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ABSTRACT. — In this article we study some results on the existence of radially symmetric,
non-negative solutions for the nonlinear elliptic equation

M (D%u) +uP =0 inRY, (*)

HereN > 3,p > 1and /\/QﬁA denotesthe Pucci’s extremal operators with parameters & A.
The goal is to describe the solution set in function of the parametéWe find critical
exponents I« p} < pf_ that satisfy: (i) If 1< p < pi then there is no non-trivial radial
solution of &). (i) If p = p% then there is a unique fast decaying radial solution:f (jii) If
Py <p< p% then there is a unique pseudo-slow decaying radial soluticR)tdiy) If p? < p
then there is a unique slow decaying radial solution«o Similar results are obtained for the
operatorM; .
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RESUME. — Dans cet article nous avons étudié quelques résultats d’existence des solution
radiales non négatives pour I'équation elliptique non linéaire

M A (D®u)+uP =0, u>0 dansR". (%)

IciN>23,p>1 etMIA est 'opérateur extrémal de Pucci avec les parameétres.G< A.
L'objectif est de décrire I'ensemble des solutions en fonctiorpd®©n trouve des exposants
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critiques 1< p% < pX tels que : () Sil< p < pi, alors il n’existe pas de solution radiale non
triviale de ). (ii) Si p = p%, il existe une unique solution radiale dg @ décroissance rapide.
(i) Si p* < p < pk, il existe une unique solution radiale de) @ décroissance pseudo-lente.
(iv) Si pf_ < p, il existe une unique solution radiale d& & décroissance lente.

Un résultat similaire est obtenu pour I'opérateds; , .
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In this article we are interested in the study of solutions to the nonlinear elliptic
equation

ME (D%u) +u? =0 inRY,
A,A( ) (1.1)
u>0 inRY,

where M; , denotes the Pucci's extremal operators with parametersiG< A and
N >3, p > 1. The Pucci’'s extremal operators, that play a crucial role in the study of
fully nonlinear elliptic equations, are defined as

./\/l AZel—i-)\Zel 1.2
e;>0 e;<0

M A( (D%u) AZe,+AZel, (1.3)
e;>0 e; <0

wheree; = ¢;(D%u), i =1,..., N, are the eigenvalues dd%u. For more details and
equivalent definitions see the monograph of Cabré and Caffarelli [1].

Wheni = A = 1 we observe that the operato4v3(§ﬁA simply reduce to the Laplace
operator, so (1.1) becomes

Au+u?=0 inR"Y,
(1.4)
u>0 inRM,

This very well known equation has a solution set whose structure strongly depends on th
exponentp. When 1< p < p} = (N +2)/(N — 2) andu vanishes at infinity, no non-
trivial solution to Eq. (1.4) exists, as can be easily proved using the celebrated Pohozae
identity [17]. If p = p3 then it is shown by Caffarelli, Gidas and Spruck in [2] that, up
to scaling, Eq. (1.4) possesses exactly one solution. This solution satisfies additionall
thatu(|x|)|x|V =2 — C as|x| — co. Whenp > p} then Eq. (1.4) admits radial solutions
behaving likeC|x|~* near infinity, wherex =2/(p — 1).

When we consider Eq. (1.4) on a ball, the critical expongftplays a dual role. In
fact, the equation

Au+u’=0 inB,
(1.5)
u(x)=0 inoB and u>0 IinB,
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does not possess solutions f > px and admits exactly one whend p < py.
The critical character op} is enhanced by the fact that it intervenes in compactness
properties of embeddings between Sobolev spaces, a reason for being known as critic
Sobolev exponent.

Itis interesting to mention that the nonexistence of solutions to (1.4) wkep k p3
holds even if we do not assume a given behavior at infinity. This result is known as
Liouville type theorem and it was proved by Gidas and Spruck [10], see also the proof
by Chen and Li [3]. When k p < N/(N — 2) := p*, then a Liouville type theorem is
known for supersolutions of (1.4), that is solutions of the inequality

Au+u”’ <0 inRY
(1.6)
u>0 inRY,

Moreover, it is known that this exponent is optimal, in the sense that solutions to (1.4)
exist if p > p*. This number is called sometimes the second critical exponent for (1.4).
See [9].

In a recent paper [6], Cutri and Leoni extended this result for the Pucci’'s extremal
operators. They consider the inequality

M A (D%u) +u” <0 inRY

@.7
u>0 inRY,
and define the dimension-like numbers
- A ~ A
N+=X(N_1)+1 and N_=7(N—1)+1. (1.8)

Then they prove that for & p < p’. := N,/(N; —2) Eq. (1.7), with the operator
M, has no non-trivial solution. Similarly, if ¥ p < p® := N_/(N_ —2) then
Eq. (1.7) withM;_ , has no non-trivial solution. It is also shown that this second critical
exponent is optimal, exhibiting a solution of the inequality whes p* .

In view of the results for the semilinear Eq. (1.4) that we have discussed above anc
the new results for inequality (1.7) just mentioned, it is natural to ask about the existence
of critical exponents of the Sobolev type for (1.1). In particular it would be interesting
to understand the structure of solutions for Eqg. (1.1), and the dual Eqg. (1.5), in terms fo
different values ofp > 1. It would also be interesting to prove Liouville type theorems
for positive solutions iR"Y and to understand the mechanisms for existence of positive
solutions in general bounded domains.

It is the purpose of this paper to undertake this problem in the case of radially
symmetric solutions. The general problem seems to be too difficult at this point, and
we expect that our results will shed some light on it.

