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ABSTRACT. – We present examples showing that the threshold for the integrability o
gradient of solutions to isotropic equations is 2K/(K − 1). The main tools arep-laminates and
Beltrami Operators.
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RÉSUMÉ. – Nous présentons des exemples, qui prouvent que le seuil de l’intégrabil
gradient des solutions des équations isotropiques est 2K/(K − 1). Les techniques principale
sont lesp-laminates et les opérateurs de Beltrami.

1. Introduction

In this paper we investigate the regularity of solutions to the isotropic equation

div
(
ρ(z)∇u(z))= 0 inQ, (1.1)

whereQ is a square in the planeR2, u ∈W 1,2(Q,R) andρ ∈ L∞(Q, [1/K,K]) is real
valued. Through the whole paperK is an arbitrary constant greater than one. In [
Piccinini and Spagnolo proved that the solutions to (1.1) are locally Hölder contin
with exponent 4/π Arctan(1/K). Isotropic equations belong to the class of linear ellip
equations,

div
(
σ (z)∇u(z))= 0 inQ, (1.2)

whereσ (z) ∈ M2×2 with σ (z) = σ (z)t and 1/K|ξ |2 � 〈ξ, σ (z)ξ 〉 � K|ξ |2 for every
ξ ∈ R

2 and a.e.z in Q. As in the isotropic case we requireu ∈W 1,2(Q,R).
It goes back to Morrey [19] that the threshold for the Hölder regularity of the solu

in the anisotropic case is only 1/K . Thus, in terms of Hölder continuity, solutions
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the isotropic equation are more regular that in the general case. On the other h
interesting result of Marino and Spagnolo states that isotropic equations are dens
set of anisotropic equations with respect to the G-convergence, see [16].

The regularity of solutions to a PDE is also studied in terms of the integrabili
the gradient. By the Sobolev Embedding Theorem if the gradient is integrable
exponentp > 2, the function is Hölder continuous with exponent 1− 2/p. A crucial
phenomenon in elliptic PDE is that weak solutions which are a priory only inW

1,2
loc (Q)

automatically belong toW 1,p
loc (Q) for somep > 2 (see [8] forn= 2 and [17] for arbitrary

n). More precisely the gradients satisfy the so-called reverse Hölder inequalitie
is, for every ballB(a, r) such thatB(a,2r) is compactly included inQ there exists a
constantC(K,p) such that

∫
B(a,r)

|∇u|p dz� C(K,p)
( ∫
B(a,2r)

∣∣∇u(z)∣∣2 dz)p/2. (1.3)

In understanding the properties of a given subclass of elliptic PDE is important t
the supremum of those exponentsp for which gradients of weak solutions satisfy reve
Hölder inequalities. This supremum is called the threshold exponent of that clas
value of the threshold exponent is relevant in applications because it measure
highest possible concentration of the field”. See, for example, [18,15] and the refe
therein for the relation of the threshold to several questions in physics.

The threshold for anisotropic equations like (1.2) in the plane was establish
Astala, Leonetti and Nesi to be equal to 2K/(K − 1). The result was obtained b
Leonetti and Nesi in [15] as a consequence of the higher integrability results for gra
of quasiregular mappings due to Astala [2], see also [10]. In the proofs in [2,10
complex structure ofR2 is essential and hence, the higher dimensional case rema
a challenging open problem. We see that in the anisotropic case the threshold
integrability of the gradient 2K/(K − 1) and the Sobolev embedding yield the “righ
Hölder regularity 1/K (up to the end point). In fact, the example showing the sharp
of both results is the same: the real part of the radial stretchingf (z)= z|z|1/K−1.

The search for the threshold for the integrability of the gradient in the isotropic
has also drawn the attention of the researchers, see for example [6] and [15]. A
question is if also here the bounds for the Hölder continuity and the integrabili
the gradient are related by the Sobolev embedding Theorem. In the related se
quasiconformal mappings Pekka Koskela provided an example for which the H
regularity and the integrability of the gradient are not coupled by the Sobolev embe
[14].

The situation in the anisotropic case and the results in [24] indicate that the h
integrability threshold for the isotropic equations might be larger than 2K/(K − 1).
However, the intuition coming from physics, led Graeme Milton to conjecture
opposite.

The underlying physical problem relies on the fact that the matrix valued functiσ
in (1.2) can be thought of as to express the electric conductivity properties of c
material. In [18] Milton suggested conductivity matricesρjI where the concentration o
the related fields∇uj should be high enough to prevent any uniform integrability be
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than 2K/(K − 1). However since his remarkable work appeared in 1986, a mathem
proof of this fact was lacking to the best of our knowledge. In this paper we rigoro
prove Milton assertion showing that his physical intuition led him to the right ans
We present the result in the following form.

THEOREM 1.1. – LetK > 1. There exist sequences of functions{ρj} ∈ L∞(Q, {K,
1/K}) and{uj } ∈W 1,2(Q,R) with ‖uj‖W1,2 � 1, such that

div
(
ρj (z)∇uj(z))= 0 inQ, (1.4)

and for every compact setR of positive measure contained inQ

lim
j→∞

∫
R

∣∣∇uj(z)∣∣2K/(K−1)
dz= ∞.

In fact our construction gives that the sequence{uj } is uniformly bounded in
W 1,p(Q,R) with 1 � p < 2K/(K − 1). This must be the case, since the result
Astala–Leonetti–Nesi states that the bounds on theW 1,2 norm imply bounds on th
W 1,p norm for the above range ofp.

