
Existence of a closed geodesic on p-convex sets

Annamaria CANINO

Dip. di Matematica, Universita della Calabria,
87036 Arcavacata di Rende (Cosenza), Italy

Ann. Inst. Henri Poincaré,

Vol. 5, n° 6, 1988, p. 501-518. Analyse non linéaire

ABSTRACT. - The existence of a non constant closed geodesic on some
nonsmooth sets is proved.
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RESUME. - On montre l’existence d’une géodésique fermee non cons-
tante sur certains ensembles non reguliers.

0. INTRODUCTION

A well-known result by Lusternik-Fet (see, for instance, [12]) establishes
the existence of a non-constant closed geodesic in a compact regular
Riemannian manifold without boundary.

In [15], this result is generalized to cover manifolds with boundary.
In both cases, the problem is reduced to a research of critical points

for the energy functional f (y) 1 2 |03B3’|2 ds on the s p ace of the admissible

Classification A.M.S. : 58 E 10, 58 E 35.
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paths X = ~ y E W 1 ~ 2 ( 0,1; M); y ( 0) = y ( 1 ) ~ where M is the manifold consi-
dered.

In this paper, we shall extend Lusternik-Fet result to cover a more

general situation, namely p-convex sets. Such class of sets was introduced
in [9] and in a less restrictive version in [2], where is also proved the
existence of infinitely many geodesics on M orthogonal to Mo and M1,
under the hypothesis that M, Mo and M 1 are p-convex subsets of IRn.

Examples of p-convex sets are C1,1loc-submanifolds (possibly with bound-
ary) of a Hilbert space and images under a C1,1loc-diffeomorphism of convex
sets.

The motivation for considering Lusternik-Fet result in the context of
p-convex sets comes from some remarks about regularity of f and X.

In the case handled by Lusternik-Fet, f is a regular functional and X is
a regular Riemannian manifold, on the contrary, in [15], even if M is a
regular manifold, X has not a natural structure of manifold and f is not
regular. All that suggests that the more natural way to deal with this
problem is to consider as starting-point irregular sets.

This consideration prompted the present work.
Other typical problems in differential geometry, concerning sets with a

certain degree of irregularity, are treated in [17].
For proving our result, we use a variational technique adapted for non

regular functionals. We characterize closed geodesics as "critical points"
for the energy functional f on the space X of the admissible paths. Then,
we prove that f is included in the class of (p-convex functions ( see, for
instance, [10]). For such functions, some adaptations of classical variational
methods in critical point theory (such as deformation lemmas) are available
( see, for instance, [4], [8], [13]).
The present work is divided in 4 sections.
In the first section, we recall the definition of p-convex sets and describe

some properties of them. In the second one, we give a variational character-
ization for closed geodesics. The third section is a topological one. We
deduce some homotopic properties of X. They together with a suitable
deformation lemma are the basic tools for the proof of the existence of at
least a non-constant closed geodesic on a p-convex subset of in section

four.

1. SOME RECALLS ON p-CONVEX SETS

In this section, we shall define p-convex sets and describe their properties.
Before, let us recall some notions of non-smooth analysis (cf. [3]

to [7], [9], [10]).
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From now on, H will be a real Hilbert space, 1.1 and ( . , . ) its norm
and scalar product, respectively.

DEFINITION 1. 1 (see also [3] and [6]). - Let Q be an open subset of H
and m ap.
We set

Let u belong to D ( f ). The function f is said to be subdifferential at u if
there exists a E H such that

We denote by a - f (u) the (possibly empty) set of such a’s and we set

It is easy to check that a - f (u) is convex and closed ‘d u E D ( f ).
If u E D (a- f), grad- f (u) will denote the element of minimal norm of

a - f (u). Moreover, let M be a subset of H. We denote by IM the function:

It is easy to check that a - IM (u) is a cone ~u~ M.
We will call normal cone to M at u the set a - IM (u) and tangent cone to

M at u its negative polar ( a - IM (u)) -, i. e.,

DEFINITION 1. 2. - A point u E D ( f ) is said to be critical from below
for f if 0 f (u); c E f~ is said to be a critical value of f it there exists
u E D ( f ) such that

