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ABSTRACT. - We prove Hamiltonian necessary conditions for state-

constrained differential inclusion problems in which the basic time interval
is one of the unknowns. Previous approaches typically reduce this problem
to one based on a fixed time interval by transforming the time variable
into an auxiliary state - a device which unfortunately requires that the
data exhibit rather smooth t-dependence. Here we use proximal analysis
to avoid this transformation, and offer the first complete treatment of
free-time problems whose dynamics are assumed to be merely measurable
in t.
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RESUME. - Nous demontrons des conditions necessaires d’optimalite
sous forme hamiltonienne pour des problemes de controle avec contraintes
sur 1’etat lorsque l’horizon fait partie des inconnues. Notre etude utilise
l’analyse proximale et s’applique des situations ou la dépendance en t est
simplement mesurable.

I. INTRODUCTION

Consider a standard differential inclusion problem in Mayer form,
namely to minimize the objective l (T, x (T)) over all times T > 0 and arcs
x : [0, T] -~ [Rn satisfying

The endpoint conditions on x and T are given by

When S = ~ T ~ x D for some T > 0 and D ~ we have a fixed-time
problem. Any solution x of the problem obeys a well-known set of

necessary conditions built around the Hamiltonian inclusion [2], Ch. III.
Among these conditions is the terminal transversality relation, which
asserts for the fixed-time problem above that the adjoint variable p is
transverse to the effective objective function at x (T):

where ND (z) is the cone of normals to D at zeD. The hypotheses
under which the Hamiltonian necessary conditions apply require that the
multifunction F be Lipschitz in x, but perhaps only measurable in t. Our
focus here is upon the nature of the t-dependence: we emphasize that
measurability is a workable and natural hypothesis in the derivation of
necessary conditions for fixed-time problems.

This contrasts sharply with the situation in which the terminal time T
may vary. To clarify the issue, consider the free-time problem in which
the set S above equals (0, + oo) x D and does not depend on T. It is

clear that any solution (T, x) to this free-time problem is also a solution
to the fixed-time problem whose terminal constraint set is ~ T ~ x D. Thus
the Hamiltonian necessary conditions, including ( 1. 3), certainly pertain,
assuming only measurable t-dependence. However these conditions fail to
account for the additional degree of freedom arising from the variability
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575DIFFERENTIAL INCLUSIONS WITH FREE TIME

of T. One more condition is required. The nature of this additional

condition has long been known (see Pontryagin et al. [11]). It is formulated
in terms of the problem’s Hamiltonian

and relies upon Lipschitzian t-dependence of the multifunction F. When
the data exhibit this extra regularity, the additional necessary condition
for (T, x) to solve the free-time problem is [2], Thm. 3. 6.1

Now it is the case that the extra necessary condition ( 1. 5) has previously
been proved only under strong assumptions on the regularity of the data
with respect to the time variable. For problems where the state constraint
is not operative and a differential equation formulation is adopted, hypo-
theses have been imposed requiring continuous dependence in a neighbour-
hood of the optimal terminal time (see, e. g., [8] and [1]). As for problems
where the state constraints enter in a nontrivial way, or the dynamics are
described by means of differential inclusions, free time necessary conditions
have been proved, at best, under assumptions of Lipschitz continuous
dependence (see, e. g. [15], [2]). An explanation of the difficulties encoun-
tered in trying to weaken the continuity hypotheses was offered by Ioffe
and Tihomirov ([9], p. 237) as follows.
We can not, apparently, reduce the free time problem to a standard

optimization problem over a Banach space of functions, and then deduce
necesary conditions from an abstract multiplier rule, "without some

transformation connected in particular, with treating the time as a phase
coordinate. In so doing, the requirement of differentiability with respect
to time becomes unavoidable." [The free time problem can, of course, be
posed over other Banach spaces. For example, the editor suggests the
change of variable t = T s, which displays the problem’s domain as the
space of pairs (T, y ( . )) consisting of a parameter Te R and an absolutely
continuous function y : [o,1] ~ However, this reduction yields ’ a
dynamic constraint y’ (s) E TF (T s, y (s)) which exhibits at best measurable
dependence upon the parameter T, and this irregularity again places the
problem beyond the reach of standard methods.]

