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ABSTRACT. - We consider Yang-Mills fields in Minkowski space-time
We prove global existence and establish decay estimates for any

initial data which is sufficiently small in a specified energy norm and
which is spherically symmetric in the sense of principal bundles. We
consider initial data which lead to bounded solutions near the central line.
The proof of the global result is achieved using wighted Sobolev norms
of the Klainerman type. They not only provide global existence, but also
sharp asymptotic behaviour of the solutions in time. The initial data
considered here does not include Coulomb charges but includes dipole
radiation, a situation which cannot be acomodated in the framework of
the conformal method. A new class of solutions, which have not been
considered before, is covered then by the theorem.
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1. INTRODUCTION

We consider the Yang-Mills equations in Minkowski space-time R3 + 1:

F is the curvature F~~ = Av - a~ A~ + (A~, A~] of a potential I-form A
taking values in the Lie algebra % of a compact semi-simple Lie group G.

There has been a lot of research on the associated euclidean version of
the system. In that case the Yang-Mills equations become a non-linear
elliptic system. Here the underlying metric has Lorentz signature and the
equations are hyperbolic. We look for the dynamical developments of
initial data defined on a space-like submanifold. Global existence was
proved by Eardley and Moncrief [6]. Their results are valid for initial data
of any size, but no information about the asymptotic behaviour of the
solutions is given. Another major contribution was given by Demetrius
Christodoulou [2] and is based on Penrose’s conformal compactification
method. It works only for small initial data, but sharp decay estimates
are given. The major drawback, though, is that is requires a strong fall-
off rate on the initial data (O (r - 4)), excluding not only charge-like solution
(fall-off O (r-2)), but also dipole-type radiation (fall-off O (r-5~2)). The
aim of this paper is to get decay estimates for Yang-Mills fields that

correspond to dipole radiation and that cannot be accomodated within
the conformal method framework. We establish global existence and
characterize the asymptotic behaviour of small-amplitude solutions which
are spherically symmetric, in a sense to be made precise later. The decay
estimates are optimal, namely equal to their linearized counterparts. The
result holds true for any semi-simple compact gauge group that admits
an SU (2) subgroup and relates to work done previously by Glassey and
Strauss ([10], [11]). Their results, although true for initial data of any size,
are valid only for a restricted class of spherically symmetric solutions with
SU(2)-gauge symmetry and rely heavily on the form of the spherically
symmetric Ansatz.
The problem of trying to simplify the equations by looking to solutions

with higher degrees of symmetry is that there could be no such solutions.
A result by Coleman and Deser ([4] and [5]) prohibits the existence of
finite-energy static solutions to the Yang-Mills equations. Here we consider
spherical symmetry. By this we mean invariance under the combined effect
of a rotation and a compensating gauge transformation. It is a remarkable
fact that the Yang-Mills equations admit such solutions. This is not the
case of electrodynamics where the electromagnetic field is gauge invariant
and there can be no further mechanism to counterbalance the effect of a
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rotation. In contrast, we can prove for the Yang-Mills equations:
MAIN THEOREM. - Let G a compact semi-simple gauge group admitting

an SU(2) Lie subgroup and (A (0), E (o)), A (o) : R3 + 1 
E (0) : R3 + 1 - an initial data set which is spherically symmetric (1).
Define the norm:

where r = ~ x ~ and F denotes E and H.
We claim that if I (A, E) is sufficiently small, then there exists a globally

defined solution of the Yang-Mills equations having (A, E) as initial values
and which stays spherically symmetric in the gauge where the solution is

regular (canonical gauge). Furthermore, the solution decays in time and

satisfies the global estimate:

In the interior of the domain of influence we obtain sharper estimates. We
also prove a peeling theorem using light-cone coordinates.
The general spherically symmetric field is presented in the literature in

two different gauges: the abelian and the canonical gauges. The abelian

gauge is the most convenient gauge for exhibiting structural features of
the solution. It suffers from the disadvantage that it is a singular gauge
and the solution will have string-type singularities. Under some conditions
one can perform a singular gauge transformation and bring the solution
to a completely regular gauge, called the canonical gauge, where regularity
is transparent. For the local existence theory this is unnecessary but in
the course of proof of the decay estimates a global gauge, which is free of
strings, is needed. Global existence is then achieved in this gauge. In the
SU (2) case it assumes a very simple form (The Ansatz for higher groups
is similar and requires only a more cumbersome notation):

where cp, BjJ,/1 and f2 are functions of t and r.

(~) All the terms contained in this statement will be made precise during the course of
the work. In particular one examines what one means by a spherically symmetric gauge
field.

Vol. 10, n° 5-1993.
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The Yang-Mills equations reduce in this case to a very complicated
system of equations. Glassey and Strauss consider in their papers
([10], [11]) special solutions which, after using all gauge degrees of freedom,
have the form:

A a - n

Equations ( 1.1 )-( 1. 2) are then a single scalar wave equation for a:

There are, though, some subtleties associated with 1.3-1.4. One observes
that the solution is everywhere regular except at the origin r = ~. The

question of regularity at the central line is very delicate. We do not attempt
here to analyze the exact behaviour at the origin but merely, because we
prove global existence in H2, establish boundness near the center.
The approach adopted here is a geometrical one and is based on energy

estimates for weighted Sobolev-Klainerman norms (c, f ’. [ 1 ~6] and [17]).
These are global norms and yield time decay, due to the built-in asympto-
tics provided by the Lorentz group generators. Finally, we remark that
the Yang-Mills equations contain quadratic terms. In three space dimen-
sions this kind of terms could lead to singularities, unless a certain

algebraic condition, called the null condition, is present. On this case this
condition is satisfied and is a consequence of the covariant form of the

equations.
The plan of the paper is the following. On section 2 we establish the

notation used throughout the work. In section 3 we prove the local
existence theorem we need. Our version is based directly on energy estima-
tes for weighted Sobolev norms and is simpler than the proofs, found in
the literature, which rely on semi-group theory. Sections 4, 9 and 10

contain a detailed analysis of the spherically symmetric Ansatz including
a discussion on the behaviour near the central line r = 0. The remaining
sections 5, 6, 7, 8 and 11 contain the estimates that lead to global existence.

