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ABsTRACT. — The existence of a non constant closed geodesic on some
nonsmooth sets is proved.
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RisuME. — On montre P'existence d’une géodésique fermée non cons-
tante sur certains ensembles non réguliers.

0. INTRODUCTION

A well-known result by Lusternik-Fet (see, for instance, [12]) establishes
the existence of a non-constant closed geodesic in a compact regular
Riemannian manifold without boundary.

In [15], this result is generalized to cover manifolds with boundary.

In both cases, the problem is reduced to a research of critical points

1
for the energy functional f (y)= % J. [¥"|? ds on the space of the admissible
0
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502 A. CANINO

paths X ={yeW"?(0,1; M); y(0)=v(1) } where M is the manifold consi-
dered.

In this paper, we shall extend Lusternik-Fet result to cover a more
general situation, namely p-convex sets. Such class of sets was introduced
in [9] and in a less restrictive version in [2], where is also proved the
existence of infinitely many geodesics on M orthogonal to My and M,
under the hypothesis that M, M, and M, are p-convex subsets of R".

Examples of p-convex sets are CJ;!-submanifolds (possibly with bound-
ary) of a Hilbert space and images under a C;!-diffeomorphism of convex
sets.

The motivation for considering Lusternik-Fet result in the context of
p-convex sets comes from some remarks about regularity of f and X.

In the case handled by Lusternik-Fet, f is a regular functional and X is
a regular Riemannian manifold, on the contrary, in [15], even if M is a
regular manifold, X has not a natural structure of manifold and f is not
regular. All that suggests that the more natural way to deal with this
problem is to consider as starting-point irregular sets.

This consideration prompted the present work.

Other typical problems in differential geometry, concerning sets with a
certain degree of irregularity, are treated in [17].

For proving our result, we use a variational technique adapted for non
regular functionals. We characterize closed geodesics as “critical points”
for the energy functional f on the space X of the admissible paths. Then,
we prove that f is included in the class of ¢-convex functions (see, for
instance, [10]). For such functions, some adaptations of classical variational
methods in critical point theory (such as deformation lemmas) are available
(see, for instance, [4), [8], [13]).

The present work is divided in 4 sections.

In the first section, we recall the definition of p-convex sets and describe
some properties of them. In the second one, we give a variational character-
ization for closed geodesics. The third section is a topological one. We
deduce some homotopic properties of X. They together with a suitable
deformation lemma are the basic tools for the proof of the existence of at
least a non-constant closed geodesic on a p-convex subset of R”, in section
four.

1. SOME RECALLS ON p-CONVEX SETS

In this section, we shall define p-convex sets and describe their properties.
Before, let us recall some notions of non-smooth analysis (c¢f. [3]

to [7], [9], [10].
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CLOSED GEODESICS ON p-CONVEX SETS 503

From now on, H will be a real Hilbert space, |.| and (.,.) its norm
and scalar product, respectively.

DerINITION 1.1 (see also [3] and [6]). — Let Q be an open subset of H
and f: Q->RU{+00} amap.
We set
D(f)={ueQ: f(w<+wo}.

Let u belong to D(f). The function f is said to be subdifferential at u if
there exists a.€ H such that

i i £ O —f ()—(o 0—1)

=0.
vy [v—u| -

We denote by 0~ f (u) the (possibly empty) set of such s and we set
D@ f)={ueD(f): 0" f(w#I}.

It is easy to check that 3~ f (u) is convex and closed YVueD (f).
If ueD(0" f), grad™ f (u) will denote the element of minimal norm of
0~ f (u). Moreover, let M be a subset of H. We denote by 1y, the function:

I, (4) = 0, ueM
M +00, ueH\ M.

It is easy to check that 0~ I (u) is a cone Yue M.

We will call normal cone to M at u the set 3~ 1,;(u) and tangent cone to
M at u its negative polar (0™ Iy ()™, i.e.,

(0" Iy(w)~ ={veH: (v, w)<O0, Vwed Iy(u)}.
DEeFINITION 1.2. — A point ueD (f) is said to be critical from below

Jor fif 0€0™ f (u); ceR is said to be a critical value of f it there exists
ueD(f) such that

0ed™ f(w) and f(Ww=c.