In this article we obtain complete necessary conditions for free-time
problems with measurable time dependence. The exact formulation of the
problem (see Section 2) is more general than that given above, but let us
remain with the free-time problem for purposes of illustration. The first
issue concerns the very interpretation (or extension) of ( 1. 5) when F, and
hence H, depends only measurably on t.
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Let !R" be measurable. We define the set of essential values of f
at T, denoted ess f (t), as follows:

t -T

When f is real-valued and essentially bounded near T, we have the follow-
ing relation (co denotes convex hull):

Furthermore, if g is defined by g (t) = then the set in (1.7)

coincides with the generalized gradient of g at T [2], Example 2.2.5.
The calculus of generalized gradients is at the heart of the methodology of
this article.
For the free time problem, the necessary conditions that we prove

incorporate the condition

This recaptures ( 1. 5) when F is Lipschitz in t, since in the case H is also

Lipschitz in t and the right side of ( 1. 8) reduces to {H(T, x (T), p (T)) ~.
In fact, this reduction relies only upon the continuity of H in t, so that

( 1. 5) holds even when F is only assumed to be continuous. This is a new
result.

The special case of our necessary conditions, treating problems where
the state constraint is not operative, has been proved in [6]. An illustration
of the application of optimality conditions of this nature to free time
problems with data discontinuous in the time variable is provided in [7].
Our proof is a finite-dimensional application of proximal analysis. This

approach, introduced in [2], Thms. 3.4.3 and 6.5.2, relies upon the charac-
terization of the (Clarke) normal cone in terms of analytically simpler
"proximal normals" or "perpendiculars". Recall that for a given closed
set C ~ f~m and point c E C, a vector v is proximal normal to C at c [written
vEPNc(c)] if one has

Associated with the set C is the distance function dc, defined by

the distance function is Lipschitz of rank 1 everywhere, and its generalized
gradient at a point c E C can be computed using the proximal normal

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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formula

The latter set generates the normal cone to C at c :

Proximal analysis usually consists of studyiflg inequality ( 1. 9) in sufficient
detail to evaluate the right side of ( 1.1 l~), from which both and

Nc(c) are then obtained. In this paper, however, we use (1.9) and (1.11)
somewhat differently. Thanks to our finite-dimensional context, 
contains nonzero points whenever c lies on the boundary of C:

It follows from ( 1.11) that there exists at least one convergent sequence
of proximal normal unit vectors, and this will turn out to be all we need.
A suitable scaling of the terms in this sequence leads to a new convergent
sequence whose limit furnishes the desired necessary conditions.

. 

The theory underlying the previous paragraph is all in [2], where one
can also find applications of proximal analysis to differential inclusion
and mathematical programming problems. The technique has since been
applied in a variety of other situations - see [4], [5], [3], for example.

Essential Values .

The developments to follow rely upon some elementary properties of
essential values. Given an integrable real valued function f, we define

One-sided analogues f(t-), f(t+), f(t-), f (t + ) are defined in terms of
the appropriate one-sided limits. 

~ ~

In particular, co ess f (t) contains the intervals [~‘ (T + ), f_ (T - )] and
t -T 

-

[f(T-), f(T+)].

Vol. 5, n° 6-1988.
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LEMMA 1. 2. - Let f (t, x) : R x R be essentially bounded in a

neighbourhood of some point (t, x). Suppose that on this neighbourhood
f (., x) is measurable and f (t, . ) is continuous, uniformly in t. Then the

multifunction (t, x) ~ co ess f (s, x) has closed graph at (t, x).

