Ann. |. H. Poincaré — ARO, 5 (2003) 867—888
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

10.1016/S0294-1449(03)00015-5/FLA

NONHYPERBOLIC PERSISTENT ATTRACTORS NEAR
THE MORSE-SMALE BOUNDARY

Eduardo M. MUNOZ MORALES*1,
Bernardo SAN MARTIN REBOLLEDO?,
JaimeA. VERA VALENZUELA 2

Departamento de Matematicas, Universidad Catdlica del Norte, Casilla 1280, Antofagasta, Chile
Received 5 May 2002, accepted 30 September 2002

Dedicated to Professor Jacob Palis on his sixtieth birthday

ABSTRACT. — In this paper we present a submanifdldof codimension two contained in
the Morse—Smale regular boundaryAii (M), the space of” vector fields on a 3-dimensional
manifold M, which exhibits singular cycles, such that for generic 2-parameter families going
through, it has nonhyperbolic nontrivial attractors for a set of parameters with positive Lebesgue
measure.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Dans cet article on construit une sous-vari§téle codimension deux contenue
dans la frontiére réguliere de I'ensemble des champs de vecteurs Morse—SneléMy
I'espace de champs de vecteurs de cl&gssur la variété de dimension tral$, laquelle présente
des cycles singuliers tels que, toute famille générique a deux paramétres transvetrpaleside
des ensembles attractifs non hyperboliques et non triviaux pour un ensemble de paramétres dc

la mesure de Lebesgue est positive.
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Morse—Smale systems constitute an open set of dynamically or structurally stable
elements as classically established in Palis [12] and Palis—Smale [13].

On the other hand, singular cycles constitute a bifurcation mechanism for vector field:
that, to the opposite to what happen with homaoclinic tangencies in the diffeomorphisms
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case, the hyperbolicity from the parameter point of view, is a total Lebesgue measur:
phenomenom for generic unfolding of these type of vector fields, see [3,11]. These kinc
of cycles were studied for the first time in [7], as being part of the so called singular
horseshoe, an example (on manifolds with boundary) of a structurally stable vector fielc
with a nonhyperbolic nonwandering set.

An important ingredient to obtain these results about hyperbolicity, is the presence
in the cycle of just one branch of the unstable manifold of the singularity. As we
will observe later, the consideration of both branches on the cycle, plus a contractivity
hyphotesis for the cycle itself it will imply that the generic unfolding exhibits
nonhyperbolic nontrivial attractors which are persistent in the measure sense.

Before to give the precise statement of our result we establish the setting and concep
that we will need. LetM be a compact boundaryless 3-dimensional manifold and let
X" (M) be the Banach space 6f vector fields onM. For X € X" (M), T'(X) denotes
its chain recurrent set. We say théte X" (M) is simpleif I'(X) is a union of finitely
many hyperbolic critical orbits. By eritical orbit we mean an orbit that is either periodic
or singular. It is easy to see that the §&bf simpleC” vector fields is an open subset of
XT(M).

An orbit y of a vector fieldX is transversalif «(y) andw (y) are critical hyperbolic
elements and their invariant manifolds meet transversally ajgrfteree andw stand
for theo andw-limit sets, respectively. We say th#tis aMorse—-Smaleystem ifX is
simple and every orbit is transversal.

A cycle A of X € X" (M) is a compact invariant chain recurrent set consisting of
finitely many orbits whose: and w-limit sets are critical elements linked in a cyclical
way. If the cycle contains at least one singularity, we will call giagular cycle If o;
ando; are critical elements on the cycle, we write< o; to mean that there is an orbit
vij on the cycle such that(y;;) = o; andw(y;;) =0o;.

In this paper we are concerned with those cydlesrhose critical elements satisfy
0o < 01 < - -+ < 0} = 09, Whereoyg is the unique singularity in the cycle, dW* (og) = 1
and W"(og) C A N W*(o1). Furthermore, if we denote by, and y, the branches of
W (og), then A, = A\{y,;} and A; = A\{y,} are contractive singular cycles as in [3]
satisfying some extra condition. In fact, as in 8] and A, satisfy:

(1) The eigenvalues-11, A, and —\3 of the singularityoy are real and satisfy
—i3< -2 <0< x;andi; — Ay > 0, i.e., the cycle is contractive. Besides,
we assume the aditional conditigh> « + 1 wherea = 11/A, andg = A3/ A».

(2) For all p € y; Uy, and any invariant manifoldv" of X passing througtg
tangent to the eigenspace associated with the eigenvalugand, holds:

T,(W) + T, (W* (w(p))) =T, M.

(3) There is a neighbourhodd of X such that ifY € U/ the continuations; (Y), 0 <
i <k —1, of critical orbitso; (X) of the cycle are well defined, the vector figld
is C?-linearizing nearbyso(Y) and the Poincaré maps 6f(Y), 1 <i <k — 1,
areC2-linearizing ones.
In linearizing coordinates fow the flow is given byX’(xs, x2, x1) = (€73 x3,
€2 x,, €' x1) and thenW; . (o0) = {(x3, 0, x1)} and W .(o0) = {(0, x2, 0)}. We
defineXg = {(x3, x2, 1)}.
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Let X; be a transversal section to the flow through a pginf o;, then in

linearizing coordinates{(x, 0)} and {(0, y)} are the local stable and unstable
manifolds of the fixed pointy = (0,0) of the Poincaré map induced by
o1, respectively. The flow generated hy also induces a Poincaré map
Por: Dom(Pyy) C g — X1. Por(w) is the first point of intersection among the

positive orbit ofw and the sectiorx;.

(4) The orbity,_1 ¢ in the cycle is not contained in the strong stable manifolenf
and we suppose that intersedls.

(5) The branchy, (resp.y,) of W*(oo(X)) is the only nontransversal orbit in,
(resp.A,). Moreover, ifo € A = A; U A, is a periodic orbit, then there is only
one regular orbiy in the cycleA such that = a(y).

(6) Forj=I,r, Ajisisolated i.e., there exists a neighbourhood of A ;, which is
called anisolating blocksuch that), X’(U,) does not contains any orbit close
to W (oo(X)). Here X' : M < is the flow generated b¥. U = U, U U, is an
isolating block forA.

In Fig. 1 a sketch of the geometrical shape of our cycle considering the coordinate:s

system as mentioned in (3), is shown.

Let Ck(12, X" (M)), k > 2, be the space of familigsx,, ,} of C"-vector fields; > 2,
depending on two parameteys, v) € 12 =[—1, 1] x [—1, 1] such that the mafu, v) €
1> - X,., € X" (M) is C*. Let us endowC* (12, X" (M)) with the C*-topology. We are
interested in familieg X, ,} € C*(1%, X" (M)) such that (after a reparametrization, if
necessaryXo o has a singular cycle as described above.

