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RESUME. — Nous présentons des exemples, qui prouvent que le seuil de l'intégrabilité du
gradient des solutions des équations isotropiques Eg{R — 1). Les techniques principales
sont lesp-laminates et les opérateurs de Beltrami.
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1. Introduction

In this paper we investigate the regularity of solutions to the isotropic equation
div(p(z)Vu(z))=0 inQ, (1.1)

whereQ is a square in the plari@?, u € WH?(Q,R) andp € L*(Q, [1/K, K]) is real
valued. Through the whole papéf is an arbitrary constant greater than one. In [24]
Piccinini and Spagnolo proved that the solutions to (1.1) are locally Holder continuous
with exponent 4z Arctan(1/K). Isotropic equations belong to the class of linear elliptic
equations,

div(o(z)Vu(z)) =0 inQ, 1.2)

whereo (z) € M2*2 with o(z) = o(z)" and 1/K£|? < (£,0(2)€) < K|£|? for every
£ e R?and a.ez in Q. As in the isotropic case we requites W12(Q, R).

It goes back to Morrey [19] that the threshold for the Holder regularity of the solution
in the anisotropic case is only/ K. Thus, in terms of Holder continuity, solutions to
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the isotropic equation are more regular that in the general case. On the other hand, ¢
interesting result of Marino and Spagnolo states that isotropic equations are dense in tt
set of anisotropic equations with respect to the G-convergence, see [16].

The regularity of solutions to a PDE is also studied in terms of the integrability of
the gradient. By the Sobolev Embedding Theorem if the gradient is integrable with
exponentp > 2, the function is Holder continuous with exponent-2/p. A crucial
phenomenon in elliptic PDE is that weak solutions which are a priory onW,fgﬁ(Q)
automatically belong t(Wlé}f’ (Q) for somep > 2 (see [8] fom = 2 and [17] for arbitrary
n). More precisely the gradients satisfy the so-called reverse Hdélder inequalities, tha
is, for every ballB(a, r) such thatB(a, 2r) is compactly included inQ there exists a
constantC (K, p) such that

5 p/2
/|W|sz<ca<,p)< / IVu ()| dz) . (1.3)

B(a,r) B(a,2r)

In understanding the properties of a given subclass of elliptic PDE is important to find
the supremum of those exponeptfor which gradients of weak solutions satisfy reverse
Holder inequalities. This supremum is called the threshold exponent of that class. Th
value of the threshold exponent is relevant in applications because it measures “th
highest possible concentration of the field”. See, for example, [18,15] and the reference
therein for the relation of the threshold to several questions in physics.

The threshold for anisotropic equations like (1.2) in the plane was established by
Astala, Leonetti and Nesi to be equal t& 2(K — 1). The result was obtained by
Leonetti and Nesi in [15] as a consequence of the higher integrability results for gradient:
of quasiregular mappings due to Astala [2], see also [10]. In the proofs in [2,10] the
complex structure oR? is essential and hence, the higher dimensional case remains as
a challenging open problem. We see that in the anisotropic case the threshold for th
integrability of the gradient /(K — 1) and the Sobolev embedding yield the “right”
Holder regularity YK (up to the end point). In fact, the example showing the sharpness
of both results is the same: the real part of the radial stretcfiiagy= z|z|*% 1.

The search for the threshold for the integrability of the gradient in the isotropic case
has also drawn the attention of the researchers, see for example [6] and [15]. A natur:
question is if also here the bounds for the Holder continuity and the integrability of
the gradient are related by the Sobolev embedding Theorem. In the related setting ¢
guasiconformal mappings Pekka Koskela provided an example for which the Héldel
regularity and the integrability of the gradient are not coupled by the Sobolev embeddinc
[14].

The situation in the anisotropic case and the results in [24] indicate that the highel
integrability threshold for the isotropic equations might be larger th&n (X — 1).
However, the intuition coming from physics, led Graeme Milton to conjecture the
opposite.

The underlying physical problem relies on the fact that the matrix valued fungtion
in (1.2) can be thought of as to express the electric conductivity properties of certair
material. In [18] Milton suggested conductivity matriges where the concentration of
the related field§/u; should be high enough to prevent any uniform integrability better
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than 2K /(K — 1). However since his remarkable work appeared in 1986, a mathematical
proof of this fact was lacking to the best of our knowledge. In this paper we rigorously
prove Milton assertion showing that his physical intuition led him to the right answer.

We present the result in the following form.

THEOREM 1.1. — Let K > 1. There exist sequences of functidps} € L>(Q, {K,
1/K}) and{u;} € WH2(Q, R) with [|u; | w12 < 1, such that
div(p;(z)Vu;(z))=0 inQ, (1.4)

and for every compact sét of positive measure contained (

. 2 -1
lim /|Vuj(z)| KK )dz:oo.
j—o00
R

In fact our construction gives that the sequer{eg} is uniformly bounded in
wtP(Q,R) with 1 < p < 2K /(K —1). This must be the case, since the result of
Astala—Leonetti-Nesi states that the bounds onWHe norm imply bounds on the
WP norm for the above range of.

