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ABSTRACT. - We study the initial value problem for the Davey-Stewartson
systems. This model arises generically in both physics and mathematics.
Using the classification in [15] we consider the elliptic-hyperbolic and
hyperbolic-hyperbolic cases. Under smallness assumption on the data it is
shown that the IVP is locally wellposed in weighted Sobolev spaces.
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RESUME. - Nous etudions le probleme de Cauchy pour les systemes de
Davey-Stewartson. Ce modele se presente de fagon generique en mathe-
matiques et en physique. Nous utilisons la classification de [15] et consi-
derons les cas elliptique-hyperbolique et hyperbolique-hyperbolique. Sous
des conditions (de petites tailles) sur les donnees nous montrons que le
probleme est bien pose sur les espaces de Sobolev a poids.
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1. INTRODUCTION

Consider the initial value problem IVP for the Davey-Stewartson (D-S)
svstem

where u = u (x, y, t) is a complex-valued function, y, t) is a real-
valued function at = a/at, ax = ay = ~/~y and co, ..., c3 are real para-
meters.

A system of this kind was first derived by Davey and Stewartson [11] ]
in their work on two-dimensional long waves over finite depth liquids (see
also [12]). Independently Ablowitz and Haberman [1] obtained a particular
form of ( 1. 1 ) as an example of a completely integrable model which
generalizes the two-dimensional nonlinear Schrodinger equation. Since

then several works have been devoted to study special forms of the
system ( 1. 1 ) using the inverse scattering approach. In fact when

(co, CI’ C2, e3) _ ( - l, 1, - 2, 1) or (1, -1, 2, -1) the system in (1.1) is

known in inverse scattering as the DSI and DSII respectively. In these
cases several remarkable results concerning the associated IVP have been
established (see [2]-[5], [10] and their bibliography). On the other hand the
above system arises in water waves, plasma physics and nonlinear optics.
Moreover, it has been shown that under appropriate asymptotic consider-
ations a large class of nonlinear dispersive models in two dimensions can
be reduced to the system ( 1.1 ) (see [13], [29] and references therein).

In [15] Ghidaglia and Saut studied the existence problem for solutions
of the IVP ( 1. 1 ). They classified the system as elliptic-elliptic, elliptic-
hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic according to the
respective sign of (co, c3): ( + , + ), ( + , - ), ( - , + ) and (-, -). For the
elliptic-elliptic and hyperbolic-elliptic cases they obtained a quite complete
set of results concerning local and global properties of solutions to the
IVP ( 1 . 1 ) in L2, H2. Their main tools were the LP - L~ estimates of
Strichartz type [24] (see [6], [16], [19], [26]) and the good continuity proper-
ties of the operator ( - 0) -1 I (and its derivatives). Also in the elliptic-
hyperbolic case they established the global existence of a weak solution
of the IVP ( 1.1 ) corresponding to "small" data (see also [25]).

In this case (elliptic-hyperbolic) as well as the hyperbolic-hyperbolic case
one has to assume that (p ( . ) satisfies the radiation condition i. e.

[without loss of generality we have taken C3 = -1 in (1.1)]. This guarantees
that for F ELl ([R2), .%-1 F is well defined where
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525ON THE DAVEY-STEWARTSON SYSTEMS

Thus the IVP (1.1) is equivalent to

with Co> 0 (resp. Co  0) corresponding to the elliptic-hyperbolic case (resp.
hyperbolic-hyperbolic case).
As was remarked in [15] and [25] no existence results were known for

the hyperbolic-hyperbolic case.
Our main purpose here is to established local well-posedness results for

the IVP ( 1. 2) (with (i. e. the elliptic-hyperbolic and hyperbolic-
hyperbolic cases) for "small" data. Our notion of well posedness includes
existence, uniqueness, persistence [i. e. the solution u ( . ) describes a con-
tinuous curve in the function space X whenever uo eX]. The problem (1. 2)
can be seen as a nonlinear Schrodinger equation involving derivatives and
a nonlocal term in the non-linearity. It is interesting to remark that

previous approaches used in nonlinear evolution equation (LP - Lq estima-
tes, energy inequality, L2-theory, etc.) do not apply in this case.