Before we state our results we give a definition to classify the possible radial solutions
that Eqg. (1.1) may have.
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DeFINITION 1.1.—-Assumaex is a radial solution of(1.1)then we say that
(i) u is a pseudo-slow decaying solution if there exist const@rtsC; < C, such that

Cy=Iliminf r®u(r) < limsupr®u(r) = Cs.
r—0o0

r—>o0

(i) u is a slow decaying solution if there exi€is< ¢* such that

lim ru(r) =c*.
rF—>00

(i) u is a fast decaying solution if there exi§is< C such that

lim rﬁ_zu(r) =C,

r—>0o0

whereN = N, or N = N_, depending iftM , or M; , appears in(1.1).

We will see later that pseudo-slow decaying solutions of (1.1) change infinitely many
times its concavity. See the proof of Proposition 3.3.

Remark1.1. — We observe that the Pucci’s extremal operators are positively homo-
geneous, second order operators. Then we can show that given a salufofi.1)
andy > 0, the functionv, defined asv, (x) = yu(y‘flx) is also a solution of (1.1).
Consequently, associated to any solution we have a one parameter family of solutions.

Now we are prepared to state our main results describing the critical exponents fo
Eq. (1.1). We start with the theorem for the operatdf’ , .

THEOREM 1.1. —Suppose we consider the Pucci’'s extremal operaMrjﬁA in

Eq.(1.1). Suppose in addition tha¥, > 2. Then there are critical exponents< Py <
* p H
pi < p5, with

bt — N, p,,_ﬁ++2
TN, =2 TN -2
and
max{p}, py} < pi < p¥,
that satisfy:

(i) If 1 < p < pj then there is no non-trivial radial solution dfL.1).
(i) If p=p: thenthere is a unique fast decaying radial solution(bfl).
(iiiy If p* < p < pf then there is a unique pseudo-slow decaying radial solution
to (1.1)
(iv) If pf < p then there is a unique slow decaying radial solutior{XdL).
In (i), (iii) and(iv) uniqueness is meant up to scaling, see Rerthark

Remark1.2. — When K N, < 2, it was proved in [6] that, independently of the value
of p, no non-trivial solution of (1.1) with the operatdv(;” , exists.

Regarding the operato¥1; , we have a slightly different result.
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THEOREM 1.2. —Suppose we consider the Pucci’s extremal operatd; , in
Eqg.(1.1). Then there are critical exponents< p* < p* < p”, with

\ N_
P-=N 2
and
N-+2 o,
N ~P-<P-=Py
that satisfy:

(i) If 1< p < p* then there no non-trivial radial solution t(.1).
(iiy If p = p* then there is a unique fast decaying radial solutior{Xdl).
(i) If p* < p < p? then there is a unique radial solution {&.1), which is a slow
decaying or a pseudo-slow decaying solution.
(iv) If p > p” then there is a unique slow decaying radial solutior{xdL).
In (i), (iii) and(iv) uniqueness is meant up to scaling.

Remark1.3. — Conclusion (i) in Theorems 1.1 and 1.2 can be interpreted as a Liou-
ville type theorem for radially symmetric solutions of (1.1). Associated to Theorems 1.1
and 1.2 on the critical exponent for the equationRifi we can prove a result on the
existence of radially symmetric positive solutions of Eq. (1.1) in a ball. See Theorem 5.1
in Section 5.

Remark 1.4. — We observe that_ > N > 3.

Remark 1.5. — At this point, a further comment on the numbgtsandp* is at place.
These critical numbers are not known explicitly in terms of the numbgra and A.
Actually the whole point of this article is to prove their existence and uniqueness.

In the study of Eq. (1.4) a crucial role is played by the Pohozaev identity. Since the
Pucci’s extremal operators do not have a divergence form, this kind of identity is no
longer available, posing a special difficulty to the problem. However, since we consider
only radial solutions, the Pucci’s operators take a rather simple form, where the concavit
of the solution determines its form. This property still allows to use some techniques
developed for equations with operators in divergence form.

Our approach consists in a combination of the Emden—Fowler phase plane analysi
with the Coffman—Kolodner technique. We start considering the classical Emden—Fowle
transformation that allows us to view the problem in the phase plane. With the aid of
suitable energy functions we understand much of the behavior of the solutions. Thei
asymptotic behavior is obtained in some cases using the Poincaré—Bendixon theorer
This phase plane analysis has been used in related problems by Clemons and Jones |
Kajikiya [12] and Erbe and Tang [8] among many others.

We continue with the use the Coffman—Kolodner technique. Originally introduced by
Kolodner [13] and later used by Coffman [5], this technique consists in the study of
the solution of an associated initial value problem, obtained differentiating the solution
with respect to the initial value. The function so obtained possesses valuable informatiol
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on the problem. This idea has been used by several authors in dealing with uniquene:
questions. We cite in particular the work of Kwong [14], Kwong and Zhang [15] and
Erbe and Tang [8]. In our case though we do not differentiate with respect to the initial
value, which is kept fixed, but with respect to the poweiThus the variation function
satisfies a non-homogeneous equation, in contrast with the situations treated earlier.

Our article is organized as follows. In Section 2. we find some preliminary properties
of the operators and of the solutions of the associated initial value problem. In Section 3
we study a dynamical system equivalent to the initial value problem, obtained through
the Emden—Fowler transformation. We understand the asymptotic behavior of the
solutions, especially whemis outside the range defined by the critical Sobolev exponent
py and the exponeng* or p*. In Section 4 we analyze the system from the point of
view of the Coffman—Kolodner technique. We study the variation of the solution with
respect to the exponept This is a crucial step in obtaining tlhiquenessf the critical
exponent. Here we use ideas coming from [15] and [8].

2. Preliminaries

In this section we introduce some notation and prove some preliminary results. We
start with a lemma allowing to compute the Pucci operator in the case of radially
symmetric functions.