Weak reverse Hoélder inequalities imply also sharp regularity results for the Dirichlet
problem

div(o(z)Vu(z)) =divF in Q, (1.5)

whereo is asin (1.2) and” € L? (see [12]). In this regard Theorem 1.1 is easily seen to
imply the following corollary.

COROLLARY 1.2. — There exist functiong € L>*(Q,{K,1/K}), u € W-?(Q,R)
and a vector field € L*(Q, R?) such that
div(p(2)Vu(z)) = div F, (1.6)

and

/va(z)yZK/(K‘l) dz = 0.
0

Our approach to study Eq. (1.1) is based upon considering thedigyWu(z) as a
rotated potential. Most of the notation used below is standard and explained in Section =
However we need to introduce immediately the following sets. Let us associate to even
positive numbep a 2-dimensional subspadg, of the space of X 2 matricesV 22 as
follows:

X 5 0-1
E,= {( ) whereX € R“andJ = < )} a.7)
JpX 10

Denote
E=EgxUEg1. (1.8)
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Then it can be seen that is a solution to a linear isotropic equation (1.1) with
p(z) € {K, K1} almost everywhere if and only i is the real part of a function
f e W-2(Q, R?) such that

Df(z) e E

for almost every; € Q. Moreover, sek = (K —1)/(K +1). ThenDf(z) € E if and
only if there existsu € L*°(Q, {—k, k}) such that

3f —udf =0. (1.9)

The functionu is called the second complex dilatation of the mappjhgsee [1]).
For the sake of completeness the relation between Egs. (1.1) and (1.9) is discussed
Section 6.

Next we observe that the integrability propertiesnf are completely encoded in its
distributional measur®f, L7, (cf. Section 2), since

1
@/|Df(z)|pdz= / P dDL (L) ().
0

M 2x2

Thus our strategy will be the following: Firstly we construct a probability measure
v € M(E) such that

I 12K/E=D gy () = 0.

M 2x2

Sincev has support inE, if it was the distribution of the gradient of some Sobolev
function the problem would be concluded. This need not to be the case, but using th:
theory of laminates (see Section 3) we can at least show the existence of a s€giignce
uniformly bounded in eac*7(Q,R™), 2< p < 2K /(K — 1) such that

Df;, (L) = v in M(M>?), (1.10)

Whenever (1.10) holds we say tHd2f;} generateshe measure. The last difficulty
is that, a priory, the sequen¢®f;} does not stay irE almost everywhere. This can be
handled by several means. One option is based in adapting the recent new methods f
solving partial differential inclusions (see [9,13,20] and in particular Proposition 4.42
in [13]) to our situation. However, the proof would be more technical and specific. We
have chosen to follow a somehow more direct (familiar) and general route based ot
the so-called Beltrami Operators. Using them we can find another seq{gncsich
that Dg;(z) € E almost everyz € Q and it alsogeneratesv. The latter argument is
related to those of [5], where the Beltrami Operators were applied to analyze the so
called Quasiregular Gradient Young measures. These operators have turned out to |
an efficient tool in clarifying a wealth of questions concerning the study of the best
exponents in planar PDE and related topics [3,11,5]. Their invertibility properties and
other issues are described in the recent work of Astala, lwaniec and Saksman [4].
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Once a sequencfg;} as above is obtained, an easy argument shows{Retg )}
and the conductivity coefficien{p;} associated to the second complex dilatationg;of
prove the Theorem 1.1 to be true.

2. Notation

Let O denote the: dimensional unit cub& = {z € R": |z;| < 1}, B(a,r) ={z €
R": |z —a|] <r} and R € Q means thatR is a compact subset af. Concerning
matricesM™*" is the space ofn x n matrices. The tensor produgtl d with a € R™
and d € R" denotes the rank-one matrix;d;). It mapsv € R" to (v, d)a. Here,
(-, ) represents the Euclidean scalar product. Unless otherwise indicated for a matri
A, |A| represents the Euclidean norm af We denote closed balls in the space of
matricesM™*" by B(r), i.e. B(r) = {A € M™*": |A| < r}. Similarly, B, (r) ={A €
M™xm: | A| > r}. The plane of diagonal matrices M?*2 is denoted byD. We will use

the notation
dp 0
= (d1,d>). 2.1
(0 d2> (d1, do) (2.1)

For a matrixA € M2*? we will also use complex coordinatels= (A., Az). Here,A, €
C and A e C satisfy the following relation: Let us identify a vectar= (x, y) € R?
with the complex numbew = x + iy. Then it holds that for every vectar € R?