We say that a compact invariant transitive gebf a vector fieldX is anattractor
if there is a neighbourhood/ > Q such thatX*(U) C U for all r > 0 and Q=
Ni=o X (U). If Q is atransitive set but not a regular orbit, we say that itiatrivial
attractor. Now, we state our main result:

Fig. 1.
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THEOREM 1. — For generic families{X, ,} € C*(I1%, X" (M)) having a singular
cycle for X,,.v,) = X(0,0) that satisfies the conditior()—(6) above, it holds that

m({(n,v): X, , has a nonhyperbolic nontrivial attract¢y > O

wherem stands for the Lebesgue measurd fnMoreover, this set accumulatég, 0).

Remark1. —

(1) The conditiong > « + 1 in (1) above had been established in order to obtain
certain appropiate€?-invariant foliation (Lemma 1, Section 2), leading us to a
one-dimensional dynamics reduction on our study. Besides, in Lemma 3 we neec
this class of differentiability in order to apply Mafié’s Theorem [8].

(2) Condition (2) above also means tht"(cg) meetsW* (a1) transversally.

(38) The conditions (5) and (6) are required in order to guarantee that we can construc
the vector fieldX in the boundary of the Morse—-Smale systems. In fact, by
condition (5) we can slightly perturb the systexh “moving down” the first
intersection point belonging to each of both branche® o) with X1 without
create homoclinic points (this can not happen if we “move this point up”), and
then the condition (6) (with some extra hypothesis about the existence of a
filtration, see [18] for definitions and details) guarantee us that there are not
changes -explosion) in the dynamics far away from the cycle. In this way
we can attain the dynamics &f (the cycle) from the Morse—Smale systems and
therefore this kind of cycles constitute a bifurcation mechanism for the Morse—
Smale systems.

(4) Condition (6) implies that the eigenvalues associated toothare positives,
otherwise a singular horseshoe appears [7].

(5) Condition (5) contains the only two degeneracencies, so the cycle is a codimen
sion two phenomena.

(6) The attractors obtained are one side orientation preserving Lorenz-like atractors
(7) A similar result can be obtained when we consider cycles in which the branches
of the singularity oy are linked to distinct periodic orbits. This result is

established in a forthcoming paper [17].

(8) The case where the cycle reduces to a double homoclinic cycle has been studie

in [9].

The paper is organized as follows. To understand the dynamics,of u, v > 0,
we restrict our analysis to the dynamics &f, , on I'(X, ,,U) where U is an
isolating block. In Section 2 we establish the existence Gf-dénvariant stable foliation
(Lemma 1). This reduces our study to the dynamics of one-dimensional frapsand
some limit dynamic is obtained via renormalization (Lemma 2). In Section 3 we show
that for a large enough positive integerthere exists a positive Lebesgue measure set
E, in the (4, v)-parameter space such that the critical valueg,of = (f,.,)"** have
positive Lyapunov exponents and the clousure ofdhe-iterates of these points is an
interval (Theorem 2). From this result our Theorem 1 follows. Theorem 2 is proved by
applying Benedicks—Carleson technigues, and in order to do that, a fundamental an
crucial fact is to prove that the maximal orbits outside of a certain neighbourhood of
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the critical points have exponential growth, provided that the number of elements in the
orbit is big enough.

2. Renormalization

Our first proposition, Proposition 1, points out that systems having our cycles
constitute (locally) submanifolds of codimension two XY (M) contained in the
boundary of the Morse—Smale systems and, consequently, the natural approach to stu
their bifurcations is by mean of two parameter families transversal to these codimensiol
two submanifolds.

PropPOSITION 1. —Let A be a singular cycle for the vector field as described in
the introduction, and leU be an isolating block associated to it. Then, there exists
a neighbourhood/ of X in X" (M) and aC”-submanifold\ of codimension two in
X"(M) containingX such that iftf e NN, then'(Y, U) =, Y'(U) contains a cycle
topologically equivalent ta\.

Proof. —The proof is quite simple and it goes as follows: et and y, be the
branches oW* (o). Let X, be a transversal section 0 atq € o,. For eachy close
to X we consider linearizing coordinatés, y) on X, for the Poincaré map associated
to o, (which vary smoothly withY) such thatWj.(o,) N 21 = {(x,0)}. If ¢/ is a
small enough neighbourhood &f, then we can define th€"-map G;:U4 — R by
G;(Y) =m0 p;(Y), wherep,;(Y) is the first intersection of; with 1, i =1, r, and
5 denotes the projection over the second term on the coordinates. tifis clear that
B, = G 1(0) is a submanifold of codimension onel#that containsX. Analogously we
obtainB; = Gl‘l(O) which is transversal t®,, and thus we get that both| = B, N B,
andi{, satisfy the conditions of the proposition. In fact,Gf:1/ — R? is defined by
G(Y)=(G,(Y),G,(Y)) thenG is a submersion and’ = G~1(0,0). O

Let X be a vector field having a cyclé as above, and lef be a two-dimensional
C*-submanifold of X" (M) transversal to\" at X. The mapG : S — R? defined by
G(Y) = (G.(Y), Gi(Y)) is a C*-diffeomorphism in a neighbourhood df in S and
then, it determines a parametrizationSoh a neighbourhood o, i.e.,Y = X, , ifand
only if G(Y) = (i, v). Moreover,X = Xoo and X, , is a Morse—-Smale system if and
only if 4 andv are both negatives. Furthermore, from [3,6,11,16] we know that in the
Lebesgue sense, for almost evémy v) close enough t@0, 0) and such thattv < 0 we
have thatX, , is an Axiom A system. Therefore, our work will be focus on the region
corresponding to positive values for the parameteendv.

Let {X,.,} € CK(1%, X" (M)), and letA be a singular cycle associated to the vector
field X = X 0. Using transversality arguments we can change the cycle for other one,
choosing a new cycle contained I X, U), still namedA, having only one periodic
orbit, i.e.,A = {og, ¥, ¥, 01} linked by oy < 01 < 02 = 0p.

Let X, be a cross section to the flow &f at g € o1(X) and chooseC?-linearizing
coordinateg(x, y) for the Poincaré map induced lay (X, ,), depending smoothly on
the parameters. In this coordinates we have:
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(1) Q={Cx, »/Ixl. Iyl <2} C Zs.

(2) {(x,0)/1x] <1} C W (01(Xp0))-

() {0, »)/Iyl <1} C W*(01(X . 0))-

(4) (X0, U)NEg C{(x,y)/y = 0}.

(5) The Poincaré mapP, ,, defined byoi(X,,) is linear and P, ,(x,y) =

(tuvX, puvy) Where O< 7, , <1andp,, > 1 (see (5) and (6) in Section 1).