LEMMA 2.1.-Letg: (0, o0) — R be aC? function. Forx e RV \ {0} defineu(x) =
¢(|x]), then the eigenvalues @&f%u, the Hessian ofi, are ¢”(|x|), which is simple, and
¢'(|x])/|x|, which has multiplicityV — 1.

Proof. —A direct computation shows that

¢'(xD , n ¢"(IxD)  ¢'(xD

D%u(x) =
0 | x| |x|? |x|3

wherel is the N x N identity matrix andX is the matrix whose entries axgx;. Hence
we have

DZM()C)i = (/)//(lxl)i and Dzu(x)g — (p/(l-xl)
|x] |x| |x|

for every vectof such thag - x = 0. From here the lemma follows.O

£,

For notational convenience, we will consider for the rest of the paper the parameter:
A and A to be just positive numbers and define the operator

M)L,A(DZM) :AZe,- +)\.Z€,’,

¢;>0 e; <0

so that when. < A we haveM; , and wheni > A we have M} ,. We will also
consider the dimension-like numbat = %(N — 1) + 1, which corresponds t&/ or

N_ depending on the relative size bfand A. This convention will allow to treat, when
possible, both operators at once.
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Now we consider the initial value problem

u”:M(Mu’—ul’> in (0, +00) (2.2)
r
u@@=y, u' =0, (2.2)
wherey > 0 and
s/A if $>0,
M(s) = {s/k if s <O. (2:3)

We note that Egs. (2.1)—(2.2) possesses a unique solution, as can be proved following tl
arguments given by Ni and Nussbaum in [16]. This solution is of aZsalong allR ...

We denote this unique solution asr, p, y) and we observe that positive solutions of
(2.1)—(2.2) decaying to 0 at infinity correspond to radially symmetric solutions of (1.1).
The next two lemmas give some general information about solutions of (2.1)—(2.2).

LEMMA 2.2.-The solutions of(2.1)—(2.2) are decreasing, while they remain
positive.

Proof. —Let u be a solution of (2.1)—(2.2). Then, by Lemma 2.1 and the definition of
the Pucci’s operators, satisfies in a certain intervéD, r1) C R, the equation

b(N -1
au”+7( )u’—i-
r

u? =0,
for certaina, b > 0. Hence
{u’rh(N_l)/”}/ = —pPWN=D/ayr <0 in (0, ry).

Using this and the fact that’(0) = 0 we have that/(r) < 0 for all r € (0, 1), and

by continuity alsou’(r1) < 0. Next, the same argument can be applied in a successive
way to the intervals to the right ab, ;), whereu has au” has a fixed sign. Then is
decreasing in every intervéD, R), where it remains positive. O

The next lemma gives the scaling property of Eqgs. (2.1)—(2.2) and also (1.1), as
announced in the introduction.

LEMMA 2.3. —If u =u(r, p, yo) is a solution of the initial value probleif2.1)—(2.2)
thenyu(yY*r, p, yo) = u(r, p, yoy), for all y, y > 0.

Proof. —It follows from Lemmas 2.1 and 2.2 thatsatisfies
AMN -1
AN =D

r

AMN -1
Au"+¥u’+u”=0 if u” > 0.
r

au” W+u’=0 ifu”"<0 and

From here we find that, = yu(yYr, p, yo) satisfies

1 AMN -1 1 .
—y1+2/0‘ )\u;ﬁ+7( )u;, +ﬁu)’j=0 Ifu;;<0,
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1 AMN -1 .
R Au;ﬁ+¥u; 4+ —u?=0 Ifu;ﬁ>0.

yr
Sincep =1+ 2/« the lemma follows. O

In the next definition we classify the exponemtaccording to the behavior of the
solution of the initial value problem (2.1)—(2.2). We define:

C={plp>1 u(, p,y) has afinite zerp.

P={plp=>1 u(rp,y)is positive and pseudo-slow decayjng
S={plp>1 u(r p,y)is positive and slow decayirjg
F={plp>1 u(r p,y)is positive and fast decaying

In view of Lemma 2.3, we notice that these sets do not depend on the particular value ¢
y > 0.

3. Emden—owler analysis

An important step in the proof of our results is the phase plane analysis we do to the
system when we transform it through the classical Emden—Fowler change of variables

x(t) =r%u(r), r=¢.

With this transformation, the initial value problem (2.1)—(2.2) reduces to the autonomous
differential equation

x"=—a(e+ Dx + (14 20)x" + M (A(N — D)(ax — x") — x7),

3.1)
x(—=00) =0, x'(—o0)=0.

From now on, this equation will be called the dynamical system associated to (2.1)—(2.2)

We note that a change inin (2.1)—(2.2) becomes a time translation in (3.1). From (3.1)
and (2.3) we see thatsatisfies

P
x" = —ax' + bx — XT if A(N —1)(x —ax)+xP >0, (3.2)

and
~ xP
x'=—ax'+bx —— if M\(N —D(x' —ax)+x? <0,

(3.3)
where

a=N-2-20, b=a(N—-2—-a), d=N-2—-2a and b=a(N —2—a).
The right-half plane is thus divided in two regions by the curve

xp

AN-D (3.4)

X =ax —
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For later reference we denote /" the region above (3.4) and bg~ the region
below (3.4).

LEMMA 3.1.—Let(x(2), x'(¢)) be a trajectory of(3.1). Then there ig, such that the
trajectory belongs taR™ for all ¢ < 1o, it crosses curvé3.4) transversally and at most
once before reaching’ =0

Proof. —If y(x) = x(¢) and(x, y) is a point where the trajectorix (), x'(z)) crosses
(3.4), we have from (3.1) that

dy _

o= (1+20) —a(a+1)§.