2. NOTATION

We consider Minkowski space R3 + 1 with coordinates (x°, xi, x2, X3)
and standard flat metric 1, 1, 1). We also denote for

the time coordinate. We shall use Einstein’s convention of raising and
lowering indices. We call a vector X time-like, null or space-like iff 11 (X, X)
is negative, zero or positive respectively. The infinitesimal generators X
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of the Lorentz group play an important role here. Denote by 

S = XJ.1 aJ! and We also use the standard null frame

{ e1, e2, e 3, e4 ~ where ~ e _ , e + ~ is the standard null pair e _ = at, e + 
and ~A~ ~A the standard orthonormal frame tangent to the unit

r

sphere. Call i2 == 1 + (t - r)2, i + = 1 + (t + r)2 the space-time weights associ-
ated to the mull frame. We shall also use the electromagnetic decomposi-

tion of F, defined by EI = Hi = - 2 
The gauge group is a compact semi-simple Lie group G. We denote its

Lie algebra by % and the Lie algebra commutator by [ . , . .]. The Killing
form on % is denoted ( . , . ). In the sequel we will often write ’ . ’ for this
bilinear form. We also [A ; Finally, we fix a basis Ta,
a =1, 2, ... , N of % and normalize it by Ta. Tb = bab.
The Yang-Mills potential is a %-valued 1-form A = (A~ 

The Yang-Mills field-strenght of A is a 2-form F: R 3 + 1 --~ A2 ~ defined
as [Au, D will denote the covariant derivative

D~ = au + [A~, . ]. We will also refer to it by the use of semicollon "; ".
The gauge copies of A are denoted where

g : R3 + 1 -~ G takes values in the group G. The corresponding curvature
tensor and covariant derivative will change accordingly as (g) F = g F g - 1
and (g)D(g)F=gDFg-1.

Because of the tensorial nature of the equations we have to consider
Lie derivative operators. The ordinary Lie derivatives are denoted by

and the ones containing covariant derivatives by 

This notation is a bit misleading but the confusion will arise only when
we discuss the spherically symmetric Ansatz. It does not come up in the
estimates that lead to the proof of theorem.

3. THE LOCAL EXISTENCE THEOREM

In this section we will prove a local existence theorem in the temporal
gauge Ao = 0. The proof is standard and simpler than existing ones but
there are some subtle difficulties that requires explanation. Writing 1.1 in
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terms of the electromagnetic decomposition we have:

PROPOSITION 3.1. - The Yang-Mills system 1.1 reduces in the temporal
gauge Ao = 0 to the following (redundant) set of equations:
NON-DYNAMICAL EQUATIONS:

DYNAMICAL EQUATIONS:

CONSTITUTIVE EQUATIONS:

The main problem is that the magnetic field H (A) is not an elliptic
operator in A. If one tries to solve the Cauchy problem in terms of (A, E)
then one will face loss of derivatives and regularity for H will be lost. To
overcome this difficulty we must derive an auxiliary set of equations and
prove that they propagate the solutions of the Yang-Mills system. This
consists essentially of a system of coupled wave equations (here the
covariant wave operator 0 A : = D~ D~‘ is meant). Define:

It follows from these definitions that:

THEOREM 3.1. - The quantities defined in equations 3.1, 3.5 satisfy the
following system of equations:
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THEOREM 3.2. - Assume that (A, E, H) solve the system:

with initial data (A (0), E (0), E (0), H (0), H (0)) satisfying the compatibility
conditions (2):

It follows that (A, E, m will be a solution of the Yang-Mills system 1 . 1

with the same Cauchy data.

Proof of theorem 3.2. - Our claim consists of proving a uniqueness
result, namely, that the only solution to 3.6, 3.8, 3.10 with vanishing initial
data is the trivial solution. This is a simple energy argument and follows
by considering the function

We can prove now:

THEOREM 3.3 (The Local Existence Theorem). - Consider initial data

(A, E) satisfying the following conditions:
(i) (A, E) satisfies the constraint equation DivA E = o.
(ii) The electric field E satisfies E E H2~ 1.
(iii) The magnetic field H (A) of the potential A satisfies H E H2° 1.

Here denotes the weighted Sobolev space of tensors with finite norm:

where cr2 =1 + I x ( 2 .
It follows that there exists a unique local development (A (t), E (t)) of the

Yang-Mills system in the temporal gauge defined for some time-
interval [0, t*] and satisfying the following conditions:

(i’) (A (t), E (t)) satisfies the constraint equation DivA E = 0 for all
t E [0, t*].

(ii’) E (t) E C° ([0, t*], H2~ 1).

(2) Observe that the compatibility conditions are equivalent to prescribing Cauchy data
(A (0), E (0)).
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Proof of the Local Existence Theorem. - The proof is a usual Picard
iteration. Assume that (A", En, Hn) has been constructed. Define

as the solution to the following system of linear
equations:

subject to the initial conditions:

Consider initial data of size R and define the closed set of multiplets
(An, En, Hn, Hn) satisfying:

The Sobolev norms refer to the connection An. We show that if the time-
interval [0, t*) is sufficiently small, then the same estimates hold for the
multiplet (An + 1, Hn+ l’ Hn + 1 ) ~ The estimate for An+ 1 follows
immediatly from the estimates for E~. The others follow easily using wave
equation-type energy estimates with the multiplier cr2 at. The rest of the
argument consists of a usual contracting lemma. We will highlight the
main points. In the iteration proof we will need some lemmas for the
covariant wave operator 0 A:

LEMMA 3.1. - Let A : R~~ 1 -~, ~ a background poten tial in the temporal
gauge Ao = 0 and u : R3 + ~ -~ ~ a Lie-algebra valued function satisfying the
covariant wave equation:
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where f : R3+1 ~ G is a source function. Define the covariant energy of u
as:

It follows that:

where E (A) denotes the electric part of the connection A.