Proof. - Let (t;, xj be any sequence converging to (t, x), and suppose
v;e ess f (s, xi), V i while vi converges to some limit v. We shall first

s - ti

establish v E ess f (s, x). This is equivalent to showing m (S (E)) > o, VE>O,
s - g

where

Fix £ > o. For each i, the inclusion vi E ess f (s, xj implies m (S1 (E/3)) > 0,

where

If we now choose I so large that i ~ I implies

then i~ I also implies

The desired conclusion follows. Otherwise stated, (t, x) --~ ess f (s, x) has
s - t

closed graph at (t, x). That (t, x) ~ co ess f (s, x) also has closed graph
s - t

follows from this result and Caratheodory’s theorem, in view of our

assumption that f is essentially bounded near (t, x). ////

II. STATEMENT OF THE MAIN RESULT

We consider the state- and endpoint-constrained differential inclusion

problem (P) defined by
min { ~ (a, x (a), b, x (b)) : x (t) E F ( t, x (t)) a. e. [a, b],

(a, b, x)
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Among the given quantities defining problem (P), the nondegenerate
interval [a, b ] and arc x : [a, b] - tR" are central. In the language of the
classical calculus of variations, the open set specified by the last line of
(P) is a strong neighbourhood of (a, b, x): our analysis below proceeds
under the assumption that (a, 5, x) solves (P) - and hence remains valid
whenever such a triple provides a strong local solution to a dynamic
optimization problem of the same form. The results to be derived hold
for but for convenience we assume that To make

sense of expressions for arcs defined on different time

intervals, we extend the domain of any x defined on any [a, b] by setting

Given the quantities (a, b, x) and 03C9~(0, (b - a)/2), we make the following
hypotheses. Our notation 

(HI) The objective function I : is Lipschitz of rank K, on

also the endpoint constraint set S ~ ~ 1 + n + ~ + n is closed.
(H2) The state constraint mapping g : SZ -~ R is continuous and the set
J ~ [R of times when the state constraint applies is closed; moreover there
is a constant such that .

(H3) For each (t, x)eQ, the set F(t, x) is nonempty, compact, and
convex.

(H4) For each (t, X)EQ, the multifunction t’ - F (t’, x) is measurable on
some neighbourhood of t; also, there is a nonnegative cpF (a - ~, 
which is essentially bounded on J+o) U (b - ~, b + ~) and obeys

(H5) There is a nonnegative which is essentially
bounded on ( a - w, J+o) U and obeys

(H6) The triple (a, b, x) solves (P), and at each of the points 
of the following conditions holds: either g (i, x (i)) 0, or else the i-

component of the endpoint constraint set S is the single 
In the statement of necessary conditions given below as Theorem 2.1,

we use the notation

Vol. 5, n° 6-1988.
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Note that ax g ( t, x) = ~ if g(t, x) ~ o, while ~x g(t, x) if

g(t, x»O. The latter inclusion can be proper, since the multifunction

ax g evidently has closed graph with respect to joint variations in t and x,
a feature not enjoyed by its subset When g (t, x)=0, ax g (t, x)
contains first - order information gathered only from directions violating
the state constraint and can be strictly smaller than axg (t, x). [Take
g (t, x ~ at x=O to see this.]

THEOREM 2.1. - Assume (Hl)-(H6), and write s = (a, x (a), b, x(b)).
Then there exist constants ?~ >_ 0, h, and k, an arc p : [a, ~ -~ a measura-

ble y : [a, B] --~ (Rn, and a nonnegative measure ~ such that

~] =1 and for every

one has

Note that the state constraint function g (t, x)= -1 obeys (H2), so that
out theory applies to state-constraint-free problems as well. Since g ~ -1
forces x (t)) = QS, V x, t, condition ( 2 . 6) implies that Supp ( ~,) = QS,
i. e., ~, is the zero measure. Thus we obtain the following simplied condi-
tions for problems without state constraints.

COROLLARY 2 . 2. - Take g .~ --1 and assume (H 1)-(H6). Then there

exist constants ~, >__ o, h, and k, and an arc p : [a, b] -~ (~8’~, such that

~, + ~ ~ p ~ ~ ~ =1 and for every
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one has

III. A SUBSTANTIAL SPECIAL CASE

We begin our proof of Theorem 2.1 by analysing the special case arising
when the objective function is simply  l, x (b) ~ for some fixed l E the

state constraints are continually in force (i. e., J = and (a, b, x) is the
problem’s unique solution. We will derive a set of necessary conditions
similar to those of Theorem 2.1 for the reduced problem; these will form
the backbone of our proof of Theorem 2.1 itself in Section 4.
Our approach relies upon finite-dimensional perturbations of the end-

point set and state constraint to produce a value function amenable to
proximal analysis. Our perturbations of the state constraint rely on the
observation that the joint continuity of g implies

where g ~ . It is the right-hand formulation we adopt here.
(Infinite-dimensional perturbations of the left side were studied in [5].)
Thus we fix any coe(0, o) and vector 8 = ( a, ~, P, ~, p) in ~ 1 + n + ~ + n + 1 ~
and consider the problem

