Vol. 5, n° 6, 1988, p. 501-518.

Existence of a closed geodesic on *p*-convex sets

Ъy

Annamaria CANINO

Dip. di Matematica, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy

Abstract. — The existence of a non constant closed geodesic on some nonsmooth sets is proved.

Key words : Closed geodesics, Lusternik-Fet theorem, nonsmooth analysis, p-convex sets.

RÉSUMÉ. – On montre l'existence d'une géodésique fermée non constante sur certains ensembles non réguliers.

0. INTRODUCTION

A well-known result by Lusternik-Fet (see, for instance, [12]) establishes the existence of a non-constant closed geodesic in a compact regular Riemannian manifold without boundary.

In [15], this result is generalized to cover manifolds with boundary.

In both cases, the problem is reduced to a research of critical points for the energy functional $f(\gamma) = \frac{1}{2} \int_0^1 |\gamma'|^2 ds$ on the space of the admissible

Classification A.M.S. : 58 E 10, 58 E 35.

Annales de l'Institut Henri Poincaré - Analyse non linéaire - 0294-1449 Vol. 5/88/06/501/18/\$3,80/

© 1988 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

paths $X = \{ \gamma \in W^{1,2}(0,1; M); \gamma(0) = \gamma(1) \}$ where M is the manifold considered.

In this paper, we shall extend Lusternik-Fet result to cover a more general situation, namely *p*-convex sets. Such class of sets was introduced in [9] and in a less restrictive version in [2], where is also proved the existence of infinitely many geodesics on M orthogonal to M_0 and M_1 , under the hypothesis that M, M_0 and M_1 are *p*-convex subsets of \mathbb{R}^n .

Examples of *p*-convex sets are $C_{loc}^{1,1}$ -submanifolds (possibly with boundary) of a Hilbert space and images under a $C_{loc}^{1,1}$ -diffeomorphism of convex sets.

The motivation for considering Lusternik-Fet result in the context of p-convex sets comes from some remarks about regularity of f and X.

In the case handled by Lusternik-Fet, f is a regular functional and X is a regular Riemannian manifold, on the contrary, in [15], even if M is a regular manifold, X has not a natural structure of manifold and f is not regular. All that suggests that the more natural way to deal with this problem is to consider as starting-point irregular sets.

This consideration prompted the present work.

Other typical problems in differential geometry, concerning sets with a certain degree of irregularity, are treated in [17].

For proving our result, we use a variational technique adapted for non regular functionals. We characterize closed geodesics as "critical points" for the energy functional f on the space X of the admissible paths. Then, we prove that f is included in the class of φ -convex functions (see, for instance, [10]). For such functions, some adaptations of classical variational methods in critical point theory (such as deformation lemmas) are available (see, for instance, [4], [8], [13]).

The present work is divided in 4 sections.

In the first section, we recall the definition of *p*-convex sets and describe some properties of them. In the second one, we give a variational characterization for closed geodesics. The third section is a topological one. We deduce some homotopic properties of X. They together with a suitable deformation lemma are the basic tools for the proof of the existence of at least a non-constant closed geodesic on a *p*-convex subset of \mathbb{R}^n , in section four.

1. SOME RECALLS ON *p*-CONVEX SETS

In this section, we shall define *p*-convex sets and describe their properties.

Before, let us recall some notions of non-smooth analysis (cf. [3] to [7], [9], [10]).

From now on, H will be a real Hilbert space, |.| and (.,.) its norm and scalar product, respectively.

DEFINITION 1.1 (see also [3] and [6]). — Let Ω be an open subset of H and $f: \Omega \to \mathbb{R} \cup \{+\infty\}$ a map.

We set

$$D(f) = \{ u \in \Omega : f(u) < +\infty \}.$$

Let u belong to D(f). The function f is said to be subdifferential at u if there exists $\alpha \in H$ such that

$$\liminf_{v \to u} \frac{f(v) - f(u) - (\alpha, v - u)}{|v - u|} \ge 0.$$

We denote by $\partial^- f(u)$ the (possibly empty) set of such α 's and we set

$$\mathbf{D}(\partial^{-}f) = \{ u \in \mathbf{D}(f) : \partial^{-}f(u) \neq \emptyset \}.$$

It is easy to check that $\partial^- f(u)$ is convex and closed $\forall u \in D(f)$.

If $u \in D(\partial^- f)$, grad f(u) will denote the element of minimal norm of $\partial^- f(u)$. Moreover, let M be a subset of H. We denote by I_M the function:

$$\mathbf{I}_{\mathbf{M}}(u) = \begin{cases} 0, & u \in \mathbf{M} \\ +\infty, & u \in \mathbf{H} \setminus \mathbf{M}. \end{cases}$$

It is easy to check that $\partial^{-} I_{M}(u)$ is a cone $\forall u \in M$.

We will call normal cone to M at u the set $\partial^{-} I_{M}(u)$ and tangent cone to M at u its negative polar $(\partial^{-} I_{M}(u))^{-}$, i.e.,

$$(\partial^{-} \mathbf{I}_{\mathbf{M}}(u))^{-} = \{ v \in \mathbf{H} : (v, w) \leq 0, \forall w \in \partial^{-} \mathbf{I}_{\mathbf{M}}(u) \}.$$

DEFINITION 1.2. – A point $u \in D(f)$ is said to be critical from below for f if $0 \in \partial^- f(u)$; $c \in \mathbb{R}$ is said to be a critical value of f it there exists $u \in D(f)$ such that

$$0 \in \partial^- f(u)$$
 and $f(u) = c$.

DEFINITION 1.3 (see also [5], [10]). – Let Ω be an open subset of H. A function $f: \Omega \to \mathbb{R} \cup \{+\infty\}$ is said to have a φ -monotone subdifferential if there exists a continuous function

$$\varphi: \quad \mathbf{D}(f) \times \mathbb{R}^2 \to \mathbb{R}^+$$

such that:

$$(\alpha - \beta, u - v) \ge -(\varphi(u, f(u), |\alpha|) + \varphi(v, f(v), |\beta|)) |u - v|^2$$

whenever

$$u, v \in D(\partial^- f), \quad \alpha \in \partial^- f(u) \quad \text{and} \quad \beta \in \partial^- f(v).$$

If $p \ge 1$, f is said to have a φ -monotone subdifferential of order p if there exists a continuous function

$$\chi: \quad \mathbf{D}(f)^2 \times \mathbb{R}^2 \to \mathbb{R}^+$$

such that:

$$(\alpha - \beta, u - v) \ge -\chi(u, v, f(u), f(v))(1 + |\alpha|^{p} + |\beta|^{p})|u - v|^{2}$$

whenever

$$u, v \in D(\partial^- f), \quad \alpha \in \partial^- f(u) \quad \text{and} \quad \beta \in \partial^- f(v).$$

Now let us give the definition of p-convex sets (cf. [2]).