Aw=A, w+ Az -w,

wherew denotes the complex conjugatewf Using this notation
Ex ={A= (A, A;) eM®% A-=kA,} and
Eyx = {A=(A,, A;) e MP?% A= —kA}, (2.2)

where the set¥, were introduced in (1.7) and = (K —1)/(K +1). We use also
complex coordinates for the differential of a mappifig W7 (22, R?), Q c R?;

Df(z) = (3f(2),0f(2)).

Concerning measure®t(M2*2) stands for the set of Radon measureMifi?, §, is

a Dirac delta atA, sptv stands for the support of and > means convergence in the
weak star topology. For a sét, |E| denotes its Lebesgue measure. Qdbe a bounded
measurable set. Thefy, stands for the normalized Lebesgue measure restrieted
that £, (2) = 1. Let f be a measurable functiofi: 2 — R™ and N a Borel set inR"™.
Then the push-forward{, under f is given by

Fo(LH)(N) = LG(fTHN)).

We call f.(L£g) the distribution measure of. Finally the threshold B /(K — 1) is
denoted bypg .
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3. Laminates

In this section we describe a process to build probability measures which arise a:
weak star limits of distribution measures of gradients of Sobolev functions. The class of
probability measures obtained by this process, named as laminates, were introduced
[22] to provide examples of the so-called Homogeneous Gradient Young measures. |
the setting of homogenization, lamination of materials has been present from the ver
beginning, since it provides one of the few situations where the relation Microstructure—
Macrostructure is relatively well understood. We recall the basics of Laminates, referring
to [13,21,23] for further details. The reader familiar with Gradient Young measures will
recognize features of this theory in the discussion below.

Let us start with a matrid € M™*", Suppose that there exist matrid@sC € M™*",
areal parametex € [0, 1] and vectors: € R™, d € R” such that

A=AB+(1—-A)C and B—-C=aQ®d. (3.1)

Whenever (3.1) is satisfied we say tlBaandC arerank-one connectednd thaf B, C]
is arank-one segmenf herefore using this jargom is supposed to belong to certain
rank-one segment.
Let i be the saw-tooth function on the real line, obtained as the periodic extension of
ifo<x<1—
hx) = Ax !fO\x\l A,
—A-MDx+@A-2) ifl—-iaA<<x<l

We definef (z) = Az — ah((z, d)) for z in the unit cubeQ. Clearly f € W->(Q,R™)
andDf (L) is equal to the measune= 15 + (1 — 1)dc. To iterate the process it is

convenient to consider the sequengg}s,, f;(z) = 1/jf(jz). The reason is twofold.
Firstly, while for eachy, Df;j (Ly) =v it also holds that ifR € O, |R| >0

ijﬁ('cllli’) - V.

Secondly, if another sequen(:éj} satisfies that lim., o [{z € Q: Df; # ij}| =0,
{ij} generates as well. This is very useful because by using cut-off functions ([23,
Lemma 8.4]), or by using auxiliary matrices (for example [13, Lemma 3.2] and Fig. 1),
we can find{fj} with fixed boundary values equal tdz and such that for each,
l{z€ Q: Dfj(z) # D f;(2)}I < 1/j.

Thus, since in the construction we can replace the unit €ubg an arbitrary cub&
we have obtained the following result. 3 .

Given an arbitrary cub@® C R", there exists a sequengg;} bounded inw>(Q,

R™) such that for evenk € 0, |R| > 0

Df,(Lh) > v (3.2)

and fj(z) — Az € Wol"’o(Q,R’"). We say that we have splitted the measdjeas
Mg+ (1—XL)dc.
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Fig. 1. If a piecewise affine mappinghas gradient equal td in a certain region and belongs
to a rank-one segmefB, C], we can replacd by layers where the gradient is equalBandC
and an interface region. The size of the interface is controlled by the number of layers we take.

Next, suppose thak belongs to a rank-one segmeiit, E], B = 1,D + (1 — A)E,

0 < A, < 1. We want to show that? = A(A28p + (1 — 12)8g) + (1L — 1)8¢ is also
generated by gradients.

To obtain a sequeno[@sz} generatingv? the idea is to modify the original sequence
{fj}, which generates, on the sef2; = {z € Q: Df;(z) = B}. The gradients oj‘j? will
take essentially value® andE on2; andA onD\ ;. In fact, an auxiliar region where
ijz ¢ {A, D, E} is needed but its measure will converge to zero.

Formally, we take a finite collection of dyadic cub{@j.}f\’:"l C ; such that|Q; \
vaj Qj| < 1/j. Inside of each of the cube@i. we construct the sequen({:gfﬁi},f‘;l €
whe(Qi R™) obtained as in (3.2) but replacing by B, v by 1,8 4+ (1 — A,)8z and
0 by 0';. We choose(j) = j N, to have that U, {z € 0 DfI # (D, E}}| < 1/j.