DeriNiTION 1.3 (see also [S], [10]). — Let Q be an open subset of H. A
Junction f: Q—» R\ { + o0} is said to have a p-monotone subdifferential if
there exists a continuous function

0o: D(f/)xR*>R"
such that:

((Z—ﬁ, u—U)g—((P(uaf(“)a |a|)+(p(v,f(v), lﬁ‘))lu_vlz

whenever

u, veD(0™ f), aed” f(u) and Bed™ f (v).
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504 A. CANINO

If pz1, fis said to have a @-monotone subdifferential of order p if there
exists a continuous function

r: D(f)*xRZ-R*
such that:
(=B, u—v)Z —x(u, v, f (W), f @)1 +|a|?+|B ) |u—v]?
whenever
u,veD(@ f), «€d f(w) and Ped f ()
Now let us give the definition of p-convex sets (cf. [2]).

DEerFINITION 1.4. — Let M be a subset of H. M is said to be a p-convex
set if there exists a continuous function p : M — R™* such that

(@ v—w=pw)|afo—ul

whenever u, veM and a0~ Iy (u).

Examples of p-convex sets are the following ones:

(1) the CL!-submanifolds (possibly with boundary) of H;

(2) the convex subsets of H;

(3) the images under a C;,;!-diffeomorphism of convex sets;

(4) the subset of R": {x: max|x;| <1, Y x?=1} [note that it is not
included in the classes (1), (2), (3)].

Several properties of p-convex sets are proved in [2]. We recall some of
them.

Let us define the following set relatively to a p-convex set M:

DEFINITION 1.5. — Let us denote by A the set of w'seH with the two
properties:
() 8,(u, M)<1 where §,(u, M)=limsup 2p(w)|u—w|.
Ju-—w| = d(u, M)
weM

(i) 3r20 such that M N {veH:|v—u|<r} is closed in H and not
empty. R
Obviously, Mc A and:

ProrosiTioN 1.6. — Let McH be p-convex and locally closed. Then
A is open and VueA there exists one and only one weM such that
|u—-w|=d(u, M).

Moreover, if we set n(u)=w, then

() (u—m)ed™ Ly(n(u)) and 2p (n (W) |u—n(w)|<1, VueA.

(i) |m(uy)—m () [SA—p (@ (uy) [u, —n(u,)| R

jP(“(ug))luz—“(uz)l)—l |u1_u2 I, Vuy, ueA.

(i) @ +(1—t)u)eA, YueA, Yte[0,1].

Remark 1.7. — Let us set A={ueA: 4p(n(u)|u—mn(u)|<1}. Then
A is an open set containing M and one can easily prove that m: A > M is
Lipschitz continuous of constant two.
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CLOSED GEODESICS ON p-CONVEX SETS 505

ProrosiTioN 1.8. — Let M cH be locally closed and p-convex. Then

im T(u+sv)y—u

s—»o0*

=P, ()

YueM and VveH, where P, is the projection on the tangent cone to M at
u, i.e. (0”7 Iy(w)™.

ProposiTion 1.9. — Let McH be locally closed and p-convex. Let us
take ueM and B(u, r)={veH : |v—u| <r}cA. Then

| suy + (1 —5)ug— 7 (suy + (1 —5) up)]|
<2p (m(suy+(1—5) ) s (1 —5) | up—y |

Vsel0,1] and Yuq, u, €B(u, r).

ProrosiTioN 1.10. — Let McH be locally closed and p-convex. Then
M is an absolute neighbourhood retract (see [14] for the definition of absolute
neighbourhood retract).

Finally, let us point out that the two definitions of tangent cone given
in [1] and in [3] coincide in the case of p-convex sets. Indeed:

ProposiTioN 1.11. — Let McH be locally closed and p-convex. Then
VueM

Cu(W)=Ty(1)=00"Tu(m)",

where Cy(u) and Ty (u) are respectively the tangent cone and the contingent
cone to M at u.

2. VARIATIONAL CHARACTERIZATION
OF CLOSED GEODESICS

In this section, H will indicate a real Hilbert space, McH a locally
closed p-convex set and we will deal with closed geodesics on M, namely:

DermiTion 2.1. — A curve vy : [0,1] = M is said to be a closed geodesic
on M if

(@) YyeW>1(0,1; H);

(b) v’ (s)ed™ Ly(y(s)) a.e. in]0,1];

(¢) v(0)=v(1) and v, (0) =7 (1).

We want to characterize them as critical points for the energy functional

f+ L2(0,; H)»RU{+00}

Vol. 5, n° 6-1988.