The value function + n + 1 + n + 1 U { + ~ ~ arising from this family
of problems is simply V(O)=inf P ( 9) . Since ( a, b, x) solves problem (P) it
also solves P(0), whence V (o) _ ~ l, x (b) ~ is finite. Conversely, whenever
V(0) is finite [i. e., whenever there exists a triple (a, b, x) satisfying the
constraints of P(Q)], problem P(6) has a solution. The proof of this
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fact relies upon a sequential compactness property of F-trajectories [2],
Thm. 3. 1. 7 (cf [4], Prop. 1. 2]) and the nonstrict inequalities involving ~
in the statement of the perturbed problem. In the present setting these
properties yield the following result, in which we refer to the uniqueness
hypothesis
(H6 + ) Hypothesis (H 6) holds, and the triple (a, b, x) is the unique
solution of P(o).

LEMMA 3 . l. - Assume (H 1)-(H 5).
(a) If V (8)  + oo then P(8) has a solution.
(b) If 81 is any sequence converging to some point 8 along which

V ( 8i)  + oo, V i, then any sequence (ai, bi, xi) of solutions to has a

subsequence converging uniformly to a limit (a, b, x) which is feasible for
P ( 8) . In particular, V is lower sem icontinuous everywhere.

(c) Suppose (H 6 + ) also holds. Den for every s > 0 there exists b > 0 so
small that the following holds. Whenever ( 8 ~  ~ and V (8)  V (0) + b, any
solution (a, b, x) to P(8) obeys I a - a ~ + b - b ~ + i  E. In particular,
if a sequence 8i tends to 0 and V (8i) --~ V(0), then the solution sequence
described in (b) has a subsequence which actually tends to (a, b, x).
Note that the function V is certain not to be smooth at 0-whenever 8

is chosen so that p > o, one has V (8) _ + oo. Nonetheless, the lower

semicontinuity of V implies that the epigraph set

is closed. Since (0, V (o)) lies on the boundary of epiV, ( 1. 13) ensures
that ~depi v (o, V (0))B{ 0} ~ ~. According to ( 1.11) there exists some unit
vector v = ( h, cp, k, ~, ~, - ~,) in can be realized as
the limit of a sequence of unit vectors proximal normal to epi V at base
points approaching (0, V (o)). We begin, therefore, with the study of a
single proximal normal vector based near (0, V (o)).

LEMMA 3. 2. - Assume (H 1)-(H 6 +). Let v = (h, p, k, ~, - ~,) be a
nonzero vector which is proximal normal to epi V at some point (8, V)
obeying I 9 ~  b and V  V (o) + S, where S is given by Lemma 3. 1
(c) corresponding to the choice Then problem P(9) has a solution
(a, b, x) to which there correspond an arc p : [a, b] --~ ~n and measurable
functions y : [a, b] -~ m : [a, b] --~ [0, 1 ] such that ?~ >- o, ~ >_ 0, and the

following conditions hold.

Annales de /’Institut Henri Poincaré - Analyse non linéaire



583DIFFERENTIAL INCLUSIONS WITH FREE TIME

Proof. - The nature of an epigraph set implies that ~, >_ o, and allows
us to assume without loss of generality that V = V (8). The condition
V  + oo implies that problem P ( 8) has a solution (a, b, x) by Lemma 3.1
(a); in fact, Lemma 3.1 (c) guarantees that 
Thus there is a constant a > 0 such that for any triple (a’, b’, y) obeying

as well as the state and terminal constraints of P ( 8), one has

h x(b)>~~ y(b~)>..
Now Y =  l, x (b) ), and the constraints in P(o) imply that (s, u, t, v) E S

and where

Conversely, let ( a’, b’, y) be any triple obeying (3.9), and let any
(s’, u’, t’, v’) E S and r’ ~ 0 be given. Then upon defining

we have V (8’) _ ~ 1, y (b’) ). In other words, (9’, ~ I, y (b’) )) E epi V. Accord-
ing to the proximal normal inequality ( 1. 9), there is a constant M > 0