A closed subseR C X, is called ahorizontal stripif it is bounded (inQ) by two
disjoint continuous curves that connect the vertical sideg .of

There are two horizontal strigg& andR1 in Q such that foru, v) close to(0, 0), the
X ,..» positive orbit of any point irRoU R1 meetsX; and then, there is@u, v)-dependent
firstreturn mapF, , : RoU R; — X1. In fact, R is a horizontal strip containing the, -
local stable manifold of,, ,, andF,, , restricted to this strip coincides with the Poincaré
map P, ,. Ry is a horizontal strip containing in its interior the connected component
W5 o of W (00(X0,0)) N Q which contains the last intersection point amgng (time
oriented) andQ. Here we note that, as in [3] the strify, there denoted bRR?, depends
on each vector field = X, , close toX. In [3] one of the horizontal sides dt? is
contained in the continuous variatidf; , of Wg , with respect to the vector field, , .

In that situation, the return map is defined only at one sid#'bf, whereas in our case,
the return map is defined at both sidesiof , C Ry (this fact introduces a discontinuity
in the Poincaré return map). In fact, the positive orbit of a poinRinhas a segment
close to one of the branches or y,. of W“(00(X,.,)) and then intersect&,, as it is
shown in Fig. 2.

For simplicity, we observe that after multiplication gy, v)-dependent constants in
the coordinates we can suppddg N {(0, y)} = {(0, 1)}.

In order to find some analytical expresion féi, , we choose(xs, x2, x1) Cc?-
linearizing coordinates for the singularityy depending smoothly on the vector field. In
these coordinates thg, , flow is given by X! | (xs,xz,x1) = (€3 x3, €% x2, € *'x1)
where—iz < —11 < 0 < A, are the(u, v)-dependent eingenvalues DX, , (o0(X,.,))-

=

Fig. 2.
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Next, we take the sectionSg = {(x3, x2, D}, &; = {(x3, =1, x1)} and =, = {(x3, 1,
x1)} (see Fig. 2), and consider tle, v)-dependent Poincaré md: Zo\{(x3,0, 1)} —
¥, U X, induced by thQXM,U flow given byPl(X3, X2, X1) = (X3|)C2|ﬂ“"’, |x2] /X2, |x2|%wV),
wherea,, , = A1/Az andp, , = Az/A2.

Finally, we consider théu, v)-dependent diffeomorphisni® : Dom(Py) C X1 — Xg
and P,:Dom(P,) C %, U X, — ¥, induced by theX,, , flow. Then, forF, , restricted
to R, we have

Fu,v(-xa y) = (PZO Pyo PO)(-xa y) = (uu,v(-xa y)7 vp,,v(-xa y))

By using the chain rule it is inmediate that there is a positive congtantlependent
from the parametefu, v) such that

C_1|X2|a“’v_l < ’ayvu,v(-xa y)’ < C|x2|aﬂ,u—l’ (1)
C—1|x2|au,v—2 < laivﬂgv(x’ y)’ < C|x2|a/l,_l)_2.

The following lemma, whose proof is obtained in the same way than in Lemma 1
of [3] (see also p. 695 in [7]), implies that afterG®-change of coordinates the second
component ofF, , does not depend on, i.e.,v, ,(x, y) = f,.(y) and therefore, our
study is reduced to a setting in one-dimensional dynamics.

LEMMA 1.— If 8 > a + 1 then for each pair(u, v) small enough there exists@
invariant stable foliation;, , defined onx; with a C*-dependence on the parameter
(,v).

Using this lemma, the formula faP, and Taylor expantion foPy and P,, we have
that after aC2-change of coordinates given by proyection along the leavers, of and
dependingC* on the parameteiu, v), the return magF,, , can be expresed by

_ (ﬁu,u(xv y)v fu,u(y))v (x, y)ERlv
E”“””‘{mwmﬁw@», (x.y) € Ro,

where{ f,..,} is the C*¥-two parameter family of one-dimensionaf-maps induced by
the stable foliation¥, , defined by

Puvs 0<y <p, b, v),
Juw ) = =k (M@ =)™, alp,v) <y<l1,
v =k = D%, 1<y <b(u,v).
The functions(u, v, y) — k,,(y) and (i, v, y) — I?M,,,(y) are positives, bounded and
bounded away from zero (see (1)) and besid¥&son the parametefu, v) and C? on

y € [a(u,v),D) U (1, b(u,v)]. The extreme pointa = a(u,v) andb = b(u, v) are
defined by the relations

w—ky,(@@—a) =0 and v—k,,(b)(b— 1% =0.

Note that this relation is given to leave out those values sfich thatf, ,(y) <0,
because they are not relatedlteX, ,, U), since their orbits come back &, at most a
finite number of times, see Fig. 3.
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n+1

ThY

n+l

J oy
Juv R
v <2p% p:vu [V <1 I<pg b .pgv<b
(a) (b) ()
Fig. 3.

Furthermore, from (1) we conclude that there are positive const&ntand Ko,
independents from the parametgr, v) such that

K11 =yt < (8, fur ()] < Ko|1— |1, .
Ka|1— y[* % < |02 f0(3)] < KoL — y|*r 2.

For a positive integer, considerg, , , = (f;jfgl)ha,b]\{l} wherea = a(u,v) and
b = b(u,v). Note thatg, , ., may be not defined for every e [a, b]\{1}. However, if

we supposgw < p,"a andv < p " b then a straightforward evaluation gives

Ppole =k (ML= y)* ], a<y<l,

&n, ,u()’) = -
' { Pl oV =k My = D], 1<y<b.

In Fig. 3(a), (b) and (c), we have been drawn the graphg,of ! for P <1

M
andpy, ,v < 1; and the graph ofljffgl forl<p, ,u<bandl<pj v <b.Inthe next
section our attention will be focus on the case sketched in Fig. 3(c).

The next lemma is similar to Theorem 1, p. 47 in [14], and it means that after a
suitablen-dependent reparametrization there is a well defined limit dynamig, fathen
n converges to infinite. These reparametrizations will be done in neighbourhoods o

some special parameters valygsandv,,. In order to do that, we have the following:

CLAIM 1. —-Givenn big enough, there are unique parametgrsandv; such thatu,,
=v,andp;, ,u,=1hold.

Proof. —For u such thatp;,  u <2, letw, (1) = pj, ,u. Taking derivative we obtain,
for some constant,

0w () = 0}, (107,38, (P + 1] = Coy

and thenw, (1) is an increasing function gf. Consequently, there is a unique= u,,
such thatpz, W w,=1. 0O
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LEMMA 2 (Renormalization). —For o = a0 = *1/12 and K = 120,0(1)/ko,0(1)
consider the two-parameter family
—(=»*+p y<0O

hps(y) = _ _ _

po(Y) {—K(y)"‘—i—v, O<y.