Weak reverse Hölder inequalities imply also sharp regularity results for the Dir
problem

div
(
σ (z)∇u(z))= divF in Q, (1.5)

whereσ is as in (1.2) andF ∈ Lp (see [12]). In this regard Theorem 1.1 is easily see
imply the following corollary.

COROLLARY 1.2. – There exist functionsρ ∈ L∞(Q, {K,1/K}), u ∈ W 1,2(Q,R)

and a vector fieldF ∈ L∞(Q,R2) such that

div
(
ρ(z)∇u(z))= divF, (1.6)

and ∫
Q

∣∣∇u(z)∣∣2K/(K−1)
dz= ∞.

Our approach to study Eq. (1.1) is based upon considering the flowρ(z)∇u(z) as a
rotated potential. Most of the notation used below is standard and explained in Sec
However we need to introduce immediately the following sets. Let us associate to
positive numberρ a 2-dimensional subspaceEρ of the space of 2× 2 matricesM2×2 as
follows:

Eρ =
{(

X

JρX

)
whereX ∈ R

2 andJ =
( 0 −1

1 0

)}
. (1.7)

Denote

E =EK ∪EK−1. (1.8)
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Then it can be seen thatu is a solution to a linear isotropic equation (1.1) w
ρ(z) ∈ {K,K−1} almost everywhere if and only ifu is the real part of a functio
f ∈W 1,2(Q,R2) such that

Df (z) ∈ E
for almost everyz ∈ Q. Moreover, setk = (K − 1)/(K + 1). ThenDf (z) ∈ E if and
only if there existsµ ∈ L∞(Q, {−k, k}) such that

∂f −µ∂f = 0. (1.9)

The functionµ is called the second complex dilatation of the mappingf (see [1]).
For the sake of completeness the relation between Eqs. (1.1) and (1.9) is discu
Section 6.

Next we observe that the integrability properties ofDf are completely encoded in i
distributional measureDf &LnQ (cf. Section 2), since

1

|Q|
∫
Q

∣∣Df (z)∣∣p dz=
∫

M2×2

|λ|p dDf&(LnQ)(λ).

Thus our strategy will be the following: Firstly we construct a probability mea
ν ∈M(E) such that ∫

M2×2

|λ|2K/(K−1) dν(λ)= ∞.

Sinceν has support inE, if it was the distribution of the gradient of some Sobo
function the problem would be concluded. This need not to be the case, but usi
theory of laminates (see Section 3) we can at least show the existence of a sequen{fj }
uniformly bounded in eachW 1,p(Q,Rm), 2� p < 2K/(K − 1) such that

Dfj&
(
LnQ
) *
⇀ ν in M

(
M2×2). (1.10)

Whenever (1.10) holds we say that{Dfj} generatesthe measureν. The last difficulty
is that, a priory, the sequence{Dfj} does not stay inE almost everywhere. This can b
handled by several means. One option is based in adapting the recent new meth
solving partial differential inclusions (see [9,13,20] and in particular Proposition
in [13]) to our situation. However, the proof would be more technical and specific
have chosen to follow a somehow more direct (familiar) and general route bas
the so-called Beltrami Operators. Using them we can find another sequence{gj } such
thatDgj(z) ∈ E almost everyz ∈ Q and it alsogeneratesν. The latter argument i
related to those of [5], where the Beltrami Operators were applied to analyze t
called Quasiregular Gradient Young measures. These operators have turned o
an efficient tool in clarifying a wealth of questions concerning the study of the
exponents in planar PDE and related topics [3,11,5]. Their invertibility properties
other issues are described in the recent work of Astala, Iwaniec and Saksman [4]
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Once a sequence{gj } as above is obtained, an easy argument shows that{Re(gj )}
and the conductivity coefficients{ρj } associated to the second complex dilatations ogj
prove the Theorem 1.1 to be true.

2. Notation

Let Q denote then dimensional unit cubeQ = {z ∈ R
n: |zi| � 1}, B(a, r) = {z ∈

R
n: |z − a| � r} and R � Q means thatR is a compact subset ofQ. Concerning

matrices,Mm×n is the space ofm× n matrices. The tensor producta ⊗ d with a ∈ R
m

and d ∈ R
n denotes the rank-one matrix(aidj ). It maps v ∈ R

n to 〈v, d〉a. Here,
〈·, ·〉 represents the Euclidean scalar product. Unless otherwise indicated for a
A, |A| represents the Euclidean norm ofA. We denote closed balls in the space
matricesMm×n by B(r), i.e. B(r) = {A ∈ Mm×n: |A| � r}. Similarly, B∞(r) = {A ∈
Mm×n: |A| � r}. The plane of diagonal matrices inM2×2 is denoted byD. We will use
the notation (

d1 0

0 d2

)
= (d1, d2). (2.1)

For a matrixA ∈ M2×2 we will also use complex coordinatesA= (Az,Az). Here,Az ∈
C andAz ∈ C satisfy the following relation: Let us identify a vectorw = (x, y) ∈ R

2

with the complex numberw= x + iy. Then it holds that for every vectorw ∈ R
2

Aw =Az ·w+Az ·w,
wherew denotes the complex conjugate ofw. Using this notation

EK = {A= (Az,Az) ∈ M2×2: Az = kAz} and

E1/K = {
A= (Az,Az) ∈ M2×2: Az = −kAz}, (2.2)

where the setsEρ were introduced in (1.7) andk = (K − 1)/(K + 1). We use also
complex coordinates for the differential of a mappingf ∈W 1,p(3,R2),3⊂ R

2;

Df (z)= (
∂f (z), ∂f (z)

)
.