DEFINITION 1.4. - Let M be a subset of H. M is said to be a p-convex set if there exists a continuous function $p: \mathbf{M} \to \mathbb{R}^+$ such that

$$(\alpha, v-u) \leq p(u) |\alpha| |v-u|^2$$

whenever $u, v \in M$ and $\alpha \in \partial^{-} I_{M}(u)$.

Examples of *p*-convex sets are the following ones:

(1) the $C_{loc}^{1,1}$ -submanifolds (possibly with boundary) of H;

(2) the convex subsets of H;

(3) the images under a $C_{loc}^{1,1}$ -diffeomorphism of convex sets;

(4) the subset of \mathbb{R}^n : $\{x : \max | x_i| \leq 1, \sum x_i^2 \geq 1\}$ [note that it is not included in the classes (1), (2), (3)].

Several properties of p-convex sets are proved in [2]. We recall some of them.

Let us define the following set relatively to a *p*-convex set M:

DEFINITION 1.5. – Let us denote by \hat{A} the set of u's $\in H$ with the two properties:

(i) $\delta_p(u, \mathbf{M}) < 1$ where $\delta_p(u, \mathbf{M}) = \limsup_{|u-w| \to d(u, \mathbf{M})} 2p(w) |u-w|.$

(ii) $\exists r \geq 0$ such that $M \cap \{v \in H : |v-u| \leq r\}$ is closed in H and not empty.

Obviously, $M \subset \hat{A}$ and:

PROPOSITION 1.6. – Let $M \subset H$ be p-convex and locally closed. Then \hat{A} is open and $\forall u \in \hat{A}$ there exists one and only one $w \in M$ such that |u-w|=d(u, M).

Moreover, if we set $\pi(u) = w$, then

(i) $(u-\pi(u)) \in \partial^{-} I_{\mathsf{M}}(\pi(u))$ and $2p(\pi(u)) | u-\pi(u) | < 1, \forall u \in \widehat{\mathsf{A}}.$

(ii) $|\pi(u_1) - \pi(u_2)| \leq (1 - p(\pi(u_1)) |u_1 - \pi(u_1)| - p(\pi(u_2)) |u_2 - \pi(u_2)|)^{-1} |u_1 - u_2|, \forall u_1, u_2 \in \hat{A}.$ (iii) $(t \pi(u) + (1 - t) u) \in \hat{A}, \forall u \in \hat{A}, \forall t \in [0, 1].$

Remark 1.7. - Let us set $A = \{ u \in \hat{A} : 4p(\pi(u)) | u - \pi(u) | < 1 \}$. Then A is an open set containing M and one can easily prove that $\pi: A \to M$ is Lipschitz continuous of constant two.

PROPOSITION 1.8. – Let $M \subset H$ be locally closed and p-convex. Then

$$\lim_{s \to 0^+} \frac{\pi (u+sv) - u}{s} = \mathbf{P}_u(v)$$

 $\forall u \in M \text{ and } \forall v \in H$, where P_u is the projection on the tangent cone to M at $u, i. e. (\partial^- I_M(u))^-$.

PROPOSITION 1.9. – Let $M \subset H$ be locally closed and p-convex. Let us take $u \in M$ and $B(u, r) = \{v \in H : |v-u| < r\} \subset \hat{A}$. Then

$$\frac{|su_1 + (1-s)u_0 - \pi (su_1 + (1-s)u_0)|}{\leq 2p (\pi (su_1 + (1-s)u_0)) s (1-s) |u_0 - u_1|^2}$$

 $\forall s \in [0,1] and \forall u_0, u_1 \in \mathbf{B}(u, r).$

PROPOSITION 1.10. — Let $M \subset H$ be locally closed and p-convex. Then M is an absolute neighbourhood retract (see [14] for the definition of absolute neighbourhood retract).

Finally, let us point out that the two definitions of tangent cone given in [1] and in [3] coincide in the case of p-convex sets. Indeed:

PROPOSITION 1.11. – Let $M \subset H$ be locally closed and p-convex. Then $\forall \, u \in M$

$$\mathbf{C}_{\mathbf{M}}(u) = \mathbf{T}_{\mathbf{M}}(u) = (\partial^{-} \mathbf{I}_{\mathbf{M}}(u))^{-},$$

where $C_M(u)$ and $T_M(u)$ are respectively the tangent cone and the contingent cone to M at u.

2. VARIATIONAL CHARACTERIZATION OF CLOSED GEODESICS

In this section, H will indicate a real Hilbert space, $M \subset H$ a locally closed *p*-convex set and we will deal with closed geodesics on M, namely:

DEFINITION 2.1. – A curve $\gamma : [0,1] \rightarrow M$ is said to be a closed geodesic on M if

(a) $\gamma \in W^{2,1}(0,1; H);$

(b) $\gamma''(s) \in \partial^- I_M(\gamma(s)) a. e. in] 0,1[;$

(c) $\gamma(0) = \gamma(1)$ and $\gamma'_{+}(0) = \gamma'_{-}(1)$.

We want to characterize them as critical points for the energy functional

$$f: L^2(0,1; \mathbf{H}) \to \mathbb{R} \cup \{+\infty\}$$

defined in such a way:

$$f(\gamma) = \begin{cases} \frac{1}{2} \int_0^1 |\gamma'|^2 \, ds, \quad \gamma \in \mathbf{X} \\ +\infty, \quad \gamma \in \mathbf{L}^2(0, 1; \mathbf{H}) \setminus \mathbf{X} \end{cases}$$

where

$$\mathbf{X} = \{ \gamma \in \mathbf{W}^{1,2}(0,1; \mathbf{H}) : \gamma(s) \in \mathbf{M}, \forall s, \gamma(0) = \gamma(1) \}$$

is the so called space of the admissible paths.

. .