In [22] Kenig, Ponce, and Vega studied the IVP for nonlinear Schrodin-
ger equation of the form

with ..., a/axn) and denoting a polynomial
having no constant or linear terms. Their arguments rely heavily on
sharp versions (see [21], [22]) of the homogeneous and inhomogeneous
smoothing effect first established by Kato [18] in solutions of the

Korteweg-de Vries equation. This allows them to obtain conditions which
guarantee that for "small" data the IVP ( 1 . 3) is local wellposed. Here we
shall extend this approach to treat the equation in (1.2) which presents a
more complicated nonlinear term (i. e. nonlocal term involving an operator
with bad continuity properties) than that considered in ( 1. 3).

In the hyperbolic-hyperbolic case (i. e. Co  0) after rotation in the xy-
plane and rescaling the system ( 1. 2) can be written as

where Jf cp = ~2xy cp (with cp satisfying the appropriate radiation condition)
and cl, c2, c3 are arbitrary constants.
To explain our results (in the hyperbolic-hyperbolic case) it is convenient

to consider first the associated linear problem to (1.4)

Vol. 10, n° 5-1993.
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It will be shown (see Theorem 2.1) that there exists c > 0 such that for
any y~R

denotes the group associated to the IVP (1.5),
DX~2 v (x, y, t) = c (~ ~ ~ 1 ~2 v~x~ (~, y, t)) " with denoting the Fourier
transform in the x-variable. Notice that ( 1. 6) is a global (in space and
time) estimate which involves the Ly L~ Previous results only
provide the gain of half-derivatives in (~3) (see [9], [27], [28]). Roughly
speaking (1.6) corresponds to the sharp one dimensional version of
the Kato smoothing effect obtained in [21] (Theorem 4 .1 ). Also the
estimate ( 1. 6) illustrates one of the key arguments in the proof of the
hyperbolic-hyperbolic case (see Theorem A below), i. e. the use of different
LP-norms for the x and y variables. This kind of estimate also appears in
the inhomogeneous version of (1 . 6) (see Theorem 2. 3) and when inverting
the operator 3i [see estimate (2. 20) in Proposition 2.7].
Our results in the hyperbolic-hyperbolic case are contained in the follow-

ing theorem.

THEOREM A. - There exists ~ > 0 such that for any

with s >_ 6 and

there exist T = T (~o) > 0 [with T (bo) - oo as 60 - 0] and a unique classical
solution u ( . ) of the IVP ( 1 . 4) satisfying

and

Moreover for any T’ E (0, T) there exists a neighborhood Vuo of uo in YS
such that the map 50 - u (t) from Vuo into the class defined by ( 1 . 7)-( 1 . 9)
with T’ instead of T is Lipschitz. -

In Theorem A (and Theorem B below) we shall not optimize the lower
bound for the Sobolev exponents given in the hypothesis.

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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In the elliptic-hyperbolic case (i. e. co =1) after a rotation in the xy-
plane and rescaling, ( 1 . 2) becomes

where 3i cp = aXy cp and c~, c2, c3 arbitrary constants.
As was remarked above in this case Ghidaglia and Saut [15] established

the global existence of a weak solution corresponding to "small" data.
Also in [25] M. Tsutsumi studied the asymptotic behavior of this weak
solution. Our results show that the IVP (1.10) is local wellposed for small
data uo.

THEOREM B. - There exists 6 > 0 such that for any

with s >_ 12 and

there exist T = T (bo) > 0 [with T (bo) - oo as ~o -~ 0] and a unique classical
solution u ( . ) of the IVP (1. 10) satisfying

and

Moreover for any T’ E (0, T) there exists a neighborhood Vu of uo in YS
such that the map io - u (t) from u0 into the class defined by ( 1. 11 )-( 1.12)
with T’ instead of T is Lipschitz. -

This paper is organized as follows: in section 2 we shall deduce all linear
estimates needed in the proof of Theorems A, B. Section 3 contains the
essential arguments in the proof of our nonlinear results. Here all the
nonlinear estimates to be used in sections 4, 5 are carried out in details.
Finally in sections 4 and 5 we prove Theorems A and B respectively.

2. LINEAR ESTIMATES

In this section we shall deduce several estimates concerning the linear
IVP
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First we consider the hyperbolic-hyperbolic case, L e. 8 = 2014 1. In this
case after changing variable and rescaling (2 .1 ) can be written as

We begin by establishing the following sharp versions of the Kato
smoothing effect in the group ( e‘t ~ 

commented in the introduction.