Concerning measuresM(M2×2) stands for the set of Radon measures inM2×2, δA is

a Dirac delta atA, sptν stands for the support ofν and
*
⇀ means convergence in th

weak star topology. For a setE, |E| denotes its Lebesgue measure. Let3 be a bounded
measurable set. ThenLn3 stands for the normalized Lebesgue measure restricted3 so
thatLn3(3)= 1. Letf be a measurable functionf :3→ R

m andN a Borel set inRm.
Then the push-forwardLn3 underf is given by

f&
(
Ln3
)
(N)=Ln3

(
f −1(N)

)
.

We call f&(Ln3) the distribution measure off . Finally the threshold 2K/(K − 1) is
denoted bypK .
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3. Laminates

In this section we describe a process to build probability measures which ar
weak star limits of distribution measures of gradients of Sobolev functions. The cl
probability measures obtained by this process, named as laminates, were introd
[22] to provide examples of the so-called Homogeneous Gradient Young measu
the setting of homogenization, lamination of materials has been present from th
beginning, since it provides one of the few situations where the relation Microstruc
Macrostructure is relatively well understood. We recall the basics of Laminates, ref
to [13,21,23] for further details. The reader familiar with Gradient Young measure
recognize features of this theory in the discussion below.

Let us start with a matrixA ∈ Mm×n. Suppose that there exist matricesB,C ∈ Mm×n,
a real parameterλ ∈ [0,1] and vectorsa ∈ R

m, d ∈ R
n such that

A= λB + (1− λ)C and B −C = a⊗ d. (3.1)

Whenever (3.1) is satisfied we say thatB andC arerank-one connectedand that[B,C]
is a rank-one segment. Therefore using this jargon,A is supposed to belong to certa
rank-one segment.

Let h be the saw-tooth function on the real line, obtained as the periodic extens

h(x)=

 λx if 0 � x � 1− λ,

−(1− λ)x + (1− λ) if 1 − λ� x � 1.

We definef (z)= Az− ah(〈z, d〉) for z in the unit cubeQ. Clearlyf ∈W 1,∞(Q,Rm)
andDf &(LnQ) is equal to the measureν = λδB + (1 − λ)δC . To iterate the process it
convenient to consider the sequence{fj }∞

j=1, fj (z)= 1/jf (jz). The reason is twofold
Firstly, while for eachj ,Dfj &(LnQ)= ν it also holds that ifR �Q, |R|> 0

Dfj&
(
LnR
) *
⇀ ν.

Secondly, if another sequence{f̃j} satisfies that limj→∞ |{z ∈Q: Dfj �=Df̃j}| = 0,
{Df̃j} generatesν as well. This is very useful because by using cut-off functions (
Lemma 8.4]), or by using auxiliary matrices (for example [13, Lemma 3.2] and Fig
we can find{f̃j} with fixed boundary values equal toAz and such that for eachj ,
|{z ∈Q: Dfj(z) �=Df̃j(z)}| � 1/j .

Thus, since in the construction we can replace the unit cubeQ by an arbitrary cubẽQ
we have obtained the following result.

Given an arbitrary cubẽQ ⊂ R
n, there exists a sequence{f̃j} bounded inW 1,∞(Q̃,

R
m) such that for everỹR � Q̃, |R̃|> 0

Df̃j &
(
Ln
R̃

) *
⇀ ν (3.2)

and f̃j (z) − Az ∈ W 1,∞
0 (Q̃,Rm). We say that we have splitted the measureδA as

λδB + (1− λ)δC .
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Fig. 1. If a piecewise affine mappingf has gradient equal toA in a certain region andA belongs
to a rank-one segment[B,C], we can replaceA by layers where the gradient is equal toB andC
and an interface region. The size of the interface is controlled by the number of layers we

Next, suppose thatB belongs to a rank-one segment[D,E], B = λ2D + (1 − λ2)E,
0 < λ2 < 1. We want to show thatν2 = λ(λ2δD + (1 − λ2)δE) + (1 − λ)δC is also
generated by gradients.

To obtain a sequence{f 2
j } generatingν2 the idea is to modify the original sequen

{fj}, which generatesν, on the set3j = {z ∈Q: Dfj(z)= B}. The gradients off 2
j will

take essentially valuesD andE on3j andA onD\3j . In fact, an auxiliar region wher
Df 2

j /∈ {A,D,E} is needed but its measure will converge to zero.

Formally, we take a finite collection of dyadic cubes{Qij }Nji=1 ⊂ 3j such that|3j \⋃Nj
i Q

i
j | � 1/j. Inside of each of the cubesQij we construct the sequence{f kj,i}∞

k=1 ∈
W 1,∞(Qij ,Rm) obtained as in (3.2) but replacingA by B, ν by λ2δD + (1− λ2)δE and

Q̃ byQij . We choosek(j)= jNj to have that|⋃Nji=1{z ∈Qij : Df k(j)j,i �= {D,E}}| � 1/j .
Due to the affine boundary values of eachf kj,i we can weld them together and defin

f 2
j (z)=


 f

k(j)
j,i (z) if z ∈Qij ,
fj (z) otherwise.