Vol. 5, n° 6-1988.
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such that

for all (a’, b’, y) obeying (3 . 9), all (s’, u’, t’, and all 
Now certainly (a, b, x) obeys (3 . 9) and so choosing these values

for (a’, b’, y) and r’ in (3.10) leads to the inequality

for all (s’, u’, t’, v’) E S. It follows that (s, u, t, v) minimizes the left side
over all (s’, u’, t’, v’) E S, from which we deduce [2], Prop. 2. 4. 3, p. 51

This verifies (3. 2).
If we next take ( s’, u’, t’, v’) = (s, u, t, v) and ( a’, b’, y) = (a, b, x) in

( 3 . 10), then we obtain ( ~, r’ - r ~ + M r’ - r I 2 >- 0, V r’ >_ 0. It follows that
0. 

- -

Finally, we fix (s’, u’, t’, v’) = (s, u, t, v) and r’ = r in (3. 10) to obtain

for all (a’, b’, y) obeying (3 . 9). Choosing a’ = a and b’ = b in this inequality
implies that x locally solves the fixed-time differential inclusion problem
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of minimizing the objective

over all y obeying (3.9). From the state- and endpoint-constraint free,
hence normal, case of [2], Thm. 3.2. 6, we deduce that there is an arc q
on [a, b] obeying

We pause to verify the following inclusion:

This is obviously true if g (t, x) ~ 0, since g (t, . ) is continuous. So we may
limit attention to the case g (t, x)=0. Now (t, x) is the convex hull
of limits s=lim V g+ (t;, x;), where V g+ (t;, x;) exists V i and (t, x).

We may assume that g+ (ti, xj=0, Vi, for otherwise we deduce via subse-
quence extraction that s=0 or else belongs to But if

g + (t;, xj=0, then V g+ (ti, xj = 0 since g + achieves a minimum at (t;, xi).
It follows that V g+ (t;, xj=0, Vi, so The inclusion is proved.
We define multifunctions r, X by

The Hamiltonian inclusion and the earlier inclusion result imply that
(t, x (t)) ~ E (t) r (t) a. e., and ( 3 . 13) gives

Now standard measurable selection theorems, e. g. [15], Thm. 1.7.10,
imply that there exist measurable functions y(t)Er(t) and

m (t) E X (t) a. e. on [a, b] such that in fact
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Note that y(t) and m (t) obey (3. 5)-(3 . 6). Upon defining the arc

we obtain from ( 3 . 16), ( 3 . 14), and ( 3 . 15) the conditions ( 3 . 1), ( 3 . 7),
and ( 3 . 8) :

This completes the verification of all the assertions of Lemma 3. 2 except
for the two dealing with the free times a and b. To these we now turn.

Let us fix a small E > 0, and consider any measurable selection

We may then define the arc yo on [a, b + £] via

Since (pp (s) a. e., yo lies in the tube specified in (3.9 b), provided E
is small enough. Of course yo may fail to be an F-trajectory on [b, b + E],
but it cannot fail to an excessive extent-we estimate

Since (pp and kF are essentially bounded in (b - E, b + E), [2], Thm. 3 . 1 . 6,
applies to give an F-trajectory y on [b, b+E] with y (b) =Yo (b)=x(b) and

for some depending only on cpF and kF. When extended to [a, b+E]
by setting y (t) = x (t) on [a, b], the F-trajectory y obeys (3. 9), and must
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therefore satisfy [by (3.12)]

Now 0 (E)2/s ~ 0 as E -> 0+, while

by continuity of g. Moreover, (3.18) gives

so we deduce from ( 3 .19) that

whence

This is the contribution of the possibility b’ > b to condition (3.4).
[Note (3. 7).] ]
Next consider b’ = b - E  b for some fixed ~>0. We consider the F-

trajectory In this case (3.12) gives [for a slightly different
A(e)]

Dividing through this inequality by E and letting E -~ 0 +, we obtain

Vol. 5, n° 6-1988.
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In view of Lemma 1.1, conditions (3.20) and (3.21) combine to give
(3.4). Similar arguments give rise to (3. 3). ////