THEOREM 2. 1. - There exists c > 0 such that if uo E L2 ((~2) then for any
y E R the solution u ( . , . , . ) of the IVP (2. 2) satisfies that

It is clear that the same estimate holds with the roles of x and y
interchanged.

Proof - By Fourier transform it follows that

Hence performing the change of variables a = 03BE~ and b = 03BE, using Plan-
cherel’s theorem in the (x, t)-variables, returning to the original variables
and using again Plancherel’s theorem one obtains that

COROLLARY 2 . 2. - Let F ~ Ly (R : t~ (f~2)). Then

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof - It follows from (2. 3) by duality.
Next we deduce the inhomogeneous version of the estimate (2. 3). Thus

we consider the inhomogeneous IVP

which solution u ( . ) is given by the formula

THEOREM 2. 3. - If u ( . ) is the solution of the IVP (2. 5) then

Proof. - We shall follow the argument in [22].
Using Fourier Transform in the time and space variables one formally

has that

Hence applying Plancherel’s theorem it follows that

where

and t~ denotes the Fourier transform of F in the x, t variables. By
comparison with the kernel of the Hilbert transform (or its translated) it
is easy to see that K E L~ (f~3). Thus combining (2. 8), Minkowski’s integral
inequality and Plancherel’s theorem we find that for any y e R

Vol. 10, n° 5-1993.
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Using Parseval’s identity we find (formally) that the solution t)
satisfies the following data

By (2 . 4) we can infer that D;/2 U (x, y, 0) E L 2 (1R2). Finally since

combining (2. 9), (2. 3) and the above remark we obtain (2.7). The above
formal computation can be justified (and the proof stays essentially the
same) by using the argument given in [23] (section 3).
Next we recall some estimates concerning the Kato smoothing effect in

the group {~}~. .
It is convenient to introduce the notation:

thus {Q~ p}~,p 6 ~ forms a family of cubes of side one with nonoverlapping
00

interiors such that [f~ = U p.
Q[,P=-00 

’

THEOREM 2.4. - Then

where G (x, y, t) _ (, (~, ~1) ~ 1 ~2 (~, .~, t )) " .
Then

and

where Vx, y = (ax, ly) . - 

’ °

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Proof. - The estimate (2.10) was basically proven in [9], [27] and [28].
(2 .11 ) is the dual version of (2 .10). Finally (2 .12) was established in [22].
To complement the previous estimates in the proof of our nonlinear

results in section 3 we shall use the following theorems.

LEMMA 2. 5. - Let uo E H4 (~2) (~ H3 (~2 : r2 dx dy). Then

where

with r= (x2 + y2)1/2. -

Proof - For simplicity in the exposition, it will be carried out only
the details for T > o.

For (y, t) fixed Sobolev’s theorem tells us that
_ .. _ _~ ..... _~ ..

Similarly for y fixed

now using the inequality

together with Minkowski’s integral inequality and the identity (see [17])

we find that

Vol. 10, n° 5-1993.
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and

The same argument applied to the last two terms on the right hand
side of (2.15) yields (2.13).

Using the notation introduced before the statement of Theorem 2.4
and in (2.14) one has the corresponding result for the group {~~}~.
LEMMA 2.6. - Then

Proof (see [22], Proposition 3. 7).
Next we deduce some estimates concerning the second equation in ( 1.1 ).

Thus after a change of variable we need to consider the problem

with F E L1 (f~2) and w ( . , . ) satisfying the radiation condition

Under the above hypotheses the equation (2. 17) has a unique solution
given by the formulae

PROPOSITION 2. 7. - then and

In addition, if F E Ly (R : Lx ((1~)) then

We recall the notation

As was commented in the introduction we observe that the estimates

(2. 3)-(2. 7) and (2.20) use different LP-norms for the x and y variables.
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Proof. - (2.19) follows directly from (2.18). To obtain (2.20) from
(2.18) one sees that

Thus computing the L2-norm in x, using Minkowski’s integral inequality
and taking supremum in the y-variable we obtain (2. 20).

3. NONLINEAR ESTIMATES

In this section we shall obtain all the nonlinear estimates needed in the

proofs of Theorems A, B. First we have the following inequalities concern-
ing fractional derivatives.