A direct computation shows that for everyR �Q, |R|> 0 the weak star limit of the
sequence of measures{Df 2

j &
(LnR)} is ν2 = λ(λ2δD + (1− λ2)δE)+ (1− λ)δC . Clearly,

we can iterate this construction as long as we have enough relations in term o
one connections. The obtained measures will be generated by gradients in the s
(1.10). We arrive at the class of prelaminates.
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DEFINITION 3.1. –The family of prelaminatesPL is the smallest family of probabi
ity measures onMm×n such that

(1) PL contains all Dirac masses inMm×n.
(2) Let ν = ∑k

i=1λiδAi ∈ PL and letA1 = λB + (1 − λ)C whereλ ∈ [0,1] and
[B,C] is a rank-one segment. Then the probability measure

∑k
i=2λiδAi +

λ1(λδB + (1− λ)δC) ∈PL.

THEOREM 3.2. –Let ν be a prelaminate supported in the ballB(r) ⊂ Mm×n. Then
there exists a sequence{fj} ∈W 1,∞(Q,Rm) such that for everyR �Q, |R|> 0,

(1) ‖fj‖1,∞ �Cr ,
(2) Dfj &(LnR)

*
⇀ ν.

Proof. –This theorem can be found in many places in the literature since it fol
from the fact that laminates are homogeneous Gradient Young measures, [22
interested reader can complete a proof using the above scheme and an in
argument. ✷

Finally laminates are defined as weak (*) limits of prelaminates inM(Mm×n).
A laminate which is not a prelaminate is called an infinite-rank laminate.

DEFINITION 3.3. –Letν be a probability measure onMm×n and1� p <∞. Thenν
is said to be ap-laminate if there exists a sequence of prelaminatesνj such that

(a) supj
∫

Mm×n |λ|p dνj (λ) <∞,

(b) νj
*
⇀ ν in M(Mm×n).

THEOREM 3.4. –Let ν a p-laminate. Then there exists a sequence{fj} uniformly
bounded inW 1,p(Q,R2) such that

Dfj&
(
LnR
) *
⇀ ν

for every compact subsetR ofQ with positive measure.

Proof. –In the case of compactly supported laminates this theorem is prov
the literature (see [23], Chapter 9). The proof follows from Theorem 3.2 a
diagonalization argument. For the case of finitep let us apply Theorem 3.2 to ea
prelaminateνj . For eachj we obtain a sequence{f ij }∞

i=1 uniformly bounded in

W 1,∞(Q,Rm) such thatDf ij &(L
n
R)

*
⇀ νj as i tends to∞. The uniform bound on th

W 1,∞ norms of thef ij gives that

lim
i→∞

∫
Q

∣∣Df ij (x)∣∣p dx =
∫

Mm×n
|λ|p dνj (λ).

Putting this together with the assumption (a) in the definition ofp laminate gives
the uniform bounds for thep-norms of the{f ij }∞

i,j=1 and thus for the generatin
subsequence.✷

The following remark, on the particular nature of the laminate we are going to
with, will simplify the proofs in Section 5.
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Remark3.5. – It is easy to see that if ap-laminateν is purely atomic and

lim
j→∞ν

(
spt(ν) \ spt(νj )

)= 0,

νj as in Definition 3.3(b), the sequence{fj} obtained from Theorem 3.4 satisfies t
following property: Let3j = {z ∈Q: Dfj(z) /∈ spt(ν)}. Then,

lim
j→∞ |3j | = 0. (3.3)

4. The staircase-laminate

This section will be devoted to constructing a laminateν supported in the setE
presented in formula (1.8), and satisfying

∫
M2×2

|λ|pK dν(λ)= ∞ and
∫

M2×2

|λ|p dν(λ) <∞ (4.1)

for everyp < pK . In fact, we will not need the whole setE since the laminateν will live
on the intersection ofE with the plane of all diagonal matricesD = (d1, d2); c.f. (2.1).
Recall that in this plane the only rank-one directions are horizontal and vertical
Moreover, using notation (2.1), we have that

EK ∩D = {
(a,Ka): a ∈ R

}
and EK−1 ∩D = {

(a,K−1a): a ∈ R
}
.

It turns out that it is the opening of the coneQ,

Q ≡
{
(x, y) ∈D: K−1 � y

x
�K

}
,

what determines if it is possible to find a laminateν supported inQ such thatν(B∞(R))
converges to 0 slowly enough for (4.1) to hold.

We will firstly describe how certain sequences of matrices inQ give naturally rise to
infinite rank-laminates and after that we will choose an appropriate sequence to
the measureν.

Our construction will resemble an staircase (see Fig. 3). Thus, we start by desc
how to build its steps. Take two diagonal matricesA1 = (A1

1,A
2
1),A2 = (A1

2,A
2
2) ∈ Q.

We will use the partial ordering,

A1 �A2 ⇔ A1
1 �A1

2 andA2
1 �A2

2. (4.2)

Given such a pair of matrices,B = (A1
1,1/KA

1
1) ∈ EK−1, D = (A1

1,A
2
2) andC =

(A2
2/K,A

2
2) ∈EK satisfy thatA1 ∈ [B,D],D ∈ [C,A2]. In addition,[B,D] is a vertical

segment and[C,A2] is an horizontal segment i.e. they are rank-one segments.
quick illustration see Fig. 2 (observe that although in the figureA1

1 = A2
2, this is not
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Fig. 2. “Steps” 1 andn. Black dots denote the support of the measure, the cross is the cen
mass, and white dots are auxiliary matrices.

required in the general construction). Letλ1 andλ2 ∈ [0,1] be parameters such that

A1 = λ1B + (1− λ1)D and D = λ2C + (1− λ2)A2.