Proof of lemma 3.1. - The proof follows the classical one, except for
the term generated by the commutation of two covariant derivatives when
one integrates by parts.
We will estimate only the plain L2-norms without weights. The weighted

norms are estimated in a similar way. We start with the first derivatives.
Assume that 3.25 hold true for all iterates up to step n. Using lemma 3.1:

E (An) is the electric part of connection An. Remarking that

, .,

We apply,the Sobolev embedding:

and find:

It will follow that:
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now and if we take t in the interval [0, t*] with t* so small
that t*  (R c) -1 log (3/2), then we get and the bounds are
recovered. We estimate now the higher derivatives. Commuting 3.17 with
D we will be able to estimate all second derivatives, with the exception
of To complete the estimates we must also commute
the equations with Dt. We appeal to the following lemma:

LEMMA 3.2. - Let A, u and f Lie algebra valued functions as in 3.1. It
follows that Da u will satisfy the equation:

and obtain:

(Similarly for the magnetic part.)
Remark that for the exact solution F of the Yang-Mills equations, the

term F~ = 0. For an approximating background connection An F (An) ~ will
be a linear function of DEn, DHn, Dt En, Dt Hn, which are lower order
terms that have been estimated before. We apply one again the energy
inequalities. Calling  n + 1 the energy associated with the first derivatives
and proceeding as before:

Taking 1* smaller, if necessary, we obtain the bounds we desired. The
only task left is the estimate of the undifferentiated fields l, 1.

This follows from the estimates for the first derivatives and a simple
integration in time.
The rest of the construction is standard and consists of showing that

the sequence contracts in a low norm. We just remark though that in
order to apply a fixed-point argument we must work in a fixed Sobolev
space of iterates, meaning that we must refer all bounds to the original
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connection A(0) and use H2~ 1 (R3 + 1, A(0)). A simple comparison argu-
ment implies:

The Sobolev norms refer now to the connection A (0). The comparison
argument consists of writing 1 + [A (o) - An _ 1, . ]. The last
term is treated via an integration in time. To estimate the differences
between two iterates we need:

LEMMA 3.3. - Let A, A : R3 + 1 -~ two connections, D, D the

corresponding derivatives and  , D the corresponding wave operators. For
every function f : R3 + 1 ~ ~ we have:

The proof is a straightforward computation.
We estimate E" + 1- En. The magnetic part is similar. Applying 3.3 to

A (0), and A":

We will prove:

In particular, both series:

Vol. 10, n° 5-1993.
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converge in H~~ 1 to elements E and H. This is the difficult part of
argument. We proceed by induction and assume that 3.37 hold up to step
n. Call:

Applying lemma 3.1 to the equation 3.36:

The inhomogeneous term is bounded as follows. For gn + 1 ~

and therefore:

If follows that:

Now:
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Using now the Sobolev embedding and 3.3Q we get |En +1| 2~ ~ e R. The
remaining terms involving the potentials A can be bounded by RZ just by

-t

writing Ak = A (o) + Ek _ 1 and commuting it with. D. It will. follow that:0
The other error terms and g 1 are treated in the same fashion. We
conclude:

Because all iterates have the same Cauchy data then Rn+ 1. (0)= 0’ and then:

Observe that we can ch’oose l* independeritly of iI such that

log (3/2) and therefore:

We recover this way the bounds for the difference of the derivatives The
bounds for the differences of the undifferentiated’ fields follow from the’
previous bounds by integration in time and the corresponding bounds for
Di. En+ 1 

- The estimates for the magnetic part are and we
can’ conclude finally that the sequence contracts.

This completes the proof of the local existence theorem.
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4. SPHERICALLY SYMMETRIC GAUGE FIELDS

We define here the spherically symmetric Yang-Mills fields. This subject
has been studied extensely by many authors and we shall only outline the
main points (cf . references [20], [19], [15], [14], [8] and [21]).

DEFINITION 4.1. - Consider the principal bundle E = R3 + 1 X G and an
action SO (3) X E - E of the rotation group. If 03C9 is a connection I -form on
E then we say that (0 is spherically symmetric ff s* m = c~ for every element
s in SO (3), where s* is the pull-back induced by the bundle automorphism

Consider now the canonical action of SO (3) on the base space R3 + 1.
The problem one encounters is that there is no canonical procedure to
uniquely lift the SO (3)-action on Minkowski space to the whole of E. It
can proved that all possible lifts of the action will be in correspondence
with homomorphisms ~, : SU (2) - G (cf. [23]). One says that this mapping
determines the type of spherical symmetry of the gauge field FA. Degener-
ate cases will correspond to configurations which are either reducible to
abelian U(I)-gauge fields or to classical configurations for which no

compensating gauge transformation required. This is the case when is
the trivial homomorphism. The non-abelian configurations described here
correspond to the case when is an embedding of the rotation group into
the gauge group. This can only happen of course when G admits an
SU (2) subgroup.
The symmetric potentials are obtained by setting SZ = ~,* (y3) where y~

denotes the generator of the isotropy group of the points in the z-axis.
Introducing standard spherical coordinates (8, cp) the potential will assume
the following form:

where the functions ao, ar, ae and a~ are functions of (t, r) only satistying
the constraint relations:

A complete derivation of this Ansatz can be found in [19] and [1] ] (See
also [14]). The invariant connections are unique up to gauge transfor-
mations that are independent of the angles and take values in the subalge-
bra generated by Q. For this reason the gauges 4.1-4.4 are called abelian.
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Despite its structural advantages, the abelian gauge is unfortunately a
singular gauge. Besides the obvious problem at the origin, the potential
has on this gauge string singularities at the lines 8 = 0 and 8 = x. This is a
gauge artifact and has to do with the fact that (8, cp) is a coordinate

system on S2-~ north pole} only. Introducing a second coordinate system
on S2-~ south pole} one obtains a second gauge where the potential is

now singular at 6 = ~. If the element Q satisfies the conditions:

then we can use the gauge transformations and g = e - ~~ to remove
the strings. Observe that the strings at 6=0 and 8 = ~ can be only
individually, but not simultaneously, removed. 