Jst
Due to the affine boundary values of eaﬁh we can weld them together and define

k(j) : i
20 = { Jii (@) ze 0
fi@ otherwise

A direct computation shows that for eveRye Q, |R| > 0 the weak star limit of the
sequence of measureEfJ?ﬁ(E’;)} is V2 =A(A28p + (1 — 12)85) + (1 — A)d¢. Clearly,
we can iterate this construction as long as we have enough relations in term of rank
one connections. The obtained measures will be generated by gradients in the sense
(1.10). We arrive at the class of prelaminates.
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DEFINITION 3.1. —The family of prelaminate® L is the smallest family of probabil-
ity measures o> such that
(1) PL contains all Dirac masses ™",
(2) Letv =3*_ 184, € PL and letA; = 1B + (1 — 1)C wherex € [0, 1] and
[B,C] is a rank-one segment. Then the probability measEfgz Aiba, +

THEOREM 3.2. —Let v be a prelaminate supported in the balr) c M™*", Then
there exists a sequen¢¢;} e Wi (Q,R™) such that for everk € Q, |R| > 0,

D) 1fillnee <Cr,

(2) Df; (L) > v.

Proof. —This theorem can be found in many places in the literature since it follows
from the fact that laminates are homogeneous Gradient Young measures, [22]. Th

interested reader can complete a proof using the above scheme and an inductic
argument. O

Finally laminates are defined as weak (imits of prelaminates inM(M™*").
A laminate which is not a prelaminate is called an infinite-rank laminate.

DEFINITION 3.3.—Letv be a probability measure ad™*" and1 < p < co. Thenv
is said to be ap-laminate if there exists a sequence of prelaminatesuch that

(@) sup Jppmsen IA]P dv; (1) < o0,

(b) v; = vin MM™*"),

THEOREM 3.4. —Let v a p-laminate. Then there exists a sequerge} uniformly
bounded inW%?(Q, R?) such that

Df;, (LR) —v
for every compact subs& of Q with positive measure.

Proof. —In the case of compactly supported laminates this theorem is proved in
the literature (see [23], Chapter 9). The proof follows from Theorem 3.2 and a
diagonalization argument. For the case of finitdet us apply Theorem 3.2 to each
prelaminatev;. For each;j we obtain a sequenc(af]’f};?il uniformly bounded in
wl®(Q,R™) such thathj‘fﬁ(E’}e) X v; asi tends tooo. The uniform bound on the

W™ norms of thef! gives that

lim /ypf;(x)|”dx: / 1P dv; (3.
1—>00
Q MI”XI'[

Putting this together with the assumption (a) in the definitionpolaminate gives
the uniform bounds for they-norms of the{f}}ﬁ‘}zl and thus for the generating
subsequence. O

The following remark, on the particular nature of the laminate we are going to deal
with, will simplify the proofs in Section 5.
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Remark3.5. — It is easy to see that ifialaminatev is purely atomic and
jILmOO v(spt(v) \ spt(v;)) =0,

v; as in Definition 3.3(b), the sequen¢¢;} obtained from Theorem 3.4 satisfies the
following property: LetQ2; = {z € Q: Df;(z) ¢ spt(v)}. Then,

lim |2, =0. (3.3)
j—o00

4. Thestaircase-laminate

This section will be devoted to constructing a laminatsupported in the seE
presented in formula (1.8), and satisfying

IA|P% dv(h) =00 and /|,\|f’dv(/\)<oo (4.1)

M2x2 M 2x2

for everyp < pg. In fact, we will not need the whole sé&tsince the laminate will live

on the intersection of with the plane of all diagonal matricd3 = (d1, d»); c.f. (2.1).
Recall that in this plane the only rank-one directions are horizontal and vertical lines.
Moreover, using notation (2.1), we have that

ExND={(a,Ka):aeR} and Ex-1ND={(a, K ta): a eR}.

It turns out that it is the opening of the coak

QE{(x,y)eD: K—lgng},
X

what determines if it is possible to find a laminateupported inQ such that (B, (R))
converges to 0 slowly enough for (4.1) to hold.

We will firstly describe how certain sequences of matriceg igive naturally rise to
infinite rank-laminates and after that we will choose an appropriate sequence to creat
the measure.

Our construction will resemble an staircase (see Fig. 3). Thus, we start by describin
how to build its steps. Take two diagonal matrices= (A}, A%), A, = (AL, A%) € Q.