THEOREM 3 . 1. - Let s > 0, 0  a  1, [0, a] with a = 03B11 + oc2.

oo) with 1 + 1 , =1 oo). Then for any f, g 
p P

(Schwartz class)

and when n =1 (not essential)

+ 2014 = - 00 L ~~
~1 ~2 ~

Proof - The estimate (3 . 1 ) was proven in [20] (Appendix). (3 . 2)
follows by combining Galiardo-Nirenberg, H61der and Young inequalities.
Finally, for (3 . 3) and (3 . 4) we refer to Theorems A. 12 and A. 13 in [23]
respectively. As was remarked in [20] and [23] the proof of (3 . 1), (3. 3)-
(3. 4) relies on ideas of Coifman and Meyer ([7]-[8]).
The following estimates form the essential steps in the proof of

Theorems A, B. They combine the linear results obtained in section 2 with
the inequalities in Theorem 3 . 1. Propositions 3.2-3.5 are concerned with
Theorem A, and Propositions 3 . 6-3 . 9 with Theorem B.
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PROPOSITION 3. 2. - If k = s -1 /2 E 7~ with k >_ 3 then

Proof - To simplify the notation we assume (without loss of generality)
that c == c~ = ~3 = 1. Thus

Using the homogeneous version of the Kato smoothing effect in the
group described in (2. 3) together with Minkowski’s integral
inequality and the estimate in (3 .1 ) it follows that

To bound A2 we first observe that

since aXy ~ -1--_ identity.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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Hence (2. 3) and Minkowski’s integral inequality lead to

The estimate for the second term on the right hand side of (3 . 8) is the
same as that in (3 . 7). To handle the first term on the right hand side of
(3 . 8) we use (3 . 3), (3.4), (2.19) and (3.2) to obtain

Finally we consider the term A3 in (3 . 6). Since

From (2. 3) and (2. 7) we have that

Vol. 10, n° 5-1993.



536 F. LINARES AND G. PONCE

Combining Minkowski’s integral inequality and the estimates (2.20),
(3 . 2), it is not hard to obtain the following string of inequalities

A similar argument shows that

On the other hand, using (3.3), (2. 19), (3.4) and (3.2) we obtain for j
fixed in B2 that

Therefore

Combining (3.10)-(3.14) one has a bound for A3. By inserting this
bound and those in (3.7)-(3.9 for Ai, A2 respectively in (3.6) we
obtain (3 . 5).

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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PROPOSITION 3 . 3. - with k >_- 3 then

Proof - The argument for highest derivatives is the same as that given
in the previous proof where instead of (2 . 3) and (2. 7) one uses the group
properties and (2.4). The proof for the lowest derivatives is simpler and
similar to that to be used in coming propositions, hence it will be omitted.

PROPOSITION 3.4:

We recall the notation for the 

with r==(~+~)~.
Proof. - Combining Minkowski’s integral inequality, the identity

(see [17])

and the one obtained by reversing the roles of x and y together with the
group properties and the estimates (2. 19)-(2.20) and (3.2) it is not hard
to see that for ~a ~ 3

Vol. 10, n° 5-1993.
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which yields (3 .16).

PROPOSITION 3.5.

Proof. - Using Minkowski’s integral inequality, (2.13), (3 . 1 ), (3 . 2)
and Sobolev’s theorem it follows that

From (3 . 2) and (2 .19) it is not hard to see that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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and

Inserting (3 .19)-(3 . 20) in (3 .18) and using Sobolev’s theorem we obtain
the desired inequality (3 .17).

PROPOSITION 3. 6. - If k = s -1 /2 E 7L with k >_ 3 then

We recall the notation:

with a, (3 E 7~.

Proof. - Without loss of generality we can assume cl = c2 == 1.
Thus

Vol. 10, n° 5-1993.
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From the homogeneous version of the Kato smoothing effect in

(2 .10), the Minkowski’s integral inequality and the estimate
(3 .1 ) it follows that

To bound A2 we notice that

Using an argument similar to that given in (3.23) [based in estimate
(2.10)] together with the inequality (2.19) one easily sees that

where Hx denotes the Hilbert transform in the x-variable.
To handle the first term on the right hand side of (3 . 24) we use (2.12)

to see that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Combining the argument used in the proof of (2. 20) with the correspond-
ing version of (3 . 2) for bounded domains it follows that

Inserting (3.27) in (3 . 26) we obtain the bound for the first term on the
right hand side of (3 . 24j. The proof for the second term follows the same
argument.

