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ABSTRACT. - In this paper we study quasi-periodic Hopf bifurcations
for the model problem of a quasi-periodically forced oscillator, where
the frequencies remain fixed. For this purpose we first consider Stoker’s
problem for small damping.
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RESUME. - Dans cet article, nous etudions les bifurcations de Hopf
quasi-periodiques pour le probleme d’un oscillateur quasi-periodique force
ou les frequences restent fixes. Dans ce but, nous commençons par analyser
le probleme de Stoker pour un amortissement faible.

§ 1. INTRODUCTION

a. Setting of the problem.

Consider the forced oscillator

where f is quasi periodic m t with the hxed, rationally independent tre-
quencies 03C92,...,03C9n. This means that f (t, x, x)= F(cvl t, co2t,... , x, x)
for a function F= F(01, 82, ... , 8n, x, x) which is periodic with period 2n
in all 8i (1  i  n). Special examples are the Duffing and the Van der Pol
equation with quasi-periodic forcing.
Our first problem comes from [Sto ], appendix 2 who refers to Friedrichs,

although its origin seems to lie in the days of Planck. We shall refer to it

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 4/87/02/115/ 54 /$ 7,40/~) Gauthier-Villars 5

© 1987 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



116 B. L. J. BRAAKSMA AND H. W. BRUER

as Stoker’s problem. If in (1.1) the coefficients c and a (a > 0) are consi-
dered as parameters, then, for which values of these parameters does the

equation (1.1) have quasi-periodic solutions? These solutions are required
to have the same frequencies w 1, ..., ccy as the forcing term f and to
be « close to x = x = 0, measured in terms of the size of f ».

Before we state our second problem we rephrase the above in terms of
invariant n-dimensional tori of an autonomous system. Since our main
interest is in the case of small damping, we restrict ourselves to the para-
meter region c~  4a, where we can introduce a convenient complex
notation. Here the characteristic equation 03BB2 + c03BB + a = 0 has complex

roots. Writing 03BB: = - c 2 + i a - 
4 

we have x + cx + ax = dt - 03BB)(d dt -03BB) x.

So putting z :== ac - Àx we transform the equation (1.1) into the following
autonomous system, defined on Tn x C (where Tn == Rn/(2nZ)n denotes
the n-dimensional torus) :

( n _ _

Here 9 = (~i, ~2? ..., ~2? -’ -~n) and

The parameter ~, varies over the complex upper half plane C + . Stoker’s
problem now asks for invariant n-tori of the system (1. 2), carrying m-quasi-
periodic flow. In fact, if z = À) is an embedded n-torus, which is inva-
riant under the vector field, then it satisfies the following non-linear partial
differential equation

B

Since 8 = cc~ it then follows that z(t ) := + tcv, ~,) is the required family
of quasi-periodic solutions. The function g is considered as a perturbation
and the invariant n-tori have to be perturbations of Tn x {0 } in Tn x C.
The normal behavior of ( 1. 2) on these Stoker n-tori, provided that they

exist, roughly speaking is dominated by the linear term z = ÅZ. So the
n-torus is normally hyperbolic for asymptotically stable for
Re 03BB  0 (c > 0) and unstable for Re À > 0 (c  0).
Now our second and main problem is to analyze the dynamics close to

the Stoker n-tori when A is near the imaginary axis. In particular we look
for quasi-periodic Hopf bifurcations, where invariant (n + l)-tori branch
off at the moment the Stoker n-torus loses stability.
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117ON A QUASI-PERIODIC HOPF BIFURCATION

b. Some literature on Stoker’s problem.

We present a brief overview of some literature on Stoker’s problem.
First in [Sto ], appendix 2, in the case of a model, the question is answered
affirmatively for large damping, using a straight forward contraction argu-
ment. Below we shall briefly touch this classical method. For small damping
this approach cannot be applied, due to the presence of small divisors.
Secondly [Mol] ] considers a model problem without damping. It is

Duffing’s equation

where the (~-quasi-periodic function h satisfies the reversibility condition
h( - t ) = h(t ). Also the choice of the frequencies 03C91, W2, ..., 03C9n is restricted
by a strong non resonance condition of the following form. For given
constants L > nand}’ > 0 and for all integer vectors k E 0 } we have
the estimate 

-

where and ( k _ ~ J -1 ~ 
This condition serves to overcome the small divisor problem mentioned

above. Indeed it appears that now the equation (1. 3) has (~-quasi-periodic
solutions, provided that the coefficient a varies appropriately in dependence
of the perturbation parameter p.

Thirdly, [Fr 1,2] attempts a more general approach of Stoker’s problem,
integrating the methods used in the two cases mentioned above. The (c, a)-
regime where the damping I is sufficiently large to have the classical
contraction method work, we shall refer to as the Stoker domain. The
parameter regime with 03C9-quasi-periodic solutions now is extended by
an uncountable number of cusps, which connect the two components of
this Stoker domain, cf. fig. 1. These cusps are almost horizontal and in

FIG. 1. - --Cusps connecting the components of the Stoker domain, cf. [Fr 1, 2].1
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the cusp points the order of tangency is quadratic. In these cusp points the
quasi-periodic solution changes from asymptotically stable to unstable
if one moves from left to right. Because of the small divisors the choice
of the frequencies again is restricted by the condition (1.4).

c. Organization of this paper.

In § 2 we formulate a normal form theorem for systems (1,2) for a ~-domain
that contains a part of the imaginary axis. This normal form is

provided that certain small divisor conditions on co and  are tumileo,
compare (1.4). The conjugacy to the normal form is of the type

where V is analytic in 0, polynomial in ~ and’ and where both V and U
are Whitney-smooth in p. (Note that the parameters are transformed too !).
Also the coefficients 03B1l ( 1 _ l _ N) are Whitney-smooth. Compare [Be],
where a linear normal form is obtained in the hyperbolic case. Our proof
of the normal form theorem, which is written down in § 5, uses the KAM-
theory as developed by [Ze, Po ].

In § 3 we consider the problems mentioned in a. Our analysis heavily
rests on the normal from technique form § 2. We start looking for Stoker
n-tori. Here we use the normal form (1.5) with N = 0, so the linear case.
Then in the new coordinates ~ = 0 is the required ~-torus. This approach
only works for a certain subset of the ~-plane containing no interior points.
This subset of the ~-plane can be fattened to a family of cusps, where also
Stoker n-tori exist. So we retrace the steps of [Fr, 1,2], improving these
results as follows. In the first place we find a family of cusps which at the
cusp points are almost vertical instead of horizontal, the tangency being
of infinite order. Secondly the whole family of cusps is a Whitney-smooth
bundle over a Cantor set of large measure. This implies that the « hole »
in the (D-quasi-periodic parameter regime, relative to the region we study,
has small measure (cf. fig. 2).
Next we come to the quasi-periodic Hopf bifurcation. As in the usual

theory of Hopf bifurcations, see e. g. [MM ], we now need a non-linear
normal form. We shall work with the case N = 1 and 03B11  0 (the case
a 1 > 0 is similar). Then we show that in a right hand neighborhood of
the « hole » there exist invariant (n + l)-tori, again cf. fig. 2.
The invariant n- and (n + l)-tori are found by applying center manifold

theory to our normal form. In the case of the Stoker n-tori this is very
similar to the classical contraction method mentioned before. For the
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119ON A QUASI-PERIODIC HOPF BIFURCATION

FIG. 2. - Family of flat cusps with Stoker n-tori (shaded)
and (n + I)-tori (doubly shaded) in the case ai  0.

(n + I)-tori we use a generalization of this, compare [Hal, CH ]. A similar
analysis can be found in [CI, Se, F1], also see e. g. [Io (Ch. VI)]. Our
normal form technique, however, is of great help, both facilitating the
analysis and sharpening the results. In a future paper we shall explore
this technique further in the case of autonomous systems, see § 2 below.
Related results concerning a saddle node bifurcation can be found in [Ch ].
We end § 3 with some remarks on the invariant (n + l)-tori which carry

quasi-periodic flow. A result is announced that can be proved using [Mo2,
Ze, Po ]; a full proof will be given in forthcoming work of Huitema.

Finally in § 4 we present some examples and applications. First we apply
the theory on the Stoker problem to the case of Duffing’s equation.
Secondly we consider a forced equation of the special type

where h(x, i, c, a) = O(x2 + .~2), so containing the non-linearities, and
where f is ~-quasi-periodic in t, as before. We compare Hopf bifurcations
of the free oscillator to quasi-periodic Hopf bifurcations of the forced
oscillator. Applications to the Van der Pol and the Duffing equation will
be discussed.

Thirdly we conclude this section by giving an example which shows
that also in our special case of fixed frequencies W2, ..., the inva-

riant (n + 1)-tori are in general not as smooth as the system one starts
with (i. e. (1. 2)), but that one has to deal with losses of differentiability.
Our example is similar to [Str, Sij ].

In this paper, for simplicity, we restrict ourselves to the case where the
system (1. 2) is real analytic in all variables, but obviously one could extend
the results further to the cases of finite or infinite differentiability. A natural
topology on the space of real analytic functions is that of locally uniform
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120 B. L. J. BRAAKSMA AND H. W. BROER

convergence on complexified aomams. 1 nat is wny we snail measure tne
size of the perturbation in (1.2) by its supremum norm on a complexified
domain. For more details see § 2 below.
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d. Some « linear » remarks.

In this final part of the introduction we briefly discuss the linear equation
/1 ’-7B :. : I ’, I ~.-. B

or, equivatentiy, the system
r

compare (1.1) and ( 1. 2). We do this in order to indicate some of the diffi-
culties as well as some techniques for later use.