We will use the partial ordering,

A1<A; & Al<AjandA?< A3 (4.2)

Given such a pair of matrice®} = (Al,1/KA}) € Ex1, D = (A}, A%) andC =
(A%/K, A%) € Ei satisfy thatA; € [B, D], D € [C, A,]. In addition,[ B, D] is a vertical
segment andC, A;] is an horizontal segment i.e. they are rank-one segments. For a
quick illustration see Fig. 2 (observe that although in the figtite= A3, this is not
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Fig. 2. “Steps” 1 and:. Black dots denote the support of the measure, the cross is the centre of
mass, and white dots are auxiliary matrices.

required in the general construction). Lgtand, € [0, 1] be parameters such that
A1=MB+(A—-x)D and D=2iC+ (1—Xy)As.
Plugging the latter expression into the former we obtain that
Ar =B+ (1—11) (A€ + (1 — 1) Ay). (4.3)

In the language of measures (4.3) means

A= / tdvy(1),

M 2x2

wherev; is the measure
V1 = A16p + (1 — A1) ()\28(; + (1 — )\2)8,42). (44)

Fig. 2 shows how this construction looks like if the matrices are near the orgiag
the center of mass of a measure supporte®@p@ and A,), or if they are relatively far
away (A, as the center of mass of a measure supportes,of, andA, ,1).

Now let us suppose that we are given a sequence of mafuGe3 ; € Q ordered as
in (4.2),A, < A, for everyn. We can repeat the explained construction with= A,
andA; = A,;1. This yields a sequence of step measyrg$ 2 ;. We would like to paste
the measures, together to obtain a new measurelLet us sketch the idea. Consider
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7 A 1
7/
// 8
7/

Fig. 3. The staircase at level

the measure; as in (4.4). Replacé,, in the definition ofv; by the measure,. This
defines a new measure

V2= 2185 + (L — 21) (R8¢ + (1 — A2) (Aa8p, + (1 — A3) (hadc, + (L — 14)845))).

Here the new parameters and matrices come from the definition of the step measure
Sincev? has an atons 4,, we proceed by replacing it by the step measuréo obtain
a new measure® with an atom atd,. We continue iteratively obtaining a sequence of
probability measure$v”}. Finally the measure is defined as the weak star limit of
this sequence. Besides the condition on the ordering (4.2), the only restriction on the
sequencegA, } is thatv should have finitepth-moment for some & p < oco. We further
observe that we have only used rank-one segments at every step of the construction,
it follows that if v has finitepth moment for some > 1, v is a laminate. Fig. 3 and the
concrete example below should help to understand the process just loosely explained.

Let us concentrate now in obtaining the measuseich that (4.1) holds. We consider
the sequencel, = {(n + 1, m)};2, ,no > 1/(K —1). Since{A,} is well ordered and
contained inQ we can use the scheme indicated above to construct prelamiriatéth
centre of mass,,,,, and supported on the sgtU {A,1}. To avoid keeping track ofg
everywhere we assume without loss of generality ifaat 1.

Let start with the measui&,, . Clearly the following relations hold,

K 2 K
ev-zz 52 %)+ (1-awp) 22

(4.5)
K 2 K
(2’2):2(K—l)+1<<f’2> - (1_ 2(K—1)+K>(3’2)'
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Thus, in the above notatiolB = (2,2/K), D = (2,2) andC = (2/K, 2). HenceA; is
the centre of mass of the probability measuy@efined by

K +<1 K )( K__
T 2K —1) @0 2K -1 )\ 2k — 1)+ K ¥K2

K
1——}§ ,
+< 2(K—1>+K> “’”)

which is a prelaminate. Furthermore it can be expresseg-asii + A154,, Whereuw is

a new measure supported in the Bet B(2Ck). The constanC is equal to|B| = |C],

explicitly Cx = |(1,1/K)| = +/1+ K?/K. It will appear often below since it is a natural

parameter in our construction. We say that we are one “step” up in the staircase.
The construction gives that (B.,(2Ck)) = v1(Az) = A, Where

A=11 —K 1 7K
1‘( _Z(K—1>+K>( _2<K—1>>‘

We can repeat the same operation at lavsince,

V1

(n+1,n)=ﬁ<n+l,nl<il>
+ (1— (n—i—l)Km>(n+l’n+l)’ (4.6)
(”“’”H):(n+1>(KK—1>+K<n1tl’”+l>
+<l_ (n+1>(KK—1)+K>(”+2’”+1)'

The structure relations in terms of rank-one connections are the same as in (4.5). Henc
A, can be expressed as the center of mass of the lamipalefined by

K
Vn = —8 n n
(n+ (K -1 O

K K
- <1_ n+ (K — 1)) ((n +1(K -1+ K5((n+1)/K,n+1)

K
1_ 811 n .
+( (n+1>(K—1>+K> 42, *”)

As before there exists a measwg supported inE N B((n + 1)Ck) such thaty, splits
asv, = [ty + A484,,, andv, (B, ((n + 1)Ck)) = A,,.. The value ofx,, will be important:

K K
_(1_ N S 4.7
o <1 (n+1)(K —-1) +K> (1 (n+1D(K — 1)) 47

Next, we paste the steps together to obtain a truncated staircase. The formal procedu
is done by induction. Let us start with= 1. Remember that

V1= 1+ A1d4,.