Plugging the latter expression into the former we obtain that

A1 = λ1B + (1− λ1)
(
λ2C + (1− λ2)A2

)
. (4.3)

In the language of measures (4.3) means

A1 =
∫

M2×2

t dν1(t),

whereν1 is the measure

ν1 = λ1δB + (1− λ1)
(
λ2δC + (1− λ2)δA2

)
. (4.4)

Fig. 2 shows how this construction looks like if the matrices are near the origin (A1 as
the center of mass of a measure supported onB,C andA2), or if they are relatively fa
away (An as the center of mass of a measure supported onBn,Cn andAn+1).

Now let us suppose that we are given a sequence of matrices{An}∞
n=1 ∈ Q ordered as

in (4.2),An �An+1 for everyn. We can repeat the explained construction withA1 =An
andA2 =An+1. This yields a sequence of step measures{νn}∞

n=1. We would like to paste
the measuresνn together to obtain a new measureν. Let us sketch the idea. Consid
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Fig. 3. The staircase at leveln.

the measureν1 as in (4.4). ReplaceδA2 in the definition ofν1 by the measureν2. This
defines a new measure

ν2 = λ1δB + (1− λ1)
(
λ2δC + (1− λ2)

(
λ3δB2 + (1− λ3)(λ4δC2 + (1− λ4)δA3)

))
.

Here the new parameters and matrices come from the definition of the step measν2.
Sinceν2 has an atomδA3, we proceed by replacing it by the step measureν3 to obtain
a new measureν3 with an atom atA4. We continue iteratively obtaining a sequence
probability measures{νn}. Finally the measureν is defined as the weak star limit
this sequence. Besides the condition on the ordering (4.2), the only restriction
sequence{An} is thatν should have finitepth-moment for some 1<p <∞. We further
observe that we have only used rank-one segments at every step of the construc
it follows that if ν has finitepth moment for somep > 1, ν is a laminate. Fig. 3 and th
concrete example below should help to understand the process just loosely expla

Let us concentrate now in obtaining the measureν such that (4.1) holds. We consid
the sequenceAn = {(n + 1, n)}∞

n=n0
, n0 � 1/(K − 1). Since{An} is well ordered and

contained inQ we can use the scheme indicated above to construct prelaminatesνn with
centre of massAn0, and supported on the setE ∪ {An+1}. To avoid keeping track ofn0

everywhere we assume without loss of generality thatn0 = 1.
Let start with the measureδA1. Clearly the following relations hold,

(2,1)= K

2(K − 1)

(
2,

2

K

)
+
(

1− K

2(K − 1)

)
(2,2),

(2,2)= K

2(K − 1)+K
(

2

K
,2
)

+
(

1− K

2(K − 1)+K
)
(3,2).

(4.5)
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Thus, in the above notation,B = (2,2/K), D = (2,2) andC = (2/K,2). HenceA1 is
the centre of mass of the probability measureν1 defined by

ν1 = K

2(K − 1)
δ(2,2/K)+

(
1− K

2(K − 1)

)(
K

2(K − 1)+K δ(2/K,2)

+
(

1− K

2(K − 1)+K
)
δ(3,2)

)
,

which is a prelaminate. Furthermore it can be expressed asν1 = µ1 +λ1δA2, whereµ1 is
a new measure supported in the setE ∩B(2CK). The constantCK is equal to|B| = |C|,
explicitly CK = |(1,1/K)| = √

1+K2/K . It will appear often below since it is a natur
parameter in our construction. We say that we are one “step” up in the staircase.

The construction gives thatν1(B∞(2CK))= ν1(A2)= λ1 where

λ1 =
(

1− K

2(K − 1)+K
)(

1− K

2(K − 1)

)
.

We can repeat the same operation at leveln since,

(n+ 1, n)= K

(n+ 1)(K − 1)

(
n+ 1,

n+ 1

K

)

+
(

1− K

(n+ 1)(K − 1)

)
(n+ 1, n+ 1), (4.6)

(n+ 1, n+ 1)= K

(n+ 1)(K − 1)+K
(
n+ 1

K
,n+ 1

)

+
(

1− K

(n+ 1)(K − 1)+K
)
(n+ 2, n+ 1).

The structure relations in terms of rank-one connections are the same as in (4.5).
An can be expressed as the center of mass of the laminateνn defined by

νn = K

(n+ 1)(K − 1)
δ(n+1,(n+1)/K)

+
(

1− K

(n+ 1)(K − 1)

)(
K

(n+ 1)(K − 1)+K δ((n+1)/K,n+1)

+
(

1− K

(n+ 1)(K − 1)+K
)
δ(n+2,n+1)

)
.

As before there exists a measureµn supported inE ∩ B((n+ 1)CK) such thatνn splits
asνn = µn + λnδAn+1 andνn(B∞((n+ 1)CK))= λn. The value ofλn will be important:

λn =
(

1− K

(n+ 1)(K − 1)+K
)(

1− K

(n+ 1)(K − 1)

)
. (4.7)

Next, we paste the steps together to obtain a truncated staircase. The formal pro
is done by induction. Let us start withn= 1. Remember that

ν1 = µ1 + λ1δA2.
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ν2 =µ1 + λ1ν2.