First we formally solve Stoker’s problem, which in this case is the following
linear inhomogeneous partial differential equation for z = z( 8, /L):

/dz B

Formany solving oy runner series

W

and

then n follows that ior an K ~Z we nave

~ /iB

Here one sees the small divisors entering: the denominator of (1. 9) vanishes
at the resonance points A = k), k E Zn, so in a dense subset of the ima-

ginary 03BB-axis. Recall that Re 03BB = 2014 - and compare the remarks on the
small divisor problem made in part b above.
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121ON A QUASI-PERIODIC HOPF BIFURCATION

Secondly we expose two different ways to materialize the formal solu-
tion (1.9). The first is rather familiar, but for the sake of completeness
we here briefly touch it. It assumes that Re ~. # 0, for simplicity we restrict
to the case Re ~.  0. In § 3 below, it will serve us to give the classical contrac-
tion argument which produces Stoker’s n-torus in the case of large damping,
compare e. g. [Ha2]. Also compare [Sto ], appendix 2, where the setting
is slightly different. In [Ma,BN,Ha2] ] similar methods are used in the
more general case of almost periodic f Consider the Banach space ~ of
continuous, complex valued functions defined on the n-torus Tn, endowed
with the supremum norm. Then the formal solution (1.9) extends to the
linear operator T : ~ -~ ~ given by

)ne easily sees that T ( = B so indeed the operator is unbounded
)n the imaginary 
The second materialization points in the direction of KAM-theory.

let T > n and y > 0 be given constants and define as a subset of the upper
alf I-plane C +

(compare (1.4)). For the growth of the coefficient zk in (1. 9) for
I - oo is controlled. In fact for real analytic g the coefficients gk decay

exponentially as I - oo (Paley-Wiener). Therefore the formal solu-
tion (1.9) converges for Moreover, by the same argument this
solution is again analytic : the zk also exhibit exponential decay as I k I - oo .

Now let us examine the set Cy. Observe that Cy excludes from the complex
upper half plane a countable number of open discs, numbered by k e Z"B { 0 }.
The centers of these discs are the points k), the corresponding radii
y k 1-1:. Therefore, by the Cantor-Bendixson theorem, cf. [Hau (p. 159) ],
Cy intersects the imaginary A-axis in the union of a countable set and a
Cantor set. This intersection is in the complement of the set of resonance

A:eZ"B{0}}, which densely fills up the imaginary axis,
see above. Next observe that for l E N the number of multi indices k E zn

with = can be estimated by From this it directly follows that
the measure of the set { Re ~, = 0 } BCy in the imaginary ~-axis, is of order y
as y L 0. Similarly we see that the « bead string » CB Cy has a measure of
order y2 as y t 0.

Remark. If for a moment we consider the linear equation for its own
sake, we may conclude that a real analytic system (1.8) has a real analytic
Stoker n-torus as soon as the parameter A is an element of Notice
that this union in the imaginary axis leaves out a residual set of measure zero,
Vol. 4, n° 2-1987.
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containing the resonance points k), k E ZnB ~ 0 ~. In § 2 we shall see
that in the general non linear case such a conclusion is impossible, since
then y enters in the smallness condition on the perturbation g.

§ 2 . THE NORMAL FORM THEOREM

a. Introduction.

Consider the family of differential equations

where 0 = (81, 82, ..., 8n) varies over the n-torus Tn = meaning
that the function g is 203C0-periodic in all 03B8j (1  j  n), and where the
variable z and the parameter /). both have open complex domains. We assume
that the ~-domain contains an interval of the imaginary axis.

In the following we shall put (2.1) on a normal form

near the invariant n-torus with equation’ = 0. Here N is a prefixed non-
negative integer and M = 2N + 2 or 2N + 3. The transformation to this
form is of the type

where

is polynomial in ( and ( of the same degree as the normalized part of (2 . 2).
Note that this normalized part is symmetric for the rotations generated
by the linear part ~ = ~ where ,~ is purely imaginary. This is similar to
the usual normal form theory near a singular point or a closed orbit,
compare e. g. [Poi, Ta, Bri, VdM]. In our present case however, due to
the presence of small divisors, we shall have to restrict the choice of the
frequency vector co E Rn. For the same reason also. the ~-domain of the
conjugacy 03A6 has to be restricted, compare § 1. Below we shall be more
precise.

[Fr 1,2] ] obtains a similar normal form (2 . 2) for M = 2, though with
less regularity than ours. Such a linear normal form provides a kind of
Floquet theory for the linearized system (2.1) near the Stoker n-torus given
by the equation ( = 0.
Our consideration of the normal form follows the ideas of [Ze, Pö ].
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This means that the conjugacy C and the normal form coefficients 0~

(1 ~ I  N) will be Whitney-differentiable in the parameter j~, which
varies over a Cantor-like set. At this point the regularity of our result on
the Stoker problem exceeds [Fr 1,2 ].

In [Be ], also see [Ar2 ], a similar normal form is given in the hyperbolic
case, so where the A-domain, and hence also the ~-domain, are bounded
away from the imaginary axis. In that case the entire normal form is linear.
On the other hand the setting of [Be] ] is somewhat more general since (2.1)
is renlaced hvW - v J y

*B 1 B

where eo also is a parameter ot the problem. As said before, in a forthcoming
paper we shall integrate this set up with ours and derive for (2.1 a) a nor-
mal form similar to (2.2) in the non-hyperbolic case. Such an approach
is of interest e. g. for the analysis of subordinate quasi-periodic Hopf
bifurcations in autonomous system.

b. Formulation of the theorem.

In order to be able to formulate the normal form theorem more

precisely we first introduce the z- and ~-domains of the function g in (2.1).
The z-domain of g may be any neighborhood of 0 in C, which does not have
to be specified any further since in z all manipulations will be polynomial.
The ~-domain of g is an open rectangle

A - A ~. A

m tne complex upper nan plane ~so ~,1 = Ke ana ~,2 = im A E 1B2)’
We recall the assumption that g be real analytic on its domain of defi-

nition. This means that g can be extended as a complex analytic function
of the independent complex variables 81, 82, ..., 8n, z, z, À and ~,. We have
to specify the extended domain of g in somewhat more detail. For this
purpose we introduce the following notation. If I ~ Rm and positive cons-
tants pi, p2, ..., p~ are given, then

T . i v _ f ~2014~~M)f~. 1 ~ ’ ~ -~ . ! 2014 ~~ ) ~- ~ 1

ana similarly ior 1" ana a > u
’1"’10 r7rr

Now assume that there exist positive constants oB p and p2, such that the
0-, the and the ~2-domains can be extended to

/B A I ~ ~~~ A I /’>

respectively, The (z, z)-complexification does not have to be specified,
see above. In order to avoid heavy notation we often shall suppress the
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dependence on z and .~ in our formulae. Also we usually shall omit a formula
with when a similar one with is already present.