’

For the sake of the global existence argument one needs a gauge in
which the potentials have good space-regularity. In particular, one must
be assured that there exists a gauge in which the string-singularities
disappear. This gauge is called in the monopole literature the canonical
or the no-string gauge. If the element Q satisfy 4.8 then we can gauge the
string away by means of a singular map. The existence of the canonical
gauge is tied to the existence of su (2)-subalgebras and one can prove
(cf. [15]):

PROPOSITION 4.1 (Canonical Gauge). - There exists a singular gauge
transformation bringing the class of abelian gauges 4.1-4.4 to a class where
the gauge potential A assumes the following form:

where all and a2l are functions of t, r alone, Ti = ~,* (O~i~) and is defined
in terms of su (2) representations as follows:

Vol. 10, n° 5-1993.



496 P. P. SCHIRMER

The functions are the standard spherical harmonic functions on the
sphere and Ylm are a basis for an su (2) representation of dimension 2 l + 1
labeled by the third eigenvalue (3).

This class is called the class of canonical gauges. Its elements are

completely regular except at the central line r=0. The proof of

proposition 4.1 is a straight-forward computation which consists of

composing maps of the ’t Hooft-type. To avoid unnecessary complications
due to cumbersome notation we will assume in the sequel that G=SU(2).
In this case the canonical Ansatz reduces to 1.3-1.4.

Remarks. - 1. The canonical gauge admits a residual group of gauge
symmetries:

They act on 1.3-1.4 as follows:

The transverse components ~g~, f ’~, ~9~~2 suffer a rotation:

2. For any potential A in the canonical gauge, there exists an element
g of the form 4.11 that brings A to the temporal gauge Ao = 0, i. e.,
~9~ Ao = 0. A similar fact holds also for the radial gauge Ar = o.

3. The Ansatz 4.9 presented here is not adequate for the point of view
of partial differential equations. One needs a characterization of the

invariance condition in terms of gauge-invariant differential operators. By
commuting these operators with the equations of motion one can set-up
energy estimates that will lead to the preservation of the Ansatz by the non-
linear flow. The problem of defining gauge invariant angular momentum
operators, which incidentally consists of another way to derive the most
general invariant connection, has been studied in [7] (cf. also [13]). One
can prove:

THEOREM 4.1 (Angular Momentum Operators). - Let i= l, 2, 3,
denote the gauge-invariant angular momentum operators:

~3) Cf. 
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It follows that a connection A is spherically symmetric in the sense of Ansatz
4.9-4.10 if and only f.

Remarks. - 1. The operators !t O(i) satisfy the commutation rules:

Physically measures the orbital angular momentum, while .]
measures the isopin contribution to the total angular momentum.

2. We also remark that if ~o~i ~ A = 0 then the curvature F of the

potential A will also satisfy F + {Ti, F] = o. Proposition 4.1 is a par-
ticular case of the result proved in [13]. For a direct proof see [22].

In general, when applied to configurations which are non-symmetric a
priori, one has in general:

LEMMA 4.1. - The angular momentum operators 4.12 satisfy the following
properties:

(i) The operators 4.12 are well defined, i. e., they are left invariant with
respect to the transformations 4. ~ 1 preserving the canonical class of gauges.

(ii) The operators 90 satisfy the following commutation identity:

(iii) If F = D A A expresses the field in terms of A, then one has the

following relation for the angular derivative of F:

The proof of the lemma is a simple calculation.

5. THE INHOMOGENEOUS EQUATIONS

We consider the following system of linear equations:

W is an arbitrary 2-form -~ A2 ~, *W denotes its Hodge dual
and the covariant derivative refers to a fixed background connection A.
The 1-forms J* J : R3 + 1 - are given 1-forms called the current forms.
These equations arise every time one comutes system 1.1-1.2 with a Lie
derivative operator and obtain inhomogeneous equations whose source
terms consist, of non-linear error terms generated by the commutation
with the vector fields used in the definition of the global energy norm.
We will examine the field W in detail.

Vol. 10, n° 5-1993.
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Relative to the slicing of Minkowski space induced by T, one defines

the electric and the magnetic parts of W as Both

E and H determine W at all points in space-time and are tangential to
the hyperplanes t = Const. The energy-momentum tensor of a 2-form field
W is defined as:

In local coordinates:

The energy-momentum tensor Q is a symmetric traceless 2-tensor satis-
fying the positivity condition Q (X, Y) >_ 0 for any pair of non space-like
future-directed vectors X and Y. Computing the divergence:

PROPOSITION 5.1. - Let Q be the energy-momentum tensor of a 2-form
field W satisfying equations 5.1-5.2. It follows that:

The proof of this proposition is a simple manipulation with tensors and
can be achieved by rewriting equations 5.1-5.2 in the form:

The uselfulness of the tensor Q relies on the fact that it can be used to
set energy norms which will satisfy, in the small-amplitude regime, an
almost conservation law. Introduce the momentum vector P~ = X". If

X is conformally Killing then because of the traceless property of Q we
have Integrating this equation on a time slab R3 X [0, t*]
one obtains:

PROPOSITION 5.2. - Let W a 2-form field satisfying 5.1-5.2 in a time

interval [o, t*]. For a conformally Killing vector field X one has the following
identity:

We are only interested in vectors X that lead to a positive quantity
P ° = Q (T, X). This will be the case if X is a future directed timelike vector

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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field. It happens that for R" + 1 the only timelike conformally Killing vector

fields are the time-translation T = a and the conformal accelleration
at

Ko = (1 + t + r2 a + 2 Here we shall use X = Ko .o ( 
a Xl 

o

The non-linearities contained in the Yang-Mills equations are quadratic.
To achieve global existence we have to find an appropriate version of
the null condition. In our context this is equivalent to considering the

decomposition of the tensor F with respect to a light-cone coordinate

system. Relative to the standard null frame of Minkowski space we define:

DEFINITION 5.1. - Given a 2-form W on Minkowski space, we define the
null decomposition ~ a (W), a (W), p (W), 6 (W) ~ of Was:

The components a and a are 1-forms tangent to the spheres S2 (r) and
p and o are scalars, totaling 6 independent components. One defines
similarly * a, * *p and *o. W and *W are determined completely by its
null components. In terms of null coordinates the energy density Po is:

At the end of this section we would like to write down the expression of
the inhomogeneous equations 5.1-5.2 in the null frame. For any 1-form u
which is tangent to the spheres r = Const., define the spherical operators

u = If) A UA, u = EAB uB - If)B We can prove:

PROPOSITION 5.3. - Let W : R3 + 1 - A2 ~ a 2-form field satisfying system
5.1-5.2 with current forms J* J : R3+ 1 ~ A1 In terms of the null decomposi-
tion of W equations 5.1 can be written as:
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The derivation is similar to that done for the Maxwell equations (cf. [3]).