DEFINITION 1 . 3 (see also [5], [10]). - Let Q be an open subset of H. A
function f : 03A9 ~ R ~{ + ~} is said to have a cp-monotone subdifferential if
there exists a continuous function

such that:

whenever
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If p >__ 1, f is said to have a cp-monotone subdifferential of order p if there
exists a continuous function

such that:

whenever

Now let us give the definition of p-convex sets ~cf. [2j).
DEFINITION 1. 4. - Let M be a subset of H. M is said to be a p-convex

set if there exists a continuous function p : M ~ such that

whenever u, ueM and ae5 IM ( u).
Examples of p-convex sets are the following ones:
( 1) the C1,1loc-submanifolds (possibly with boundary) of H;
(2) the convex subsets of H;
(3) the images under a C1,1loc-diffeomorphism of convex sets;
(4) the subset of 1, ~ x2 >_ 1 ~ [note that it is not

included in the classes (1), (2), (3)].
Several properties of p-convex sets are proved in [2]. We recall some of

them.
Let us define the following set relatively to a p-convex set M:

DEFINITION 1. 5. - Let us denote by A the set of u’s E H with the two
properties:

(i) M)  1 where M) = lim sup 
-~d(u, M)
w~M

such that is closed in H and not

empty.
Obviously, M c A and:

PROPOSITION 1. 6. - Let M c H be p-convex and locally closed. Then
A is open and ~u~Â there exists one and only one w~M such that

M).
Moreover, if we set at (u) = w, then

Remark 1. 7. - Let us set Then
A is an open set containing M and one can easily prove that ~ : A --~ M is
Lipschitz continuous of constant two.
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PROPOSITION 1.8. - Let M c H be locally closed and p-convex. Then

~u~ M and V v e H, where Pu is the projection on the tangent cone to M at
u, LC. (~’~(M))’.

PROPOSITION 1.9. - Let M~H be locally closed and p-convex. Let us
take u~M and B (u, r)={u~H : r}c:A. Then

PROPOSITION 1. 10. - Let M c H be locally closed and p-convex. Then
M is an absolute neighbourhood retract (see [14] for the definition of absolute
neighbourhood retract).

Finally, let us point out that the two definitions of tangent cone given
in [1] and in [3] coincide in the case of p-convex sets. Indeed:

PROPOSITION 1. 11. - Let M c H be locally closed and p-convex. Then
~u~M

where CM(u) and TM(u) are respectively the tangent cone and the contingent
cone to M at u.

2. VARIATIONAL CHARACTERIZATION
OF CLOSED GEODESICS

In this section, H will indicate a real Hilbert space, M c H a locally
closed p-convex set and we will deal with closed geodesics on M, namely:

DEFINITION 2.1. - A curve y : [0,1] - M is said to be a closed geodesic
on M if

We want to characterize them as critical points for the energy functional
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defined in such a way:

where

is the so called space of the admissible paths.
For this purpose, let us state:

, 
-

in such a case

where p = max y) and 8 : f~2 -~ Q~ + is a continuous function.
to.

Moreover, if 0 E a - f (y) then y E ( o,1; H).
Before the proof, we give some lemmas which are essentially contained

in [2].

where is the projection on the tangent cone to M at y(s).
By Proposition 1. 8, H).
LEMMA 2 . 3 (see [2], Lemma 3 . 3). - Let us H) and

H) such that y (s) EM, b’ s E [o,1 ]. Then

LEMMA 2. 4. - Let us take yeX and f (y). Then

H) with b (o) = b ( 1).
Proof. - Let us H) with 8(0) =8(1).
We observe that, if t > 0 is sufficiently small, we can define x (y + t b)

and:
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Then

Now, let us consider f (y). By Proposition 1. 8, we have:

Recalling that ~ (~ + t ~) bounded in L2 0 1~ H the thesis is a

consequence of Definition 1. 1 and Lemma 2. 3..