For this purpose, let us state:

THEOREM 2.2. - Let us take
$$\gamma \in X$$
. Then $\partial^- f(\gamma) \neq \emptyset$ if and only if $\gamma \in W^{2,2}(0,1; H)$ and $\gamma'_+(0) = \gamma'_-(1);$

in such a case

$$\|\operatorname{grad}^{-} f(\gamma)\|_{L^{2}} \leq \|\gamma''\|_{L^{2}} \leq \theta(\overline{p}, f(\gamma))(1 + \|\operatorname{grad}^{-} f(\gamma)\|_{L^{2}})$$

where $\overline{p} = \max_{[0,1]} (p \circ \gamma)$ and $\theta : \mathbb{R}^2 \to \mathbb{R}^+$ is a continuous function.

Moreover, if $0 \in \partial^- f(\gamma)$ then $\gamma \in W^{2,\infty}(0,1; H)$.

Before the proof, we give some lemmas which are essentially contained in [2].

If $\gamma \in X$ and $\delta \in L^2(0,1; H)$, we set:

$$(\mathbf{P}_{\gamma} \delta)(s) = \mathbf{P}_{\gamma(s)} \delta(s)$$

where $P_{\gamma(s)}$ is the projection on the tangent cone to M at $\gamma(s)$. By Proposition 1.8, $P_{\gamma}\delta \in L^2(0,1; H)$.

LEMMA 2.3 (see [2], Lemma 3.3). – Let us take $\delta \in W^{1,2}(0,1; H)$ and $\gamma \in W^{1,2}(0,1; H)$ such that $\gamma(s) \in M$, $\forall s \in [0,1]$. Then

$$\lim_{t \to 0^+} \inf_{t \to 0^+} \frac{\frac{1}{2} \int_0^1 |(\gamma + t\,\delta)'|^2 \, ds - \frac{1}{2} \int_0^1 |\pi(\gamma + t\,\delta)'|^2 \, ds}{t}$$

$$\geq -2\int_0^1 p(\gamma) \left| \delta - \mathbf{P}_{\gamma} \delta \right| \cdot \left| \gamma' \right|^2 ds.$$

LEMMA 2.4. – Let us take $\gamma \in X$ and $\alpha \in \partial^- f(\gamma)$. Then

$$\int_{0}^{1} (\gamma', \, \delta') \, ds \ge \int_{0}^{1} (\alpha, \, \mathbf{P}_{\gamma} \, \delta) \, ds - 2 \int_{0}^{1} p(\gamma) \left| \, \delta - \mathbf{P}_{\gamma} \, \delta \right| \, |\gamma'|^2 \, ds$$

 $\forall \delta \in \mathbf{W}^{1,2}(0,1; \mathbf{H}) \text{ with } \delta(0) = \delta(1).$

Proof. – Let us take $\delta \in W^{1,2}(0,1; H)$ with $\delta(0) = \delta(1)$.

We observe that, if t>0 is sufficiently small, we can define $\pi(\gamma + t\delta)$ and:

$$\pi(\gamma + t\,\delta)(s) \in \mathbf{M}, \qquad \pi[(\gamma + t\,\delta)(0)] = \pi[(\gamma + t\,\delta)(1)].$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Then

$$\frac{1}{2}\int_0^1 \left|\pi(\gamma+t\,\delta)'\right|^2 = f(\pi(\gamma+t\,\delta)).$$

Now, let us consider $\alpha \in \partial^- f(\gamma)$. By Proposition 1.8, we have:

$$\int_{0}^{1} (\gamma', \delta') ds - \int_{0}^{1} (\alpha, P_{\gamma} \delta) ds$$

= $\lim_{t \to 0^{+}} \frac{1}{t} \int_{0}^{1} \left\{ \frac{1}{2} |(\gamma + t \delta)'|^{2} - \frac{1}{2} |\gamma'|^{2} - \alpha (\pi (\gamma + t \delta) - \gamma) \right\} ds$
\ge $\lim_{t \to 0^{+}} \frac{1}{t} \int_{0}^{1} \left\{ \frac{1}{2} |\pi (\gamma + t \delta)'|^{2} - \frac{1}{2} |\gamma'|^{2} - \alpha (\pi (\gamma + t \delta) - \gamma) \right\}$
+ $\lim_{t \to 0^{+}} \inf_{2t} \frac{1}{2t} \int_{0}^{1} \left\{ |(\gamma + t \delta)'|^{2} - |\pi (\gamma + t \delta)'|^{2} \right\} ds.$

Recalling that $\left(\frac{\pi(\gamma+t\,\delta)-\gamma}{t}\right)$ is bounded in L²(0,1; H), the thesis is a consequence of Definition 1.1 and Lemma 2.3.

LEMMA 2.5 (see [2], Lemma 3.5). - Let $\alpha \in L^2(0,1; H)$ and $\gamma \in W^{1,2}(0,1; H)$ be such that $\gamma(s) \in M$, $\forall s \in [0,1]$.

Let us suppose that:

$$\int_{0}^{1} (\gamma', \delta') ds \ge \int_{0}^{1} (\alpha, \mathbf{P}_{\gamma} \delta) ds - 2 \int_{0}^{1} p(\gamma) \left| \delta - \mathbf{P}_{\gamma} \delta \right| \cdot \left| \gamma' \right|^{2} ds$$
$$\forall \, \delta \in \mathbf{W}_{0}^{1,2}(0, 1; \mathbf{H}).$$

Then

$$\gamma \in \mathbf{W}^{2,2}(0,1; \mathbf{H}), \qquad \gamma^{\prime\prime}(s) + \alpha(s) \in \partial^{-} \mathbf{I}_{\mathbf{M}}(\gamma(s)) \quad \text{a. e.},$$

and

$$\|\gamma^{\prime\prime}\|_{L^{2}} \leq \left[1 + 2\bar{p}\left(\int_{0}^{1} |\gamma^{\prime}|^{2} ds\right)^{1/2}\right] \left(2\bar{p}\int_{0}^{1} |\gamma^{\prime}|^{2} ds + \|\alpha\|_{L^{2}}\right)$$

where $\overline{p} = \max_{[0,1]} p \circ \gamma$.

LEMMA 2.6. – Let us take $\gamma \in X \cap W^{2,1}(0,1; H)$ with $\gamma'_+(0) = \gamma'_-(1)$ and $\alpha \in L^1(0,1; H)$ such that $\alpha + \gamma'' \in \partial^- I_M(\gamma)$ a.e. Then $\forall \eta \in X$,

$$f(\eta) \ge f(\gamma) + \int_0^1 (\alpha, \eta - s) \, ds - \theta_1(\bar{p}) (1 + \|\gamma^{\prime\prime}\|_{L^1}^2 + \|\alpha\|_{L^1}^2) \|\eta - \gamma\|_{L^2}^2$$

where $\overline{p} = \max_{[0,1]} p \circ \gamma$ and $\theta_1 : \mathbb{R} \to \mathbb{R}^+$ is a continuous function.