On the other hand, defining= y/x and using (3.4), we have that the slope of (3.4) at
that point is

pxPt
=—— =2 .
=T AN - Tz
Then, at the point of intersection we have
d . .
A= ay —m<0 ifandonlyif pz2— 3+ 20)z+a(@-+1)>0.

Solving the quadratic equation we find that< O if and only if z ¢ [a(¢ + 1) /(a +

2), a]. Using Eq. (3.4) we find that if the trajectory crosses (3.4) with! < x{’_l =
A(N — 1)/p then it crosses fronR~ to R*. From here we see that the trajectory stays
in R~ for ¢+ <t for somer. Thus, in terms of the function we find then that:”(r) > 0

for r close to 0, contradicting Lemma 2.2. This proves the first part of the statement.

Using Eqg. (3.4) again we find that the crossing is transversal and Rono R, if it
occurs when:”1 > x/ 1 = A (N — 1)/ p.

Thus, in order to complete the proof we only need to show that the crossing doe:
not occur aty;. Since at this point we hav& = 0, to prove this we analyze the second
derivatives.

Differentiating (3.4) and evaluating af we find

d?y p—1

dx2 X1

On the other hand, differentiating (3.1) we find

dy 2 d?y d 1 dy 1
(a) byga= et D+ 1420+ z{MN— 1>(a - a) — px? }
where we assume that the trajectory stayskih. This is the case wher < xj.
Evaluating atc = x; and noting that at this pointygddx = o — 1, we find that

d?y 2

d2  xa—1/p)
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But, sincep > 1 we find that

p—1 2
< 9
X1 x1(x —1/p)

which contradicts the fact that the trajectory stay®infor x <x;. O

The next three propositions deal with the solutions of (1.1) whettays outside the
range betweempy andp? or p*.

PropPosSITION 3.1. —If
N+2 N+2}

max{ ——, — —
p= {N—Z N—2

thenp € S, that is,(1.1) possesses a slow decaying solution.

Proof. —First we claim that, while the trajectorgc(r), x'(z)) remains in the first
quadrantx(r) < ¥ = (Aa(N — 1))Y@»=D_ To prove this claim we define the energy-like
function

(x")? axbtl (x)?

e(t) = > + 2N =1 - (3.5)
Given (x(¢), x'(¢)) € R we have that
/ ') / _ 2 a(p+1)_2(N_1)> P}
e(t)—x{ ax"+ (b a)x+( (N1 xP 3, (3.6)
from where it follows that’(r) < 0 when (x(¢), X(¢)) € R™. In fact, the curve
x’:ax+a(p+1)_2(N_1)x”, (3.7)

2ar(N — 1)
which corresponds te = 0, is below the curve (3.4), because

a@+n—aN—n_—w—2—m< -1
2ar(N —1) AN =1Da AMN =1)°

On the other hand, we have that the poif@s0) and (x, 0), for x > x, have energy
greater than or equal to zero. Thus the trajectory crosses (3.4), enteringintothe
first quadrant. By Lemma 3.1 the claim follows. Before continuing we observe that when
the trajectory crosses theaxis, say atxg, 0) € R, it turns back because after this point
x" becomes negative. Consequently the whole trajectory remains to the left af at
least while it stays on the right-half plane.

From the hypothesis op we have thatz > 0 anda > 0. Let us define a second
energy-like function

(x/)2 P an EXZ
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We have that

" _ax' —b A=A pl / +
E() = x'{—ax'+ (b —b)x+22x"} if (x,x') € RT, (3.8)
—a(x')? if (x,x)eR".
Call E* the region in the phase plane above the curve
N-N A—A
' = a( )x + x? (3.9)

a arl A\

andE~ the region below the curve. We have that the curve (3.9) is below the curve (3.4)
for x € (0, x). Observe that is such thatx, 0) is on the intersection of the curves (3.4)
and (3.9). Consequentl§y’ < 0 while the trajectory stays iR™ and when it enter® —,

that is along the whole trajectory.

From here we see that the trajectory remains inside the bounded region defined b
E =0. Moreover, it cannot approach a periodic orbit, so that by the Poincaré—Bendixon
Theorem (see e.g. [11])\x (), x' (1)) — (c¢*,0), ast — oo, wherec* = (Ab)YP~D.

Note that(c*, 0) is the unique equilibrium of the dynamical system in the right-half
plane. Hencgp € S. O

LEMMA 3.2.—Let(x(¢), x'(¢)) be a trajectory tq3.1), then, whilex'(¢) > 0

/ 'xp
x <ax — —.
b AN

Proof. —From (2.1) we have

ubrN-1

_{“/”N_l}/: in (0, ro),

wherery is the first point such that” (rg) = 0. Integrating by parts we get

r

(et [ puri) (O s, forr<
u (ryr =V Opu SMSNA s, r <ro,
and then
N
/ N-1 ulr
—u'(r)r > , forr <.
") N 0

Writing this in terms of the dynamical system and using Lemma 3.1 we conclude.

PrROPOSITION 3.2. - If

N+2 N+2}}

N .
<max$ ———, min{ =———,
P {N—Z {N—Z N -2

thenp € C, that is, there is no radial solution t(i.1).
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Proof. —If N/(N —2) > (N +2)/(N — 2) the result is a consequence of the work of
Cutri and Leoni [6].

To treat the other case, let us assume that the trajectory stays in the right-half plan
for all t € R. Since the curve (3.9) is below the curve (3.4) in the first quadrant and to the
left of the linex = x, and because < 0 anda < 0, we obtain tha&’ > 0 for all points
(x,x)Ywith0 < x < x.

On the other hand, ag + 1)Ab < 2ha(N — 1), the closed curveZ = 0 is on the
region O< x < x, except for the origin. Thus, the trajectory stays outside the bounded
region E < 0. From here we see that it cannot converge to a stationary point becaus
the stationary point has negative eneifgylt cannot converge to a periodic orbit either
because in this case the trajectory should go through the region wher® and then
E <O0.