D. FARACO / Ann. I. H. Poincaré — AN 20 (2003) 889-909 901

We define
V2= ug + Agva.

Declareu® = v ac,,- Thenv? splits in the formv? = 12 4 111,84, andu? is supported

in EN B(3Cy). SinceAs is the center of mass o, we defined® = 12 + A1Aov3. Now

we can findu® as before and continue inductively. The previous procedure gives the
definitions:

n—1
V= ;,Ln_l + (H )\l> VY,
i=1
and
W' = Vig(minch)-
This defines the truncated staircases. Observe that it follows from the construction the

V" (Boo (n +1)Ck)) =" (Boo ((n + D) Ck)) =" (Aps1) = ﬁki (4.8)
i=1

for everym > n. Finally, we let the staircase grow infinitely and obtain:

DEFINITION 4.1 (The staircase-laminate)Let v" be as above. Then the staircase-
laminatev is defined by

v=lim 1" in the weak star topology of1(M 22y, (4.9)

Now we need to guarantee thatis a probability measure with the appropriated
growth.
First we observe that by the Cavalieri principle,

/ |A|1’du(,\):p/zl’—lv(Boo(z))dt. (4.10)
0

M 2x2
Next we letmn go to infinity in (4.8) to obtain that
V(Boo((n +DCk)) =" (Apy) = [ 1. (4.11)
i=1
By inserting (4.11) into (4.10) it is easy to see that,

[ i dvoy =yt 4,
n=1

M 2x2

We compare the above sum wii™> , 1. Thus, if

n
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lim iorlf nP¥v"(A,41) >0,
limsupn?®v"(A,41) < o0 (4.12)
it follows that [,,2«2 |A|7% dv(L) = oo and for everyp < pg, [y2x2 AP dv(X) < oo.
After plugging the value ob"(A,.,) into (4.12) we are led to study the behavior of
the sequencey, = [[_; A;. The following basic manipulation show that it behaves like
n~ Pk Firstly we handle the product by using (4.7) and taking logarithms. This gives

n 2K
log(a,) + ; m <c(n),

where supc(n) < C < oo. Sincepy = 25 and|log(n) — >=7_; 5| < co, We arrive to

|log(a,) + px log(n)| < c1 < o0

for everyn € N.
Therefore, (4.12) is satisfied and the staircase laminatzifies (4.1).

Remark4.2. — It is the fact that the auxiliary valu¢d,} are asymptotically close to
the setE; N D = {(a, a): a € R} that characterizes the integrability of the measure
Generally, lef{A,} C Q be a sequence of auxiliary matrices ordered as in (4.2) and such
that
A2
lim =2 =z.
n—00 A%
Then it can be shown that if we perform the above scheme to obtain a lanhindie
threshold for the integrability of is equal to

K K

K- K-10

5. Correcting sequences via Beltrami operators

Consider the staircase-laminateBy the construction it is @-laminate in the sense
of Definition 3.3 for every k p < px. Hence by Theorem 3.4, there exists a sequence
{fi} e WtP(Q,R?) such that

Df;, (Lh) > v (5.1)

for every R € Q, |R| > 0, and {f;} is uniformly bounded inW'7(Q, R?) for every
1 < p < pk. In addition, the measune satisfies the requirements of Remark 3.3 and is
supported on the sét \ B(0, ¢) for somee > 0. Thus,

fim |{z € 0: Df;(2) ¢ E or Df; () =0}| =0, (5.2)

The fact thatt is related to an elliptic equation allows us to “project” the sequérfeke
to another sequendg;} such thaf Dg;} take values inE and converges t®f; in L.
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PROPOSITION 5.1. — Let v be the staircase laminate anflf;} the generating
sequence with the properti€s.1) and (5.2). Letk = (K — 1)/(K + 1). Then there
exists a sequence of Beltrami coefficientse L>°(Q, {k, —k}) and a sequencég;} €
wir(Q,R™) forall 2< p < pk such that

9gj(z) — p;(2)9g;(z) =0 (5.3)
fora.ezin 0, and
j|Lmoo IDfj — DgjllLro) — 0. (5.4)
Proof. —DeclareQ; = {z € Q: Df;(z) € E andDf;(z) # 0}. Then (5.2) reads as

lim |0\ Q;|=0. (5.5)
j—o00

Define
0f;(2)/3f(z) ifzeQ;,
k if 7€ 0\ Q.