Proof. - If $\eta \in X$, then: $f(\eta) - f(\gamma) - \int_0^1 (\alpha, \eta - \gamma) ds$ $= \frac{1}{2} \int_0^1 |\eta' - \gamma'|^2 ds + \int_0^1 (\gamma', \eta' - \gamma') ds - \int_0^1 (\alpha, \eta - \gamma) ds$ $= \frac{1}{2} \int_0^1 |\eta' - \gamma'|^2 ds - \int_0^1 (\alpha + \gamma'', \eta - \gamma) ds.$

By p-convexity of M, we have:

$$\frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds - \int_{0}^{1} (\alpha + \gamma'', \eta - \gamma) ds$$

$$\geq \frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds - \int_{0}^{1} p(\gamma) |\alpha + \gamma''| \cdot |\eta - \gamma|^{2} ds$$

$$\geq \frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds - \overline{p} ||\alpha + \gamma''||_{L^{1}} ||\eta - \gamma||_{L^{\infty}}^{2}. \quad (2.6.1)$$

Using in (2.6.1) the following estimate:

$$\| \eta - \gamma \|_{L^{\infty}}^{2} \leq \| \eta - \gamma \|_{L^{2}}^{2} + 2 \| \eta - \gamma \|_{L^{2}}^{2} \| \eta' - \gamma' \|_{L^{2}}^{2}$$

and then applying Young's inequality to the factor

$$2 \| \eta - \gamma \|_{L^2} \| \eta' - \gamma' \|_{L^2},$$

we obtain:

$$\begin{aligned} \frac{1}{2} \int_{0}^{1} |\eta'|^{2} ds &= \frac{1}{2} \int_{0}^{1} |\gamma'|^{2} ds = \int_{0}^{1} (\alpha, \eta - \gamma) ds \\ &\geq \frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds - \overline{p} \| \alpha + \gamma'' \|_{L^{1}} (\|\eta - \gamma\|_{L^{2}}^{2} + 2\|\eta - \gamma\|_{L^{2}}^{2} \|\eta' - \gamma'\|_{L^{2}}) \\ &\geq \frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds - 2\overline{p}^{2} \| \alpha + \gamma'' \|_{L^{1}}^{2} \|\eta - \gamma\|_{L^{2}}^{2} \\ &- \overline{p} \| \alpha + \gamma'' \|_{L^{1}} \|\eta - \gamma\|_{L^{2}}^{2} - \frac{1}{2} \int_{0}^{1} |\eta' - \gamma'|^{2} ds \end{aligned}$$

which gives the thesis.

Now we come back to the

Proof of theorem 2.2. – If $\partial^- f(\gamma) \neq \emptyset$, as a consequence of Definition 1.1 and Lemmas 2.4, 2.5, we get:

$$\gamma \in W^{2,2}(0,1; H)$$

and

$$\|\gamma^{\prime\prime}\|_{\mathrm{L}^{2}} \leq (1+2\overline{p}\sqrt{2f(\gamma)})(4\overline{p}f(\gamma)+\|\alpha\|_{\mathrm{L}^{2}}).$$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

If $0 \in \partial^- f(\gamma)$, from Lemma 2.4, we obtain $\forall \delta \in W_0^{1,2}(0,1; H)$:

$$\int_0^1 (\gamma', \, \delta') \, ds \ge -2 \int_0^1 p(\gamma) \left| \delta - \mathbf{P}_{\gamma} \, \delta \right| \cdot \left| \gamma' \right|^2 \, ds \qquad (2.2.1)$$

Since

$$\gamma' \in L^{\infty}(0,1; \mathrm{H}),$$
$$\left| \int_{0}^{1} (\gamma', \delta') ds \right| \leq 2\overline{p} \|\gamma'\|_{L^{\infty}}^{2} \|\delta\|_{L^{1}}, \quad \forall \delta \in \mathrm{W}_{0}^{1,2}(0,1; \mathrm{H})$$

and by duality:

$$\gamma^{\prime\prime} \in L^{\infty}(0,1; H).$$

Now, let us prove that $\gamma'_{-}(1) = \gamma'_{+}(0)$.

Let us consider $v \in H$ and $\forall n \in \mathbb{N}$, $\rho_n \in W^{1,2}(0,1)$ such that

$$\begin{array}{ll} 0 \leq \rho_n \leq 1, & \rho_n(0) = \rho_n(1) = 1, \\ \rho_n = 0 & in \quad \left[\frac{1}{2n}, \ 1 - \frac{1}{2n} \right]. \end{array}$$

Then, let us define the following functions:

$$\delta_n = \rho_n v, \qquad \forall n \in \mathbb{N}.$$

Again, from Lemma 2.4, we have:

$$\int_0^1 (\gamma', \, \delta_n') \, ds \ge \int_0^1 (\alpha, \, \mathbf{P}_{\gamma} \, \delta_n) \, ds - 2 \int_0^1 p(\gamma) \left| \, \delta_n - \mathbf{P}_{\gamma} \, \delta_n \right| \cdot \left| \gamma' \right|^2 \, ds \quad (2.2.2)$$

Integrating by parts and passing to the limit as $n \rightarrow \infty$, we obtain:

 $(\gamma'_{-}(1) - \gamma'_{+}(0), v) \ge 0, \quad \forall v \in \mathbf{H}$

and then

 $\gamma'_{-}(1) = \gamma'_{+}(0).$

Now suppose that $\gamma \in W^{2,2}(0,1; H)$ and $\gamma'_+(0) = \gamma'_-(1)$. By applying Lemma 2.6 with $\alpha = -\gamma''$, we get $-\gamma'' \in \partial^- f(\gamma)$, so that

 $\|\operatorname{grad}^{-} f(\gamma)\|_{L^{2}} \leq \|\gamma^{\prime\prime}\|_{L^{2}}.$

THEOREM 2.7. – Let us consider $\gamma \in X \cap W^{2,2}(0,1; H)$ with $\gamma'_+(0) = \gamma'_-(1)$ and $\alpha \in L^2(0,1; H)$.

Then $\alpha \in \partial^- f(\gamma)$ if and only if $\alpha(s) + \gamma''(s) \in \partial^- I_M(\gamma(s))$ a.e.