To get a contradiction we prove finally that the trajectory is bounded. In fact, from
Lemma 3.2 we have thatis bounded and that is bounded from above. If we assume
for thatx’(r) - —oco then by monotonicitye converges tag > 0, but this would imply
x'(t) = 0.

Thus, we conclude that the trajectory must leave the fourth quadrant.

In the case whei < A, that is for the operatoM;ﬁA, we have the following result
on the existence of pseudo-slow decaying solutions.

PrROPOSITION 3.3. —If A < A, then the following statements hold
() (N+2)/(N—-2)€P,

(i) PN, (N+2)/(N —2))is open, and

@iy fp<(N+2)/(N—-2),thenp¢S.

Proof. —(i) First we observe that ip = (N + 2)/(N — 2) then we have

if "YeRT
E/(t){<0 I (xvx)e 1
=0 if(x,x)eR".
Then the dynamical system has a family of periodic orbits around the @difd). The
maximal periodic orbit is tangent to the curve (3.4), let us call this periodic @tbit
Then, by the Poincaré—Bendixon Theorem we haveitttainverge (w-limit) toP. Thus
we find

Iingfx(t) =Cr:=inf{x|(x,x)e P} and

limsupx(t) = C2 :=sup{x | (x,x) € P}.
—>00

We naotice that the trajectorgx (r), x'(¢)) crosses infinitely many times the curve (3.4),
hence the functiom changes its concavity infinitely many times.

(ii) If p* € P then the trajectoryx (), x'(¢)) crosses infinitely many times the line
x" =0, in particular it crosses two times. Then, as a consequence of the continuou
dependence on the initial values for ordinary differential equationsp folose top*
the trajectory crosses also two times the liie= 0 and, as a consequende(r), x'(¢))
is bounded. Using the Poincaré—Bendixson Theorem, we conclude then that the w-limi
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of the trajectory is a periodic orbit, since the unique stationary peint) € R* has a
neighborhood where the energy is strictly increasing. From here (ii) follows.

If we look at the energy along this periodic orbit we see that this orbit must cross
the curve (3.4). Thus the corresponding solutiomhanges infinitely many times its
concavity. N N

(iii) If the trajectory, with p < (N +2)/(N — 2), crosses two times the ling = 0,
then by the argument given in (i € P. In any othercasp e CUF. O

Remark3.1. — As a consequence of the continuous dependence on the initial value
for ordinary differential equatiorg is open.

Remark3.2. —In the range op where the solution is pseudo-slow decaying, the
periodic orbit of the dynamical system corresponds to a singular solution to

M;A(Dzu) +u? =0,

which change infinitely many times its concavity. These solutions are not present in the
case of the Laplacian. These solutions appear since the system tries to compensate
fact thath < A.

4. Coffman—Kolodner analysis

In this section we study the solutions obtained near a fast decaying solution, the ide.
is to vary p in order to classify them. We differentiate the solution of (2.1)—(2.2) with
respect top, keeping the initial condition fixed. The resulting functiprhas valuable
information on the solutions near the fast decaying one.

This idea was introduced by Coffman and Kolodner in studying uniqueness question:
for semilinear equations. They differentiate with respect to the initial condition though.

By analyzing the functionp we will prove in this section the following two
propositions, that are crucial in the proof of our main results.

PrRoOPOSITION 4.1. —If p* € F, then forp < p* close top* we havep € C.
PROPOSITION 4.2. — If p* € F, then forp > p* close top* we havep e SUP.

For the proof of these propositions we need some preliminary lemmas. Since in ou
analysisy is kept fixed, so we do not make explicit mention of it. Its value will be chosen
later.

Let p* € F and letu(r, p*) be the solution of (2.1)—(2.2). In view of the results in [6],
in order to prove Theorems 1.1 and 1.2 we may assumepthatV /(N — 2). Since
p* € F we have that: changes its concavity only once, that is, there is the unique point
ro = ro(p*) such that’ (ro) = 0. Moreover, the equation’(rg) = 0 definesg = ro(p)
as aC? function of p, in a neighborhood ofp*. These results are consequence of
Lemma 3.1 and what follows.

LEMMA 4.1.—rgis aC? function ofp, for p near p*.
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Proof. —The condition definingyg is u”(p, r) =0, that is

L_1)1/(}),1’) +u”(p,r)=0. (4.1)

In order to defineg as a function ofp we use the Implicit Function Theorem. It is
enough to prove that

—AN—1
S(r)= {% + pu?(p, r)] u'(p,r)

does not vanish aty. Using the Emden—Fowler transformation we see that this is
equivalent to prove that

(@) = pe® (xrt- HEZD 1>)
p

does not vanish at the crossing point. But we saw in the proof of Lemma 3.1 that at the
crossing point > xq, wherexf_l = A(N —1)/p. We complete the proof just observing
thatx; is the only point where§ vanishes. O

Since the functiomy(p) is a differentiable function, we can differentiatandu’ with
respect top. We definep(r, p) = du(r, p)/dp and we prove

LEMMA 4.2. —The functionp(-, p) is aC* function inR™, for p near p*. Moreover,
it satisfies the equations

AN — 1)

rQ” + ¢ + puP~to +ullogu=0 ifr <ro, (4.2)

and

AN — 1)

Ag" + ¢ + puP o +uflogu=0 ifr>r. (4.3)

Proof. —The functionu satisfies the equation

AN —1 .
A" + MV-1) )u/ +u? =0 ifr <ro(p), (4.4)
r
so that, a direct computation shows thatatisfies (4.2), with initial conditiong(0) =0
and¢’(0) = 0. Next we define the function(s, p) as the unique solution of the initial
value problem

AV + ——v' 40P =0
s +ro(p)

with initial conditions

v(0) =u(ro(p)~, p) and v'(0)=u'(ro(p)~, p). (4.5)
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Then we see that is differentiable with respect tp andu(r, p) = v(r — ro(p), p) for
all » > ro(p). From here we find that(r, p) is also differentiable with respect jo
Differentiating we have that for all > ro(p)

u ov

5(& p)=—v'(r —ro(p), p)ro(p) + % (r —ro(p), p),

from where we obtain

ou

3
5 (ro(p)™, p) = =v'(0, p)ro(p) + %(0, p).