506 A. CANINO

defined in such a way:

1 1
fin= { EJ;) I'Yllzds, veX
+ o0, yeL?(0,1; H\ X
where
X={yeW"*(0,1; H) : y(s)eM, Vs, y(0)=7 (1)}
is the so called space of the admissible paths.
For this purpose, let us state:

THEOREM 2.2. — Let us take ye X. Then &~ f(# if and only if
yeW>2(0,;, H)  and v, (0)=v_(1);
in such a case
lgrad™ f () |l <y’ L2200, f ()1 +[|grad~ f (v)||2)

where p=max (poy) and 8 : R?> > R* is a continuous function.
(0,11

Moreover, if 00~ f (y) then ye W*(0,1; H).
Before the proof, we give some lemmas which are essentially contained
in [2].
If yeX and §eL?(0,1; H), we set:
(P,8)(5)=P, ,8() -
where P, is the projection on the tangent cone to M at y(s).
By Proposition 1.8, P,8eL?(0,1; H).

Lemma 2.3 (see [2], Lemma 3.3). — Let us take 5¢ W2(0,1; H) and
yeW"2(0,1; H) such that y(s)e M, Vse[0,1]. Then

1 1
5 f I ('Y +t 6)/
lim inf =<0

t-0" t

2ds

1
2ds—lj |m(y+t8y
2J)o

2—2J p(|8-P,3|.
V]

Y |2 ds.
LEMMA 2.4. — Let us take yeX and a.cd~ f (y). Then

fl(y’, d)dsz Jl(a, PYB)ds—2J1p(y)]6—P781.
0 0 V]

V3e Wh2(0,1; H) with 8(0)=5(1).

Proof. — Let us take 8 W2(0,1; H) with §(0)=5(1).
We observe that, if :>0 is sufficiently small, we can define n(y+16)
and:

2ds

’Yl

m(y+t8)()eM,  m{(y+t8)(O)]=n[(y+t8)(1)].

Annales de I'Institut Henri Poincaré - Analyse non linéaire



CLOSED GEODESICS ON p-CONVEX SETS 507

Then
=f(n(y+13)).

1 1

= n(y+td)y

2L |m(y+13)
Now, let us consider aed™ f (y). By Proposition 1.8, we have:

1 1
j (v, 8)ds— J (o, P,8)ds
0 0

11 ,
= lim - —|(‘Y+t5)
t-ot tdo (2

>1lim inf ljl l[1t( +t8)’|2—l
- 2! 2

t-0" 0

2—%[y’|2—-a(n(y+t8)—y)}ds

Y 2—<>t(1t(v+t5)—y)}

P O
+ lim inf —f {|(y+t8Y P —|n(y+18) | } ds.
rsot 2tJo
a(y+td)—y
t
consequence of Definition 1.1 and Lemma 2.3. W

Recalling that( > is bounded in L2(0,1; H), the thesis is a

LEmMMA 2.5 (see [2), Lemma 3.5). — Let aelL?(0,1; H) and
ye W'2(0,1; H) be such that y(s)eM, Vse[0,1].
Let us suppose that:

Jl(y’, 5')4@[1(% PYS)ds—Zjlp(y)M—PYS[.|y’|2ds
0 o 0o

vY8eWy2(0,1; H).
Then
yeW>2(0,1; H), vy'(s)+a(s)ed Iy(y(s)) a.e,

v o[ 12 [ 1rPas) ] (2] 1 paselalie)

where p=maxp-y.
[0.11

LemMa 2.6. — Let us take ye X NYW21(0,1; H) with v, (0)=v"_(1)

and aeL'(0,1; H) such that a+v"' €0~ 1,(y) a.e. Then VneX,

and

’

Y

f(n).Z.f(Y)+J (o, n—5)ds—8, @) (1+|v" [ +[[ el [E) [ n —v 22

where p=maxpoy and 8, : R— R" is a continuous function.
[0,11
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Proof. — If neX, then:

1
f(n)—f(v)—f (o, n—7y)ds
0

1 1 1 1
=5J In’—~Y’|2dS+f v, n’—v’)ds—f (@, n—7y)ds
0 0 0

1 1 1
=_j ln’—y’[zds—f (a+v”, n—v)ds.
2J)o 0

By p-convexity of M, we have:

1 1 1

- J [n’~¥’!2ds—f (@+y", n—v)ds
2 ] ]

1 1 1
;—j In’—v’(zds—f pMlat+y’ | In—vy[*ds
2 0 0

I —
;EJ W= [Fds=pllaty s [n=v[Ee. (2.6.1
0

Using in (2. 6. 1) the following estimate:
In=vlE=<ln—vlE2+2n—v/zfn' =72

and then applying Young’s inequality to the factor
2fn=v [l —v|

L2’
we obtain:

N 1J1
- n’ ds— —
2 J;‘ | 2 Jo

1 [t _
;—f W=y |2ds—plla+y” u(In—v Rz +2n—7 ]2 n =72

2 Jo
1
22 |
=2,

which gives the thesis. H
Now we come back to the

Proof of theorem 2.2. — If 8~ f(yY)#JJ, as a consequence of Defi-
nition 1.1 and Lemmas 2.4, 2.5, we get:

yeW22(0,1; H)

1
Y’[zds—j (o, n—7y)ds
0

N =y [Pds—2p? |oa+y” [t [ n—v P2

2ds

— !
~llety o=yl 3 [ -y
0

and

v lle=(1+20 /2 F @) @5 f () +]| 2 |L2).
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CLOSED GEODESICS ON p-CONVEX SETS 509
If 0ed™ f (y), from Lemma 2.4, we obtain Ve W{-2(0,1; H):

1 1
f v, 8’)dsg—2j p(y)|8—P,3|.|v Pds (2.2.1)
0 0

Since
vy eL*(0,1; H),

<25||v B llBlls  VEEWR2(0,1 H)

1
j (v, 8)ds
0

and by duality:
v"eL®(0,1; H).

Now, let us prove that y_ (1) =7/, (0).
Let us consider veH and VneN, p,e W2(0,1) such that

0=<p,=1, P.(0)=p,(1)=1,

1 1
,=0 in | —,1——].
P |:2n Zn]

Then, let us define the following functions:
d,=p,0, VneN.
Again, from Lemma 2.4, we have:

1 1 1
f (v, SstgJ. (o, P,S,,)ds—Zj p(y)|8,,—P78,,|.|7’[2ds (2.2.2)
V] 0

0

Integrating by parts and passing to the limit as n — oo, we obtain:

(Y- ()—7v%(0), )20, VveH
and then
Y- (1) =% (0).

Now suppose that yeW?>2(0,1; H) and v, (0)=y_(1). By applying
Lemma 2.6 with o= —7", we get —y”"€d~ f (y), so that

|grad” f D [lz< v [l W
THeoOREM 2.7. — Let us consider yeX N\W?*2(0,1; H) with
v, 0)=7" (1) and xeL2(0,1; H).
Then acd™ f(y) if and only if a(s)+7y" (s)ed™ Iy(y(s)) a.e.

Moreover grad™ f ()= —P,(y").
Proof. — If a€d™ f (y), by Lemmas 2.4 and 2.5 we get

a(s)+y (s)ed” Iy(y(s)) a.e.
Viceversa, if a(s)+7v" (s)e 0™ Iy (Y(s)) a. e., we apply Lemma 2. 6 obtaining
xed” f(y).

Vol. 5, n° 6-1988.



510 A. CANINO

Now, since —P,y’eL? and —P,y €0 f(y), if aed” f(y) then
1
j (a+7", P,y") ds 0.
0

This means:

fi Py, v ds< —Jl (o, P,Y") ds.
So that, ° °
1Py 2=z (| Py [l
Now, we are ready to state the desired characterization:
THEOREM 2.8. — Let us consider yeX. Then: 00 f (y) if and only if v

is a closed geodesic on M; in this case ye W* ®(0,1; H) and the function
s— | Y (s)] is constant.

Proof. — If y is a closed geodesic on M, we can apply Lemma 2.6
with a=0 obtaining 0ed™ f (y).
Vice versa, if 00 f (y), from Theorem 2.2 we get:

yeW2 *(0,1; H) and v, (0)=v_(1).
Moreover, by Theorem 2.7 we get
Y/ (5)ed™ Iy(v(s)) a.e.
so that, y is a closed geodesic on M.

Finally, since |y’|? is Lipschitz continuous, in order to prove that the
function s — |y’ (s)| is constant, we will show that
(|v13»'=0 a.e.

