapted box such thBt(J*) N Ag = @. Then there
existsK > 0 such thatvy € B.(J) N Ag

o0

JIR o)l ar <&

0

and moreover, there i,(y), J7(y) C Ji(y) C J(y) where both components #f(y) —
J*(y) have length bounded away from zero independentlyafd somek > 0 where

[e.0]

/ R~ (1()|dr < K.

0

In spite of these, notice tha = |J,cp, (;)na, J1(¥) IS @ two-dimensional open set
contained in some transversal section to the flow where foyany N Ao we have:

o]

/yR—’(Jl(y))| dr < K

0

and henceL ™" |p(,)| = 0 ast — oo.
Let zo € Ag. There is somen > 0 such thatz_,, € B. Then|L™|g_,,| — 0 as
t — oo. This finishes the proof of the Main Lemma.
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6. Proof of Theorem A

Finally, on this section we shall give the proof of Theorem A. For that, consider this
two subsets of the space of vector fields,(M):

H={X e X*(M) | Sing(X) Ncl(PerX)) # @}
Tg={X € X'| X has a homoclinic tangengy

Defineld = X*(M) ~ cl(H U Tg) (the closure is on th€'1-topology). The sel/ consist

of all vector fields which are naf*-approximated by a homoclinic bifurcation. Denote
by Pey, (X) the set of hyperbolic periodic orbits af of saddle type; we shall prove that
for elements iri4, the closure of this set has a dominated splitting.

Given X € X*(M) and any pointp € Pey,(X), let £3(X) and £%(X) be the stable
and unstable 2-dimensional subspace§ 0¥/, invariant for the derivative of the flow,
respectively. We can defing;, = E‘j, NN, andE} = E;’, NN,, sinceX (p) # 0 for any
p € Pep(X).

Remark3. — For p € Pe,(X) we haveLt,é’ = D,X"|y,, wheret, denotes the

period of p. Moreover, ES and E* are invariant byL” and alsoR}’ N, — N, is a
diffeomorphism. Actually, this is the usual Poincaré first return map.on

The next lemma relates the anglebetween the stable and unstable spaces on
hyperbolic periodic points of saddle type and the existence of a dominated splitting.

LEMMA 6.1.—LetX e X1(M). If there existss > 0 and a neighborhood(X) of X
such that for any € V(X) we have

anglgE;, E,) > y; ¥Yp € PeR(Y)

then,cl(Per,(X)) has a dominated splitting.

Proof. —To show the existence of a dominated splitting otPel, (X)) one must
proceed to verify that the splitting on R€K) given by the stable and unstable spaces
on periodic points is in fact dominated. Then, one can easily extend such splitting to the
closure. To see that, we remark that the argument of the proof of Lemma 2.0.1 of [21]
relies only on some estimates on the eigenvalues of the derivative on periodic points. |
our case, all these estimates remain trueﬁ';ﬁrfor eachp € Per,(X), since each return
map is a diffeomorphism (see Remark 3). Finally, in [4] we can see how to perturb the
flow in order to obtain the desired Poincaré mapsl.

Now we can state the fundamental relation between homoclinic tangencies and th
existence of a dominated splitting.

THEOREM 6.2. — If X is a Kupka—Smale vector field i, then thecl(Per, (X)) has
a dominated splitting.

It is not difficult to see that the proof of Theorem 6.2 reduces to prove the following
lemma:

1see [21] for definition.
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LEMMA 6.3. —-Let X € U be a Kupka—Smale vector field @. Then there exists a
neighborhood/(X) of X and a numbery > 0 such thatvY € V(X) andVp € Pey,(Y)
we have

angle(E; (Y), E,(Y)) > y.
Proof. —See the proof of Lemma 2.2.2 in [21], and consider Remark:3.

Let Q(X) be the non-wandering set &f and denote byPy(X) and Fyp(X) the sets
of attracting and repelling periodic orbits, respectively. gt X) = Q(X) ~ (Po(X) U
Fo(X) U Sing(X)).

PROPOSITION 6.4. — There id{; C U an open and dense set such that for &ny 41,
Qo(Y) is closed and it has a dominated splitting.

Proof. —The functionI" that associates to each vector figddthe set dPey, (X)) is
lower semi-continuous, since hyperbolic periodic orbits cannot be destroyed by smal
perturbations.

Call G; the resiudal set of continuity points &f. Denote byG, the set of Kupka—
Smale flows onM (i.e. periodic orbits and singularities are hyperbolic, and the stable
and unstable manifolds are in general position) andiset {X | Q(X) = cl(PerX)) U
Sing(X)}, which is also residual (see [19]). Henee= G; N G, N G3 is a residual set.

LEMMA 6.5.—ForanyX € G NU, we haveR2o(X) =T'(X).