6. THE ENERGY NORMS AND THE COMPARISON LEMMA

To obtain the crucial L 00 control on the curvature F one has to resort
to a weighted Sobolev norm that encodes information about the different
asymptotic behaviour of the null components of F. We then relate this
weighted norm to the basic quantities which will stay bounded under the
non-linear flow. This is in principle not so obvious since the Yang-Mills
equations do not supply equations along all null directions for every null
component of F. First we introduce some notation.

Call In terms of the null decomposition:

The weighted L‘ norms that will en.code the space-time information are
defined as follows:

_ ,.. ,-,

arid:

c~
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The main theorem of the section is:

THEOREM 6.1 (The Comparison Theorem). - Let F be a spherically
symmetric tensor F : R3 

+ 1 
- 2 G satisfying the Yang-Mills 

Assume that the energy ~o is sufficiently small: ~~ __ Eo ~ ~ . Then one has
the following inequalities:

(i) 
(ii) 
The proof of this proposition consists of showing that all the directional

derivatives can be expressed in terms of and F. The most

important point is to prove that the terms containing angular derivatives
can be completely controlled by the basic quantities. This is the only
where we use the sphericahy symmetric Ansatz. More precisely, we have:

PROPOSITION. 6.1. - Let F : R3 + 1 ~ A2 ~ a spherically symmetric tensor.
It follows that in the exterior region Ee we have:

for every component of f relative to the null frame and every derivative

In particular, if y r~ ~ ~ ~, , 1 then the angular derivative terms are
simply bounded by lower order terms that have been’ estimated before.

Proof. - We consider initially the SU (2) case. Breaking up the covari-
ant derivative and- the gauge-covariant derivative we have:

The lower order terms are directly estimated The first term is
treated by applying the Lie derivatives For an arbitrary component
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roB we have:

The second term requires a more subtle argument. To control the
tangential components ~ of the potential we go back to the Ansatz 4.9-4.10
and observe that the normal component a of the curvature is completely
constrained by the tangential components of the potential. Indeed, comput-
ing the magnetic curvature

In particular:

and therefore |r2 a == |f21 +f22-1|. It follows that one obtains the estimate:

For higher groups this estimate is proved in the same way since it is still
true that o is constrained by .

This completes the proof of the proposition.

PROPOSITION 6.2. - We have the following bound for the exterior
norm:

To prove this proposition we will need the following form of the Sobolev
embedding theorem:

PROPOSITION 6.2 (cf. [3]). - For any Lie algebra valued tensor
F : R3 + 1 - ~ for which I F ( is an ordinary spherically symmetric function
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on R3 + 1 we have:

The inequalities follow by applying Kato’s argument (4) to correspond-
ing inequalities in [3]. Now, going back to the proof of proposition 6.2:

Using the null equations for the components p, o, namely, the equations

D~(7= 2014 -j2014]~ x a, and proposition 6.1 we find:
r r

From which follows that r2 a ~, eXt  c ~o + c ~0~2.
Proof of the Comparison Theorem 6.1. - We start with the Yang-Mills

equations in the null form. They contain all derivatives that make up the
norm ~E~~ 1,1 ~

(4) Kato’s inequality asserts that [ a. e. for a %-valued function F. More
details in [15] and [12].
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The problem consists of the mixed derivatives D3 a and D4 ex. Using
Ss we write:

It follows that:

The second derivatives are estimate similarly. First we commute the

Yang-Mills equations with the operator 2s. Using proposition 5.3 we
write:

where the error terms are given by:
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Proceeding as before:

where N.L.E. denotes:

These terms are mostly lower-order terms:

Using again 6.2 to estimate the L 00 norm of the fields we get:

It follow that:

The missing derivatives and 1~4 are estimated exactly as
before with the help of the scaling vector field S. We conclude then:

THEOREM 6.3 (Exterior Estimates). - The components {03B1, a, p, 03C3} of
the null decomposition of the Yang-Mills tensor F satisfy the following
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inequalities in the exterior region:

We remark only the maximal rate of decay r- 5~2 for the component a.
This is a consequence of the null equation for D3 aA which allowed us to
take a higher weight in the norm As we shall see later this will be
crucial to get global existence. To complete the proof of theorem 6.1 we
have to estimate the interior norms Because the estimates have a
completely different flavor we present them separately.

7. INTERIOR ESTIMATES

The null decomposition is not defined in the central line r = 0 and we
have to estimate the fields differently in the interior region |x|~ 1 + t/2.
We use elliptic theory for Hodge systems in three space dimensions.