Moreover grad $f(\gamma) = -\mathbf{P}_{\gamma}(\gamma'')$.

Proof. – If $\alpha \in \partial^- f(\gamma)$, by Lemmas 2.4 and 2.5 we get

$$\alpha(s) + \gamma''(s) \in \partial^- I_{\mathbf{M}}(\gamma(s))$$
 a.e.

Viceversa, if $\alpha(s) + \gamma''(s) \in \partial^- I_M(\gamma(s))$ a.e., we apply Lemma 2.6 obtaining $\alpha \in \partial^- f(\gamma)$.

Now, since $-\mathbf{P}_{\gamma} \gamma'' \in \mathbf{L}^2$ and $-\mathbf{P}_{\gamma} \gamma'' \in \partial^- f(\gamma)$, if $\alpha \in \partial^- f(\gamma)$ then $\int_{0}^{1} (\alpha + \gamma'', \mathbf{P}_{\gamma} \gamma'') ds \leq 0.$

This means:

$$\int_0^1 \left(\mathbf{P}_{\gamma} \boldsymbol{\gamma}^{\prime \prime}, \, \boldsymbol{\gamma}^{\prime \prime} \right) ds \leq - \int_0^1 \left(\boldsymbol{\alpha}, \, \mathbf{P}_{\gamma} \boldsymbol{\gamma}^{\prime \prime} \right) ds$$

So that,

$$\| \mathbf{P}_{\boldsymbol{\gamma}} \boldsymbol{\gamma}^{\prime \prime} \|_{\mathbf{L}^2}^2 \leq \| \boldsymbol{\alpha} \|_{\mathbf{L}^2} \| \mathbf{P}_{\boldsymbol{\gamma}} \boldsymbol{\gamma}^{\prime \prime} \|_{\mathbf{L}^2}.$$

Now, we are ready to state the desired characterization:

THEOREM 2.8. – Let us consider $\gamma \in X$. Then: $0 \in \partial^- f(\gamma)$ if and only if γ is a closed geodesic on M; in this case $\gamma \in W^{2,\infty}(0,1; H)$ and the function $s \to |\gamma'(s)|$ is constant.

Proof. – If γ is a closed geodesic on M, we can apply Lemma 2.6 with $\alpha = 0$ obtaining $0 \in \partial^{-} f(\gamma)$.

Vice versa, if $0 \in \partial^- f(\gamma)$, from Theorem 2.2 we get:

$$\gamma \in W^{2, \infty}(0, 1; H)$$
 and $\gamma'_{+}(0) = \gamma'_{-}(1).$

Moreover, by Theorem 2.7 we get

$$\gamma''(s) \in \partial^- \mathbf{I}_{\mathbf{M}}(\gamma(s))$$
 a.e.

so that, γ is a closed geodesic on M.

Finally, since $|\gamma'|^2$ is Lipschitz continuous, in order to prove that the function $s \rightarrow |\gamma'(s)|$ is constant, we will show that

$$(|\gamma'|^2)'=0$$
 a.e.

Let us consider

$$\alpha \in \partial^{-} I_{\mathbf{M}}(\gamma(s)).$$

From Definition 1.1, we have:

$$(\alpha, \gamma(t) - \gamma(s)) \leq |\gamma(t) - \gamma(s)| \varepsilon(\gamma(t) - \gamma(s)) \qquad (2.8.1)$$

where

$$\lim_{\substack{v \to 0 \\ v \in L^2}} \epsilon(v) = 0.$$

Dividing by (t-s) and passing to the limit as $t \to s^+$ and $t \to s^-$ in (2.8.1), we get:

$$(\alpha, \gamma'(s)) = 0, \quad \forall \alpha \in \partial^{-} I_{\mathbf{M}}(\gamma(s)), \quad \forall s \in]0, 1[$$

which gives the thesis recalling that

 $(|\gamma'(s)|^2)' = 2(\gamma'(s), \gamma''(s))$ and $\gamma''(s) \in \partial^- I_M(\gamma(s))$ a.e. At this point, the proof of the existence of closed geodesics on M is reduced to the research of critical points for f.

The method we want to use for this aim is based on the evolution theory, as developed in [5], [6], [7], [9] and [10]. Therefore we need to prove that f has a φ -monotone subdifferential of order two:

THEOREM 2.9. – Let M be closed in H. Then f is l. s. c. and there exists a continuous function

$$\varphi_0: L^2 \times \mathbb{R} \to \mathbb{R}^+$$

such that:

$$f(\eta) \ge f(\gamma) + \int_0^1 (\alpha, \eta - \gamma) \, ds - \varphi_0(\gamma, f(\gamma)) \left(1 + \|\alpha\|_{\mathbf{L}^2}^2\right) \|\eta - \gamma\|_{\mathbf{L}^2}^2$$

whenever η , $\gamma \in \mathbf{X}$ and $\alpha \in \partial^{-} f(\gamma)$.

In particular, f has a φ -monotone subdifferential of order two.

Proof. – First we will prove that f is l. s. c. Let us take $\{\gamma_n\}_n \in X$ such that:

$$\lim_{n} \gamma_n = \gamma \quad \text{in } L^2(0,1; H) \qquad \text{and} \qquad f(\gamma_n) \leq c.$$

By definition of f, $\{\gamma_n\}_n$ converges weakly to γ in W^{1, 2}(0,1; H) and

$$\frac{1}{2}\int_0^1 |\gamma'|^2 \leq c.$$

So, we have only to prove that $\gamma \in X$.

But, since $\{\gamma_n\}_n$ converges uniformly to γ in [0, 1] and M is closed, we deduce that

$$\gamma(s) \in \mathbf{M}, \quad \forall s \in [0, 1]$$

and from $\gamma_n(1) = \gamma_n(0), \forall n \in \mathbb{N}$, we have: $\gamma(0) = \gamma(1)$.

So, $\gamma \in X$.

Now, using Theorem 2.2, Theorem 2.7 and Lemma 2.6, we obtain the existence of a continuous function $\theta_2 \colon \mathbb{R}^2 \to \mathbb{R}^+$ such that

$$f(\eta) \ge f(\gamma) + \int_0^1 (\alpha, \eta - \gamma) \, ds - \theta_2(\overline{p}, f(\gamma)) \left(1 + \|\alpha\|_{\mathbf{L}^2}^2\right) \|\eta - \gamma\|_{\mathbf{L}^2}^2$$

whenever η , $\gamma \in \mathbf{X}$, $\alpha \in \partial^- f(\gamma)$ and were $\overline{p} = \max_{\substack{\{0, 1\}\\ [0, 1]}} p \circ \gamma$.