In view of the « linear » situation, where g does not explicitly depend on z,
it may not be expected that the conjugacy C can be defined on the full
~-domain: at least one seems to have to stay away from the resonance
points  = h), h E Zn. See § 1 e. In fact we introduce a constant T > n
and a parameter y > 0 and first restrict the choice of the frequency vector
cc~ by the « small divisor condition » that for all h 0 }
~~~2014~ B. I / ~Bt~ - I 1 1- ’T

Note that the set with (2 . 5 a) has a large Lebesgue measure.
Modulo measure zero it has the structure of Cantor set cross interval. Here

again we used the Cantor-Bendixson theorem, see [Hau]. Note that the
components ~ 1, cv2, . - . , ccy of such a vector cv certainly will be rationally
independent. Now secondly we define closed subsets Ai 1 and

A2 as follows. To begin with Ai,y consists of all 1 E A 1 with a
distance not less than y to the boundary ~1. This same condition also
holds for A2, but here we moreover require that for all h 0}
and for l = 1, 2, ...,M

I / tB ’B tt , )~, _ 2014

This is again a « small divisor condition » which, tor any w as m (2. ~ a),
up to a countable set, determines as a Cantor set, such that the measure

of A2~ 1~M y is of order y as y t 0. See above and § 1 e.
Finally we define

A M -- A ~ A M

We are now able to formulate the normal form theorem.

NORMAL FORM THEOREM. - Let w == (cc~ 1, c,~2, - .. , c.~~) satisfy (2 . 5 a)
and assume g to be « real » analytic in all its arguments, with 8-, and 03BB2-
domains (2.4), for positive constants a, pl and p2. Also assume that
0~Int (111, y).

Then there exists a constant 6 > 0, depending on n, T, M and 6, but not
on y, p 1, p2 and A, such that the following holds. First let 0  y  min ~ PI’
P2 ~. Next let Q = + a) x O x + pl) x (,~2 + P2), where 0 is

any neighborhood of 0 in C2, such that g can be extended as a complex ana-
lytic function to the domain Q with

Then a Tn x C x AM -~ Tn x C x A exists as in (2 . 3~, with

i ) c~ is of class Ceo in the sense of ~ Whitney, even real analytic in the variables
8 and ,ul and polynomial of degree M - 1 in ~ and ~;
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n) 03A6 takes (2.1) into the normal form (Z . 2), where the functions aj,
1   N, are ofclass Coo in the sense of Whitney and even real analytic in 

Remarks. - i ) According to the Whitney extension theorem (see the
appendix) the map C can be extended as a C~ map on Tn x C x A, analytic
in 8, ~ and Also we can choose this extension as a diffeomorphism in ju
and as a diffeomorphism in ( on a neighborhood of ~ = 0. We shall ensure
that the extended C is close to the identity map in the C~-topology. In
fact we shall prove the following. Let ay : Tn x C x C -~ T" x C x C
be the stretching operator defined by (8, z, ~.) - (8, z, y~). Then for all

j > 1 one has that in the C~-norm ~ on aj 
/0 ~B ~~B~~- i i . n

g p - u. w e empnasize tne fact mai tne extension is not unique
and that for it looses its conjugation property;

ii) Similarly the coefficients 1   N, can be extended as 
tions on A, remaining analytic in such that for all j in the C’-norm on

», also to be denoted by ~ ( - we have that

as - 0. It will appear that since g is real valued also the 1  l  N,
will be real valued ;

iii ) Consider the component function  ~ 03BB( ) of the map D, cf. (2.3).
This component function maps the product x M2,03B3 diffeomorphi-
cally into Ai x A2. Since 0 is C1-close to the identity map, see (2. 6), the mea-
sure of M03B3 and that of its image under  ~ 03BB( ) have the same asymptotic
behavior as y - 0;

iv) Unlike the linear case, cf. § 1 e, we cannot allow the parameter y
to vary independent of g In, since it enters into the smallness condition

!~.
A proof of the normal form theorem will be given in § 5, below.
We now conclude this section with a corollary to the normal form theo-

rem, which is of convenience for our applications in the following.

COROLLARY. - Let 03A6 be extended to Tn x C x A as a which
is a local diffeomorphism in ~ near 0 in C and a diffeomorphism in ~c on A.
This extension conjugates (2 .1 ) on Tn x C x A to the following normal
form which is analytic in 8 and 03B6 and 1 and of class Coo in 2:

wnere r = V( ~ ~ 1m) and p is infinitely fiat on A~.
Vol. 4, n° 2-1987.
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Proof - Extension of ~ directly yields from (2.2) the C*-form

for (2.1), where the 1 _ l - N, also are Whitney-C~ extensions
from (2.2). Next put G = p + r, where p is polynomial of degree M - 1
in ~ and ( and where r = 0( ~ 1M). By the normal form theorem p vanishes
identically on 
Now A~ - A1,y x where A,y is perfect, being a Cantor set. From

this the flatness of p on A~ immediately follows. As a typical example we
consider Clearly = 0 on A~. It then follows that also

= 0 on M03B3, since any point 1 + is the limit of a

sequence { 1 + M03B3B{ ,ul + i 2 }. etc. Q. E. D.

Remark. - In general it will be impossible to extend C analytically in
the ~-direction, so in this sense our result is optimal, compare 
who obtains similar regularity results in the Hamiltonian context. In fact
an analytical continuation of 4Y would give formula (2 . 8), where p vanishes
identically on the whole of A, implying that Stoker n-tori would exist for
all 11 E A, so particularly in the resonance points 11 = k), k E Z’~. In

view of § 1 e this generally would lead to a contradiction.

~ 3 . STOKER’S PROBLEM
AND THE QUASI-PERIODIC HOPF BIFURCATION

We consider a real analytic system

where 8 varies over the n-torus Tn and where z and Å are complex variables,
compare (1. 2) and (2.1). This system, for I small, will be explored
for (~-quasi-periodic invariant n-tori (Stoker n-tori) and for quasi-periodic
Hopf bifurcation where invariant (n + l)-tori branch off. Here we mention
valuable private communications we had with Gerard Iooss and with
Floris Takens.

a. The Stoker problem.

al. For completeness sake we present a brief exposition of he classical
contraction lemma, which serves to find the normally hyperbolic Stoker
n-tori, see [Ha2 (§ IV, 2) ]. Also compare e. g. [Sto, Bo, Frl ].
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3.1. CONTRACTION LEMMA. 2014 Consider a system
r x

where g is of class Assume that 03BB varies over an open complex domain
on which Re 03BB ~ 0 and that a constant a > 0 exists such that for z  a

and all i~~ under consideration one has

Then (*) has a Stoker n-torus z = v(o , which is of class C1 and unique
in the region ( z  a.

Moreover, if g is real analytic in 8 and z, then v is real analytic in 8 and
of class in ~,.

Indication of a Proof: As in § 1 e for simplicity take Re ~,  0. Again
consider the Banach space £3 of continuous functions C with the

supremum norm. Also consider the linear operator T on £8, cf. (1.10),
which yields the unique Stoker n-torus in the linear case. Recall that
I T| = |Re 03BB|-1. Then define

ana prove in a straight Iorwara way is a contraction ana so nas

a unique fixed point, which corresponds to the desired n-torus. The regularity
of this torus follows from that of g by applying [CH (thm. 2 . 2) ]. Q. E. D.

Remark. - If g is real analytic in A as well and we extend into the complex
with respect to 5l and A, adapting the conditions of the lemma suitably,
then the n-tori z = v{8, À) also depend analytically on A. See e. g. [CH
(thm. 2 . 2) ].

Before applying the contraction lemma to our small damping problem
we observe the following. A direct application of the lemma to system (3.1)
solves Stoker’s problem for all parameter values A with Re À large com-
pared to so in the case of large damping. Compare § 1 b, also see
the first example of the next section.

a2. In our present case of small damping we take as a starting point
the normal form (2 . 8) with M = 2. We consider a fixed ccy E and let
the parameter J.1 vary in a neighborhood of the horizontal line with equa-
tion J12 = If we write  = imo + v then the form (2 . 8) may be rewritten as

Here LEN is arbitrarily prefixed. Recall that (3 . 2) is of class C~ in v2
Vol. 4, n° 2-1987.
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and analytic in all other variables. We shall apply the contraction lemma 3.1
to a system (*) where

Now we have a priori estimates

where K = K(L) is a positive constant. If we start with a bounded para-
meter domain A, cf. § 2, and take K sufficiently large, then these a priori
estimates are uniform in 0, V1 and Note that the second inequality
follows from the first by application of the Cauchy integral formula.

So the contraction lemma applies as soon as for some a > 0 one has

.1

Next take a :== -I v 1 I, then it clearly is sufficient to have
2K

1 1

Therefore, if K is chosen sufficiently large, then the only remaining condi-
tion is that

.. ~ -...~/T

Here we abbreviated c(L):== (4K2(L))-1/L. 2
Summarizing the above, returning to the -variable, we define the --cusp

and conclude that system (2.8) has a C~-family of real analytic Stoker
n-tori, parametrized by the cusp L). Finally let C(o)o? L) be the
image in the ~-plane of L) under the ~-component function of the
extended conjugacy 0, cf. § 2, and define the Cantor bundle

We now have proved (cf. § 1 c, fig. 2.)

3 . 2. THEOREM . - Assume that in (3 .1) the function g satisfies the condi-
tions of the normal form theorem for M = 2. Then for all LEN there exists
a bundle C(L) as above, such that for all ~, E C(L) system (3 .1 ) has a Stoker
n-torus, which is normally hyperbolic except in the cusp points. These tori
are real analytic and depend in a C~-manner on 03BB.
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Remarks. i ) From the above proot II follows tnat tne 

is unique in the region |03B6| ~ 1 2K|03BD1|;
n) Consider the whole (~-quasi-periodic regime. Part of it consists of

the Stoker domain, corresponding to the case of large damping, see above.
The components of this Stoker domain apparently are connected by the
union C := ULENC(L). Note that the order of contact with the ~-image
of the imaginary axis is infinite ;

iii) The above approach yields Stoker n-tori with C~-dependence on
the parameters. First observe that as a direct consequence of our normal
form theory we know that, restricted to the horizontal lines of A;, these
n-tori depend analytically on 

This regularity could be further improved as follows. Take any of the
horizontal lines = 03C90 in A;. Instead of the global C~ extension 03A6,
cf. § 2, we consider the Taylor approximation of 0 to the order L - 1
in the local variable v2 = ~2 " This leads to a real analytic system of
the form (3.2). Now proceed as above, keeping in mind the remark to the
contraction lemma 3.1. Thus one could establish analytic parameter depen-
dence of the n-tori in a neighborhood of the punctured horizontal line
2 = pi # 0. Taking the union with respect to 03C90 E A2,y we so would
cover a neighborhood of the Cantor line bundle A;. Note that since C-id
is small in the C~-topology, cf. § 2, this neighborhood is not much smaller
than the parameter domain covered by theorem 3 . 2. In fact at most finitely
many « strips » will be missed, corresponding to the larger holes in the
Cantor set A2,y.

b. The quasi-periodic Hopf bifurcation.

In conformity with the local theory of the Hopf bifurcation, see e. g. [MM],