Proof: .~
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By a slight modification of the proof we obtain:

LEMMA 7.2. - Let E, H : R3 -~ ~ two I-forms on R3 and X a vector
field on R3 such that sup ( X  I, where the sup is taken over the support
of the forms E and H. Assume that these forms satisfy the Hodge system:

Then:

The interior estimates are achieved by means of truncated fields. Con-
sider the cut-off function:

The function cp can be constructed in such a way to satisfy also the
condition ~ ~ -- c/t uniformly in space. We want to prove the following
result:

PROPOSITION 7.1. - If the energy Eo is small enough, then we obtain
the following bounds for the interior norms:

Let us show how to obtain the first derivative estimates. Truncating the

fields as E=(pE,8=(pH and defining the vector field X = - Z, where
t

Z is the radial vector field we obtain:
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where:

Applying now Lemma 7.2 and remarking that on the extended interior
region I = ~ x ~j x I _ I + 3/4 t ~, t >_ 8, we have I X ~ 5 7/8, we find:

It follows that:

where F denotes E and H. The last term is estimated as follows:

The L 3/2 norm of F is bounded:

and therefore ] F ~ ~I~ __ t -1 
~2 ~0~2. We conclude that:
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In particular, if t >_ ~ and c ~~~z _ 1/2 then

JI

This completes the estimates of the first derivatives. The second deriva-
tives of F are bounded similarly, by commuting the equations of motion
with the operator D~ and applying again Lemma 7.2. We leave the details
to the reader since they follow the same pattern of the previous estimates.
The following L 00 bound will follow then:

THEOREM 7.1 (Interior Estimate). - For a solution F of the Yang-Mills
system with small energy Eo we have the following estimate:

This will follow from the following version of the classical Sobolev
inequality:

THEOREM 7.2. - For any Lie algebra valued tensor F : R3 ~ 1 -~ ~ we
have:

The proof of this result consists first of getting a classical Sobolev
inequality in the unit ball:

This follow from the inequalities:

The interpolation through L6 is necessary since Kato’s argument applies
only to one derivative at a time (cf . reference [12]). The proof of

theorem 7.2 now follows by a classical scaling argument. Set R = 1 + t and
introduce a rescaled variable y by x= Ry. Define a new function and a
new connection:
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The functions F, A are now functions on the ball of radius 1. Because of
the way we have rescaled the gauge connection A we have that

DA F = RA F and then we are in position to apply inequality 7.1. This
completes the proof of the theorem.

8. THE ERROR ESTIMATES

We prove here the most important result of the paper. It concerns the
bounds on the basic quantities ~k:

THEOREM 8.1. - Let F a local solution of system l.l-1.2 satisfying the
small energy requirement ~o _ Eo and the a priori bound ~k (t) __ 1 on the
domain [0, t*] of time-existence. It follows that the basic quantities satisfy
the following bounds:

for k= 1 , 2.
The proof of this theorem is based on the almost conservation laws 5.2

for We use the following notation:

We will prove that ~*  c (~o (o) + ~1 (o) + ~2 (o)). For this matter we
need to compute the error terms generated by the commutation with the
Lie derivative 

PROPOSITION 8.1 (The Non-linear Error Terms. - Let F: R 3 + 1 -4 A rg
be a solution of solution of system 1.1-1.2. The Lie derivatives Efs F and

satisfy then the following inhomogeneous equations:
FOR 

FOR ~s :
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The proof of this proposition will be a consequence of:

LEMMA 8.1. - For every 2- form W we have:

This follows trivially from the curvature relation [D~, D~] u = [F~~, u].
To estimate the error terms in a more systematic way, we introduce the

following notation. Given a vector field X and tensors F, G and H we
define the trilinear expression ~X~ Q (F, G, H) = ~X~ (F, G, H) as:

The most difficult part of the theorem consists of showing the error
terms on the right-hand side of 5.2 are bounded. For this matter one uses
L 00 -decay estimates for the curvature F. Here one needs a very precise
knowledge of the structure of the error terms, due to the fact that on the
wave zone I x =1 + t the components of F have a non-uniform behaviour.
In particular there exists a slowly decaying component a = O (t-1). If one
does not examine the error terms in detail one can encounter terms which
would lead (if present) to logarithmic divergences. The fact that these
terms are not present is nothing but the null condition. It follows here
from the covariant form of the equations. We state it in the following
form:

PROPOSITION 8.2 (Null Condition). - For every vector X = X3 e3 + X4 e4
and tensors F, G, H we have:

Here l.o.t denotes lower order terms which are completely harmless.
The proof of this proposition consists of a completely tedious but trivial
computation, and will therefore be omited. Because we will contract Q
with a vector field which has components only in the null directions, only
Q3 and Q4 are relevant.
The proof of Theorem 8.1 follows now by energy estimates. Let us

prove the first bound. Fix an arbitrary time to between 0 and t* and apply
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proposition 5.2 with multiplier Ko:

with Q given by:

All the terms are estimated in the same way. In every term one factor
is taken in L 00 norm and the other two in L2, using the Cauchy-Schwarz
inequality. The most sensitive terms are the terms containing the maximal
weights T+. To avoid divergences we exploit the improved behavior of the
component plus a simple integration by parts in space-time.

Let us call by I the second integral on the right-hand side of the previous
equation. Calling further I = I ~ + I~,, we have:

Annales de l’lnstitut Henri Poincaré - Analyse non lineaire



513ESTIMATES OF YANG-MILLS FIELDS

In all the above terms we break the integrals on two regions (interior and
exterior regions) and estimate them trivially with the exception of the two
critical terms on 14 which require an integration by parts first:

I~ denote the critical terms:

Using the exterior estimates 6.3 proved in section 6 we have:
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We have used the fact that because ~k __ 1, then by theorem 7.1,
IF ~, I _ c ( 1 + t) - 5/2 ~* 1~2. Now, because of the smallness condition
~o  Eo :

Let us estimate Ic now. We will estimate only the second summand.
The other requires an identical treatment. Consider the expression
(is F)A. [~°~ p] and rewrite it as:

It follows that

The first three terms are estimated as before, taking i + a in L °° norm.
The last one requires one more integration by parts. We are left with a
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pure space-time divergence term. We only have to estimate:

By straightforward computation:

The first summand is estimated in the same fashion of before. The other

one is also bounded:

It follows that 91 will satisfy:

for all to E [0, t*] and henceforth ~i  ~1 (0) + c ~*.
The estimate of ~2 is done along the same lines. This completes the

proof of theorem 8.1. On the next two sections we analyse the relation
between the spherically symmetric Ansatz and the non-linear flow. By
applying then a standard continuation argument one can finally conclude
the proof of the main theorem in the introduction.