By paracompactness and partition of unity, we obtain the existence of $\phi_0.$ \blacksquare

3. HOMOTOPICAL PROPERTIES OF THE SPACE OF THE ADMISSIBLE PATHS

In this section, we want to deduce some "homotopical" properties of the space of the admissible paths X endowed with the $W^{1,2}$ -topology. To this aim, let us recall the following result contained in [16] (see Theorem 8.14, page 189).

THEOREM 3.1. – Let $p: X \to B$ be a fibration. Let $x_0 \in X$, $b_0 = p(x_0)$, $F = p^{-1}(b_0)$. If p has a cross section, then

$$\pi_q(\mathbf{X}, x_0) \approx \pi_q(\mathbf{F}, x_0) \oplus \pi_q(\mathbf{B}, b_0), \qquad \forall q \ge 2$$

while $\pi(X, x_0)$ is a semi-direct product of $\pi_1(F, x_0)$ by $\pi_1(B, b_0)$.

From now on, if M is a metric space and $u_0 \in M$, we will denote by $\Omega(M, u_0)$ its loop space with base point u_0 and we will set:

$$\mathbf{X}^* = \{ \gamma \in \mathbf{C} ([0, 1]; \mathbf{M}) \text{ such that } \gamma(0) = \gamma(1) \}$$

endowed with the topology of the uniform convergence.

Remark 3.2. – The map $p: X^* \to M$ defined by $p(\gamma) = \gamma(0)$ is a fibration and

if
$$u_0 \in M$$
, then $p^{-1}(u_0) = \Omega(M, u_0)$.

Moreover, the map $\lambda: M \to X^*$ defined by

$$\lambda(u_0)(s) = u_0, \quad \forall s \in [0, 1]$$

is a cross section.

As a consequence of Theorem 3.1, let us prove:

THEOREM 3.3 (see, also, Lemmas 2.11 and 2.12 in [11])Let $M \subset \mathbb{R}^n$ be compact, p-convex, connected and non-contractible in itself. Then, there exists $k \in \mathbb{N}$ such that:

(i) There exists a continuous map $g: S^k \to X^*$ which is not homotopic to a constant.

(ii) Every continuous map $\tilde{g}: S^k \to M$ is homotopic to a constant.

Proof. — First of all, let us observe that, by Proposition 1.10, M is also arcwise connected. If M is not simply connected, then X^* is not arcwise connected, so that there exists a continuous map $g: S^0 \to X^*$ which is not homotopic to a constant. On the other hand, M is arcwise connected, then every continuous map $\tilde{g}: S^0 \to M$ is homotopic to a constant.

If M is simply connected, then X* and $\Omega(M)$ are arcwise connected. Since by Proposition 1.10, M is an A.N.R., $\pi_h(M)$ is not trivial for some h (cf. [14]). Let k+1 be the first integer such that $\pi_{k+1}(M)$ is not trivial $(k \ge 1)$. Applying Theorem 3.1, we have:

$$\pi_k(\mathbf{X}^*) \approx \pi_k(\mathbf{\Omega}(\mathbf{M})) \approx \pi_{k+1}(\mathbf{M}).$$

Then $\pi_k(X^*)$ is not trivial, on the contrary $\pi_k(M)$ is trivial, so that the theorem is proved.

THEOREM 3.4.. — Let $M \subset \mathbb{R}^n$ be compact and p-convex. If there exists $k \ge 0$ and a continuous map $g: S^k \to X^*$ which is not homotopic to a constant, then there exists a continuous map $\tilde{g}: S^k \to X$ which is not homotopic to a constant.

For the proof of this theorem, we need the following result contained in [8] (see Theorem 3.17).

THEOREM 3.5. — Let W be an open subset of a real Hilbert space V and $g: W \to \mathbb{R} \cup \{+\infty\}$ be a l.s. c. function with a φ -monotone subdifferential of order 2. Then there exists a map $j: D(g) \to D(g)$ such that:

(i) $j(g^b) \subset g^b, \forall b \in \mathbb{R}$, where $g^b = \{ u \in \Omega : g(u) \leq b \}$; (ii) $j: (g^b, |.|_V) \rightarrow (g^b, d^*)$ where

$$d^{*}(u, v) = |u-v| + |g(u)-g(v)|, \quad \forall u, v \in D(g)$$

is continuous and it is a homotopy inverse of the identity function: Id: $(g^b, d^*) \rightarrow (g^b, |.|_v)$.

Proof of theorem 3.4. — Let k be a natural number and $g: S^k \to X^*$ a continuous map which is not homotopic to a constant.

Let us set

$$X_{A}^{*} = \{ \gamma \in C([0, 1]; A); \gamma(0) = \gamma(1) \}$$

endowed with the topology of the uniform convergence, where A is the set defined in Remark 1.7.

By Proposition 1.6, X* is a deformation retract of X_A^* . Then the map $g: S^k \to X_A^*$ is not homotopic to a constant.

Moreover, since X_A^* is an open subset of the Banach space:

$$\mathbf{X}_{\mathbb{R}^{n}}^{*} = \{ \gamma \in \mathbf{C}([0, 1]; \mathbb{R}^{n}); \gamma(0) = \gamma(1) \},\$$

by [14], we deduce that X_A^* is homotopically equivalent to

$$\mathbf{X}_{\mathbf{A}} = \left\{ \gamma \in \mathbf{W}^{1, 2} \left(0, 1; \mathbb{R}^{n} \right); \gamma \left(0 \right) = \gamma \left(1 \right); \gamma \left(s \right) \in \mathbf{A} \right\}$$

endowed with $W^{1, 2}$ -topology.

Therefore, there exists a continuous map $f_1: S^k \to X_A$ which is not homotopic to a constant.

Now, let *a* be a real number such that

$$\frac{1}{2}\int_0^1 |\gamma'|^2 ds \leq a, \qquad \forall \gamma \in f_1(\mathbf{S}^k).$$

Then, setting

$$\mathbf{X}_{\mathbf{A}}^{b} = \left\{ \gamma \in \mathbf{X}_{\mathbf{A}} \text{ such that } \frac{1}{2} \int_{0}^{1} |\gamma'|^{2} ds \leq b \right\},$$

we have that $f_1: S^k \to X_A^b$ is not homotopic to a constant $\forall b \ge a$.