If we consider the initial conditions (4.5) we finally find that

ou n ou _

@(7’0(17) 7p)_£(r0(p) ap)
In a similar way we obtain

ou’ N ou’ B

% (ro(p)*. p) = E(FO(W . D)

This last two equalities prove thatis of classC. O

In the discussion to follow we will keegpp = p* fixed. Then, for notational
convenience, we will writep instead ofp*. In the proof of Proposition 4.1 we will
come back to the regular notation.

Now we fix the constany > 0, the initial condition in (2.1)—(2.2), in such a way
that x'(T) = 0 impliesu(e’) = 1. This is possible since a changejmnimplies time
translation in the dynamical system. The next lemma provides two identities that are
very important in the sequel. These type of identities where introduced in [15], for a
related problem.

LEMMA 4.3.—Letu(r, p) and¢(r) as above. Then the following identities hold
N-1
{rN_l[(ru)”go — (ru)'¢'] }/ _ - [(p —3u’¢ + ru'u”logu + ub+t logu|, (4.6)

N-1

{rN_l(u’go — ugo’)}/ = rT [(p—DuPe + ubtt logu|, forr>ro, 4.7)
and
- N-1
(PN ow e — (ru)'¢']} = r X (p—3ul¢ +ru'u”logu + u’ tlogu|, (4.8)
- N-1
(P Yo —ugH} = rT [(p — DuPp +u’logu] andr > ro. (4.9

Proof. —The proof is obtained by a routine calculation, starting from the equations
satisfied byy andu. We omit the details. O

The next lemma is a key step in our arguments.
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LEMMA 4.4. It is not possible to have simultaneously that
rIi_)rr;()w(r) =c1 <0 and r"—U;o re'(r)=0.
Proof. —Sinceu is a fast decaying solution, there exist€ & 0 such that
lim u(ryrV2=C and lim W (V1= 2= N)C. (4.10)

Then
lim rﬁ_l(u’go —u¢')=(2—=N)Ccy. (4.11)

On the other hand, using the equation #owe find

rN_l[(ru)”(p —(ru)'¢'] = N1 [(3— Nu' — ruf)o — (u+ru)¢'].

From here, and the fact that> N /(N — 2), we obtain

lim rVru) o — (ru)'¢'] = (2= N)(3— N)Cey. (4.12)

r—>0o0

Now we integrate identities (4.7), (4.9) and (4.6), (4.8) and we use the limits (4.11)
and (4.12) to find

" N-1 % N1
/T[(p —Dule +u1’+llogu] +,B/T[(p — DuPe + uPt? logu]
0 ro

=(@2—N)Cc,

and

0 N-1
/ i . [(p —Bul¢ +ru'u”logu + ulogu]
0

o0 N-1
+B / rT [(p — 3up + ru'u” logu + u”*logu|
ro
=(2-N)B—N)Cey,
whereg = r(’)v‘ﬁ. If we multiply the first integral by p — 3)/(p — 1) and subtract the
second one we get

P N-1 T N1
/T [(au + ru’)u” logu] + ,B/T [(au + ru’)u” logu]
0 o

_ <3 - P_*‘) 2— N)Cey. (4.13)
p—1
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We notice that'(r) = r*(au + ru’), thenau + ru’ change the sign wheri does. But
we have chosep so that log: change sign wher' does. Thugau + ru’)u” logu > 0,
for all » > 0. On the other hand, singe> N /(N — 2) we have that the right-hand side
in (4.13) is negative or zero, providing a contradiction

Continuing with our analysis we define the function

w=wy(r) =r’u(r, p),

for & > 0 chosen so that = (N — 1)/2if N >3 andd = (N —2)/2if 2 < N < 3. This
function was introduced by Erbe and Tang in [8], for a related problem. The funwtion
satisfies the equation

N-—1-20 00 +2—N r .
”—I-( )w/-i- ( +2 )w—l-r@u—:O if r > ro. (4.14)
r r A
Next we define
Bw(r)
y(r) = =r'p.

WhenN > 3, the functiony satisfies the equation

N-1)@B-N p ! i
/,+(( 4?:2 )+puA )y+r9%|oguzo if r > ro. (4.15)

Sinceu is a fast decaying solution we have (4.10), then we find that

lim rN-20-Dyr=1(y — cr-1 (4.16)

r—>00

But, sincep > N/(N — 2), we have thatN — 2)(p — 1) > 2. Thus the coefficient in the
second term of (4.15) is negative fofarge.
When 2< N < 3, theny satisfies the equation

(N—=2?2  purt u? :
y' —I—y —I—( o + X )y—l—rexloguzo if r > ro. (4.17)
Since, again we have (4.16), the coefficient of the third term in (4.17) is also negative fol
r large.
Now we can prove the following lemma on the asymptotic behavior. of

LEMMA 4.5. -The functiony defined above satisfiggr) > O for r large.

Proof. —Suppose, for contradiction, that there exisislarge such thag(r) < 0, then
we have the following two possibilities:

(@) y(r) <Oforallr > r or (b) there exists* > 7 such thaty(r*) =0 andy’'(+*) > 0

In case (a) we have that(r) < O for all » > . From (4.9) we have then that fer
large

{rﬁ_l(u/go —u¢)} <0 and {rN '} > 0. (4.18)
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Again there are two possibilities:

(i) There exists” > r such that' (F)p(7) — u(F)¢'(F) <0 or

@) ' (r)p@r) —u@)¢'(r) >0forallr >r.