LEMMA 2. 5 (see [2], Lemma 3. 5). - Let a E LZ (o,1; H) and

y E W1’2 (o,1; H) be such that y (s) E M, V s E (o,1].
Let us suppose that:

Then

and

where 
[0,1] 1

LEMMA 2. 6. - Let us take y E X (~ W2~1 (0,1; H) with y+ (0) = y’_ ( 1)
and a ~L1 (0,1; H) such that a + y" E a - IM (y) a. e. Then V ~ E X,

where J= max p o y and 01 : R + is a continuous function.
io,ii
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Proof. - If r~ E X, then:

By p-convexity of M, we have:

Using in (2. 6.1) the following estimate:

and then applying Young’s inequality to the factor

we obtain:

which gives the thesis..
Now we come back to the

Proof of theorem 2 . 2. - If a - f (y) ~ Q,~, as a consequence of Defi-
nition 1.1 and Lemmas 2. 4, 2. 5, we get:

and
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If from Lemma 2. 4, we obtain H):

Since

and by duality:

Now, let us prove that Y’_ ( 1) = y+ (0).
Let us consider v e H and V n e N, such that

Then, let us define the following functions:

Again, from Lemma 2. 4, we have:

Integrating by parts and passing to the limit as n -~ oo, we obtain:

and then

Now suppose that ’y E W2’2 (o,1; H) and y+ (o) _ ~y’_ ( 1). By applying
Lemma 2 . 6 with a = - y", we so that

THEOREM 2 . 7. - Let us consider H) with

y+ (0)=y’_ (1) and a. E L 2 (0,1; H).

Vol. 5, n° 6-1988.
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This means:

So that,

Now, we are ready to state the desired characterization:

THEOREM 2 . 8. - Let us consider Y E X. Then: f (y) if and only 
is a closed geodesic on M; in this case y E W2~ °° (o, l; H) and the function
s ~ I y’ (s) is constant.
Proof - If y is a closed geodesic on M, we can apply Lemma 2. 6

with a=0 obtaining 0 E a - f (y).
Vice versa, if 0 E a - f (~y), from Theorem 2 . 2 we get:

Moreover, by Theorem 2. 7 we get

so that, y is a closed geodesic on M.
’ 

Finally, since I ~y’ I ~ is Lipschitz continuous, in order to prove that the
function s -~ y’ (s) is constant, we will show that

Let us consider

From Definition 1.1, we have:

where

Dividing by ( t - s) and passing to the limit as t -~ s + and t - s - in (2.8.1),
we get:

which gives the thesis recalling that

At this point, the proof of the existence of closed geodesics on M is
reduced to the research of critical points for f.
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The method we want to use for this aim is based on the evolution

theory, as developed in [5], [6], [7], [9] and [10]. Therefore we need to
prove that f has a cp-monotone subdifferential of order two:

THEOREM 2. 9. - Let M be closed in H. Then f is l. s. c. and there exists
a continuous function

such that:

whenever r~, y E X and a E a - , f (y).
In particular, f has a 03C6-monotone subdifferential of order two.

Proof. - First we will prove that f is 1. s. c.

Let us such that:

By definition converges weakly to y in W 1 ° 2 (o,1; H) and

So, we have only to prove that yeX.
But, since { Yn ~n converges uniformly to y in [0,1] and M is closed, we

deduce that

and from yn (1) = yn (0), V n E N, we have: y (0) = y ( 1).

Now, using Theorem 2.2, Theorem 2.7 and Lemma 2.6, we obtain
the existence of a continuous function 62 ; p~2 -~ ~ + such that

whenever ~, y e X, f (y) and were /? = max p ° y.
[0, 1]

By paracompactness and partition of unity, we obtain the existence
of 
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3. HOMOTOPICAL PROPERTIES OF THE SPACE OF THE
ADMISSIBLE PATHS

In this section, we want to deduce some "homotopical" properties of
the space of the admissible paths X endowed with the wl ° 2-topology. To
this aim, let us recall the following result contained in [16] (see
Theorem 8.14, page 189).