At this point, let us remark the following: $\forall \gamma \in X_A^b$ there exists $r(\gamma) > 0$ such that if

$$\eta \in \mathbf{W}^{1,2}(0,1; \mathbb{R}^n),$$

$$\int_0^1 |\eta'|^2 ds \leq b \quad \text{and} \quad \|\eta - \gamma\|_{\mathbf{L}^2} < r(\gamma)$$

then $\eta(s) \in \mathbf{A}, \forall s \in [0, 1]$.

Now, let us set

$$\mathbf{V} = \mathbf{L}^2(0,1; \ \mathbb{R}^n); \qquad \mathbf{W} = \bigcup_{\boldsymbol{\gamma} \in \mathbf{X}^h_{\boldsymbol{\lambda}}} \mathbf{B}(\boldsymbol{\gamma}, \ \boldsymbol{r}(\boldsymbol{\gamma}))$$

where $B(\gamma, r(\gamma))$ is the open ball in L^2 of center γ and radius $r(\gamma)$ and let us define a function $g: W \to \mathbb{R} \cup \{+\infty\}$ in such a way:

$$g(\gamma) = \begin{cases} \frac{1}{2} \int_{0}^{1} |\gamma'|^2 ds & \text{if } \gamma \in \mathbf{X}_{\mathbf{A}}^{b} \\ +\infty & \text{if } \gamma \in \mathbf{W} \setminus \mathbf{X}_{\mathbf{A}}^{b} \end{cases}$$

Obviously, g is the restriction to W of a convex and l.s.c. function on $L^{2}(0, 1; \mathbb{R}^{n}).$

Since $X_A^b = g^b$, by Theorem 3.5 we deduce that

$$i: X^b_A \to \widetilde{X}^b_A,$$

where \tilde{X}^b_A is defined as the space X^b_A endowed with the L²-topology, is a homotopy equivalence $\forall b \ge a$.

Therefore, $f_1: S^k \to \tilde{X}^b_A$ is not homotopic to a constant $\forall b \ge a$.

Now, let us consider the following homotopy H defined on $f_1(S^k) \times [0, 1]$, in such a way:

$$H(\gamma, t)(s) = t \pi (\gamma(s)) + (1-t) \gamma(s).$$

By Remark 1.7, we have:

$$| \mathbf{H}(\gamma, t)'(s) | \leq 2t | \gamma'(s) | + (1-t) | \gamma'(s) | \leq 2 | \gamma'(s) |.$$

So that $H: f_1(S^k) \times [0, 1] \to \widetilde{X}_A^b$ where $b \ge 4a$.

Let us take $f_2 = H(., 1) \circ f_1$. The map $f_2: S^k \to \widetilde{X}^k_A$ is not homotopic to a constant, moreover $f_2(S^k) \subset \widetilde{X}^b$ where

$$\widetilde{\mathbf{X}}^{b} = \left\{ \gamma \in \mathbf{X} : \frac{1}{2} \int_{0}^{1} |\gamma'|^{2} ds \leq b \right\}$$

endowed with the L²-topology.

Then, $f_2: S^k \to \tilde{X}^b$ is not homotopic to a constant $\forall b \ge 4 a$. Now, applying Theorem 3.5 to

> $V = W = L^2(0, 1; \mathbb{R}^n)$ and $g \equiv f$

> > Annales de l'Institut Henri Poincaré - Analyse non linéaire

where f is the energy functional defined in section 2, we deduce the existence of a map $j: \tilde{X} \to X$ where \tilde{X} denotes the space X endowed with the L²-topology such that $\forall b, j(\tilde{X}^b) \subset X^b$. Moreover j is continuous and it is a homotopy inverse of the identity function.

Finally, let us consider the continuous map $f_3: S^k \to X^b$ defined by $f_3 = j \circ f_2$. It is not homotopic to a constant $\forall b \ge 4a$ and then $f_3: S^k \to X$ is not homotopic to a constant.

THEOREM 3.6. — Let $M \subset \mathbb{R}^n$ be compact and p-convex and f the functional defined in section 2. Then there exists a > 0 such that

$$f^a = \{\gamma : \gamma \in \mathbf{X} \text{ and } f(\gamma) \leq a\}$$

endowed with the $W^{1,2}$ -topology is homotopically equivalent to M.

For the proof of this theorem we will need the following lemma:

LEMMA 3.7. – Let f^0 be the set of the constant curves. Then there exists a>0 such that f^0 is a strong deformation retract of f^a endowed with the L^2 -topology.

Proof. – Since M is compact, we can suppose that M is *p*-convex with $p \equiv \text{Const.}$ Let us take $\gamma \in f^a$ and let us consider

$$t \gamma(0) + (1-t)\gamma(s)$$
 with $t \in [0, 1]$.

We remark that:

$$d(t\gamma(0) + (1-t)\gamma(s), \mathbf{M}) \leq |t\gamma(0) + (1-t)\gamma(s) - \gamma(0)|$$

= $(1-t) |\gamma(s) - \gamma(0)| \leq \left(\int_0^1 |\gamma'|^2 ds\right)^{1/2} \leq \sqrt{2a}.$ (3.7.1)

Therefore, taking a such that $4p\sqrt{2a} < 1$, by (3.7.1), we have that

$$t \gamma(0) + (1-t) \gamma(s) \in \mathbf{A}$$

where A is defined in Remark 1.7.

Now we can consider the map H defined on $f^a \times [0, 1]$ in this way:

$$H(\gamma, t)(s) = \pi (t \gamma (0) + (1-t) \gamma (s)).$$

Let us observe that by Proposition 1.9:

$$d(t\gamma(0) + (1-t)\gamma(s), \mathbf{M}) = |t\gamma(0) + (1-t)\gamma(s) - \pi(t\gamma(0) + (1-t)\gamma(s))| \le 2pt(1-t)|\gamma(0) - \gamma(s)|^2 \le 4pat(1-t). \quad (3.7.2)$$

By (3.7.2) and (ii) of Proposition 1.6, we have:

$$\frac{d}{ds} H(\gamma, t)(s) \bigg| \leq (1 - 8p^2 at (1 - t))^{-1} (1 - t) |\gamma'(s)| \leq |\gamma'(s)|$$

so that we deduce:

$$\int_0^1 \left| \frac{d}{ds} \mathbf{H}(\gamma, t)(s) \right|^2 ds \leq 2 a.$$

Therefore,

$$\mathbf{H}(\gamma, t)(s): f^a \times [0, 1] \to f^a.$$

Moreover,

$$H(\gamma, 0)(s) = \gamma(s)$$
 and $H(\gamma, 1)(s) = \gamma(0)$, $\forall s \in [0, 1]$

To conclude the proof it is enough to point out that if we endowe f^a with the L²-topology, H is a continuous map.