we here take our normal form for M = 4 and assume that the coefficient a 1
does not vanish x A2 C Ai x A2. See § 2. For simplicity we
shall take  0. It will appear that in this case we have a quasi-
periodic Hopf bifurcation of supercritical type: speaking in terms of the
normal form (2.8), asymptotically stable invariant (n + l)-tori emanate
from the points Wo e { 0 } x A2,y for > 0.
To be more precise we have

3.3. THEOREM. - Assume that in (3 .1 ) the function g satisfies the
conditions of the normal form theorem for M = 4. Also assume that 03C90 E 
and that 03B11(i03C90)  0.

Then for all LEN a 2 L-cusp (03C90, L) exists, as before, such that for
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 E C(ccao, L) and 0  ,ui sufficiently small, there exists a normally hyperbolic
(asymptotically stable ) invariant (n + 1)-torus.
Moreover this 2-parameter family of (n + 1)-tori constitutes a codimen-

sion 1 submanifold M of Tn x C x C, which is of class CY for any given r E N,
provided that one starts with 0  ,ul sufficiently ~small.

Proo~ f : Similar to (3 . 2) we now obtain as a « local » version of the nor-
mal form (2.8) for M = 4:

Here - 03B11(i03C90 + v). Clearly the normalized, symmetric part of

system (3.4) has an invariant (n + 1)-torus given by the equation
r--- 

-

provided tnat > u.

Restricting 0  v 1 sufficiently to have this, we introduce the local
. 1 1 1

variable y by

Thus we obtain trom (j. 4) the torm
r .

where

So if we restrict to the cusp C(coo. L) defined by |03BD2|  as before,
we get
i... rv ~-~~~. ~ B - / ’.Z /’7B  ~ - / ~ 

Our analysis of the form (3.5) with the perturbations (3.6) now follows
[CH (§12.5)], which is a generalization of the above method used to find
the Stoker n-tori. Also compare [CH (§§12.6, 12 . 7) ].
We start with a brief digression on the « linear » system, compare § 1 e.

In fact we consider
r ’

ana looK ior invariant (n + 1(-tori 01 the lorm y = do, v).
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nrst we solve the tirst two equations of system (3 . 7), which are decoupled
from the third. Let 8(t; c~) and ~©(t; ~, denote the respective solutions
with initial conditions respectively ~ and ~o for t = 0. Note that

~) = ~ + tw, see above.
Substituting these solutions in the third equation of (3.7) yields

with a general solution

Since we are looking tor solutions on an jn + 1)-torus, which are bounded
for all time, we have to take c = 0. Defining

A. - iii ~-=- u.. (O)

we claim that y = is an invariant (n +- 1)-torus, rne now on

which is given by 0(t; ~) and 8o(t; ~ ~o) This invariance follows from the
group property of the 6- and 03B80-flows.

Let us denote this invariant (n+ 1)-torus in the system (3. 7) by v= T(v, 0, Y),

/"’B w ’T"I/ ,...... "( m

Observe that T is linear in Y and that for 8 = 0 it reduces to formula (1.10)
with n + 1 frequencies.

This ends our digression.
Returning to the general non linear form (3 . 5) we are going to construct

a contraction S similar to that from the proof of lemma 3.1.
To this end we first introduce some spaces. Let 1, R) with the

0) be the Banach space of CY-functions on For
0  a  1 and 8 > 0 define

T T ~ 4- 1 ~-~B t ! ! , ~ ~

Next tor V E Ve consider (3 . 7) with

Then define

nrst observe inaz lor 8 suificiently small, ims aennes a map
I T .. T T 1 ~ ’B

compare [CH Here the uppcr bound on s decreases wnn r.
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To this map we want to apply the unnorm contraction principle, ci.

[CH (§2.2)]. For this purpose one has to verify that for 8 sufficiently small S
is of class Cr in both v and v. Also one has to check that for e and a suffi-

ciently small

is a unnorm contraction on U a. Provided aii tms one obtains as a conclu-
sion that there is a unique fixed point v = v(8, 0o? v) of S, which is of class Cr
in 8, 80 and v. Then y = v(8, 80, v) is the desired invariant (n + l)-torus of
our theorem.

In order to check the contraction property, for E Va introduce the
following notation

8b being the solution So of (3.7) corresponding to

We then have

which we have to estimate m the C -norm.

First we consider the C°-norms of S(v, v i) and S(v, v1) - S(v, v2). It directly
follows from (3 . 6) that !S(~i)!o=0(o~+~).
Next from Gronwall’s inequality we obtain

Here K is the Lipschitz constant of the function 0 with respect to the
variables 80 and y, so we can estimate K = O(vi/2). Here we use the Cauchy
integral formula and the normal form theorem.

Similarly we have

Now for t fixed we write
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and substituting (3.10) and (3 .11) we conclude that since  a  1

we have in the for s > 0 sufficiently small
r /*_ ~ ...

Similarly, after some calculations, for s > 0 sufficiently small we obtain
~ r ~ r’B>...-n-"II

which conhrms the claim that S is a contraction in this norm tor e > U

sufficiently small and suitable 0  a  1. Q. E. D.

Remarks. - i ) The estimates in the above theorem by the Whitney
smoothness are uniform with respect to coo . So we find constants d = d(L, r)
and oc = a(L, r), not depending on Wo, such that in the parameter domain
{ L) ( 0  ,ul  d} there exists an invariant (n + I)-torus which
is of class C7, also depending C7 cf. § 1 c, fig. 2, which is unique in the
region  a.

Also if a parameter point  lies in two or more overlapping cusps, we
still find a unique (n + 1)-torus in the region

This uniqueness result moreover can be extended to a lull neighbourhood
of z = 0 in T" x C x C(L).

In order to see this we take 0  v 1 sufficiently small and consider both
the divergence 2vi - 4f3(V)p2 + 0(p3 + of the system and its direc-
tional derivative of the Lyapunov function p2, i. e.

First one verifies that the divergence is positive for p _ 1 and

negative for (1 + p __ C, where C is a suitable bound. We
conclude that in these regions there can be no invariant (n + I)-torus.
It remains to show that there is no invariant (n + l)-torus for

1

Here the above directional derivative is easily shown to be positive, which
gives the desired result.
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ii ) The theorems (3.2) and (3 . 3) also can be proven by the implicit
function theorem, cf. [CH (§ 2 . 2, § 12 . 5, ff.)], also compare [Ca ]. We
indicate how to do this in the case of theorem (3.3), see above. It is conve-
nient to rescale the parameters (vi, v2) to (ri 1, ri 2) by v 1 := v2 ~_ 

and also to work with the rescaled variable y. It is our aim to solve the equa-
uon

near ri2, v) - (U, U, 0). From (3.6) it immediately lollows that tor

171 = 172 == 0 one has v = 0 as a solution, while from the estimate

I S(v, vi) - S(v, v2) Ir = O(a + v1~2) ~ vl - v2 Ir (see above) one directly
obtains that 0, 0) = 0. Now an application of the implicit function
theorem again gives the desired result;

iii ) A similar analysis as in a and b holds for the countably many Do
satisfying (2 . 5 b), but which are isolated from the Cantor sets A~ y, resp. 
Then the normal form is less powerful and in general we obtain oblique
cusps instead of vertical ones ;

iv) The invariant (n + l)-tori apparently are Cr-dependent on the para-
meters. Another way to see that the parameter dependence is at least as
differentiable as the (n + l)-torus itself, is the following. In terms of [HPS]
our conditions imply r-hyperbolicity. Now if the invariant (n + l)-torus
is r-hyperbolic near some parameter point vo, then for v near vo the « verti-
cal » system 

f n n

(ct. (3.5)) has a 2-parameter lamily ol invariant (n + l)-ton, which as a
submanifold of Tn x C x C clearly also is r-hyperbolic. Hence this family
is of class Cr in v.

c. On some (n + I)-tori with quasi-periodic flow.

Again consider the system (3.5)
r ~

tor v E L), implying tnat by j3 , o) we nave
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Recall that and that v E L) if and only if  c(L) Vi 12/L.
If we consider the normalized part

of (3.5), with its invariant (n + l)-tori given by the equation y = 0, then
in part b of this section we proved persistence of these tori for small 0  v 1.
For this family of tori we obtained the usual center manifold regularity :
it becomes smoother if one starts out from sufficiently restricted 0  vi .
It is well known that analytic systems may have invariant manifolds that
are only of finite differentiability, see e. g. [Str, Sij ]. In the next section
we shall give an example showing that even in our specific setting this can
be the case. Although the Stoker n-tori are all analytic, cf. part a of this
section, the regularity of the invariant (n + l)-tori in general cannot be
improved further. In our example we shall take a small perturbation of a
system (3.13) where Oo + v2 is rationally dependent on the fixed numbers

OJ 2, ... , Wn.
Here we want to discuss the opposite case where cuo + v2 is badly com-

mensurable with 03C91, 03C92, ..., Then, in the normal form (3 .13), the
invariant (n + 1)-torus is quasi-periodic with n + 1 independent frequencies.
To be more precise we assume that for constants i > n + 1 and y > 0
and for all integer vectors (ho, h 1, ... , hn)~Zn+1B{ 0 } we have

Here, as in (2.5), we abbreviated

in Ine same spirn as we now can use particually

[Mo2, Ze, Po ], to prove persistence of these (n + I)-tori, at the same

time showing that they are all analytic.
In fact condition (3.14) in the cusp L) defines a horizontal Cantor

line bundle Ay, as in § 2. On each of these horizontal lines the extra fre-
quency Wo + v2 is constant. For 03B4 > 0 let denote the intersection of Ay
with the vertical strip 0  v 1  6. With help of these notions we are able
to announce.

3.4. THEOREM . - For 0  5 sufficiently small there exists a map

which is real analytic in 8, 8o and y and Whitney-C~ in v, and which, near
y = 0, conjugates the normal form (3 .13~ to its perturbation (3 . 5) .
Vol. 4, n° 2-1987.
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This theorem can be proven along the same lines as the normal form
theorem, cf. § 2, also compare [BB, Br2 ]. For more details we refer to forth-
coming work of G. B. Huitema.

Remarks. The map 03A6 can be chosen affine in the y-variable. Also 
in the C~-topology is close to zero in terms of 6. This last remark means
that the horizontal lines in AY,a remain almost horizontal when mapped
under the third component function of ~. So in the system (3.5), or (3.1),
the corresponding parameter lines are close to parameter lines given by
the normal form theorem, cf. (2. 5).

§ 4. SOME APPLICATIONS AND EXAMPLES

In this section we study three different items. The first is Stoker’s problem
for Duffing’s equation x + cx + ax - bx3 - f(t). The second subject
consists of the quasi-periodic Hopf bifurcation for a specific class of forced
oscillators, containing e. g. Duffing’s and Van der Pol’s equation. They
are of the form x + cx + ax + h(x, x, c, a) = f(t), where the function h
contains only non linear terms in x and x. Finally our third item consists
of an example showing that the invariant (n + l)-tori which branch off
after a quasi-periodic Hopf bifurcation are in general not C°°.

a. Stoker’s problem for Duffing’s equation.

The Duffing equation reads

where, as above, a > 0 and f is a real analytic, 03C9-quasi-periodic function.
We shall consider Stoker’s problem in the whole (c, a)-plane.