9. THE SPHERICALLY SYMMETRIC FLOW

The space-time description of the spherically symmetric fields given in
section 4 is not sufficient for our goal. We have to prove that the symmetric
Ansatz needs only to be imposed on the initial data.
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DEFINITION 9.1. - A Cauchy data set (A, E) for the SU(2)- Yang-Mills
equations is called spherically symmetric if A and E are of the form:

where all constitutive functions of the Ansatz are functions of t, r alone.

Equivalently (cf. theorem 4.1):

A similar definition is valid for higher gauge groups G.

THEOREM 9.1 (Symmetry Invariance under the Flow). - Assume that a
solution (A, F) of the Yang-Mills equations, defined in the interval [o, t*]
and in the temporal gauge Ao = 0 has spherically symmetric initial data

(A(0), E(0)). It follows that the solution will also satisfy the spherical
symmetry conditions (A) t = 0, ~a F (t) = 0 for all later times t E [o, t*].

Proof. - The proof is a simple energy estimate. We prove that for all
later times we have:

Using lemma 4.1 and applying proposition 5.2 with multiplier X = To we
obtain:

Since P ° (20 F) = ~o F 2, then:

To control the term A I~ we apply again lemma 4.1:

Taking the oi components of this equation, multiplying each of them by
2 0 A~ and summing over i we get:
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Since we are in the temporal gauge:

We obtain a system of coupled differential inequalties:

subject to the initial conditions 0 A (0) = 0, 0 F (0) = 0. The conclusion
follows from Gronwall’s lemma.

10. THE BEHAVIOUR AT THE CENTRAL LINE r=O

The Ansatz 4.9-4.10 corresponds to potentials which are everywhere
regular except possibly at r = U. Our aim in this section is to find sufficient
conditions which ensure that the curvature tensor is bounded near the
central line.

DEFINITION 10.1. - We call a Cauchy data set (A, E) an acceptable
initial data set fg.

(i ) The set (A, E) is a spherically symmetric Cauchy data set.
(ii) The curvature FA of the potential A is in the space H2° i .
The next proposition, whose proof follows from the local existence

theorem 3.3 and the invariance theorem 9.1 will show that the global
solutions dealt with here form a non-empty set:

THEOREM 10.1. - Acceptable initial data sets (A, E) are preserved by
the flow of the Yang-Mills equations.
The existence of non-trivial solutions to our equations will be then a

consequence of:

THEOREM 10.2 (Existence of non-trivial Data). - There exists a non-
trivial class ~ of acceptable initial data sets. Moreover, the elements of i7
can be characterized as the spherically symmetric pairs (A, E) such that:

(i) The constituent functions ae (r), a~ (r) of the magnetic potential A close
an su (2)-subalgebra ( ao (0), a~ (0), Q ) sufficiently fast as r - 0:

(similarly for derivatives).
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(ii) The initial velocity of rotation (conjugation) of the afore-mentioned
subalgebra (given by the electric Cauchy data) is zero:

(similarly for derivatives).
This picture corresponds in the SU (2) case to the situation where the

transverse components f1, f2 of the magnetic potential converge sufficiently
fast as r - 0 to a point in the circle S 1 and the electric oscillations produce
only slow rotations in time of this point.
Proof of Theorem 10.2. - We will treat the SU (2) case first. The

problem consists of checking the square-integrability of the curvature
and its derivatives near the origin. Consider initially the undifferentiated
field F. Computing the curvature from the Ansatz 1.3-1.3:

The expression for the energy is:

The only term that could possibly be non-integrable near r = 0 is the radial
component of the magnetic field:

Now, if the values of the components, as r - 0, are such that:

then the singularity is removed and the field will have finite energy. We
also have to check the integrability conditions at the origin for the higher
derivatives. For every component u of the vectors E and H we have:

The last term is harmless and reduces to the previous step. The critical
term is Dr u. Using remark 2 following proposition 4.1 we take initial data
in the gauge Ar=O. In this case and we need to
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differentiate only with respect to the radial variable r. This simplifies a
lot the computations. By straightforward differentiation we deduce:

Taking data such that the right-hand sides of 10.2-10.2 are finite we
precise the statement of theorem 10.2 in the SU (2) case. One sees that
the integrability requirements will be nothing than a reinforcement of
condition 10.1, namely that f = f (0) + O (r3) and g~ = O (r2), for i =1, 2.
Recalling that gi plays the role (as Cauchy data) we precise also the
velocity condition on the point ( fl, f2). Similarly, one can find the condi-
tions at r - oo which guarantee the decay at spacelike-infinity.
The analysis for higher gauge groups is similar. Here one analyses the

fields in the abelian gauge. Recall that the energy is gauge-invariant and
the string singularities that occur in this gauge do not manifest at the
level of curvature.

Let us consider the energy of the field F:

As in the SU (2) case, the critical term is:

Now, if the values of the components a, as r ~ 0, are such that:

Then, the singularity in the integral is removed and the field will have
finite energy. This condition means that the set { ae (0), a~ (0), ~ } generate
an su (2)-subalgebra. (Recall the constraints 4.5-4.7.) The analysis for the
higher derivatives is similar to the SU (2) case and one concludes that the
su (2) subalgebra closes fast at the line r = o. The freedom of performing a
rotation (conjugation) is measured by the electric part of the field. If the
flow rotates the subalgebra very fast then this will generate electric oscilla-
tions that are not integrable near the origin. This is the explanation of
the electric boundary conditions. This completes the proof of theorem 10.2.
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11. COMPLETION OF THE PROOF

We complete here the proof of the main theorem. By theorems 3.3
and 9.1 we know already that solutions will exist locally in time and
that this local evolution will preserve the class of spherically symmetric
solutions. Let us prove now that the local solutions can be extended for
all times. Call (t) the expression (t) _ ~o (t) + ~1 (t) + ~2 (t).