Let us consider

aed” Iy(y(s)).
From Definition 1.1, we have:

(o, YO —YO) S| YO —1$) e (Y () —7 () (2.8.1)
where
lim e(v)=0.
v—0

Dividing by (¢t —s) and passing to the limit as ¢t > s* and t > s~ in (2.8.1),
we get:
(o, ¥ (5))=0, Vaed Iy(y(s)), Vse]0,1[
which gives the thesis recalling that
(JY®=2(v'(), v () and  v'(5)€d Iy(v(s)) ae W

At this point, the proof of the existence of closed geodesics on M is
reduced to the research of critical points for f.
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CLOSED GEODESICS ON p-CONVEX SETS 511

The method we want to use for this aim is based on the evolution
theory, as developed in [5], [6], [7], [9] and [10]. Therefore we need to
prove that f has a p-monotone subdifferential of order two:

THEOREM 2.9. — Let M be closed in H. Then fis L. s. c. and there exists
a continuous function

0o: LZxR-R*
such that:
1
f(n)éf(v)+f (@ N—7)ds— 0, (v, f (V) (1+| || 22) || n—7]|22
whenever n, ye X and o € 0~ f (y).

In particular, f has a ©-monotone subdifferential of order two.

Proof. — First we will prove that fis 1. s. c.
Let us take {v,},€X such that:

limy,=y in L?(0,1; H) and  f(y,)=Zc

By definition of f, {v,}, converges weakly to y in W' 2(0,1; H) and

1
1‘[ Y|*<e
2Jo

So, we have only to prove that yeX.

But, since {7, }, converges uniformly to y in [0, 1] and M is closed, we
deduce that

v(s)eM, Vsel0, 1]

and from v,(1)=v,(0), ¥V n € N, we have: y (0)=y (1).

So, vy € X.

Now, using Theorem 2.2, Theorem 2.7 and Lemma 2.6, we obtain
the existence of a continuous function 6,: R » R* such that

f(n)zf(v)+J (6 N=7)ds—0,(p, f (V) (1 +|la||Z2) [[n—7] 22

whenever 1, yeX, aed” f(y) and were p=maxpor.
[, 1]

By paracompactness and partition of unity, we obtain the existence
of p,, N
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3. HOMOTOPICAL PROPERTIES OF THE SPACE OF THE
ADMISSIBLE PATHS

In this section, we want to deduce some “homotopical” properties of
the space of the admissible paths X endowed with the W': 2-topology. To
this aim, let us recall the following result contained in [16] (see
Theorem 8. 14, page 189).

Tueorem 3.1. — Let p:X — B be a fibration. Let x,eX, by=p(x,),
F=p~Y(b,). If p has a cross section, then

ﬂq(X, xo)znq(Fa xO)('Bnq(Ba bO)’ ngz
while ©(X, x,) is a semi-direct product of n,(F, x,) by m, (B, b,).

From now on, if M is a metric space and u,eM, we will denote by
Q(M, u,) its loop space with base point u, and we will set:

X*={yeC([0, 1}, M) suchthaty(0)=7v(1)}
endowed with the topology of the uniform convergence.

Remark 3.2. — The map p: X* - M defined by p (y)=v(0) is a fibration
and

ifugeM, thenp™! (uy) =Q(M, u).
Moreover, the map »: M — X* defined by
A(ug) ()=uo,  Vse0,1]

is a cross section.
As a consequence of Theorem 3. 1, let us prove:

THEOREM 3.3 (see, also, Lemmas 2.11 and 2.12 in [11])Let M cR" be
compact, p-convex, connected and non-contractible in itself. Then, there
exists k e N such that:

(i) There exists a continuous map g:S* — X* which is not homotopic to
a constant.

(ii) Every continuous map g:S* — M is homotopic to a constant.

Proof. — First of all, let us observe that, by Proposition 1.10, M is
also arcwise connected. If M is not simply connected, then X* is not
arcwise connected, so that there exists a continuous map g: S° - X* which
is not homotopic to a constant. On the other hand, M is arcwise connected,
then every continuous map g:S°® - M is homotopic to a constant.

If M is simply connected, then X* and Q(M) are arcwise connected.
Since by Proposition 1. 10, M is an A.N.R., m,(M) is not trivial for some
h (cf.[14]). Let k+1 be the first integer such that m,,, (M) is not trivial
(k=1). Applying Theorem 3. 1, we have:

T (X 2 (Q (M) 7y, (M).
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CLOSED GEODESICS ON p-CONVEX SETS 513

Then 7, (X*) is not trivial, on the contrary m, (M) is trivial, so that the
theorem is proved.