It is easy to see from the expression of the Bein complex coordinates (2.2) that
wj € L*(Q, {k, —k}). The key point in the proof is that (5.5) implies that eggh}
satisfies a non homogeneous Beltrami equation with right hand side going to Zeto in
for everyp < px. The argument is the following: By the definition of

Mj(Z):

3fi(2) — uj(2)3f;(2) = (9fi(z) —kdf;(z)) xo\a,(z) (5.6)

in Q. Leth;(z) = (3 f;(z) —kdf;(z)) xo\e, (2) and consider exponents2p < p’ < p.
Then Holder’s inequality with exponengs/p, p'/(p’ — p) implies that [ |1;|” dz <
CIDfjll . (o)R;17~P/7". By the definition ofv, || Df;, is uniformly bounded and
hence

Hm(/UUWdz—>Q (5.7)
e
for everyp < px. Here after, the argument is similar to those in [5]. We sketch the proof,

that goes in the same way that the proof of Theorem 1.2 in [5]. First we extetwithe
whole complex plane as

- o )i ifzeQ, 58
#i(2) {0 otherwise. 8

Now we use the two integral operators naturally related to the theory of quasiconformal
mappings; The Cauchy transfori

Pf(z)=_—1/dedy
T J w—z
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and the Beurling—Ahlfors transforifi

J(w)

(SF)2) = | —

For definitions and proofs of their properties see [1]. These operators satisfy that fol
smooth compactly supported

aP(h)=h,  aP(h) =Sh). (5.9)

Moreover both operators are continuous frafC) into itself. Therefore (5.9) extends
to L?, p > 1, in the distributional sense.
Then if we consider the sequengk; }

Fj=P((I— ;8 nh)))

it is easy to see that; = (F; — f;) xo satisfies the equation

Furthermore, by (5.7),z;} tends to zero ir.”. Recall that through the whole proof we
are assuming that p < px. Hence, by Theorem 3 in [4]7 — &;S)~! is a bounded
operator fromL? into itself [4]. It follows that{(/ — ﬂji)‘lhj} tends to zero irL.?(C)
as well. This fact together with (5.9) and the boundness ahply that {DF;} also
converges to zero in”(C). We have proved thdk;} satisfy (5.3) and (5.4). O

We will need that the convergence Ir¥ implies that the limit of the distributional
measures are the same, i.e. (5.4) implies that for eRegyQ, |R| > 0

lim Df;, (L) = lim Dgj, (C}) (5.11)

j—)OO

in the weak star topology of1(M2*?). Actually convergence in measure is enough for
(5.11) to hold.

Remark5.2. — The above proposition holds for evé}-”-GYM supported inE with
1+ k < p. In this case we do not know if (5.2) holds since a priory the generating
sequence only converges bin measure. Therefore, a more subtle argument is needed
to choose the Beltrami coefficients. One option is using the so-called Measurable
Selection Lemma to find a projection of the generating sequenge @ther is noticing
that E = F~1(0) with F(A) = min{|As — kA.|”,|As + kA.|”}. Then the fact that
Jc F(A) dv(») =0 gives a choice of appropriate Beltrami coefficients.

6. Proof of Theorem 1.1

We start with the staircase-laminateonstructed in Section 3. Firstly, by Theorem 3.4
applied tov we obtain a generating sequerigg}. Then Proposition 5.1 provides a gen-
erating sequencég;} and a sequence of Beltrami coefficierfts;} € L*(Q, {k, —k})
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such that
3g;(z) —pj(2)dg;j(z) =0 (6.1)

in 0. Next, let us recall that i; (z) = u; () + iv;(z) for u; andv; € Wig2(Q), itis an
algebraic computation to show that

div(p;(2)Vu;(z)) =0 (6.2)

in Q, wherep;(z) = iﬁ;g For the sake of completeness we show the calculation. First
we observe that

20g;(z) =Vu,(z) + JVv;(2), 20g;(z) = Vu;(z) — JVv;(2).
Thus, (6.1) becomes
Vu;(z) +JVv;(2) = pn;(2)(Vu;(z) — JVv;(2)),
a.e.z in Q. After rearranging this equation we obtain

1—p;(2)

1+Mj(Z)Vuj(z) :—vaj(Z) (63)

and (6.2) follows by recalling thaf sends curl free vector fields to divergence free
vector fields. Now, whemw ;(z) =k, pj(z) = (1 —k)/(1+k) =1/K and whenu;(z) =

—k, pj(z) = (14+k)/(1—k) = K, so (6.2) is an elliptic isotropic equation like (1.1).
Moreover, the bounds on thg and (6.3) imply that for every £ p < oo

/IVuj(z>!”dz < /|ng(z>!”dz < C(K)/yw,-(z>y”dz. (6.4)
R R R

To conclude we use the following basic consequence of the Monotone Convergenc
Theorem.