THEOREM 3 . 1. - Let p : X - B be a fibration. Let xo E X, bo = p (xo),
F =p-1 (bo). If p has a cross section, then

while x (X, xo) is a semi-direct product of 03C01 (F, xo) by 03C01 (B, bo).
From now on, if M is a metric space and uo E M, we will denote by

Q ( M, uo) its loop space with base point ~o and we will set:

endowed with the topology of the uniform convergence.
Remark 3. 2. - The map p : X 

* ~ M defined by p (y) = y (0) is a fibration
and

Moreover, the map ~, : M ~ X * defined by

is a cross section.

As a consequence of Theorem 3. 1, let us prove:

THEOREM 3 . 3 (see, also, Lemmas 2 . 11 and 2 . 12 in [1 I ])I,et M~Rn be
compact, p-convex, connected and non-contractible in itself. Then, there
exists kEN such that:

(i) There exists a continuous map g : X* which is not homotopic to
a constant.

(ii) Every continuous map g : Sk - M is homotopic to a constant.
Proof. - First of all, let us observe that, by Proposition 1. 10, M is

also arcwise connected. If M is not simply connected, then X * is not
arcwise connected, so that there exists a continuous map g : SO -. X * which
is not homotopic to a constant. On the other hand, M is arcwise connected,
then every continuous homotopic to a constant.

If M is simply connected, then X* and Q(M) are arcwise connected.
Since by Proposition 1.10, M is an A.N.R., 1th (M) is not trivial for some
h (cf [14]). Let k + 1 be the first integer such that 1 (M) is not trivial
( k ? 1 ). Applying Theorem 3.1, we have:
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Then ~k (X *) is not trivial, on the contrary is trivial, so that the
theorem is proved.

THEOREM 3. 4.. - Let M c (~" be compact and p-convex. If there exists
k >__ 0 and a continuous map g : Sk --~ X * which is not homotopic to a constant,
then there exists a continuous map g : Sk  X which is not homotopic to a
constant.

For the proof of this theorem, we need the following result contained
in [8] (see Theorem 3.17).

THEOREM 3. 5. - Let W be an open subset of a real Hilbert space V and
g : W ~ R ~{ + ~} be a I. s. c. function with a cp-monotone subdifferential
of order 2. Then there exists a map j : D (g) ~ D (g) such that:

(i) .1 ~~ V b E I~, where gb = f u ~ Q : g (u) _ b ~;
(g~, ~ .1 v) --~ d*) where

is continuous and it is a homotopy inverse of the identity function: Id :

d~) -~ ~gb~ I . ~ Y) .
Proof of theorem 3 . 4. - Let k be a natural number and g : Sk  X* a

continuous map which is not homotopic to a constant.
Let us set

endowed with the topology of the uniform convergence, where A is the
set defined in Remark 1. 7.

By Proposition 1.6, X* is a deformation retract of XA. Then the map
g : Sk  XA is not homotopic to a constant.

Moreover, since XA is an open subset of the Banach space:

by [14], we deduce that XA is homotopically equivalent to

endowed with 2-topology.
Therefore, there exists a continuous map fl : Sk  XA which is not

homotopic to a constant.
Now, let a be a real number such that

Then, setting

Vol. 5, n° 6-1988.
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we have that fl : Sk  X~ is not homotopic to a constant 
At this point, let us remark the following: there exists r (y) > 0

such that if

then r~ (s) E A, V s E [0, 1 J.
Now, let us set

where B (y, r (y)) is the open ball in L2 of center y and radius r (y) and let
us define a function such a way:

Obviously, g is the restriction to W of a convex and 1. s. c. function on
L2 (o,1; 

Since by Theorem 3. 5 we deduce that

where X~ is defined as the space X~ endowed with the L2-topology, is a
homotopy equivalence V b >__ a.