Convergence analysis

Suppose now that the unit vector v = ( h, p, k, B)/, ~, - ~,) is obtained as
the limit of a sequence v; of unit vectors proximal normal to epi V at base
points V~) converging to (0, V (0)). [The existence of such a sequence
follows from ( 1. 11) and ( 1. 13).] Then Rockafellar’s proximal subgradient
formula ([12], see also [10]) implies that by adjusting and v; slightly,
the same limit can be obtained under the additional assuption that ~,~ > 0,
d i. Let us assume that this has been done. Then for each i there is a
solution (ai, bi, Xi) of P(8J together with corresponding quantities pi, mi
as in Lemma 3 . 2. Since 7~~ > 0, V i, the quantities

are all positive, so we may divide
the quantities v; and pi appearing in Lemma 3 . 2 by Ei (without renaming
them) to obtain the conditions below.

According to Lemma 3.1 (c), we may pass to a subsequence (without
relabelling) along which bi, x;) converges uniformly to (~ ~, x). Here
we have written y; (ds) = ~i mi (s) ds; note that these measures are nonnega-
tive because both and a. e., while ~.~ ( ~8) _ 1, Vi i by ( 3 . 30).
Consequently the sequence { i} has a subsequence converging weak* to
a measure ~ supported on [~ 5]. Likewise, the condition y; (t) I  K~ a. e.
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V i implies that the Rn-valued measures y; (t) (t) are bounded in total
variation, so they too have a weak*-convergent subsequence. The limit of
this subsequence is a vector measure supported on [~ 5] which is absolutely
continuous with respect to ~, and hence has a representation as y (t) d~. (t)
for some ~-integrable mapping y. Vinter and Pappas [14], Lemma 4 . 5,
show that y actually satisfies the limiting version of (3. 26). As for (3. 27),
let K~ denote the set on the right-hand side, and let

K = {t E [a, 5]: ax g (t, x (t)) 5~ Qf ~. The closure and uniform boundedness of
the multifunction ax g ( . , . ) readily imply that for any e>0, one has

for all i sufficiently large. Consequently the limiting
measure p. is supported on K.

Along a further subsequence we may assume that

(hb p;, ki, ~rt) -~ (h, p, k, B11) and ~,1 ~ h, where (3. 30) holds in the limit.
In particular the initial points p1 (ai) form a convergent sequence and hence
[2], Prop. 3 .1. 7, implies that (along yet another subsequence) the arcs

pi) converge uniformly to some arc (x, p) satisfying both (3. 22) and
(3 . 23). We turn finally to inclusions (3 . 24) and (3. 25). If g (a, x (a))  0,
then it follows that g+ (ai, xi (ai)) = 0 for all i sufficiently large, and the
limiting validity of (3.24) follows from Lemma 1. 2. The limiting form of
(3.25) is proven likewise, assuming that x (~)  0. We may now
present the desired necessary conditions for P(0).

THEOREM 3. 5. - Assume (H 1)-(H 6 + ). Then there exist constants ~, >_ 0,
h, and k, an arc b], a measurable mapping y : [a, b] ~ and a

nonnegative measure ~, such that b] > 0 and for any
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Proof. - We assert that the limiting quantities 03BB, h, k, p, y, and 
identified in the previous paragraph satisfy the theorem’s conclusions.
Conditions (3. 31)-(3. 36) have been checked above. Only the nontriviality
condition remains to verify. Suppose it were false. Then ~, = o, ~‘p ‘~ ~ = o,

b] = 0 by assumption, so h = k = 0 by (3 . 33)-(3 . 34), while

Consequently

This contradicts the limiting version of (3.30), and hence is

impossible. / / / /

IV. PROOF OF THEOREM 2.1

We turn now to the proof of Theorem 2. 1, for which the following
technical result is necessary.