LEMMA 6.1 [7, Proposition 2.15]. ket v, — v in M(M?<?) and f be a positive
continuous function oM?2*2, Then,

/f(x)dv(,\)glim inf /f(k)dvj(K).
j—00

M2x2 M 2x2

Takev equal to the staircase laminatg,= Dg;. (L) and f (1) = |A|P% inthe lemma.
The left hand side is equal t& by (4.1) which yields that

1
lim inf — [ |Dg;|"* = 6.5
'mj'ﬂoo|R|R/| g1’ =o0 (6.5)
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and, by (6.4), that
lim inf /|w,~|ﬂk — oo,
j—o00
R

Moreover, sincgDg;} is uniformly bounded in.”(Q) for every p < pg (6.4) implies,
after normalization, that

H”J'(Z)HWLZ(Q,R) <l
1-pj2)
I+uj(z)

Proof of the Corollary 1.2. €onsider a union of disjoint ballgB; (a;,r;)}?2, € Q.
Let n € C3°(B(0, 1)) be a cut-off function such thaf(z) = 1 if |z| < 1/2. For every
i let T;(z) = (z — a;) /ri, be a similarity satisfyingl;(B;) = B(0, 1). Define theny; =
rin(T;(z)) € C§(B;). Use now (6.5) withR = B(a;, r;/2) to select;j (i) such that

Thereforep;(z) =

andu ;(z) equal to the real part @f; (z) prove Theorem 1.1.

1
|Dg;i ()| dz > —. (6.6)
B(airi/2) '

Settingj (i) =i gives sequence; }72,, {1}, Let

M:ZM’XB,- +kXQ\U,°_’le,- (6.7)
i=1 N
and
g:Zgini. (6.8)
i=1
Then we have that
0g(z) — pdg(z) =F (6.9)

in 0.
Explicitly the vector fieldF is given by

F=) (3m:(2) = 1idmi(2))gi-
i=1

Thus, we can use the Sobolev embedding forghand that||Vy; || = [Vl tO SEE
that F € L*°(Q). Regarding the integrability diDg|?*x we have that

o0
AT ZED ST L P
0 =1 Bai.ri/2)

which, after plugging (6.6), implies that

/yDg(z)|”K dz = oo. (6.10)
0
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Finally, the same calculation that in the homogeneous case (6.1)—(6.3) shows the
u = Re(g) satisfies the equation

El

div(oVu) =div——2
PV =dV 1o

wherep(z) = ;%; This together with (6.10) proves the corollaryz

Remark6.2. — From the viewpoint of physics, the exponggrtbeing low means that
there areas where the concentration of the electric field is quantitatively high. In [18]
is proposed to investigate whether there are areas where the electric field is especial
feeble. For this question we search for the largest expanestich that for every < gx

[1vu@| "z < . p),
R

whereu is a solution to (1.1). To avoid technical problems with the singular set we
assume that the quasiregular mappjhguch that

Dr= (J,Zgu>

is a local homeomorphism everywhere. This for example is guaranteed if we assum
affine boundary values for (see [15]).

Essentially the same example shows that=2/(K — 1). We consider the staircase
laminatev and a generating sequengg;}. We define the same sequence of Beltrami
coefficients{,z;} as in (5.8). The difference is that this time we correct the sequgnce
with the Beltrami operatof/ — i; $)~1 to obtain a sequendg;} of solutions of

0g;(z) — 1;(2)9g;(z) =0 (6.11)

in Q. Observe that we are not taking the conjugatégf(z) so; are standard complex
dilatations [1]. Assume for a moment that the functignsare injective. Then, the
composition rule for Beltrami coefficients [1] shows that the functigp% satisfy the
equations

g7 (@) + 1 (851(2)0g; (2) =0 (6.12)

ing;(Q).
Therefore, by the discussion in Section 6, the real partg;éfsatisfy an isotropic
equation like (1.1). Now, a change of variables gives that

/ Jgfl(z)—l/(K—l)dzz/]gj(w)K/(K—l)dw
gj(R) R

for every R compactly contained Q. Notice that at this point one has to be careful
because the domains(Q) are not the same. However, by the uniform quasisymmetry
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of g; we can find a domairQ, such that{g;(Q)} converges in the Hausdorff metric

to Q. In turn this observation yields the result. If te are not injective (and they
need no to be) we have to use [5, Theorem 1.5]. In our setting that result implies tha
there exists another sequendg} of injective solutions of (6.11) which generate the
staircase laminate and hence, whosgg-norm blows up. It follows that the sequence

{Re(Fj‘llé)} prove thalyx < 2/(K — 1). The other inequality follows from [2,15].

Remark6.3. — In the sequence we have obtained we have no control in the boundar
values. This can be fixed in the following way. Firstly, it is clear that the generating
sequencg f;} for the staircase laminate can be assumed to have affine boundary values
Then once we have our choice of Beltrami coefficiefats} we can associate to them
the right scalargp;} as above. Then we look at the following boundary value problem

diV(,OjVI/lj) =0,
u; — Re(f}) € Wg(Q). (6.13)

Then it can be shown (but it is a lengthier computation that the one we have presentec
that since{Re(f;)} solves an isotropic equation with right hand side going to zero
[Vu; — V(Re(f;)ll.2 — 0. Itis not hard to see that this is enough to guarantee that
lim;_ o [z IVu;|PX dz = oo whereR is a compact set with positive measure.
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