Define F(y, i, v) = (fuv(¥), 1, v), and & (y, i1, v) = (hz5(y), it, v). Then, for each
positive integen, there aren-dependent reparametrizatiops= ., (it, V), v = v,(ft, V)

of the (u, v)-parameter, and(jt, v)-dependent changing coordinate transformations
Y. i.5 such that if we consider the functions

Gn(F, it D) = (V5 (F)s ia (i, D), v, (2, D)),
= (¢n) to F" o g,

then @, (9, i1, b)) convergesC? to ®(y, i, ») on any compact set aR\{0} x R2.
Moreover, theg, —image of a compact sek c R3, converges, fom — oo, in the
(y, i, v) space tal, 0, 0). Furthermore, if1, 7.5 = (Y. 2.5) 20 gu w0 Va5 thenthere
are positive constantX; and K, independent of either € N and theji, v parameters,
such that

_apv—1 _ _ -1
Kyl "™ " < [05hnas (M| < Kaly| " 7, @)
_apv—2 apv—2
Kl31"" " < |02h, 55 (D)| < Kal3]”
Proof. —Taken € N. Givenpu, v > 0 define
1
Cn (/J,, V) = (kO,O(l)/OZ,U> ey ) Cn =Cp (/J,, V) > 0.
Sincea,, , > 1 we have
D‘M v— l 1
Py1vCn and ¢, -0 asn— oo. 4)
~ koo(1)
Now, define
a=c(op,n—1) and b=c (o) v —1). 5)
A straightforward computation give us
L= Cn_z[(nloﬂ ula (IOM U)M + 10 ) (IOZ”u/J’ - l) a;l.cn]v
7 — Cn_z [nlol’i—vlav (pu,v)vcn — (,OZ,UU — 1) 8vcn], (6)

=C, NP, 0 (/Op,,v)vcn - (/OZ WV — 1)aucn] s
2

:Cn

—2[ n—1
[(I’l,OM ])18 (/O;L v)v + ,0,,, v>cn - (,OZ,,,V - 1) avcn] )

and takingw;, andv, as in the claim 1, then fof{r = S50 (1, v7) we obtain
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8(;1, 1_)) . 1 np/:;ll,vr’l 3#(,0#,\)) + IOZ;“U,/I np;:;,l,v,’l av (;O;L,v)

- Y _ _
A, v) ey, vy) P 0 () o () + Pl

From here

et{a(ﬁ’ V)
A, v)

] = (Cn (M:/la V,;))_ZP,ZLZ,U,/I [np;;:”ll(au(pu,v) + av(pu,v)) + 1]

and then

(a7 det 5| 21

a(u, v)
This implies(u, v) — (1, v) is invertible in a neighbourhood @fi/,, v/).

Now, note that fori|(i, v)|| < r, maXu, v} < 2p,”, for n large enough depending
on r. Hence the domain of the magi, V) — (i, v) converges tdR?, and thenu =
w,(ix, v) andv = v, (x, v) is a well defined reparametrization in any large compact set.

Next, we define a mag, ; ; romRtoR by y =, 5.5(y) = ¢,y + 1, wherec, = ¢,

(u, v) (hencec, depends o andv), and we also definé, ; ; = (xpn,ﬁ,,—,)—l O &n.pv O
Y. u5- From (4 ) and (5 ) and a direct evaluation we obtain

kuw(y) S\, = a— S
Gy={ Po® (=3 +p. TSy <0,
n,u,v y _Izu,v(y) S\ - 0 - <
Toom W+, <y< =
and
k ,v(y) d kt,v()’) = = Ol,_,\,—l a—l =
y (i _(y) - { (aM’U kl(l)o(l) + )]}(0;0(1) Cny> (_y) ; ’ Cn y < 0
il A kv 3k () -1 5 b=l
TN Too@D T koo@ Y y)F 0<y<7,

Whenn tends to infinite, the parametegs= p ", (c,4 + 1) andv = p,” (c,V + 1),
andc, go to 0, and thus, from the expresion above we obtain/that; convergesC?!
uniformly on any compact set in thespace to:; ;. In a similar wayC? convergence
ony is obtained.

The(jz, v)-convergence in th€® sense is clear from the formulas. For tiéandC?

(ix, v)-convergence we need to compaxea;ih,,,ﬂ,a(y)) fori=0,1,2and r=,v. We
will compute onlyd;h, ;5 (y). The other ones go on in a similar way and we left them
to the reader.

Fory < 0, a straightforward computation give us

Aykyv(Y)
ko,0(1)
- [auku,v(cn}_} + 1)8,1,[1, + 8vku,v(y)aﬁv] (—f)a’”

kuw () _, i}
- uiy(_y) ey [8;/,0(”,\)8;1“ + avau,vaﬁv] |09(—y) + 17
ko,0(1)

3;1}1;1,;2,5@) = [aucn aﬁlJf + 8\)Cn aﬁv](_y)aﬂ"v—‘_l

and fory > 0
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_ k)
ko,o(1) )
- [%@,u()’)aﬁﬂ + avku,u(y)a[tv] ya,w

k _ _
- L(y)yaﬂ"v [aﬂau,va[tﬂ + avau,uaﬁv] IOg()’) +1
ko,o(1)

We need to estimat&,c,, d,c,, 9;u anddzv. A direct computation gives:

[alicna;l,u + d,c¢, aﬁv])_;au,v'i‘l

1 _ 0,0
;50O o

—2 " —log(koop”
1—a,, —i-(l_%’v)2 9( o,o,OW)]

0uCn = Cp [

and

1 0,0
dycp = Cp |: np;giavpu,v + Ry Iog(kO,OpZ,v)] .

11—y, (1—0ay,)?
From here we see thaf,c, = c¢,U(n) andd,c, = ¢,V (n), whereU (n) = np(u,v) +

g(p,v) and V(n) = np(u,v) + g(p,v) with p(u,v), g(u,v), p(u,v), g(u,v)
bounded functions. From this and (6) we obtain

)11+9mﬂ

de{a<ﬂ,a>]::<pzy

a(u, v)

wheref (n) depends om andv, and goes to zero whengoes to infinite. From this and
the formula

a(u,v)zz{8(ﬁwﬁ)]_1=:(de{a(ﬁ»ﬁ)}>_i[ 9,7 -—avﬁ]
8(. D) La(u.v) du.l) =00 9,

Cn

we obtain

Cy 2 1 c, 2 1
a,m=< ) —— 3,5 and aﬁv=< ) 3,7,
or,/) 14+60(n) er,/) 1+60(n)

from this expresion and (6) we conclude that

aﬁ/,L N and 8@1) ~

n
W,V H,v

and consequently; . andd;v go to zero whem goes to infinite and th€* — (u, v)
convergence follows.