If (i) is true, from (4.18) we hava’(r)¢(r) — u(r)¢’(r) <0 for allr > 7, from where
it follows that the function: /¢ is strictly decreasing for all > 7. Thus there is a number
Coo» POSSIbly—o0, such that

| u(r)rN_2
—_—= = C
gy

and then Iim_wogrﬁ‘2 = C/cs < 0, whereC is givenin (4.10). On the other hand from

(4.3) we have{r¥1¢")}) > 0 for r large, then there is a positive constant possibly
+00, so that

lim ¢'rV "t =¢;.

r—>00

Hence by the L'Hospital’s rule we get

. Y ~ s ~ C
lim ¢'rV""1=@2=N) lim ¢r""?2=(2- N)—.
r—0o00 r—00 Coo
From here we obtain thap(r) — 0 and r¢'(r) — 0 asr — oo, contradicting
Lemma 4.4.
If (i) is true, we have

u' (Ne(r) —u(r)g'(r) >0 forallr >7. (4.19)

From (4.18) there exisis € (—oo, +00] such that lim_, . ¢’ (r)r¥ =1 =c,.

In casec, < 0 we haveg'(r) < 0 for all » large, consequently there exists €
[—00, 0) such that lim_. o () = c1. We claim that; is finite. In fact, we first observe
that, sincep’(r)rV=1 = r¥=2(r¢’'(r)) converges to a finite limit, we have necessarily that
lim,_ . r¢'(r) =0. Then from (4.18) and (4.19) we find a finite constapt O such that

rIi_)rrgo rN_l(u/(r)(p(r) —u(r)¢'(r)) =c, (4.20)

from where it follows that; is finite. Thus we get a contradiction with Lemma 4.4.

In casec, > 0 theng'(r) > O for all r large, so that there exists a constante
(=00, 0] such that lim_, o, ¢(r) = c1.

Again we have (4.20) from where we find a non-negative constgrguch that
lim, o re' (r) = c3. If c3 > 0 then integrating this last limit we conclude thatis
unbounded, which is impossible. Thus we again contradict Lemma 4.4.

In the second case (b), N > 3 we have thay(r) > O for all > r* that is because
(4.15) impliesy”(t) > 0 if y(r) > 0.

In case 2< N < 3, then there existg > r* such thaty(rg) > 0. In fact, the contrary
would imply thatr* is a local maximum point, contradicting the fact thdtr*) > 0,
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as follows from (4.17). Now assuming(rg) > 0, we see thay(r) > 0 for all r > r*,
because the contrary would imply thathas a local maximum point in, € (r*, co)
contradicting again that”(r1) > 0, as follows again from (4.17).0

COROLLARY 4.1. —The functiony defined above, satisfigs(r) > O for r large.

Proof. —-From Lemma 4.5 we have(r) > O for r large, so in the cas&/ > 3, by
(4.15) we see that”(r) > 0 for r large, hence is monotone. Thus we can define

Yoo = lim y(r).
r—00

If 0 < yo < o0 theng(r) > 0 andre’'(r) — 0 asr — oo. But this contradicts
Lemma 4.4. Hence,, = oo, and theny’(r) > O for r large.

In the case 2< N < 3, by (4.17) we havelry'}(r) > 0. Consequentlyry’ is
increasing, and then there exists (—oo, +00] such that

lim ry'(r)=1.
F—> 00

If | < oo we have

(N =2\ & ~
JE&( 2 )’(Nz” 20(r) + M2/ (r) =1.
Thenge(r) — 0 andr¢’(r) — 0 asr — oo, but this contradicts Lemma 4.4. Hence
[ = oo and theny’(r) > O forr large. O

Now we are prepared for proving Proposition 4.1. From now on we come back to our
notationp* € F.

Proof of Proposition 4.1. +et p* € F and p < p* sufficiently close tgp*. Here, and
in what follows, we assume that0, p) = u(0, p*) = y, wherey was chosen before.
Suppose first thgh € 7 and N > 3. Let us define

r(N—l)/Z r(N—l)/Z

w(r) = u(r, p), w,(r) = u(r, p*)

andv = w, — w. We see that for largev satisfies the equation

. (N -DB-N) () 4 r@-0200 P —u(r,p)’) _

v 4y2 A

0. (4.21)
By the mean value theorem we have
u(r, pY —u(r, p)’ = p*(EM)" (. p)—ul. p) +ulr, p)” —u(r, p)’, (4.22)

where

£(r) € (min{u(r, p*), u(r, p)}, max{u(r, p*), u(r, p)}).
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Next we use continuity of the solution of (2.1)—(2.2) with respect to the parameted
the fact thatu'(r, p) < 0 for all » > 0, to find7 ande > 0 such thau(r, p) < 1, for all
r >r and for allp € (p* — ¢, p*). Thenv satisfies

N Y * -1
v”+<(N D@ N)+P E@)?