Finally, to bound A3, we notice that

since identity.

Vol. 10, n° 5-1993.
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Then the smoothing effect (2.10) together with similar arguments as
those in (3 . 23) and (3. 25) yield

Collecting all these bounds we get (3.21).

PROPOSITION 3 . 7. - If h = S - 1 /2 E ~L with k >_ 3 then

where D was defined in (3 . 21 ).

Proof. - The part of the proof of (3 . 29) involving the highest deriva-
tives is similar to that used to obtain (3 . 21 ) where instead of (2.10) and
(2.12) one needs the group properties and (2 . 11 ). The argument for the
lowest derivatives is a straight application of the group properties.

PROPOSITION 3.8: 1

Proof. - From Minkowski’s integral inequality and (2.16) it follows

that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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From (3 . 2) one has that

and

Similarly from (2 .19) and (3 . 2) it is easy to tind that

and

Inserting (3.32)-(3.35) in (3.31) and then using Sobolev’s theorem we
obtain (3.30).

PROPOSITION 3.9 : 1

Proof. - The proof is similar to that provided in detail for (3.16)
(Proposition 3.4). Hence it will be omitted.

4. PROOF OF THEOREM A

To simplify our exposition we fix s such that By hypo-
thesis k ? 6.
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For v~L~ ([0, T] : HS (!R2) define

and

For uo E HS (!R2) U H3 (!R2 : r2 dx dy) we denote by (v) = u the solution
of the linear IVP

where v E XT = ~ v (v) _ a ~ .
We shall prove that there exists ~ > 0 such that if

then there exist T > 0 and a > 0 [with T = T (80) --~ oo as bo -~ 0] such that
if v~XaT then and

is a contraction. For this purpose we rely on the integral equation version
of (4. 6) to write

Thus combining (2.3), (3. 5) and Sobolev’s theorem we find that

Similarly, from the group properties and (3.15) it follows that

from (3.16)

and from (2.13), (3.17)

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Thus (4 . 8)-(4 .11 ) yield the inequality

Choosing a = 2 c ( 1 + T2) bo with T satisfying

The same argument shows that

and that for ToE (0, T)

when I I I uo - uo I I I = I I uo - uo + i I uo - uo ~H3xy (r2> is sufficiently small.
Therefore c XT for a and T as above and is a contraction.

Thus there exists a unique u E XT such that (u) = u, i. e.

(4 .16) u (t) = eit~2xy uo

Inserting the argument used for (4. 8) in (4.16) we obtain that

Since as T --~ 0 by (4.13) it follows that ~, i (u) - o ( 1 )
as T - 0.

Combining this result with the arguments, in (4.9)-(4.10) and the inte-
gral equation (4.16) we conclude that

Now using the continuity properties is not hard to extend the uniqueness
result to the class XT n C ([0, T] : HS (I~2) (~ H3 (~2 : r2 dx dy)) (see [22]).
This observation completes the proof of Theorem A.

5. PROOF OF THEOREM B

As in Theorem A we fix s satisfying with k >__ 12. It will
be clear from our proof below that this does not represent a loss of

generality.
For v e L~ ([0, T] : HS ((~2)) define

Vol. 10, n° 5-1993.
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and

For uo (~ H6 (~2) : r6 dx dy) we denote by (v) = u the sol-
ution of the IVP

It will be established that there exists ~ > 0 such that if

then there exist t > 0 and a > 0 [with T (bo) -~ oo as ~o ~ 0] such that if
v E ZT then u = (v) E ZT and

is a contraction. As in the proof of Theorem A we rely on the integral
form p (5 . 6)

trom (2 . 10) and (3 . 21 ) it follows that
i ~ ~. ~ .... T ._ _ ... _ - _ -

Similarly, trom the group properties and (3 . 29)

ana Irom ana tj. ~U)
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Collecting the information in (S . 8)-(5 . 11 ) and using the notation in
(5.5) one finds that

(5.12) QT (v)) ~ c (1 + + c (1 + T8) (QT (v))3.
Once that the estimate (5.12) has been established the rest of the proof

of Theorem B follows an argument similar to that used for Theorem A.
Hence it will be omitted.
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