To finish the proof of lemma, for; (e — 1) < ¥ < 0, recalling thaty = ¢,y + 1 and
using definition forh, ; 3(y), we have

35k .53 = 35 (W i.5) ™ 0 8upw © Y is) ()
= pZ,vayfu,v(y)
— n any,U(y)
HV (L — y)emv—l

=\ 1 Oy fup() = v—1
but thendsh, ; 5(y) = ko_o(l)u_}fmww’ ,

(1 _ y)a/l..l)_l’
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The same conclusion is obtained for<0y < c¢; (b — 1). Now, from (2) the
first inequality in the lemma follows. The same argument works for the second
inequality. O

3. Proof of the main theorem

In this section we will prove a one dimensional version of Theorem 1 from which
Theorem 1 follows.

THEOREM 2. — For eachn € N large enough there exists a Lebesgue positive
measure sek, in the (i, v)-parameter space such that

(1) For every (u,v) € E,, the critical valuesp;, ,n and pj; ,v of the function
g0 = (fu0)"™t have positive Lyapunov exponents, in other words, there exists
A > 1 such that|((g,...,)") (h ,i0)| > 25, and |((gn.u)") (o) )| > A* for
everyk > 0.

(2) For every (u,v) € E,, both critical orbits, i.e. {((gnw)k)’(,oz oM ken and
{((gn., kY (0.0V) ke are dense subsets of the inten@), , = [g. ..o (1), 1]
wheren = maxpy, 1, o), ,v}.

Remark?2. — Note that our Theorem 1 follows from Theorem 2. In fact, for each
(u,v) € E,, thesetQ,, , = ﬂT>0U,>TXL,U(n‘1(®M,V)) is the announced attractor since
®,., is transitive and the foliation defining, , is contracting.

The proof is quite long and we need to introduce some terminology. For a positive
large integern, define theu-dependent pointg(uw) and g(u) by the equations

gnu;t(p(:u)) = P(M) = gn,;t,u(Q(M))-
Note thata (i, 1) < p(n) <1< qg(u) < b(u, w). Let uq, uo be defined by

pr=sup{pl|p, m<1l} and pp=inf{w|bGu, p) <p), 1}

The mapw : [u1, n2] — R defined byw (1) = pj; , . —q(w) is continuousw (u1) <0
andw(uz) > 0, hence there is a parameter vajuee [u1, 12] such thatpy, | w, =
q(u,), see Fig. 4.

- (u, )>0
v ) <0==x v 20 Mg

+

P, ) q,) piL)  q@) PUL) qlts)
Fig. 4.
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From the definitions op,, g, u, andg, ,, .., we have that fon large enough we

get
k N 1/0!
1- Pn = ( ~anﬂn(p )> (Qn - 1)
kﬂn sMn (qn)

1-pn= (,0‘” [(M)lm_ﬂ] ;f/(a—l)
et kﬂn»ﬂn (Qn) kaMn (pn)

hence, using (42 and ‘1"11 are uniformly bounded. This implies that there are
parameter value$cn = v, and pointsg, = ji,, p, in the (¥, i1, )-space, such that
n,Mn,Vn (pn) - pn - hn,un,vn (Qn)

Furthermore, from the definition ok; ; we can see that there are a unique parameter
valuejin, = Voo and points; = v, andp suchthat, ; (p)=p=~h, , (g)andsince
hy. ;.5 converges uniformly tég; ; on any compact set iR we conclude thap, — p,
G, — q andit, = v, — jleo = Voo Whenn — oo.

For eachy > 0 consider the straight ling, 4 in the (&, v)-plane given by

and

Lyo={(i1,0) |V =0(iL — fn) + Vn}.

Let m and my be the Lebesgue measure in tle, v)-plane and in the straight
line L, , respectively. Using the Benedick—Carleson techniquesr flarge (see [1],
[2, Section 2], [10, Section 3], [15]) we will be able to show the existence of a
mg-Positive measure subsé]; g of L, ¢, having(i,,, v,) as a density point and satisfying
the requisites for Theorem 2 in thgi, v)-parameter setting. Once we have done
this, we conside®, = = Uy En.9. Fubini’s theorem |mpI|e3n(E ) > 0. Now, since the
reparametrizatioriu, v) — (i, v) is a diffeomorphism, we get a sé&, in the (u, v)-
plane satisfying the requirements of Theorem 2 beca)sg; is an affine map.

Before begining the set up of triéz,g, following the steps on [15] we will prove that
the maximal orbits outside of a neighbourhood of the critical point, having length bigger
than Ky (someKj) have exponential growth. This fact is established in Proposition 2
and it is a key step in order to apply Benedick—Carleson techniques. In Lemma 5 we
will show that under the basic assumption (BA) the increasing in the derivative after
a binding period (see definitions before Lemma 5) fully compensates the small factol
introduced in the derivative by the orbit point of the critical value passing close to the
critical point. As a consequence, we can establish via an inductive argument condition
(condition (FA), given before Proposition 3) to guarantee the exponential growing of the
derivatives at the critical values. This is stated in Proposition 3.

To prove that the maximal orbits outside of a neighbourhood of the critical point have
exponential growth we follow [15]. The nonsymmetry of the invariant interval is the
main difference here.

LEMMA 3.—-There exists a constar > 0 such that, for every sma#ly there are
constantsi; = A1(8p) > 1, N1 = N1(8p), Ko = Ko(8o) and a; = a1(8p) satisfying the
following property For everyn > Ny, for every(;l, v) suchthat (i, v) — (1, V,)| < az,
andy such thatin}, ; ;(3) > 80,i =0,...,k — 1, but|h} ; ;(3)| < o, then

n,u,v
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C ifk<K0,
’( n;tv)(y)| {)‘,i Ifk}Ko

Proof. —~Givene > 0 small, 0< 6o < 1 > min{| p|, q} andkeN, letW=[p—¢e,q+

e\ (=60, 0), Ux(t,v) ={y € W | hy (y) eWw,i= kb andUi(n, i, v) ={y €
W/h,”“,(y) eW,i=0,...,k}.