Declareµ2 = ν2|B(3CK). Thenν2 splits in the formν2 = µ2 +λ1λ2δA3 andµ2 is supported
in E ∩B(3Ck). SinceA3 is the center of mass ofν3, we definedν3 =µ2 + λ1λ2ν3. Now
we can findµ3 as before and continue inductively. The previous procedure give
definitions:

νn = µn−1 +
(
n−1∏
i=1

λi

)
νn

and

µn = νn|B((n+1)CK).

This defines the truncated staircases. Observe that it follows from the constructi

νm
(
B∞
(
(n+ 1)CK

))= νn(B∞
(
(n+ 1)CK

))= νn(An+1
)=

n∏
i=1

λi (4.8)

for everym� n. Finally, we let the staircase grow infinitely and obtain:

DEFINITION 4.1 (The staircase-laminate). –Let νn be as above. Then the staircas
laminateν is defined by:

ν = lim
n→∞ ν

n in the weak star topology ofM
(
M2×2). (4.9)

Now we need to guarantee thatν is a probability measure with the appropriat
growth.

First we observe that by the Cavalieri principle,

∫
M2×2

|λ|p dν(λ)= p
∞∫

0

tp−1ν
(
B∞(t)

)
dt. (4.10)

Next we letm go to infinity in (4.8) to obtain that

ν
(
B∞
(
(n+ 1)CK

))= νn(An+1)=
n∏
i=1

λi. (4.11)

By inserting (4.11) into (4.10) it is easy to see that,

∫
M2×2

|λ|p dν(λ)≈
∞∑
n=1

np−1νn(An+1).

We compare the above sum with
∑∞
n=1

1
n
. Thus, if



902 D. FARACO / Ann. I. H. Poincaré – AN 20 (2003) 889–909

of
like
s

o
e
such

e
nce

d is
lim inf
n→∞ npKνn(An+1) > 0,

lim sup
n→∞

npKνn(An+1) <∞ (4.12)

it follows that
∫

M2×2 |λ|pK dν(λ)= ∞ and for everyp < pK ,
∫

M2×2 |λ|p dν(λ) <∞.
After plugging the value ofνn(An+1) into (4.12) we are led to study the behavior

the sequence,an =∏n
i=1λi. The following basic manipulation show that it behaves

n−pK . Firstly we handle the product by using (4.7) and taking logarithms. This give
∣∣∣∣∣log(an)+

n∑
i=1

2K

(i + 1)(K − 1)

∣∣∣∣∣� c(n),
where supn c(n)� C � ∞. SincepK = 2K

K−1 and|log(n)−∑n
i=1

1
i+1| � c0, we arrive to

∣∣log(an)+ pK log(n)
∣∣� c1<∞

for everyn ∈ N.
Therefore, (4.12) is satisfied and the staircase laminateν verifies (4.1).

Remark4.2. – It is the fact that the auxiliary values{An} are asymptotically close t
the setE1 ∩D = {(a, a): a ∈ R} that characterizes the integrability of the measurν.
Generally, let{Ãn} ⊂ Q be a sequence of auxiliary matrices ordered as in (4.2) and
that

lim
n→∞

Ã2
n

Ã1
n

= t.
Then it can be shown that if we perform the above scheme to obtain a laminateν̃, the
threshold for the integrability of̃ν is equal to

K

(K − t) + K

(K − 1/t)
.

5. Correcting sequences via Beltrami operators

Consider the staircase-laminateν. By the construction it is ap-laminate in the sens
of Definition 3.3 for every 1< p < pK . Hence by Theorem 3.4, there exists a seque
{fj} ∈W 1,p(Q,R2) such that

Dfj&
(
LnR
) *
⇀ ν (5.1)

for everyR � Q, |R| > 0, and {fj } is uniformly bounded inW 1,p(Q,R2) for every
1< p < pK . In addition, the measureν satisfies the requirements of Remark 3.3 an
supported on the setE \B(0, ε) for someε > 0. Thus,

lim
j→∞

∣∣{z ∈Q: Dfj(z) /∈E orDfj(z)= 0
}∣∣= 0. (5.2)

The fact thatE is related to an elliptic equation allows us to “project” the sequence{fj }
to another sequence{gj } such that{Dgj } take values inE and converges toDfj in Lp.
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PROPOSITION 5.1. – Let ν be the staircase laminate and{fj } the generating
sequence with the properties(5.1) and (5.2). Let k = (K − 1)/(K + 1). Then there
exists a sequence of Beltrami coefficientsµj ∈ L∞(Q, {k,−k}) and a sequence{gj } ∈
W 1,p(Q,Rm) for all 2 � p < pK such that:

∂gj (z)−µj (z)∂gj(z)= 0 (5.3)

for a.e.z in Q, and

lim
j→∞‖Dfj −Dgj‖Lp(Q) → 0. (5.4)

Proof. –Declare3j = {z ∈Q: Dfj(z) ∈E andDfj(z) �= 0}. Then (5.2) reads as

lim
j→∞|Q \3j | = 0. (5.5)

Define

µj(z)=


∂fj (z)/∂fj(z) if z ∈3j,
k if z ∈Q \3j.