22 A )v >0 forallr>r. (4.23)

Using (4.16) and thap > N /(N — 2) we conclude the existence of such that

(N —-1)(3-N) AUG pr Tt

22 A <0 forallr>r*. (4.24)

On the other hand, by Lemma 4.5 and Corollary 4.1, there ekistech thaty(7) > 0

andy’(7) > 0, for 7 > max{r*, r}. Thusv(7) > 0 andv’(¥) > O for afix pe (p* —e&, p*)

close top*. But sincep € 7 and N > 3, we havev(r) — 0 asr — oco. Thusv has a
positive maximum, let us say if. Sincev(7) > 0, we getu(?, p) < u(#, p*), hence
u(#, p*) > £@). Thus, from (4.24) we have

(N-1@B-N) prE@)»

0.
472 A

But then we get a contradiction from (4.23), and the fact hata maximum ofv.
In casep € F and 2< N < 3 we proceed slightly different. Define

(N=2)/2 (N-2)/2

w(r) =r u(r, p), wy(r) =r u(r, p*)

andv = w, — w. We see that for large,v satisfies

iy 4 L0 TN =D G2 PO —u D)
4y2 A
Then we use an argument similar to thatof- 3, and we get a contradiction again.
Suppose next thap € P U S. We will distinguish two casest < A and A < A,
corresponding toVI™ and M, respectively.
In case)r < A we observe that the solution= u(r, p) satisfies

Au" 4+ A u +u”<0, Vr>0.

r

We see then that the argument given foe F can be repeated step by step since the
functionv satisfies, for large,

LWN=DB=N) G )T u DD g on

4
vin) 42 A

which is all we need.
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In caseA < A we need some extra work. Assume first that- 3 and define the
functionw*(r) = r¥-Y/2y(r, p*) andy as

a 7K
w (7’) — r(N_lW(p.
ap

y(r) =

Then the functiory satisfies the equation

(N=1(N+3-2N) p*u(r, P*)”*_1> _
+ y
4y2 A

7'+ (N — N)— (

p*
Jr,,(1\/—1)/2“(“11’\’ ) logu =0, (4.26)

if r > ro. We claim thaty andy’ are positive, for- large enough. In fact, by Lemma 4.5
we know that for- large the functiory is positive, theny is also positive. On the other
hand, as in (4.24) and noticing th&t> N, we can find-* such that

(N —1)(N +3—2N) L Pl pHr -t

42 X <0 forallr >r*. (4.27)

Thus, from (4.26) we get that ¥~V 5)’ is positive for large and so that lim_, o, 7V~ 57
= [ exists. Ifl is finite we have that

. -1
I|m I"N (N+1)/2 /( )+ 2 N (N+3)/2(p(r)—l

r—>oo

from where we see that lim .. r¢’(r) = lim,_ o ¢(r) = 0, contradicting Lemma 4.4.
We conclude so thdt= +oc0 and theny’(r) > 0, forr large, completing the proof of our
claim.

Next we definew(r) = r'¥=Y/2y(r, p) andv = w* — w. By the positivity ofy and
y" and the growth ofv* andw, we find that, for certairp close top*, v possesses a
positive maximum at a poirit.

If u is convex af thenv satisfies the equation

V" + (N — N) =0,

<(N H(N +3— 2N)> +r(N_1)/2u(ra P*)p* —u(r, p)f
42 A

and we can repeat the argument as in the gaseF.
If u is concave ak, the point of maximum ob, then we use that* = u(-, p*) satisfies

(u *)’

Au®)” + (N — 1) + WP =0

to find thatv satisfies the inequality

> 0.

" (W)v L -2t P —ulr p)?
4r2 A



864 P.L. FELMER, A. QUAAS / Ann. I. H. Poincaré — AN 20 (2003) 843-865

From here we can reach a contradiction again, as in thecasg.

It is only left the caseV = 3, but this is treated proceeding as before, but defining
w*(r) = rN =22y, p*)y and w(r) = r™—2/2y(r, p). This finishes the proof of the
proposition. O

Now we can complete the proof of Proposition 4.2, saying that apweF solutions
are slow (or pseudo-slow) decaying.

Proof of Proposition 4.2. Let us assume that € C and p > p*. We have that the
function u(r, p*) is convex forr > ro and that ifp is close enough te*, the function
u(r, p) is also convex fov € (rg + 1, r1), wherer, is the first point where:(r, p) = 0.

We notice thak; goes to infinity ifp — p*.

Then in the range € (1o + 1, r1) we can proceed as in the proof of Proposition 4.1
(in the casep € F). The difference is that in (4.23) the inequality is reversed armdns
havev(7) < 0 andv’(7) < 0. The contradiction comes from the fact thdt,) > 0 and
sov must have a minimum ifvg + 1, r1).

To conclude we notice that jf > p* andp € F, thenp ¢ F, because Proposition 4.1
would imply that(p*, p) N C # @, which is impossible as we just provedd

5. Proof of Theorems 1.1 and 1.2

In this section we complete the proof of Theorems 1.1 and 1.2. We also state and prov
an existence theorem in the case of the ball, which appears as a direct consequence
our analysis.

Proof of~Theoren1 1.1. According to Propositions 3.1, 3.2 and Remark 2.1, theGets
andP \ {(N + 2)/(N — 2)} are open in1, co) and their boundary points are jA. The
fact thatF is a Singleton is a direct consequence of Propositions 4.1 and 4.2. The growtt
rate of its single element is obtained by analyzing the linearization of the dynamical
system nea(0,0) in R~.

The rest of the theorem follows directly from Proposition 3.81

Proof of Theorem 1.2. As in Theorem 1.1, the fact th&f is a Singleton is a direct
consequence of Propositions 4.1 and 4.2 and the openn€saraf of P U S. The rest
of the theorem follows directly from Propositions 3.1 and 3.2

Finally our existence theorem for a ball.

THEOREM 5.1. —Let R > 0 and B = B(0, R) the ball of radiusR centered at the
origin. Then the equation

ME, (D?u) +u” =0 inB,
A,A( ) (5.1)
u(x)=0, xe€dB, u>0 inB,

has a unique solution providell< p < p}.
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Proof. —In the range ofp all solutions of the initial value problem (2.1) are crossing
solutions. Then by choosing appropriately we obtain a solution of (5.1), which is
unique. O
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