Therefore, fl : Sk ~ XbA is not homotopic to a constant 
Now, let us consider the following homotopy H defined on fl (Sk) x [o, 1],

in such a way:

By Remark 1. 7, we have:

The map f2 : S -~ X~ is not homotopic to a constant, moreover

f2 c Xb where ’

endowed with the L2-topology.
Then, f2 : Sk  X b is not homotopic to a constant V b __> 4 a. Now, applying

Theorem 3 . 5 to
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where f is the energy functional defined in section 2, we deduce the
existence of a map j : X ~ X where X denotes the space X endowed with
the L2-topology such that Moreover j is continuous and it
is a homotopy inverse of the identity function.

Finally, let us consider the continuous map f3 : Sk - Xb defined by
f3 =j ~ f2. It is not homotopic to a constant d b >_ 4 a and then f3 : Sk  X
is not homotopic to a constant..

THEOREM 3. 6. - Let M c f~n be compact and p-convex and f the func-
tional defined in section 2. Then there exists a > 0 such that

endowed with the W1,2-topology is homotopically equivalent to M.
For the proof of this theorem we will need the following lemma:

LEMMA 3. 7. - Let f0 be the set of the constant curves. Then there exists
a > 0 such that ,f ° is a strong deformation retract of fa endowed with the
L2-topology.

Proof - Since M is compact, we can suppose that M is p-convex with
p --- Const. Let us take y E f " and let us consider

We remark that:

Therefore, taking a such that 1, by (3 . 7 . 1), we have that

where A is defined in Remark 1. 7.

Now we can consider the map H- defined on fax. [0, 1] in this way:

Let us observe that by Proposition 1. 9 :

Vol. 5, n° 6-1988.
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By (3. 7. 2) and (ii) of Proposition 1. 6, we have:

so that we deduce:

Therefore,

Moreover,

To conclude the proof it is enough to point out that if we endowe f a with
the L2-topology, H is a continuous map..

Proof of Theorem 3. 6. - By applying Theorem 3. 5 to

where f is the functional defined in section 2, we obtain that f ° endowed
with the W1,2-topology is homotopically equivalent to f a with the L2-
topology.
On the other hand, M is homeomorphic to f ° with the L2-topology.

Using lemma 3. 7 we get the thesis..

THEOREM 3. 8. - There exists a > 0 such that f ° and X (both endowed
with the W1 ~2-topology) are not homotopically equivalent.

Proof. - Obvious from Theorems 3. 3, 3. 4 and 3 . 6..

4. THE MAIN RESULT

After Theorem 2. 8, the problem to establish the existence of a non-
constant closed geodesic on M, compact, connected and p-convex subset
of IRn, is reduced to find critical points for the energy functional f on the
space of the admissible paths X (see section 2 for the Definition of f
and X).
To this aim, we need a deformation lemma like the one contained in

[13]. We shall use a version included in [8] (see Lemma 4. 4).

LEMMA 4 . 1. - Let V be a real Hilbert space and 
I. s. c. function with a cp-monotone subdifferential of order 2. We set
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Let - oo  a  b _ + oo be such that:

(i) 0 ~ a - g (u) whenever u E D (g) and a -_ g (u)  b;
(ii) d c E [a, b[ and ‘d { c D (a - g) with lim g = c and

n

lim grad - g (un) = o, ~ un ~n has a converging subsequence in V.
n

T’hen ga is a strong deformation retract of gb in gb, where ga and gb are
endowed with the metric d*.

Combining this lemma with the topological results in section 3, we can
state the desired result:

THEOREM 4. 2. - Let M c Rn be compact, p-convex, connected and non-
contractible in itself

Then, there exists at least a non-constant closed geodesic on M.

Proof. - Let us consider the energy functional f defined in section 2.
By Theorem 2. 9, f is 1. s. c. and it has a cp-monotone subdifferential of
order 2.

Moreover, by Theorem 2. 8, the thesis is equivalent to state that there
exists y E X such that 0 E a - f (y), and f (y) > o. So, if, by contradiction,
the thesis is not true, we can apply Lemma’4.1 with

and a given by Theorem 3. 8.
We recall that condition (ii) is satisfied because M is compact and the

metric d* induces the W1,2-topology on X = fb.
Then, by Lemma 4 .1 we deduce that X and f a are homotopically

equivalent, which is impossible by Theorem 3 . 8..
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