al. The large damping case.

We cannot use our complex notation now, but nevertheless we have a
straightforward analogue of Lemma 3 .1, and so of [Sto ], for this solution.
To this end we first consider the linear equation x + cx + ax = f (t ).
For c # 0 we give the Stoker solution of this equation by a linear operator,
defined on the Banach space ~ of continuous functions Tn -+ C, endowed
with the supremum norm, compare § 1 e and the proof of Lemma 3.1.
Now, for c > 0 and C2 i= 4, this operator is given by
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wnere > die foots ui the characteristic equation

// + + a = 0 and where f -{t ) = So the Stoker solution of the
linear equation then is x(t ) = 
Next we calculate the norm of T.

4.1. PROPOSITION. - The norm of the operator T : ~ -~ ~ is given by
r 1

Proof - If c > 4a, then ~,± E R and we easily see that [ T ( = 1/a. Now,
c c2

if C2  4a, then ~+ == 2014 - + ifcr, where cr = a - 2014. Hence, if c > 0
and C2  4a 2 ~ ~

~ /*~ _

and theretore

The cases c" == 4a and c  U can be treated analogously. Q, b. U.
Then we have

4 . 2. THEOREM. - Define

Then, on the open parameter domain given by

system ( 4 .1) has an analytic Stoker solution, depending analytically on c

and a. This solution remains for all time in the region |x|  3 2| T ( |f |.

Remark. The region (4.4) is what in § 1 was called the Stoker domain
of equation (4.1). The function p is strictly decreasing on (R, cxJ), with
lim p(a) = 0 and lim p(a) _ - ~. Cf. fig. 3 .
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j. - >ioKer domain lor Durfing s equauon.

Proof - Similar to lemma 3.1 we have for a > 0 and g(x, t ) = bx3 + f (t ),
that if

I

then the equation (4.1) has a unique Stoker solution x with I x I  a. We
now indicate how (4 . 4) implies (4 . 5). For this purpose let ~= ~ b ~ I
and q := ~ T ) f ~. Then (4. 5) is satisfied if

Next, let Then, if q  - ao , there exists a E (0, ao) with q =a- pa3,
satisfying (4.6). This is due to the fact that

r "1..", ~ ~ 2

Hence we find our solution for q  G ao, or equivalently R ~ T ~  l, see (4. 3j.
3

According to ptoposition (4.1), this amounts to
/,, _ r~ :f ~2 ~ A -

Now (II) is equivalent to (4.4) and 4a. Also (I) is equivalent to (4.4)
and C2 > 4a, since p(a)  4a (cf. (4.3)). Hence (I) and (II) are equivalent
to (4.4).

/Y /Y ’1 ’1

w e conclude ine unique existence 01 anaiyuc Stoker soiuuons uepencnng
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in a C~-manner on the parameters c and a. We can even conclude analytic
dependence on c and a, using continuity of the norm T ~ [ in these para-
meters. Compare the remark to lemma 3 .1. Q. E. D.

a2. The small damping case.

Now we use our complex form 8 = co, z = ~,z + z, A), with
~2014 ,

compare § 1. The condition of the normal form theorem, see § 2, is that
I  yð, so necessarily we require that f be sufficiently small. In that
case the remaining condition is of the form Im z I  Im A t. From
this it follows that we may take for the parameter domain A==Ai x A2
in § 2 : Ai = R and A2 = (~,2, oo), for some Ag > 0. Cf. fig. 4.

FIG. 4. - cv-quasi-periodic parameter region for Duffing’s equation.

b. On free and forced oscillators.

Unlike the usual normal form theory near singular points, see e. g.

[Poi, Ta, Brl, VdM ], the coefficients 03B1l (1  t  N) in the normal form (2 . 2)
are not determined by a finite algorithm, but in an infinite process. Compare
§ 5 below.
Here we shall present a simple special case where this difficulty is not

felt, namely we consider analytic systems like (1.1) and (3.1) of the form
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where H(z, A) = O( z C2). So here g(8, z, ~~) = H(z, )~) + F(8). Observe
that (4.7) corresponds to a forced equation of type
i n w ... _ ~ i . v r~ . ~ ’B.

Recall that the forcing term f(t) = F(tw + So) is quasi-periodic in t with
the frequencies W2, ..., see § 1. In (4.8) the term h contains the
non linearities. Note that important examples like the Duffing and the
Van der Pol equation are of this type.
The corresponding free oscillator is

’*. ’..T~ ’ ~ B - --- ’1~1

and the usual normal torm theory directly decIdes whether tor Re A = U
one has an ordinary Hopf bifurcation or not, compare e. g. [MM ].
We now have (for the terminology see the beginning of § 3 b, above).

4 . 3. THEOREM. - Assume that the free oscillator (4 . 9) has a Hopf
bifurcation for Re ~, = 0. Then the forced oscillator (4. 7) has a quasi-
periodic Hopf bi, furcation for Re A near 0, provided that F I is sufficiently
small on the considered domain. The criticality type of both bifurcations is
the same.

Sketch of a Proof Our argument is straightforward. The normal form
from § 2, for small F I, is close to the decomposed system

where the second line is « the » ordinary normal form of the free oscilla-
tor (4.9). We may assume that the coefficient is real. Now the sign of
this coefficient is preserved under sufficiently small perturbation. Q.E.D.

EXAMPLES. - i ) The Van der Pol equation x + (c + + ax = f(t).
It is well known that the free oscillator has a supercritical Hopf bifurcation

in the parameter À1 = - -. So for a quasi-periodic forcing term f, with
I f I sufficiently small, we also have a quasi-periodic Hopf bifurcation,

, , , , 
c

again supercritical, in 03BB11 = 2014 -. .

ii ) The Duffing equation x + ex + ax - bx3 - , f (t ). Now the free oscil-
lator for c = 0 near x = x = 0 is completely integrable (Hamiltonian),
therefore all normal form coefficients vanish and our method does not

apply. Nevertheless we do expect a family of invariant (n + l)-tori although
it probably does not collapse quadratically, but perhaps has an infinite
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order of contact with the (8, z, Å2)-directions. Also from the viewpoint
of KAM-theory, compare § 3 b2, one might expect some persistence of
quasi-periodic (n + l)-tori.

c. The invariant (n + 1 )-tori in general are not Coo.

In order to illustrate this point consider the following parametrized
system

Here, as before, /1 = /11 + i,u2 is a complex parameter. Moreover r and 80
are polar coordinates in the z-plane. Note that (4.10), for /11 > 0, has an
invariant (n + l)-torus with equations ri = ,u 1. The restriction of (4.10)
to this (n + l)-torus is of the form (3 . 4), see above. As is said before we shall
consider the case where is rationally dependent on the fixed compo-
nents ..., Wn of the vector co. Below we shall give a suitable ana-
lytic perturbation of (4.10) and follow the invariant (n + l)-torus during
this perturbation, showing that it is only of a finite differentiability. Our
example is similar to [Str, Sij ].

First we construct some more convenient angular coordinates. By the
n

rational dependence of on ..., con we have coo = for
rational numbers a 1, a2, ..., an. j= 1

Let k be the least common multiple of the denominators of al, a2, ..., an-
ii we now define

then the map (80, 8) - B) is an endomorphism of Tn+ 1, in fact it is a
k-fold covering map and in particular a local diffeomorphism.

In the variables 4>, Si , 52 , : .. , S~ and r the system (4.10) takes the form
( .

Now we pertu Lu
r
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where E > 0 and 03B4 are real parameters, varying near 0. Note that by returning
to the 80-variable (4.12) transforms to a small perturbation of (4.10),
which has the right form (1. 2), (2.1) or (3.1). Moreover an invariant (n + 1)-
torus r = 8) of (4.12) corresponds to an invariant (n + l)-torus of
this perturbation of (4.10), which covers the first torus k times. Hence it
is sufficient to study invariant tori of (4.12).

FIG. 5. - A reduction of system (4.12) to the (r, 4»-plane.

In fig. 5 we depicted a phase portrait of the reduction of (4.12) to the

(r, (~)-plane. Observe that for (r, /J) = ± ~ this reduction has an
equilibrium point : a saddle z for ~ == 2014 n, and a sink p for ~ = -. Also

2 2
observe that all solutions for t - oo tend to the sink p, except for the ones

that start on the half line 03C6 == 2014 -. The eigenvalues in p are - 2 1 and -8

and we let := 2 1 denote their ratio.
E

The equilibria z and p correspond to invariant n-tori in (4.12), while
all integral curves correspond to invariant (n + l)-manifolds. The unstable
manifold W(z) of the saddle corresponds to our invariant (n + l)-torus.
We have

4 . 4. THEOREM. - For m = 2, 3, 4, ... and m - 1  03B2 ~ m and for 03B4
in a sufficiently small punctured neighborhood of0, the invariant (n + 1)-torus
in (4 .12) that corresponds to the unstable manif ’old Wile:) is of class 1,
but not of class ~m.

Remarks. i ) System (4 .12) can be solved in a straightforward manner,
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see the proof below. it appears that tor u  ~c~ small, tor tne non vertical

invariant manifolds through p we have the following possibilities, cf. fig. 5.
For f3 = ~r~ E N all these non vertical invariant manifolds have a logarith-

mic singularity in p, making them of class but not of class Cm.

For 03B2 ~ N and m -1= [03B2] all but one of these manifolds are of class cm - 1
and not of class this remaining one however is analytic. So in this case
the problem is to show that this analytic manifold does not coincide with
our (n + l)-torus, i. e. with the unstable manifold W1t(z);

The « loss of differentiability » in the sink p is maximal according
to [HPS ] : the vector field (4 .12) on the n-torus corresponding to p is (m - 1)-
hyperbolic ; .

iii ) [Str, Sij ] study the differentiability of a center manifold in a planar
system with a parameter. [Str] considers a polynomial vector field corres-
ponding to our case f3 E N, see above. It is shown that there is a maximal
« loss of differentiability » in the sense of [HPS ]. For a quadratic system
[Sij ] obtains results corresponding to our cases f3 E N and 03B2 ~ N,

iv) A different approach in the non resonant case where Q, uses [Ster]
to obtain a C~-linearization of the reduced vector field near the sink p.
It now is easy to produce a Coo-example with a non-C~° (n + l)-torus.

Proof of Theorem 4 . 4. In our system reduced to the (r, we

consider solutions of the form r = In order to study these we eliminate
time so obtaining

1 . / .. 2’B

This equation is of Bernoulli-type. By substituting y = 1/r" we get the
linear equation

compare J, ~ 11.1.
The general solution of the last equation is

where c is an arbitrary constant and 1>0 may be chosen suitably, compare
7~

fig. 5. If we take c == 0 and 1>0 == - - this solution exactly is the unstable
2

7T
manifold W"(z). We shall analyze this solution near 1> == -, where it passes
through the sink p. 

2
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To this end substitute t := tan ~ - ~ , i := tan ~ - ~ ) and write4 2 4 2

y = y{t ) for our solution. Integration by parts yields
, - a

wnere

So we have to determine the behavior of I near t == U. 1n tact we shall show
.,- - .
tnat

, . a ~~B

where 11 and f 2 are analytic tunctions and where m) and c2{d, p) do
not have zeros in a punctured neighborhood of 03B4 = 0. Compare remark i )
to theorem 4.4. Clearly it is sufficient to prove this last statement.

In order to do this first observe that I diverges at t = 0 for 03B2 ~ 1. Therefore
we consider the case 0  /3  1 and then use the fact that I is analytic in fl.