Consider the set g of all times T >_ 0 for which there exists a local
solution (A (t), E (t)) with regularity as in 3.3, defined for all t ~ [0, T] and
satisfying the bootstrap assumption (t) _ ~ _ 1.
The number E is chosen later in an specific way. By restricting the size

Eo of the initial data we will derive a contradiction. Take initial data so
small that:

The set ~ will contain then t = o and is therefore not empty. Let

t* = sup G. If t* = + oo then there is nothing else to be proved. If t*  + oo

then we will get a contradiction. First of all we remark that t* E ~. This
is a consequence of the regularity of the curvature E, H E C° ([o, T], H~’ ~)
and the fact that the set S is closed. In particular:

We claim now that (t*) = E. Indeed, if we have strict inequality then
we can find a slightly larger t for which we have:

which contradicts the maximality of t*. On the other hand, in the interval
[0, t*] the norm ~~2~ (t) _ 1 and we can apply theorem 8.1. We get:

Choosing initial data so small that we get a contradiction and

our theorem is proved.
Finally, remark that the initial norm I (A, E) is nothing but the restric-

tion to time t = 0 of ~o (0) + fL1 1 (0) + fL2 (0).

ACKNOWLEDGEMENTS

This paper is mostly the content of the author’s Ph.D. dissertation at
New York University. I am indebted to many people for its accomplish-
ment. First of all, I would like to thank my thesis advisor Prof. Sergiu
Klainerman for his valuable advice and infinite amount of patience. I am

Annales de l’Institut Henri Poincaré - Analyse non linéaire



521ESTIMATES OF YANG-MILLS FIELDS

also indebted to Prof. Demetrius Christodoulou and Prof. Jalal Shatah
for many helpful conversations during different stages of this work. My
special thanks to Prof. Robert Bartnik for the enormous help with
section 4. Finally I would like to thank CAPES, Brazilian funding agency,
for supporting all this work.

REFERENCES

[1] R. BARTNIK, Private Communication, Proc. Hungarian General Relativity Workshop,
Tihany, Sept. 1989, Ed. Zoltán Perjes (to appear).

[2] D. CHRISTODOULOU, Solutions globales des équations de champs de Yang-Mills,
C. R. Acad. Sci. Paris, T. 293, Series A, 1981, p. 39.

[3] D. CHRISTODOULOU and S. KLAINERMAN, Asymptotic Properties of Linear Field Equa-
tions in Minkowski Space, Comm. Pure and Appl. Math., Vol. 43, 1990, pp. 137-199.

[4] S. COLEMAN, There are No Classical Glueballs, Comm. Math. Phys., Vol. 55, 1977,
p. 113.

[5] S. DESER, Absence of Static Solutions in Source-Free Yang-Mills Theory, Phys. Letters,
Vol. 64B, 1976, p. 463.

[6] D. EARDLEY and V. MONCRIEF, The Global Existence of Yang-Mill-Higgs Fields in 4-
dimensional Minkowski Space, Comm. Math. Phys., Vol. 83, 1982, p. 171.

[7] P. FORGÁCS and N. MANTON, Space-Time Symmetries in Gauge Theories, Comm. Math.
Phys., Vol. 72, 1980, p. 15.

[8] Gu CHAOHAO and Hu HESHENG, On The Spherically Symmetric Gauge Fields, Comm.
Math. Phys., Vol. 79, 1981, p. 75.

[9] R. T. GLASSEY and W. A. STRAUSS, Decay of Classical Yang-Mills Fields, Commun.
Math. Phys., Vol. 65, 1979, p. 1.

[10] R. T. GLASSEY and W. A. STRAUSS, Some Global Solutions of the Yang-Mills Equations
in Minkowski Space, Comm. Math. Phys., Vol. 81, 1981, pp. 171-187.

[11] R. T. GLASSEY and W. A. STRAUSS, The Scattering of Certain Yang-Mills Fields,
Commun. Math. Phys., Vol. 89, 1983, pp. 465-482.

[12] J. GINIBRE and G. VELO, The Cauchy Problem for Coupled Yang-Mills and Scalar
Fields in the Temporal Gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28.

[13] J. HARNAD, S. SHNIDER and L. VINET,Group Actions on Principal Bundles and Invari-
ance Conditions for Gange Fields J. Math. Phys., Vol. 21, 1980, p. 2719.

[14] R. JACKIW, Gauge fields and Symmetries, Suppl. Acta Physica Austriaca, Schlamming
lect. notes, Ed. P. Urban.

[15] A. JAFFE, Vortices and Monopoles, Clifford Taubes, Birkhäuser Progress in Physics
PPh2, Birkhäuser, 1980.

[16] S. KLAINERMAN, Uniform Decay Estimates and the Lorentz Invariance of the Classical
Wave Equation, Comm. Pure Appl. Math., Vol. 37, 1985, p. 321.

[17] S. KLAINERMAN, The Null Condition and Global Existence to Non-linear Wave Equa-
tions, Lectures in Applied Mathematics, Vol. 23, 1986, Ed. B. Nicolaenko.

[18] S. KLAINERMAN, Remarks on the Global Sobolev Inequalities in Minkowski, Space,
Comm. Pure and Appl. Math., Vol. 40, 1987, p. 111.

[19] J. MCKINNON, The Spherically Symmetric Einstein-Yang-Mills Equations, Honours
Thesis, ANU, Canberra, Nov. 1987.

Vol. i0, n° 5-1993.



522 P. P. SCHIRMER

[20] V. N. ROMANOV, A. S. SCHWARZ and Yu. S. TYUPKIN, On Spherically Symmetric Fields
in Gauge Theories, Nuclear Physics, Vol. B130, 1977, pp. 209-220.

[21] A. SCHWARZ, On Symmetric Gauge Fields, Comm. Math. Phys., Vol. 56, 1977, p. 79.
[22] P. P. SCHIRMER, Global Existence for Spherically Symmetric Yang-Mills Fields on 3 + 1

Space-Time Dimensions, Doctoral dissertation, New York University, 1990.
[23] H. C. WANG, On Invariant Connections over a Principal Fibre Bundle, Nagoya Math.

J., Vol. 13, 1958, pp. 1-19.

( Manuscript received July 17, 1991;
revised January 1 , 1992.)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire


	Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time