THEOREM 3.4.. — Let McR" be compact and p-convex. If there exists
k=0 and a continuous map g: S* — X* which is not homotopic to a constant,
then there exists a continuous map g:S* — X which is not homotopic to a
constant.

For the proof of this theorem, we need the following result contained
in [8] (see Theorem 3.17).

THEOREM 3.5. — Let W be an open subset of a real Hilbert space V and
g:W->RU{ 400} be als.c function with a p-monotone subdifferential
of order 2. Then there exists a mapj:D (g) - D(g) such that:

@) j@)cg,VbeR, whereg?={uecQ:gusb};

(ii) j: (&% ] |v) = (g% d*) where

d* (u, v)=|u—v[+|g(u)—g(v)|, Yu, veD(g)

is continuous and it is a homotopy inverse of the identity function: 1d:
@, d*) -] |v)
Proof of theorem 3.4. — Let k be a natural number and g:S* - X* a

continuous map which is not homotopic to a constant.
Let us set

Xx={veC([0,1}; A); y(O)=v(1)}
endowed with the topology of the uniform convergence, where A is the
set defined in Remark 1.7.
By Proposition 1.6, X* is a deformation retract of X%. Then the map
g:S¥— X* is not homotopic to a constant.
Moreover, since X% is an open subset of the Banach space:

Xgn={veC([0, 1} R"); y(0)=y(1) },
by [14], we deduce that X% is homotopically equivalent to
Xa={yeW"2(0,1; RY; y(0)=v(1); Y(9)eA}
endowed with W' 2-topology.
Therefore, there exists a continuous map f;:S*— X, which is not

homotopic to a constant.
Now, let a be a real number such that

1 1
i,

1
X’A:{yeXA such that -;— J |y’lzds§b},
0

Y |*ds<a, Vye f;(SH.

Then, setting
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we have that f; : §* - X% is not homotopic to a constant Vhza.

At this point, let us remark the following: VyeX4 there exists r(y)>0
such that if

neWh2(0,1; R™,

%f In’|?ds<b  and In=v|2<r@
0

then n(s)eA, Vsel0, 1].
Now, let us set
V=L*(0,; R"; W= U B(y, r(y))
YeXR

where B(y, r(y)) is the open ball in L2 of center v and radius r (y) and let
us define a function g: W R { + c0 } in such a way:

1 1
glr)= {5 L !
+o0 i yeWN\X4
Obviously, g is the restriction to W of a convex and 1 s.c. function on
L2(0, 1; R").
Since X4 =g°, by Theorem 3.5 we deduce that
i: X’A - )~('j\,
where X4 is defined as the space X3 endowed with the L*-topology, is a
homotopy equivalence Vb= a.
Therefore, f,:8* - XY, is not homotopic to a constant Vb= q.

Now, let us consider the following homotopy H defined on fH1(8H %[0, 1],
in such a way:

ds  if yeX}

H(y, @) =tn(y () +(1—-1)y ().
By Remark 1.7, we have:
[H(y, 0 0|22ty (9] +(1-0)]y (9] =2

So that H: f; (S x [0, 1] » X3 where b>4da.
Let us take fZ:H(.Ll) ° fi.
The map f,:S8*—>X% is not homotopic to a constant, moreover

(85 X? where
1
ibz{yex:lf Y 2ds§b}
2 Jo

endowed with the L?-topology.

Then, f,: S* - X is not homotopic to a constant V b= 4 a. Now, applying
Theorem 3.5 to

Y (s)].

V=W=L2(0, 1; R") and g=f
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where f is the energy functional defined in section 2, we deduce the
existence of a map j: X —» X where X denotes the space X endowed with
the L2-topology such that Vb, j (X?) = X?. Moreover j is continuous and it
is a homotopy inverse of the identity function.

Finally, let us consider the continuous map f;:S* — X? defined by
f3=je f,. It is not homotopic to a constant Vb>=4a and then f;:S* - X
is not homotopic to a constant. W

THEOREM 3.6. — Let McR" be compact and p-convex and f the func-
tional defined in section2. Then there exists a>0 such that

fe={v:yeX and  f(y)=a}
endowed with the W'-*-topology is homotopically equivalent to M.