LEMMA 4 . .1. - Let S ~ (~" be a closed set containing a point s. Suppose
there is a constant ~ > 0 and a function l : s + S B - ~ such that I is Lipschitz
of rank K~ on s + ~B. Then for all R ? (Kf + 1) 1~2, one has

[Here 03A8S (s) equals 0 if s E S, + o0 otherwise.] ]

Proof. - Let E denote the set on the right side of the desired inclusion.
Observe that the set E is convex and contains 0, so it suffices to show

that E contains all limits of unit proximal normals as described in (1.11).
Let (~, - E) be proximal normal to epi (I + at (x, v), where (x, v) is

so near to (s, I (s)) that x - s ‘ b. Then ~ >_ 0 and, for some M > o, x
minimizes the following functional over S:

Now for any constant p obeying p > E Kl + ~ ~,, there is a neighbourhood
of x on which the Lipschitz rank of this functional is majorized by p. On
this neighbourhood, [2], Prop. 2. 4. 3, asserts that x provides a local

minimum for the penalized functional ,

Hence zero belongs to the functional’s generalized gradient at x, i. e.
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Since this holds for all p > E K, + I ~ ~, it holds also for and
we deduce that

[The last inclusion holds because (Kf+ 1)1~2 is the largest possible
coefficient of ads (x), attained when E = K~ ( ~ ~.] It follows readily that E
contains all limits of proximal normal unit vectors, as required. ////

Let us now reduce the general case of Theorem 2.1 to an application
of Theorem 3. 5 : Given a problem (P) satisfying (H 1)-(H 6), we formulate
a modified problem (I» whose state (x, y, z) evolves in The data

governing (I» are

The resulting problem ( P) bears a simple relationship to the given
problem (P). First, any ( a, b, x, y, z) admissible for ( P) gives rise to a

triple (a, b, x) admissible for (P). For x is certainly an F-trajectory on
[a, b], and one has

The objective value of ( a, b, x) in the original problem ( P) is majorized
by the constant value of z in ( P), and the terminal value y(b) in ( P)

equals |x(t)-x(t)|2 dt. Consequently the value of (a, b, x, y, z) in (P)
is greater than or equal to the value of (a, b, x) in (P), and this inequality
is strict unless x --_ ac. Indeed, the arc

is the unique solution of problem ( P) .
Let us apply the necessary conditions of Theorem 3. 5, whose hypotheses

are clearly in force. We obtain scalars ~, >__ o, h, and k, an arc

(p, q, r) : [~ b] ~ ~" + 1 + 1, a measurable y : [~ b] ~ I~" + 1 + 1, and a nonnega-
tive measure ~, for which conditions ( 3 . 31 )-( 3 . 36) hold. First, note that
the state constraint function g does not depend on either y or z, so that
the measurable selection y of y, generated by Theorem 3 . 5 actually
has the form (y (t), 0, 0) for some selection y (t) of x (t)). Now for
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any ( t, x).

Consequently x) for all (t, x). Moreover, if t~J then
and (t, ~c (t)) - d J (t)  o. Therefore

for t ~ J, and the selection conditions of Theorem 3 . 5
imply

The Hamiltonian for problem ( P) is

Since it is independent of y and z, the Hamiltonian inclusion (3. 31) implies
that q = r = 0 while

The transversality condition (3. 32) implies

where K is the magnitude of the left-hand side. [We write

s = (a, x (a), b, x (b)) for simplicity.] According to the general formula
odc x D (c, d)  odc (c) x odD (d), the right side is a subset of

Consequently r=0, q = - ~,, and one has

In view of Lemma 4. 1, the right side is contained in

Thus we obtain

for any R as described in the statement of Theorem 2.1. As for the
inclusions (2. 3) and (2. 4), these follow readily from (3. 33) and (3. 34) in
view of the simple relationship between Hand H. Thus conclusions (2. 1)-
( 2 . 6) all hold.
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Finally, we consider the nontriviality condition. From Theorem 3. 5, we
have ~, + ( I (p, - ~,, 4) I ~ ~ + ~ [a, ~] > 0: this certainly forces

~+~~p~~~+~[a, b]>0.
We may therefore divide the quantities h, k, p, h, and J.1 appearing in
(2.1)-(2. 6) by this positive number: the desired conclusions remain valid,
and the scaled quantities also satisfy ~, + ( I p I I ~ + ~ [a, ~] =1. This completes
the proof of Theorem 2. 1.
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