If 0  Re (3  1 we have I(t, ~, (3) = I1(t, ð, /3) + I2(t, b,, ~3) where

Now 12 is analytic in t for rj  1 and

Note that it tollows that it U  fi  1 then 1 is 01 class L.", but not ~;1.

In order to get the analytic continuation of Ii and 12 we replace the
integrals in (4.16) by contour integrals which avoid the point 0:

By analytic continuation the tormulae (4.18) hold lor all 03B2 E 
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Now if 03B2 > 0 and N then (4.17) remains valid and, recalling that 12
is analytic for I t  1, we conclude that the second line of (4.15) has been
proven.

Finally we consider the other case of (4.15), where p = Since
I = Ii + 12 is analytic in j8 we obtain by differentiating (Ii + 12) sin nfl
with respect to 03B2

, . - ; ..... 

By the Cauchy integral formula we see that (- m) is the (m - 1)th
Taylor coefficient of (1 + in ’t = 0. Now if m - 1 is even
it follows that m) - 1, and if on the other hand m is even that

Hence cl(ð, m) has no zeros in a punctured neighborhood of 6 = 0. This
finishes the proof. Q. E. D.

§ 5. PROOF OF THE NORMAL FORM THEOREM

a. Frame of the proof.

al. We start presenting a plan.

The map 0 : Tn x C x A  Tn x C x A of the form (2.3), conju-
gating (2.1) and (2.2), will be found iteratively as the limit of a sequence
~o~i~2) - - - of maps, all of the same form (2. 3). These maps ~~ are
analytic diffeomorphisms, approximating C as a Whitney-differentiable
map, see the appendix.

Let us consider the jth step of the iteration. Using vector field notation,
we write X for the system (2.1) and define X~ := We take = id,
so Xo = X. Now if
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then in the (8, z~, ~ ~ ) variables X~ shall have the system form

Note that at = 0 for 1  l  N, gU == g.
Both Cj and Xj are defined on domains, extended into the complex, where

all component-functions are complex analytic. Note that we suppressed,
as far as possible, all conjugate variables and equations.
The idea of the proof is the following. If in (5 .1 ) we write

in 1 B , , B 

tnen we apply tne whitney approximation technique to tne sequences
__ -- , ~..... - .__.. _ - .___,__

of complex functions, defined on a corresponding sequence { 01

complexified neighborhoods of T" x Here it is important that W~
in the ~’direction, i. e. the Cantor-direction, shrinks in a geometric way.
We shall ensure that the expression

exhibit exponential decay as j -> oo and theretore on the long run are
dominated by any geometric sequence. By the inverse approximation
lemma, see the appendix, we then conclude that all the sequences (5.4)
have Whitney-C~ limits. At the same time we consider a domain W~,
0  j _ oo, which is the product of W~ and a neighborhood OJ of 0 in C2,
the (z J, Z j )-direction, on which gj is defined as a complex analytic function.
We shall have that Q and that the z~)-component OJ of W J
shrinks to zero as j - oo. Also we can ensure that the « error » ~we,
for j -~ oo, is reduced in such a way that in the limit only a term remains
which is of order M in z ~ and z ~ .

a2. Relation between X J and 

We first examine the relationship between X~ and X + i in any iteration
process as described above. So let ~~ + 1 - for ~ : - Wj
with the property that = Xj+l’ For simplicity we write (z, À) instead
of (z~, and ((, ,u} instead of (z~ + 1, i~ ~ + 1 )~ Also we replace g’ by g, 1

by by ex by 03B1+l, W(e)j by W(e)j+1 by W(e)+, T, by T, etc.
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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W~, -~ W shall have the form

and the fact that Xj+ 1 translates to

where everything is expressed in the (0, ~ ~-variables.

a3. We now determine ~’ and al - oci .

In order to get a well-defined iteration process we are going to define 03A8
as in (5.5). To this purpose we consider (5.6) and recall that it is one of
our aims to have g+ small compared to g. Therefore we determine the
functions u and v in (5 . 5) from an equation that does not differ much from

(5.6): in (5.6) we neglect u03C5, ~03BD ~03B603B1+l, ~03BD ~03B603B1+l and g + and also we linearize

all expressions by replacing the arguments ( + v and  + u by ( and f.l

respectively. Finally we truncate g in the (~ 0-variables at the order M. So if
11.,( - 1

then we consider me equation
~-.

m u ana v.
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Comparing coefficients of ~~ 0  k +  M - 1, equivalently yields
r J t . 

for k=l+1

and for k ~ ~ + 1:

In fact we shall solve the equations (5. 7) only approximately by truncating
the Fourier series which form the exact formal solution of (5. 7). Compare
[Arl ]. To be more precise we expand the gkl as a Fourier series

and for m = m J E N, to be chosen appropriately later on, we consider the
. _.. ..

truncation

and we replace (5. 7) by

First observe that u and llz - x~ are determined by an integrability
condition : since in (5 . 8) the averages on both sides have to be equal, we take

(note that  may be purely imaginary, in which case p +  = 0). Now (5 . 8)
has as a solution for the 0  k + l  M - 1, the trigonometric poly-
nomials :
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provided that the denominators m these expressions do not vanish m the
domain W+ - We shall take = 0.

Later on the complex neighborhoods W~ and the orders of truncation m~
will be chosen in such a way that the denominators in (5.10) are even larger
than cst. 

a4. Reduction to the case y = 1.

Before making our choices more explicit and gradually filling in the
necessary details, we first simplify the matter by reducing to the case
where y = 1. To this purpose we introduce a stretched time t = yt and

denote differentiation with respect to t by ’. Now the original system (2.1)
in this stretched time takes the form

r ,

So if we rescale £ to /. = - and define
y

ro -

then (2.1) can be rewritten as
y ~ ’"

Furthermore we observe tnat

I / t "

if and only if

while

nerc tne norms are taKen on complexmea domains tnat nave oeen stretched
in the ~-direction in accordance to the above. In fact A 1 x A2 + (pi, p2)
has been replaced by

1 1 fo, Q~B

compare remark i ) to the normal form theorem. Since one of the condi-
tions of the normal form theorem is that 0  y  appears
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to be sufficient to give the proof for y = 1. Also we may assume that
p ~ == p~ = 1. Finally we see that it is also sufficient to prove remark i )
to the theorem only for y = 1.

b. Estimates for the iteration step.

We now specify the orders of truncation m~ and, to some extent, also
the complexified neighborhoods W~ and WJ. This is going to enable us to
estimate

in terms of |gJ|wej, compare al above.
Since we have stretched the ~-variable with the factor y -1 the domain A2

may be assumed large enough to contain the nonempty Cantor set A2,
consisting of those points ~,2 E A2, having distance not less than 2 from
the boundary 8A2, that satisfy the inequalities

for all h E znB { 0 } and for 1 = 0, 1, 2, ..., M. (Note that in terms of (2. 5)
we have A2 = A~,2’)
Moreover we assume g = g° to be complex analytic on a domain

(recall that p 1 == p2 = 1) and that finally we shall control the whole process
by taking I gO In  ~ for some ~ > 0 (recall that y = 1).

In the next subsection we shall choose 5 == 5o and other constants in
such a way that the induction on j works, meaning that the iteration con-
verges.

bl. Definition of Wj and Wj.
First we define

where { and { are sequences of positive numbers satisfying
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Next we define
/ ,

mole tnat w. = Wj x ior a sequenc {~j}j=0 ui positive numbers,

now with
1

In the next subsection { and { will be fixed as geometric
sequences and { as an exponential sequence.

If no confusion seems possible we often again adopt the + -notation
introduced in a2 above, and write

Finally we introduce
1

/ ~ B /

b2. Estimate of |g+ |we+ and !w+.

We proceed in estimating the derivatives of g on W~ as well as the
component-functions of ’II and their derivatives, expressing everything in
I g Iwe. As an immediate consequence we obtain sufficient conditions

to ensure that W~(~ we). In the next subsection we show by a
direct argument that the Dj can all be made diffeomorphisms. As another
immediate consequence we get an estimate on ai - at ~+’

In the estimates positive constants show up which only depend on n, r,
M or o-. If there is no need to give such a constant a name, the corresponding
inequality sign is denoted by  .. The constants which have to be remem-
bered for later use are called co to c~.
We start with a proposition on the derivatives of g, which can be easily

proven using the Cauchy estimate.
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In the last estimate - may be replaced by -=.
lh 

Y ah
In order to be able to estimate ’ we have to specify the order of

truncation m of the Fourier series of g. We choose

(5 .12) m =_ 

where [ - ] denotes the integral part. We then have

5 . 2. PROPOSITION. - For all 03BB2 E c2 + r and all0  |h| _ rri, 0 _ l _ M
we have

Proof For ~,2 E Az + r there exists ~,2 E Az such that ~.2 - [  r.
It then follows for 0  1  M and all h # 0:

So for 0  I h  m we have

We now formulate our estimates on ’~’ and some of its derivatives. A proof
will be -given after two lemmata.

5. 3. PROPOSITION. - On the domain W* , for 0  k + I  M - 1 we have
n I I’ n 1 1

For the proot ot this we need tor the coemcient gkl, as dennea m aj

5 . 4. LEMMA.
we have
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This expresses the familiar exponential decay of the Fourier coefficients
of real analytic functions (Paley-Wiener). A proof can be easily given using
the Cauchy integral theorem, the Cauchy integral formula and proposi-
tion 5.1. Furthermore we need

5.5. LEMMA. - Let 03B2 > 0. Then a constant > 0 exists, such that
for all 0  x  1

00

Proof

Q. E. D.
2014 t

Proof of Proposition J .3. 2014 First, as a coronary 10 icmma 3.3 we nave

that for 0  ~  1
v~

This can be seen as tollows. The number ot n-vectors h = J
can be estimated by so

where we use that T > n. Now apply lemma 5 . 5 ior p == ~r 2014 i.

Remain the estimates. We start with the domain W~. The inequalities
involving u are a direct consequence of the definition in (5.9) and propo-
sition 5.1.
Now vkj. By (5.10), proposition 5.2 and lemma 5.4, we know that on

/i 1 B

where we used that s - s* > - 1 s and the above corollary to lemma 5 . 5 for
4
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the last estimate, similarly for The inequality on on W now can

be derived with Cauchy’s estimate.
In order to prove the estimates on W~ consider the polynomial

11.,( - 1

so on VV* it tollows

where we used that by ( 5 .11 b ) one has - G  ~*  - G.
The proof of the last statement of proposition 5. 3 is similar, using Cau-

chy’s estimate. Q. E. D.

A direct consequence of proposition 5.3 is
1

We proceed estimating |g+|we+. It follows from (5.6) and (5.8) that
/ - , B -

Now, if we abbreviate a max then we have
1 tN

5 . 7. PROPOSITION. - Under the assumptions of corollary 5 . 6, one has

for 1 _ l _ N that
. 1 . -,~ J I 1’B I ,
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And if, moreover, ms > 2n then