It is easy to see from the expression of the setE in complex coordinates (2.2) th
µj ∈ L∞(Q, {k,−k}). The key point in the proof is that (5.5) implies that each{fj }
satisfies a non homogeneous Beltrami equation with right hand side going to zeroLp

for everyp < pK . The argument is the following: By the definition ofµj

∂fj(z)−µj (z)∂fj(z)= (
∂fj (z)− k∂fj(z) )χQ\3j (z) (5.6)

inQ. Lethj(z)= (∂fj (z)−k∂fj(z))χQ\3j (z) and consider exponents 2< p < p′ <pK .
Then Hölder’s inequality with exponentsp′/p, p′/(p′ − p) implies that

∫
C

|hj |p dz �
C‖Dfj‖Lp′

(Q)|3j |(p′−p)/p′
. By the definition ofν, ‖Dfj‖p′ is uniformly bounded and

hence

lim
j→∞

∫
C

|hj |p dz→ 0, (5.7)

for everyp < pK . Here after, the argument is similar to those in [5]. We sketch the p
that goes in the same way that the proof of Theorem 1.2 in [5]. First we extendµj to the
whole complex plane as

µ̃j (z)=

µj (z) if z ∈Q,

0 otherwise.
(5.8)

Now we use the two integral operators naturally related to the theory of quasiconf
mappings; The Cauchy transformP ,

Pf (z)= −1

π

∫
f (w)

w− z dx dy

C
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and the Beurling–Ahlfors transformS

(Sf )(z)= −1

π

∫
C

f (w)

(w− z)2 dx dy.

For definitions and proofs of their properties see [1]. These operators satisfy th
smooth compactly supportedh,

∂P (h)= h, ∂P (h)= S(h). (5.9)

Moreover both operators are continuous fromLp(C) into itself. Therefore (5.9) extend
toLp, p > 1, in the distributional sense.

Then if we consider the sequence{Fj }
Fj = P ((I − µ̃jS)−1(hj )

)
it is easy to see thatgj = (Fj − fj )χQ satisfies the equation

∂gj −µj∂gj = 0 inQ. (5.10)

Furthermore, by (5.7),{hj} tends to zero inLp. Recall that through the whole proof w
are assuming that 2� p < pK . Hence, by Theorem 3 in [4],(I − µ̃jS)−1 is a bounded
operator fromLp into itself [4]. It follows that{(I − µ̃j S)−1hj } tends to zero inLp(C)
as well. This fact together with (5.9) and the boundness ofS imply that {DFj } also
converges to zero inLp(C). We have proved that{gj } satisfy (5.3) and (5.4). ✷

We will need that the convergence inLp implies that the limit of the distributiona
measures are the same, i.e. (5.4) implies that for everyR �Q, |R|> 0

lim
j→∞Dfj&

(
LnR
)= lim

j→∞Dgj &
(
LnR
)

(5.11)

in the weak star topology ofM(M2×2). Actually convergence in measure is enough
(5.11) to hold.

Remark5.2. – The above proposition holds for everyW 1,p-GYM supported inE with
1 + k < p. In this case we do not know if (5.2) holds since a priory the genera
sequence only converges toE in measure. Therefore, a more subtle argument is ne
to choose the Beltrami coefficients. One option is using the so-called Meas
Selection Lemma to find a projection of the generating sequence toE. Other is noticing
that E = F−1(0) with F(A) = min{|Az − kAz|p, |Az + kAz|p}. Then the fact tha∫

C
F(λ) dν(λ)= 0 gives a choice of appropriate Beltrami coefficients.

6. Proof of Theorem 1.1

We start with the staircase-laminateν constructed in Section 3. Firstly, by Theorem
applied toν we obtain a generating sequence{fj }. Then Proposition 5.1 provides a ge
erating sequence{gj } and a sequence of Beltrami coefficients{µj } ∈ L∞(Q, {k,−k})
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∂gj (z)−µj (z)∂gj(z)= 0 (6.1)

in Q. Next, let us recall that ifgj (z)= uj (z)+ ivj (z) for uj andvj ∈W 1,2
loc (Q), it is an

algebraic computation to show that

div
(
ρj (z)∇uj(z))= 0 (6.2)

inQ, whereρj (z)= 1−µj (z)
1+µj (z) . For the sake of completeness we show the calculation.

we observe that

2∂gj (z)= ∇uj(z)+ J∇vj (z), 2∂gj (z)= ∇uj(z)− J∇vj (z).

Thus, (6.1) becomes

∇uj(z)+ J∇vj (z)= µj (z)(∇uj(z)− J∇vj (z)),
a.e.z in Q. After rearranging this equation we obtain

1−µj (z)
1+µj (z)∇uj(z)= −J∇vj (z) (6.3)

and (6.2) follows by recalling thatJ sends curl free vector fields to divergence f
vector fields. Now, whenµj (z)= k, ρj(z)= (1− k)/(1+ k)= 1/K and whenµj (z)=
−k, ρj(z) = (1+ k)/(1− k) = K , so (6.2) is an elliptic isotropic equation like (1.1
Moreover, the bounds on theρj and (6.3) imply that for every 1� p <∞

∫
R

∣∣∇uj (z)∣∣p dz�
∫
R

∣∣Dgj(z)∣∣p dz�C(K)
∫
R

∣∣∇uj (z)∣∣p dz. (6.4)

To conclude we use the following basic consequence of the Monotone Conve
Theorem.

LEMMA 6.1 [7, Proposition 2.15]. –Let νj
*
⇀ ν in M(M2×2) and f be a positive

continuous function onM2×2. Then,

∫
M2×2

f (λ) dν(λ)� lim inf
j→∞

∫
M2×2

f (λ) dνj(λ).

Takeν equal to the staircase laminate,νj =Dgj &(LnR) andf (λ)= |λ|pK in the lemma.
The left hand side is equal to∞ by (4.1) which yields that

lim inf
j→∞

1

|R|
∫

|Dgj |pK = ∞ (6.5)

R
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and, by (6.4), that

lim inf
j→∞

∫
R

|∇uj |pK = ∞.