The setA = ;> Ur(fleos Vo) IS COMpactp; . -invariant, without sinks (Singer’s
Theorem), its periodic points are hyperbolic (Minimum Principle) and away from the
critical point. From Mafié’s Theorem [8] (see also Misiurewicz’'s Theorem in the same
reference), we have that is hyperbolic. This means that there are constahts 0 and
A > 1 such that for every € A andk € N we have|(h}_ ; ) ()| > CA*. From this
we can conclude that there are constants- 1, kg, N1 anda; depending ordg, and an
open neighbourhoo® of A such that for everg > kg, n > N1 and (i1, v) satisfying
[(i2, V) — ([, V)| < ag then

Vi, bl (D eV, 0<i<k—1 = |(hf ;) @)= @)
Note that we can takk = min{k | CA¥ > 1} and 1< A, < A(C)Y %o,

Furthermore, SINC& 1 1(floo, Voo) C Uk (flo, Vo) fOr a3 small enough andv; large,
there is ak; (depending only ory) such thatUy, (n,n,v) CVNW. Lety e [p —
¢,q + ¢\V (and hencey ¢ Uy, (n, i1, 1)), then there exists a timg¢ < k; such that
| 2 5(P)| < 8o. Let considerKo = ko + k1 and C = lmin{'qﬂ, 4}, We have the
following claim: If y is such that for some< K, and|A! sl <dothen

(R} 25) )| = C. (8)

In fact, the Minimum Principle applied to= % ;.. gives that (k') (y)| > gc, indeed,
suppose that for somg, [#'(7)| < 8 and |(h))'(3)| < 3C. Let [§1, 7»] be the small
interval containingy such thaty; and y, are local extremes of'. From the choice of
C and 8y we have that the map — |(h')'(y)| has a minimun in(yy, y,) but, by the
Minimun Principle this is not possible. Taking small enough andv; large the claim
follows.
Now, let y be as in the statement of the lemma, then for a suitable choice, of

indeedm = min{{k} U {i/h! 25 ¢ V1) we have that)' ; 5 () ¢ Uy, (n, it, v) and then
j =k —m < kq. Applying the chain rule, (7) and (8) we obtain

. , C if m < ko,
o v > _ .

Unrs) D210 1o sy N2 DI i m > ko,

C if m < ko,

{Cw if m > ko.

Thus, forkg large enough we obtain (by decreasing, a new constant; > 1 such
that

C ifk<Ko,
’(nuv)(y)’/{)\‘li |fk>K
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LEMMA 4. — Givendg small enough and” > 0 there exists., > 1, not depending on
30, with the following propertyfor § < 8o there areN, = N,(§) e Nanda; = a»(8) > 0
such that for everyr > N>, for any (i, v) with |(@t, V) — (fts, V)| < a2, and y,

3 < || < do, there isl = I(az, y, 8g) such that|h,’1,m(y)| > 8 for j=1,...,1 and
(., 2.5)' (9| > A5 . Furthermore, there are constants= L(8o) and M = M (8, 8o) such
that L </ < M and beside€A5 > 1.

Proof. —Let defineM, = M. (n, 1, v) = maxX{|(h, ;) x)|: p,—e <x < p,+¢}and
me =mg(n, it, V) =min{|(h, ;) (x)|: p, — e <x < p, +¢}. Whenn tends to infinite,
hn.i.5 converges uniformly on compact sets/tp; and thus, givert > 0, there are
constantg > 0, > 0 andN, € N such that (i, V) — (ieo, Vo) < T, <&,n > No =
1-¢<m/M, <1.

From this, and since = «,, , ~ a0, we can choose constants> 0, > 0, N, € N
andi > 1, such that > Na, [(ft, D) — (jLy, Un)| < az = mM17%/¢ > ) > 1. Note that
A is independent 08y. Next, let§y be a small positive constant and fix0 < § < &o.
Write h = h, ;5. Giveny,§ <y < 8o, let [ be the first positive integer such that
h'(h?(3)) > p. + €. Notice that from the uniform convergence iof ;, 5, 10 hn 5.,
there are constant®, ¢ N, L = L(§g) and M = M (8, §p) such that forn > N, we
have L <1 < M. We also observe that fav, large anda, small enough we can get
|h(0%) — g,| + |h! (h(g,)) — p.| as small as we want becausg;, 5,(g.) = p., Where

Now, using the above comments, the chain rule, the mean value theorem and constar
K, andK, given by inequality (3) in the renormalization lemma, we obtain the following
estimates:

e <h' (h*(3)) — pa
< W (R23)) — B (R2(05)) | + |A' (R3(0%)) — K (h(g)| + |B' (h(gn)) — pal
< MLCoK5|51* + MLCo|h(0F) — g, | + |h' (1(gn)) — Pal,

whereC; is a positive constant close @ ..)'(¢)|. Solving this inequality foty| we
obtain

1/
51> { e e ~ MOl ] = W (hia) = pull}

Furthermore, for a positive constai close to| (% ; ) (q)| we also have(h!*t2) ()| >

m.C1K1|y|*~* and then,

005 Voo

a—1
& _ |hl(h(CIn)) - pn| } “
M!C, M!C2K, '
Now, if we consideri = f,,, ¥ = v, and L large (this last condition occurs with
small), then for somé; > 1 the above inequality and the choicesdkads us to

[(R*3) ()| > m;clKlel% { — [R(0F) — g,

- La] g1 1oe e
[(B2) )| = (meMe® ) e°T K,* C1C," Ky
_ - w1l Al 1o
>Cal, with C =T K, C1C,° Ki
>)\'ll+2'
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SincelL <1 < M, takinga, small enough, we can finth, 1 < A, < A, independent
of 8o, such that for(fx, ) with |(jz, 1) — (fi,, )| < a2 then|(hF2)(5)] > ALF2. Finally,
given any positive constar we can choosé, small enough to obtaig15 > 1. This
ends the proof of the lemma.o

PROPOSITION 2. — There existky € N, C > 0 and Ao > 1 satisfying the following
property. For everys > 0 small enough, there exiay = ag(8) and Ng = Ny(8) such that
for everyn > Ng, (i1, v) with (i, V) — (&,, V)| < ag, and y such that|hj'hm(y)| )
fori=0,...,k—1 but|hfhﬂ,‘-}(y)| < 8, we have

k ;o C if k < Ko,
() O] 2 {/\’5 if k > Ko.

Proof. -Take C > 0 as in Lemma 3 and takéy > O small enough so that
Lemma 4 is true for the pai(C, 8o). Let A1 = X1(80), a1(80), N1(6g), Ko = Ko(S9o)
and L = L(8p) as in Lemma 3 applied to the pailC, §p). Given § < 8g, let A,
az(8) and N»(8) be determined by Lemma 4 applied to the pédr, o). Define
apgp = min{al(SO), ax(8)} and No = maXx{N1(5g), N>(5)}. Let n > Ny and (i, v) with
[(it, V) — (ftn, Vu)| < ao. Write h = h, ; 5, and lety be as in the statement of the
proposition. We consider two possibilities: §i}< |¥| < 8o and (i) §o < |¥]. In the first
one we decompose the orbit blo¢k! (7)}i=5 in blocks {¥ = yo, h(y0), . .., h0(y0) =
xo}, {h(x0),...,h*(x0) = y1}, {h(yo), ..., A (y1) = xa}, {h(x1), ..., W (x1) = y2},
{h(y2),....h'2(y2) = x2}, {h(x2),....h*2(x2) = ya}, ..., {h(Yw), ... B (yu) = xu},
{h(xy), ..., K" (x,) = h*(3)}, wherel; > L andk; are inductively defined by applying
Lemmas 4 and 3 to; andux; respectively. Letk;,, ..., k; be the integers satisfying
ki, > Ko, and rewrite those integeks such that; < Ko asso, s1, - - ., s,-1 preserving
the appearance ord&y< kg < Iy < ki < --- <1, < ky,, that is,sq is the first integek;
such thatk; < Ko, s1 is the second one and so on. It is clear that w,s; < Kq and
k=Uo+so)+ -+ U1+ 8u—1) + 1+ -+ 1y + ki, +--- + k;,. Applying the chain
rule, Lemmas 3 and 4 and after some rearrangement, we obtain