Proof of Theorem 3.6. - By applying Theorem 3.5 to

$$W = L^2(0, 1; \mathbb{R}^n)$$
 and $g \equiv f$

where f is the functional defined in section 2, we obtain that f^a endowed with the W^{1,2}-topology is homotopically equivalent to f^a with the L²-topology.

On the other hand, M is homeomorphic to f^0 with the L²-topology. Using lemma 3.7 we get the thesis.

THEOREM 3.8. – There exists a>0 such that f^a and X (both endowed with the W^{1,2}-topology) are not homotopically equivalent.

Proof. – Obvious from Theorems 3.3, 3.4 and 3.6. ■

4. THE MAIN RESULT

After Theorem 2.8, the problem to establish the existence of a nonconstant closed geodesic on M, compact, connected and *p*-convex subset of \mathbb{R}^n , is reduced to find critical points for the energy functional f on the space of the admissible paths X (see section 2 for the Definition of fand X).

To this aim, we need a deformation lemma like the one contained in [13]. We shall use a version included in [8] (see Lemma 4.4).

LEMMA 4.1. — Let V be a real Hilbert space and $g: V \rightarrow \mathbb{R} \cup \{+\infty\}$ a l.s. c. function with a φ -monotone subdifferential of order 2. We set

 $d^{*}(u, v) = |u-v| + |g(u)-g(v)|, \quad \forall u, v \in D(g).$

Annales de l'Institut Henri Poincaré - Analyse non linéaire

Let $-\infty < a < b \leq +\infty$ be such that:

(i) $0 \notin \partial^- g(u)$ whenever $u \in D(g)$ and $a \leq g(u) \leq b$;

(ii) $\forall c \in [a, b[$ and $\forall \{ u_n \}_n \subset D(\partial^- g)$ with $\lim_n g(u_n) = c$ and

 $\lim \operatorname{grad}^{-} g(u_n) = 0, \ \{u_n\}_n \ has \ a \ converging \ subsequence \ in \ V.$

Then g^a is a strong deformation retract of g^b in g^b , where g^a and g^b are endowed with the metric d^* .

Combining this lemma with the topological results in section 3, we can state the desired result:

THEOREM 4.2. – Let $M \subset \mathbb{R}^n$ be compact, p-convex, connected and non-contractible in itself.

Then, there exists at least a non-constant closed geodesic on M.

Proof. — Let us consider the energy functional f defined in section 2. By Theorem 2.9, f is l.s.c. and it has a φ -monotone subdifferential of order 2.

Moreover, by Theorem 2.8, the thesis is equivalent to state that there exists $\gamma \in X$ such that $0 \in \partial^- f(\gamma)$, and $f(\gamma) > 0$. So, if, by contradiction, the thesis is not true, we can apply Lemma 4.1 with

$$\mathbf{V} = \mathbf{L}^2(0, 1; \mathbb{R}^n), \qquad g \equiv f, \qquad b = +\infty$$

and a given by Theorem 3.8.

We recall that condition (ii) is satisfied because M is compact and the metric d^* induces the W^{1,2}-topology on $X = f^b$.

Then, by Lemma 4.1 we deduce that X and f^a are homotopically equivalent, which is impossible by Theorem 3.8.

REFERENCES

- J. P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.
- [2] A. CANINO, On p-Convex Sets and Geodesics, J. Differential equations, Vol. 75, No. 1, 1988, pp. 118-157.
- [3] G. CHOBANOV, A. MARINO and D. SCOLOZZI, Evolution Equations for the Eigenvalue Problem for the Laplace Operator with Respect to an Obstacle, preprint No. 214, Dip. Mat. Pisa, 1987.
- [4] G. CHOBANOV, A. MARINO and D. SCOLOZZI, Molteplicità dei punti stazionari per una classe di funzioni semicontinue. Condizioni di "non tangenza" fra dominio della funzione e vincolo. Pendenza e regolarizzazione, preprint No. 167, Dip. Mat. Pisa, 1986.
- [5] E. DE GIORGI, M. DEGIOVANNI, A. MARINO and M. TOSQUES, Evolution Equations for a Class of Nonlinear Operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 75, 1983, pp. 1-8.
- [6] E. DE GIORGI, A. MARINO and M. TOSQUES, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 68, 1980, pp. 180-187.

- [7] E. DE GIORGI, A. MARINO and M. TOSQUES, Funzioni (p, q)-convesse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), Vol. 73, 1982, pp. 6-14.
- [8] M. DEGIOVANNI, Homotopical Properties of a Class of Nonsmooth Functions preprint No. 200, Dip. Mat. Pisa, 1987.
- [9] M. DEGIOVANNI, A. MARINO and M. TOSQUES, General Properties of (p, q)-Convex Functions and (p, q)-Monotone Operators, *Ricerche Mat.*, Vol. 32, 1983, pp. 285-319.
- [10] M. DEGIOVANNI, A. MARINO and M. TOSQUES, Evolution Equations with Lack of Convexity, Nonlinear Anal., Vol. 9, 1985, pp. 1401-1443.
- [11] W. KLINGENBERG, The Theory of Closed geodesics in "Eigenvalues of Nonlinear Problems", C.I.M.E., III^o ciclo, Varenna, 1974, Cremonese, Roma, 1974, pp. 85-137.
- [12] W. KLINGENBERG, Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, Vol. 230, Springer-Verlag, Berlin-New York, 1978.
- [13] A. MARINO and D. SCOLOZZI, Geodetiche con ostacolo, Boll. Un. Mat. Ital., B(6), Vol. 2, 1983, pp. 1-31.
- [14] R. S. PALAIS, Homotopy Theory of Infinite Dimensional Manifolds, Topology, Vol. 5, 1966, pp. 1-16.
- [15] D. SCOLOZZI, Un teorema di esistenza di una geodetica chiusa su varietà con bordo, Boll. Un. Mat. Ital., Vol. A (6), 4, 1985, pp. 451-457.
- [16] G. W. WHITEHEAD, Elements of Homotopy Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1978.
- [17] F. E. WOLTER, Interior Metric Shortest Paths and Loops in Riemannian Manifolds with not Necessarily Smooth Boundary, preprint.

(Manuscrit reçu le 4 juin 1987.)