~~~here
T - 1

Proof. By (5.9) and proposition 5.1 we know

Next consider First observe that by proposition 3.5

by our assumption. Therefore

Now we estimate separately each of the six lines in the right hand side
of (5.13).
By the mean value theorem and the propositions 5.1 and 5. 3 we have

Similarly by the Taylor formula and proposition 5 .1 (for definitions cf. a3)

In order to estimate the tail of the Fourier series of Mg we first observe
that by proposition 5 .1

1B."" - 1

Vol. 4, n° 2-1987.



156 B. L. J. BRAAKSMA AND H. W. BROER

Then by lemma 5.4, analogous to the proof of lemma 5.5 (cf. a3)

where we used that s +  1 2 s and our assumption that ms > 2n.
Next we have by proposition 5.3

..., , , , ., __ _

Remain the last two lines concerning the al. First we have by the mean
value theorem, the Cauchy estimate and proposition 5 . 3, for (0, ~ ,u) E W~

3
where we estimated by the terms for = 1 and again used that 8*  4 E .
Similarly for the last line on We+ we have 

where we estimated by the contribution for l = 1 and used proposition 5 . 3.
Q. E. D.
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b3. Estimate 

We have

5. 8. PROPOSITION. - Under the assumptions of corollary 5.6 the follow-
ing holds :

Proof - Since ~ + - ~ ~ ~ we have by the chain rule
71~/ _v ’B 

where

The first assertion of the proposition now directly follows from propo-
sition 5.3.
Observe that in view of (5.3) for the second conclusion of the propo-

sition it is sufficient to prove that .

In order to show this again ~ which by the mean value
theorem for all points (8, (, p) E W~ gives

Now we use the fact that W~ ~ We and proposItIOn). 3.
The last inequality of the proposition needs some more care.
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We first prove that
, , I

u

and similarly for --=.
I( 

.

In fact by the mean value theorem we have for (8, " p) E We+
I - I

where we suppressed some bars m the notation. Now clearly
i ~~r) i

and by the Cauchy estimate we conclude that on . W~
! ~O~r~ ! 1 I I

With proposition 5 . 3 we then directly have (5.14). rrom this we concluae
the proof as follows

applying the Cauchy estimate for a derivative of order k + 1 - 1 . Q.E.D.

c. Induction and convergence.

In this, final subsection, we complete our proof. We recall from § al,
above, that the error g’ will be reduced in an exponential way, at the
same time ensuring that the sequences

I ~ ;....L11 I ~~J-L1) I 1 TTj-+..11 1

also decrease exponentially. The domains W~ are going to collapse geome-
trically on their intersection By the inverse approximation lemma,
see the appendix, the limit functions Vki and UOO then are of class C~
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m the sense ot Whitney, i. e. extendible as C~-functions to an open neigh-
borhood of this intersection in Tn x C.
Note that in the 81, 82, ... , 8n and pi-direction these limits will be even

real analytic, since on the complex domain T" x + ( -o-, - ) they are
the uniform limits of complex analytic functions. 

B /

Finally we come to the point that the limit be a diffeomorphism.
In the ~-direction we just use the inverse function theorem in the point
~ = 0. In the ~-direction we apply the Whitney extension theorem, see the
appendix, in order to conclude that there exists a C~-extension with a good
control of the derivative. Such an extension is easily proved to be a diffeo-
morphism in the ~-direction.

cl. Specification of the constants.

We choose the geometric sequences of positive numbers

where, in accordance with ( 5 .11 ), ve (0,1/2) and 2 6, 2 ).
Also we choose two exponential sequences of positive numbers

with p, E (0, 00), 03B4pq0 E (0, 1 2) and ~0 = 03B4q0 sufficiently small, again in accor-

dance with (5 . 11). The sequence { o will serve to dominate the « error »

I bJ |We.
c2. Exponential decay.

We have

5 . 9. PROPOSITION. - Assume that the constants p, q E (0, 00) and

v E (0, 1/2) are fixed with
( 1 )

Then, for sufficiently small 03B40 ~ (0, ~) there exists b E 0, m1n 1 6, 1 ,such that i, f’ ( g° ~w~  ~o, then 2 2

., , ;, _ ~. ~ " . ~ _ _
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ii) The sequences

and

decrease exponentiall y as j ~ oo, with initial terms tending to U as u.

In our proof of this proposition we use a lemma, which serves to esti-
mate III in proposition 5.7.

5.10. LEMMA. Given ~ > 0, A > 0 and n EN, we have  ri

for x > 2014 and x > 0.

Proof 2014 First we consider the case where A = n == 1. We have to show
that _ ri as soon as x > - 2 log 11. To this end for x > 0 consider
the function /(~) = 2014 ~ + log x. Observe that j’ is maximal for x == 1,
f (1) _ - 1 and that f decreases on (1, oo). Also observe that xe-" _ r~
if and only if f(x)  log 11. Now if log ~ > - 1 then obviously f(x)  log ~
for all x > 0. So conversely assume that log ~  2014 1. In that case 1

exists with = lo g  Since always log x  - 2 x we see that - 1 2 Xo > log 11,
so xo  - 2 log 11. Because of the monotonicity of f we conclude that
f (x) - log ~ for x ~ xo, so in particular for x > 2014 2 log 11.
The case of arbitrary A and n now simply is a matter of scaling : Put

y == 2014 x, then _  ys equivalent to y e -’’ -  A which by the first
n n

part of this proof is implied by y - > - 2 log 2014 or equivalently by

x > - 2n log (A n~1/n). Q. E. D.