For the proof of this theorem we will need the following lemma:

LEMMA 3.7. — Let f° be the set of the constant curves. Then there exists
a>0 such that f° is a strong deformation retract of f* endowed with the
L2-topology.

Proof. — Since M is compact, we can suppose that M is p-convex with
p=Const. Let us take ye f* and let us consider

ty(O)+(1—0)y(s) with te[0, 1].
We remark that:

Aty +(1-07(), M=[ty (0 +(1—0)y()—y(0)]

1 1/2
=(1—t)ly(s)—y(0)|§(f |y'|2ds> < /2a (3.7.1)

0

Therefore, taking a such that 4p /2a<1, by (3.7.1), we have that
ty(O)+(1—10)v(s)eA

where A is defined in Remark 1.7.
Now we can consider the map H. defined on f°x [0, 1] in this way:

H(y, D) =n(ty(©0)+(1—1)v(s)).
Let us observe that by Proposition 1.9:
d(ty©0)+(1—0y(s) M)

=ty +(1 -0y () —n (Y (0)+ (-7 ()|
<2pt(1—-0)|y(©0)—y(s)|2<4par(1—1). (3.7.2)

Vol. 5, n° 6-1988.



516 A. CANINO
By (3.7.2) and (ii) of Proposition 1.6, we have:

s(1-8p*at(1—-) ' (A= |v &)=y )| °

N
0

l%H(% 0Gs)

so that we deduce:

—H(y, H)(s)|2ds<2a.

ds

Therefore,
H(y, 9)(s): f*x[0,1] > f°.
Moreover,
H(y, 0)(s)=v(s) and H(y, )(5)=7(0), Vsel0,1]

To conclude the proof it is enough to point out that if we endowe f* with
the L2-topology, H is a continuous map. M

Proof of Theorem 3.6. — By applying Theorem 3.5 to
W=L?0,1;R") and g=f

where f'is the functional defined in section 2, we obtain that f* endowed
with the W!-%-topology is homotopically equivalent to f* with the L2-
topology.

On the other hand, M is homeomorphic to f° with the L2-topology.
Using lemma 3.7 we get the thesis. W

THEOREM 3.8. — There exists a>0 such that f* and X (both endowed
with the W'-2-topology) are not homotopically equivalent.

Proof. — Obvious from Theorems 3.3, 3.4and 3.6. M

4. THE MAIN RESULT

After Theorem 2.8, the problem to establish the existence of a non-
constant closed geodesic on M, compact, connected and p-convex subset
of R, is reduced to find critical points for the energy functional f on the

space of the admissible paths X (see section 2 for the Definition of f
and X).

To this aim, we need a deformation lemma like the one contained in
[13]. We shall use a version included in [8] (see Lemma 4. 4).

LemMa 4.1. — Let V be a real Hilbert space and g:V—->R\U{+ 0} a
l.s. c. function with a @-monotone subdifferential of order 2. We set

d*(u, v)=|u—v|+|gw)—g@®)|, Vu veD(g).
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Let —oo <a<bX + o be such that:
(i) 0¢ 0~ g (u) whenever ueD (g) and a<g(u)< b,
(i) Vcela, B and V{u,},cD(3 g with limg(u,)=c and

limgrad ™ g (u,)=0, {u,}, has a converging subsequence in V.

Then g* is a strong deformation retract of g° in g°, where g° and g® are
endowed with the metric d*.

Combining this lemma with the topological results in section 3, we can
state the desired result:

THEOREM 4.2. — Let McR" be compact, p-convex, connected and non-
contractible in itself.
Then, there exists at least a non-constant closed geodesic on M.

Proof. — Let us consider the energy functional f defined in section 2.
By Theorem 2.9, fis Ls.c. and it has a @p-monotone subdifferential of
order 2.

Moreover, by Theorem 2.8, the thesis is equivalent to state that there
exists ye X such that 0ed™ f(y), and f(y)>0. So, if, by contradiction,
the thesis is not true, we can apply Lemma 4. 1 with

V=L*(0,; R"), g=f b=+

and a given by Theorem 3. 8.

We recall that condition (ii) is satisfied because M is compact and the
metric d* induces the W'-2-topology on X =f*.

Then, by Lemma 4.1 we deduce that X and f“ are homotopically
equivalent, which is impossible by Theorem 3.8. W
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