= kiq 4tk
(1) ()] = (AC) - (A tC) Ayt Hoag

From Lemma 4 we have thatiif- L thenCA5 > 1, and we obtain lim_, 1+ / log(A2/1) =
llogh, > —logC = lim;_, 1+ log(AXe/C), and consequently we can takg, 1 < Ao <
min{i1, A2} such that ifl > L then CA, > A6+K°. In particular, forl; > L and since
si<Ko,i=0,...,u—1,wehaveCrj > 15", and then(h*) ()| > Ab.

Note that ifk < Ko thenk, = k and in this case we hay&*)' (y)| > C.

Finally, if 5o < |y|, the same arguments as in e |y| < §p case work, the only
difference here is that we do not have the first bl¢gk= yo, 2 (y0), . . ., h'°(yvo) = xo},
and the second one must be changedsby: xq, i (xo), . .., h*0(xg) = y1}. This ends the
proof of proposition. O

Given(ji,v) € Ly g = {(ft, V) /v =6(it — L) + 1} Seth; = h,, j 5. Forasmally > 0,
let defineEngg(y) C L, as the set of paramete(a, v) satisfying the following basic
assumption:

hi(w|>e? and |[RL(H)|>e" Vj>1. (BA)
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Let 8 >0, (1,v) € Eng()/) and § > 0 small. For a positive integet such that
|h" ()] < 8, define thebinding periodassociated to the parametgr, v) for the return
h" (i) of the critical valug as the maximal intervdk + 1, k +s] such that for < j < s

|hs ) — RN < e, if () <0,

or
hst () — R @) < e, i hk () > 0
holds.
Thus, during the binding period, the orbit bﬁl(ﬂ) is close to that of or v

depending on above conditions. In the same way, we defir@nideng periodassociated
to the parametefjt, v) for the returnhg(f;) of the critical valuep.

_LEMMA 5. —For a convenient choosing of, 8 and §, there are positive constants
K, D, A, ki and = depending only ory and g, such that for both critical values
i=forij="vof hy=h,s with (i, D) € E,q(y), we have If i () € (€75, 6)

for somek > k; and |(h’) (M| >, j=1,....,k—1for somers, 1 < Ay < A (Ao @S
in Proposition2), then
1)
!(h’ ) ()|
A (R ()]

wheres is the binding period associated to the parameier v) for the return
h’ (i7) of the critical valuei of ;.

)

<A forallx,ye [ni ), b] and1< j <,

r N log(KA™Y)

——— —1<s< . Wheree™” = |1k (i7)].
B +log D g B +logiq | “(n)’

®)

logirs  «p, —

(B ()| > T epr 1ﬁ> (s + 1)] >1

Oy Oy
Similar results can be obtained/f; (7)) € (—8, —e~*"), but in this case we have
to changdh’ (i), v] by [h& (i), /i] in conclusion(1) above.

Proof. —First, we observe that taking < g then e U+tVf < e=Jv, Since|h£(ﬁ)| >
e~/7 ands is the binding period associated ¢@, v) for the returniX 7() of the critical
valuen of h;, we conclude that @ (hk+l+’(n), /L(v)) for j <. Consequently, ifc €
(5 (@), 9) then O¢ (h)(x), kL (D)) € (hiT (n) 7()). From the second inequality
in (3), forall j <s —1we can flndfj € (h’ (x), k% (9)) such that

|h;1(h;1(x)) - h;z(ha(f’))’

’ /L
< Kol&1% 72|k (x) — B (D)
<Kol [ 2R ) — b (0
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and from here
[y (1 (x)) = By (R, (9)) | < Koe” s =20 [ H44 (i7) — b ()]
< Kze_}’(au.l)_z)j_(j+l)ﬂ.

Furthermore |, (, (iD)| > Kalhj (i)t > Kye i7",
Now,

Ezézix) =ﬁ{1+ |h;1(h;1(x;_>| - I{z}t(h;—t(ﬁ))l]
h n) i=0 |hu(hu(n))|
hy (hiy (x)) — hﬁ(h}b(ﬁm]
|1 (hE (i)
K67 @un=2j=(+Dp
Kiev@uy=1 ]

Fi-1

< exp

Li=0
rji—1
< exp

Li=0

e |
<exp er‘ﬂ e(}"ﬂ)’]
1

<VA.

o]

In a similar way we obtain

(R’ 1
i o o
[l VA
and conclusion (1) of the lemma follows. N N
Integrating the first inequality in (3), we see that there is a constard < K < 1,
such that|a**1(57) — v| > K|h*(77)|*~. Now, applying the mean value theoremit
conclusion (1) and the hyphotesis of lemma, we obtain

|+ () — W (B)| > AT Ke" e j <k.

From the binding period definition, for < s and j < k we have /¥ > A~1\JK x
e "= which implies that

ray,., —log(KA™1)
B +log(r1)

Next, choosings andg such that 2«,, , < g and fixing

~X

—2log(KA™Y)
:8 + Iog()hl) - zyau,u’

1>

then forj andk as in the lemma, we obtain

T = log(KA™1Y) _ vk, - log(KA™Y)
B +log(r1) B +log(ir1)

k
< .
2
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If s > k then the inequality above holds fgr= k — 1 but this impliesk — 1 < k/2,
which is a contradiction. Hence,< k and we can replacg= s in the inequality above,
obtaining the right inequality

%y = Iog(I?A‘l)‘
B+ log(r1)

To establish the left inequality of conclusion (2) of the lemma, let

D:max{|h;1(x)|: Pn—e<x<q,+epn}>1

Applying the mean value theorem and the binding period definition once again, we
obtain a point e (0, k%, (7)) such that:

D HHm )] = | (B ©)||hg @) — 0 = [hH (W) — hy (9)] > e+

wich implies—(s + 1)8 < (s + 1) log(D) — r, and the left inequality follows.
In order to obtain conclusion (3), let put

and taket € (v, 2%, (i)) such that

s+k+1, - s /o
@) — @)1

(h:) €)= G o)