Moreover, since{Dgj } is uniformly bounded inLp(Q) for everyp < pK (6.4) implies,
after normalization, that ∥∥uj (z)∥∥W1,2(Q,R)

� 1.

Therefore,ρj (z)= 1−µj (z)
1+µj (z) anduj(z) equal to the real part ofgj (z) prove Theorem 1.1

Proof of the Corollary 1.2. –Consider a union of disjoint balls{Bi(ai, ri)}∞
i=1 � Q.

Let η ∈ C∞
0 (B(0,1)) be a cut-off function such thatη(z) = 1 if |z| � 1/2. For every

i let Ti(z)= (z− ai)/ri , be a similarity satisfyingTi(Bi) = B(0,1). Define then,ηi =
riη(Ti(z)) ∈ C∞

0 (Bi). Use now (6.5) withR = B(ai, ri/2) to selectj (i) such that

∫
B(ai,ri/2)

∣∣Dgj(i)(z)∣∣pK dz� 1

ri
. (6.6)

Settingj (i)= i gives sequences{gi}∞
i=1, {µi}∞

i=1. Let

µ=
∞∑
i=1

µiχBi + kχQ\⋃∞
i=1
Bi

(6.7)

and

g =
∞∑
i=1

giηi . (6.8)

Then we have that

∂g(z)−µ∂g(z)= F (6.9)

in Q.
Explicitly the vector fieldF is given by

F =
∞∑
i=1

(
∂ηi(z)−µi∂ηi(z))gi.

Thus, we can use the Sobolev embedding for thegi and that‖∇ηi‖∞ = ‖∇η‖∞ to see
thatF ∈ L∞(Q). Regarding the integrability of|Dg|pK we have that

∫
Q

|Dg|pK dz�
∞∑
i=1

ri

∫
B(ai,ri/2)

|Dgi|pK ,

which, after plugging (6.6), implies that∫
Q

∣∣Dg(z)∣∣pK dz= ∞. (6.10)
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Finally, the same calculation that in the homogeneous case (6.1)–(6.3) show
u= Re(g) satisfies the equation

div(ρ∇u)= div
1

1+µ(z)2F,

whereρ(z)= 1−µ(z)
1+µ(z) . This together with (6.10) proves the corollary.✷

Remark6.2. – From the viewpoint of physics, the exponentpK being low means tha
there areas where the concentration of the electric field is quantitatively high. In
is proposed to investigate whether there are areas where the electric field is esp
feeble. For this question we search for the largest exponentqK such that for everyq < qK∫

R

∣∣∇u(z)∣∣−q dz < C(R,p),
whereu is a solution to (1.1). To avoid technical problems with the singular se
assume that the quasiregular mappingf such that

Df =
( ∇u
Jρ∇u

)

is a local homeomorphism everywhere. This for example is guaranteed if we a
affine boundary values foru (see [15]).

Essentially the same example shows thatqK = 2/(K − 1). We consider the staircas
laminateν and a generating sequence{fj}. We define the same sequence of Beltra
coefficients{µ̃j } as in (5.8). The difference is that this time we correct the sequenfj
with the Beltrami operator(I − µ̃j S)−1 to obtain a sequence{gj } of solutions of

∂gj (z)− µ̃j (z)∂gj(z)= 0 (6.11)

inQ. Observe that we are not taking the conjugate of∂gj(z) soµ̃j are standard comple
dilatations [1]. Assume for a moment that the functionsgj are injective. Then, th
composition rule for Beltrami coefficients [1] shows that the functionsg−1

j satisfy the
equations

∂g−1
j (z)+ µ̃j

(
g−1
j (z)

)
∂g−1
j (z)= 0 (6.12)

in gj (Q).
Therefore, by the discussion in Section 6, the real parts ofg−1

j satisfy an isotropic
equation like (1.1). Now, a change of variables gives that∫

gj (R)

Jg−1
j
(z)−1/(K−1) dz=

∫
R

Jgj (w)
K/(K−1) dw

for everyR compactly contained inQ. Notice that at this point one has to be care
because the domainsgj (Q) are not the same. However, by the uniform quasisymm
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of gj we can find a domainQ̃, such that{gj (Q)} converges in the Hausdorff metr
to Q̃. In turn this observation yields the result. If thegj are not injective (and the
need no to be) we have to use [5, Theorem 1.5]. In our setting that result implie
there exists another sequence{Fj } of injective solutions of (6.11) which generate t
staircase laminateν and hence, whosepK -norm blows up. It follows that the sequen
{Re(F−1

j |Q̃)} prove thatqK � 2/(K − 1). The other inequality follows from [2,15].

Remark6.3. – In the sequence we have obtained we have no control in the bou
values. This can be fixed in the following way. Firstly, it is clear that the gener
sequence{fj } for the staircase laminate can be assumed to have affine boundary v
Then once we have our choice of Beltrami coefficients{µj } we can associate to the
the right scalars{ρj} as above. Then we look at the following boundary value proble

div(ρj∇uj )= 0,

uj − Re(fj ) ∈W 1,2
0 (Q). (6.13)

Then it can be shown (but it is a lengthier computation that the one we have pres
that since{Re(fj )} solves an isotropic equation with right hand side going to z
‖∇uj − ∇(Re(fj ))‖L2 → 0. It is not hard to see that this is enough to guarantee
limj→∞

∫
R |∇uj |pK dz= ∞ whereR is a compact set with positive measure.
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