Proof of Proposition 5 9. - We are going to apply the propositions 5 . 7
and 5 . 8. To this purpose we have to satisfy the assumptions of corollary 5 . 6,

which are implied  1 s2t. Sufficient for this is that

1

We now start considering the sequences { ai ~~° o, 1   N. First

observe from proposition 5 . 7 that oci - ai + 1 has exponential decay
for j - oo, as soon as ð] -(2N+ lq does. This is equivalent to

so this is sufficient for one of the assertions m pari nj 01 me proposition.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



161ON A QUASI-PERIODIC HOPF BIFURCATION

Secondly we wish to bound the by a constant C4
which is universal, so in particular independent of bo and q. In that case
the sequence is bounded by coe4. Sufficient for this is e. g. that

Next we look for sufficient conditions for part i ) of the proposition. In
fact we want to ensure that (cf. prop. 5.7)

In order to have I  1 ~ it is sufficient that ~ 1- { p + q~ _ 1 which
_ 

6c2 
+ 

f c
is implied by

Similarly for II  1 ~ + it is sufficient to have _ 1 which

is implied by 6~2 . 6e~

._ _ .. 1

Now III  2014 5+ and the condition ~ > 2n are taken care of as follows.
6"2

Recall that by (5 .12) we have m == [(Mr)-1/03C4]. This implies that
~~~r B20141/~- ~ ~ B - 1 IT ~,.J! ~~~.~~

The fact that III  I 5+ therefore can be established by applying
6c~

lemma 5.10 for
1 s 1

This yields as a sufficient condition that for all j
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which is equivalent to

Sufficient for this and for the fact that ms > 2n now is

For IV  20145+ it is sufficient to have 5~ ’~-~  2014 s~ which is
6C2 OC2

already taken care of by (5.18).

In order to have V ~ 2014 ~+ it is sufficient that 5~ ~~-p+~pq ~ 201420142014 ~
6c2 6c0c2c4

which is implied by

And for VI ~ 20145+ similarly it is sufficient to have that
6~2

which is already contained in (5.21).
Remains part ii ) of the proposition. Recall that the exponential decay of

B a{ - a{ + is taken care of by (5 .16). First we consider the sequence
{ which we want to bound by a universal constant. Suffi-
cient for this is that 03A3~j=003B41-qjs-(403C4+1)j has a universal bound, see propo-
sition 5 . 8. This, in turn, is implied by e. g.

compare (5.17). Note that by (5.16) we already have that q  1.
Now by proposition 5 . 8 we see that the sequences 1

and w +1 decay exponentially as soon do.

So the only important thing is that q  1 which we have by (5.16).
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Finally we conclude that the sequences - 

1 
have expo-

nential decay as soon as ~’~M-i+(M-2)p}~-2T does. This is equivalent to
r~~ -1. . y~ ~r ~B~- ~ - ~ ~ 1

w e conduce our prooI oy consiaermg me narvest 01 tne conditions t) . 1) J
to (5.23). Let us start with the conditions on p, q and v. First note that,
since M = 2N + 2 or 2N + 3, we have that (5 . 23) implies (5.16). It then
follows from (5.19) and (5 . 23) that

which can be fulfilled it (M - 2)p  1. Together with (5.18) and (5.21)
this yields for p the condition

r ~ "B

which can be easily satisfied. The remaining condition on v comes from
(5.20) :

1

1 ne iasi three formurae are assumptions 01 our proposition.
Now assume that p, q and v are chosen as above, then we are left with

conditions on (5o and b. As a consequence all remaining inequalities -also
see cl - are of, or can be replaced by, the following type

c ~ T ~~. _ , t ~ ~

(the last one e. g. comes irom mere ao, a 1, ... , as are constants,
which may depend on p, q and v. These conditions can all be satisfied:

by choosing both 5o and b small, but in an interdependent way. This follows
from the fact that lim 03B403BE0 log 5o = 0 for any 03BE > 0. Q. E. D.

The following corollary to the above proposition states that, provided
that the transformations converge to a « good » limit, the function g°~
disappears up to order M - 1 in (z ~ , z ~ ) in the origin.

5 .11. COROLLARY. - Under the same assumptions as in proposition 5. 9
we have for 0  k + I  M - 1 that

i I
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1

Proo, f : - See proposition 5 1 and use that q  M _ 1. 
. Q. E. D.

c3. The limit.

We now finish the proof of the normal form theorem by showing that
the 11{ ( 1  l  N) and the 03A6j converges as j - co.

5 12. PROPOSITION. - Let p, q and v be as in proposition 5 . 9. Then for

sufficiently small 150 > 0 there exists b E o, min {1 2 03C3, 1 2}) such that thesequences 
~ 

and 

on Tn x A1 x A2 have limits VOO and vkl respectively, which are real
analytic in 8 E Tn and E A 1 and which are ofclass in the sense of Whitney
in ~,2 ~ E A2 .
Moreover these limits have C~-extensions to Tn x A1 x A2, also to

be denoted by and such that

is a C~-diffeomorphism near Zoo == 0 and
.... A ---- ....... ""

is a C~-diffeomorphism onto its image. These extensions remain analytic
in 8 and 

Proof - Compare the introduction to this subsection and to subsec-
tion a 1. We shall apply the inverse approximation lemma and the Whitney-
extension theorem to our sequences, see the appendix. To this purpose
we check that for f3 > 0, N

since this implies that the limits are of class C~ for all f3 and hence of class
C°°. The estimates obviously hold as a consequence of proposition 5.9.
The inverse approximation lemma now implies the existence of the

limits UOO and together with estimates on their first derivatives.
Choosing (5o and b sufficiently small we obtain the assertions concerning
the diffeomorphisms in the proposition. In fact for 5o and b sufficiently

small we have that e. g. |~U~ ~03BB~|  1/2. The mean value theorem then implies

that ~oo ~ + is injective, while the inverse function theorem
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then moreover ensures that this map is a ameomorpmsm onto us image.

Similarly it follows by the inverse function theorem that the map
M- 1

Remark. From the inverse approximation lemma we conclude that
in the C03B2-norm (03B2 ~ N)

II AI II II ffi - i~ 1B +~ I - 1

In fact ~03B1l~03B2 and [ tend to zero as fractional powers of 5o.
The scaling procedure. from subsection a4 now directly yields the esti-
mates (2.6) and (2. 7) in the remarks to the normal form theorem:
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APPENDIX

For the sake of completeness we include a formulation of the inverse approximation
lemma used to obtain the Whitney differentiable conjugacy of the normal form theorem.
Compare [Stei, Ze ].

Let 03B2 > 0 be a fixed order of differentiability and let r ; = be a fixed geometric sequence
with a = ro > 0 and 0  K  1. Also let R be a closed set and consider

T --

where, as in § 2b and § 5,Q + c ~}.
The following lemma states when the limit U°° of a sequence { where uj is a

real analytic map with complex domain W;, is of class C~.

INVERSE APPROXIMATION LEMMA. - Assume that ~ ~ N. Let ~ be a sequence of
functions such that U’ is real analytic on W j, U° = 0 and that for j >_ 1

for some constant M. Then there exists a unique function Doo, defined on Q, which is of class C/1
and such that

I ~ 1 !

where the constant cg only depends on fl and K. Moreover Jor all a  fi
.. - - -- ---........ - ,

Here ~-~03B1 denotes the C03B1-norm on Q.

Explanatory remarks (we abbreviate I = and G = fl - [/1]):

i ) The lemma is also valid for open Q, in which case the concepts used are easier to
understand. The class then consists of Cl-functions with bounded derivatives up to
order l and where the derivative satisfies a Hölder condition with exponent G. Now the
norm II [ II is the usual Hölder norm, defined as the infimum of all positive M with for all x,
y ~ 03A9 and all 0 ~ k ~1

. -- J~........... ~ ’B. I ........ .

ii) In our present case of closed S2 the elements of are families U = { Uk H=o
of functions defined on Q. The Uk play the role of the derivatives of Uo, satisfying corres-
ponding compatibility conditions. In fact for some positive constant M, all x, y and

all 0 ~ k ~ l one has
~~

1

Here y) = E J - o = ~ Uk+ ~( y)(x - y)’, the analogue of the krh Taylor polynomial. In
J.

this case the norm ~ U 11.6 is defined as the infimum of all M for which the above inequalities
are valid.
The Whitney extension theorem, see [Wh, Hö, Stei ], now states that a linear extension

~"w,.~ t,"-
operator
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exists, such that for all 0  k  l

TIlClTT TB ! I T T ___1_ _1 _

for a constant c that only depends on p. So U E may be regarded as a restriction of
a function in to be closed set Q, and the Uk indeed play the role of derivatives.

In our application we have Q = A2 and x = ~.2. We consider the sequences
f i l:,n r, ~ 7 ~ ~TB - ~ ..J 1 B

of functions which also depend analytically on other variables, like 21 or ~.1 and 82, ..., 8n.
The dependence on the 0; (1  i  n) is periodic with period 2n. From the present point
of view these extra variables are regarded as parameters. The analyticity, as well as the
periodicity in the 8-variables, can be preserved as one passes to the respective extensions.
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