S\/ 1= — s/ H H

Note that|(h3)"(h§™(7))] > A7 (h3)'(§)| implies
() (D) | > A7H(RS) (9)| > A7%

(sinces < k). Then

| (B3 (R (@)= [ (B) (RSP @) | |1y (@) |

> [(B3) (@) 1] () (W) [M 0 Kk i ™
> A7 (1) @] (k) (W) [M T KK W) —
- A—lKiE|hf_j—k+l(ﬁ) _ ]—)| | (hfl)/(hf}+l(ﬁ)) ’1/(0‘#,\)_1)
> A1 K! Ke BG+D A—l/(au,v—1>,\;/<au,v—l>

log iy

J7RY

=1 exp[( 19924 — ﬁ) (s + 1)}

oy —1

= AT K! K e 109/ @D exp[( 1~ ﬁ) (s + 1)]
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Finally, if 8 is small the coeficient ofs + 1) in the exponential above is positive, and
the inequality in conclusion (3) of lemma follows feiarge, which is obtained making
8 small (compatible with the previous conditions imposedxamd ). O

A free return indexis a return index that does not belong to a binding period
associated to a previous return. Tgkes and$ as in Lemma 5, and for any positive
integer k let consideri; < i> < --- < i; < k all free return indices, ie., & <
|h’l-;(1‘))| < é8, and letsy, 5o, ..., 51, (s;) be the binding periods associated to returns

hi—}(ﬁ), . ..,hi—’[l(i), hi—i(ﬁ). Note thats; will be or will be not considered according to
i <ip+s <korip<k<i+s.Wesay thay, j <k is afree timefor the critical value
v asociated to the parameter, ) if |hi-¢(\7)| >d8sandj ¢ [i;,i;+s:],t=1,....1—=1, ().
In the same way we define free time for the critical valuassociated to the parameter
(1, v).

Now, for 7 = i or 5 = v denote byF (5, k) the number given by:

F(7, k) =#{j <k: j is afree time for the critical value
i asociated to the parametgr, v) }.

Finally, fix ¢ > 0 and define&, y = E, o(y, B, 8, €) by
Eno={(t, V) € Epp (y): min{F(ix,k), F(v,k)} > (1 — &)k, k € N}.

Indeed,E‘nﬁ is the set of parameter valuég, v) € L, o satisfying the basic assump-
tion (BA) and, in addition, the number of free times for the critical valugs associated
to the parameteriq, v) is “almost” k, in fact bigger than1 — &)k, for anyk € N. Note
that this last condition, callefilee time assumptio(A) implies 25:1 s, < gk.

As we have seen in the proof of Lemma 5, by takihgmall we can increase the
binding periods and we can assume- Kg, Kg as in Proposition 2.

The set of free times is the union of the free intervilils=[1,...,i1 — 1], Vo =
lir+s1+1,...,i2=1], ..., Vi=[ij_1+s-1+ 1= 1], (Vi1 = [i; +s+ 1, k]). Denote
B as the set of indices such that #, < Ko and G as the set of indices such that
#V, > Ky. We have

#B < Z#V, < Zs, < Zs, < ¢k, and
teB teB t
9)
> #V > (1- 20)k.
teG
PrRoPOSITION 3. — For y, 8,5 ande small enough there ark, 1 < A < Ag (Ag asin
Proposition2), N € N anda > 0 such thatfor n > N and (&, V) — (ftn, Vo)l < a, if
(L, v) € Eyp then|(h§)’(;1)| > Ak and |(h§)’(D)| > k=12, ....

Proof. —To start with, we proceed by induction dn Take 1< A < Ao such that
|h;-tij(p)| > X (herep is the orientation preserving fixed point bf__ ;. ). Because
hp = h, 5 converges uniformly tdi; ; we can findN € N anda > 0 such that for
n > N and (i, v) with |(&, D) — (@L,. V)| < a then|(h}) (D] > 1*, 7= 1, D, k < ki,
wherek; is taken as in Lemma 5. And then, the first step in the induction works for
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k < k1. Next, takek > k; and assume that the conclusion of the proposition is true
for any iterate ofy = fi, v less thank. Becausek > k1 and (i, v) satisfies the basic
assumption (BA), Lemma 5 works and it implies that during the binding periods there
is not lost of derivative, in fact, the total derivative during those periods is bigger than 1.
From Proposition 2, it follows that during the free time intervals of length less &pan

(r € B) we have a decreasing in the derivative of at mGstC as in Proposition 2),
whereas during the free time intervals of length bigger or equal fair € G) we

have an increasing in the derivative of at leagt'. DenoteC = e™. We can write

k=3 ,c5#Vi+ > ,cc#V, + >, > s and from the discusion above and (9) we obtain

(7])| H C H )\‘#Vt H 1> e—u#B)\‘OEteG#Vt

teB teG =1
> ek 572% — exp([log Ao(1 — 2¢) — uelk).

Taking e small we obtain log < logio(1 — 2¢) — ue (this choice works for any) and
then|(h%)'(i7)| > A*. This ends the proof of the propositionc

To finish up the proof of Theorem 2 we have to prove that it is possible to define a se
E,,,g as was mentioned before that satisfies:

D mg(E,,,g) > 0, wherem, stands for the Lebesgue measurejyy, and

(2) For my-almost every(ii, v) € Eng, {hEM)}, = [ha(§), €], for 77 € {j1, v}

where& = max{ji, v}.

The setE,,,g is constructed as in [2, Section 2]. This construction is nicely outlined
in [10, Section 3], and here we refer to ft,,ﬂ is obtained as the intersection of some
setsE; in a small parameter interval having, in the right extremeE; D E; D -+ D
E; D ---, satisfying the basic assumption (BA) and the free time assumption (FA).
In order to define these sel, some partitionP,_, of E;_; is required. The crucial
point here is that the derivative of the maps— £ (i) and iz — hf (V) (remember
thatv = 6(ir — f1,)+ v,), require to have bounded distorsion on each intetvah
Pi_1 ([10, Lemma 3.3] and [1, Lemma 5(7.2)]). This requirement and Lemma 5 enable
us to estimate the Lebesgue measure of the set of points that will be excluded fron
Er_1 to define E;, all which is gotten as outlined in [10] (also see [15]). Thus, just
following the same steps as in [10, Section 3], we obtain &setsatisfying the basic
assumption (BA), the free time assumption (FA) and E, ») > O.

Finally, in order to prove that the orbits @f andv are dense inh;(€), £] where
&€ = maxX{jt, v} for almost every(fi, v) € E,, 9, We observe that the set of parameters
such that the;-orbit of i do not visit some fixed open interval is a zero Lebesgue
measure set becauﬁe—> hg(ﬁ) is a distortion bounded map for dllin the respective
domain. The same conclusion holds for the critical valu€&inally, using the fact that
the topology ofL, , has a countable basis we can conclude that the set of parameter:
such that the critical values are not dense is a zero Lebesgue measure set. The proof
Theorem 2 is now complete.
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