Proof. —In order to see thaf2o(X) C I'(X), suppose there ig8 € Qo(X) \ I'(X).
Let U be an open set such th&t(X) c U such thatg ¢ cl(U). Let N C U be a
neighborhood ofX whereI'(Y) C U for anyY € N. SinceX € G3, there is a sequence
{pn} C PerX) U Sing(X) such thatp, ¢ cl(U) and p, — ¢. Since #Sin@gX) < oo and
g ¢ T'(X) then p, € Py(X) U Fo(X) for all n. Without lost of generality we may think
Pn € Po(X) for all n. Let us recall the following theorem due to Pliss.

THEOREM 6.6 (Pliss, [18]). Let X € X1(M) and suppose there is an infinite
sequence p"} C Po(X), then for anys > 0 there isY € X1(M), e-C*-close toX and
somen € N such thatp, is a hon-hyperbolic periodic orbit af .

It is not difficult to see that if we take a very small perturbation of the niiap
we can assume, is an hyperbolic periodic orbit of saddle type. Hence we have
found someY € N with a hyperbolic periodic orbit of saddle type, outside U;
contradicting the fact of (YY) c U. ThereforeQ2o(X) c I'(X). On the other hand, to
provel’ (X) C Q0(X) we claim that®2o(X) is closed. If it is not the case, it happens that
cl(©20(X)) N SINg(X) # @. Since c(R2(X)) C I'(X), we have found a contradiction to
the fact thatl"(X) N Sing(X) = @, proving Qo(X) is a closed set and hence the lemma
follows. O

SinceX € G NU, we have2o(X) = cl(Pel,(X)). As a consequence of Theorem 6.2
we know thatQ2o(X) has a dominated splitting. Take an admissible neighbortibad
Qo(X), that is, a neighborhootl such that there i&(X) a neighborhood oX such that
foranyY e U(X) the maximal invariant set df in U also has a dominated splitting. We
can assum&/ (X) Cc U. SinceX e G itis a continuity point ofl", given a neighborhood
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Uy of Qo(X) such thatUy C cl(Up) € U, we can assume that for dil € U/ (X) verify
that ckPey,(Y)) C U,.

Let us prove that for alt € U/(X) we haveQy(Y) C U. If it is not the case, there
isY elU(X) andx € QoY) N (M ~ U). Notice x is not a periodic point and is non-
wandering. Moreovery cannot be accumulated by pointsia(Y) U Fy(Y), otherwise,
as in the proof of the Lemma 6.5, we can find an hyperbolic periodic orbit of saddle type
outsideUy, which is impossible.

Now theC!-Closing Lemma [19] allow us to fin#f close toY having a periodic orbit
passing through. Actually, perturbing a bit more if necessary, this orbit is hyperbolic of
saddle type. This is a contradiction to the continuity'asn X. Hence, for ally € U (X),
the setQo(Y) has a dominated splitting. Finally, the gét= |Jy.; U (X) verifies the
proposition. O

Now we can give a proof of Theorem A.

Proof of Theorem A. Given X € U, Proposition 6.4, together with Theorem B
imply there is aC2-Kupka—Smale vector field < 2/, arbitrarily close toX such that
Qo(Y) = A U T, where A is hyperbolic and7 is a finite union of irrational torus.
However, the existence of such torus is not generic, even irCthmpology. Hence,
making a small perturbation if necessary, we obtain f&dl") is hyperbolic.

Now we claim(Y) is hyperbolic. For that, we just need to guarantee fhgt) U
Fo(Y) is afinite set. In fact, for instance, suppogg @) = co. LetU be a neighborhood
of Qo(Y) where the maximal invariant set di is hyperbolic. Notice we can takié
in such a way all periodic orbits iy are of saddle type. On the other hand, all but
a finite number of periodic attracting orbits must belongltoIn fact, ckPy(Y)) ~
Po(Y) C Qo(Y) C U, by definition. This is a contradiction. Therefor&#Y) < oco.
This argument applies also #¢(Y). Hence, we conclud (Y) is hyperbolic.

Itis leftto proveQ2 (Y) = cl(Per X)) and that there are no cycles. Sidcg’) C Q2(Y),
the limit set ofY is hyperbolic too and so, the periodic orbits are dense on it. By a result
of Newhouse [11], we only need to verify the absence of cycled. @ in order to
concludeL(Y) = Q(Y). Since there are no singularities of the flow involved, the index
of all saddle periodic orbits is one. And singeis Kupka—Smale vector field, all the
invariant manifolds are in general position. Hence there are no cycles.

Now, we have already prove that can be approximated by either: Uniformly
hyperbolic with no-cycle condition, exhibiting a homoclinic tangencyXobelongs to
the classH. However, if X € H, it is an easy consequence of Hayashi’'s Connecting
Lemma [4] that there i¥ € X1(M) arbitrarily close toX showing a singular cycle,
concluding the proof of Theorem A.0O
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