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ABSTRACT. - We show that minimizing harmonic maps from an annulus
in [R2 to the sphere in [R3 that agree on the boundary with the map
uo (x, y/r, 0) - where r2 = x2 + y2 - must be radially symmetric.
This result combined with previous results of Jager-Kaul [JK], Brezis-
Coron [BC] and of Bethuel-Brezis-Coleman-Helein [BBCH] shows that for
any symmetrical domain in f~ 2 and any symmetrical boundary data with
image lying in a closed hemisphere, minimizing harmonic maps must be
radially symmetric. We also give an example showing that this no longer
has to be true when the boundary data has its image lying in a neighbor-
hood - however small it may be - of a closed hemisphere.
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RESUME. - On montre que les applications harmoniques minimisantes
d’un domaine bidimensionnel vers la sphere sont nécessairement syme-
triques des que leur trace est symetrique et a valeur dans un hemisphere
ferme. On montre également que ceci devient faux lorsque la trace est a
valeurs dans un voisinage arbitrairement petit d’un hemisphere.
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INTRODUCTION

F. Bethuel, H. Brezis, B. D. Coleman and F. Helein have studied in a
recent paper [BBCH] minimizing harmonic maps from an annulus

to the unit sphere

that agree on the boundary aS2P with the map uo (x, y) = (x/r, y/r, 0), where
r2 = x2 + y2. These maps are the minimizers of the problem

where C p = ~ v E H~ (Qp, S2)lvl a~p = uo }. They have obtained the follow-
ing results: 

~ 

- For p > e - ", uo is the only minimizer.
- For there is a unique minimizer in the class of radially

symmetric maps (or radial maps), and it differs from uo when 
A radial map u is a map of the form

u (x, y) = sin (cp (r)), y/r sin (cp (r)), cos (cp (r))),
where r2 = x2 + y2 and cp is a real valued function.
We start by proving the following theorem

THEOREM 1. - Let 0  p  1, and suppose u is a minimizer for the problem

then u has radial symmetry.
Putting together previous results in [JK], [BC], [BBCH] and our theorem,

we can state the following

THEOREM 2. - Let S2 be a symmetric domain in ~2 and let : S2
be a radial boundary data with image lying in the closed upper hemisphere
s + _ ~ (x, y, Z) E IJ~ 3 /Z >_ 0 ~ .

Then any minimizing harmonic map agreeing with ~ on the boundary aS2
is radial.

Remark l. - It was already known from [JK] that this is true when
the boundary data has values in a compact subset of the open upper
hemisphere.
Remark 2. - The result of Theorem 2 fails to be true if one replaces

S + by y, z) E S2/z >_ - a ~ . We show at the end of this paper that
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for any a > 0, one can find a boundary data with values in Ka for which
minimizers must break the symmetry.

1. PROOF OF THEOREM 1

The proof goes as follows: first, by an argument of I. Shafrir, we can
suppose that the boundary data on the inner part of the annulus is free.
Then we define for any minimizing harmonic map u a symmetrized map
u. This map has the property that if u is not radial, it has strictly less
energy than u on part of the annulus. In the rest of the annulus we are
able to still reduce the energy by gluing u with an appropriate conformal
map.

Reduction of the problem

Let

and for any v E and Y  s  1 let ES (v) _ J ( ~ v ( 2 .
We can state the

LEMMA 1 (I. Shafrir). - If and Er(u)=minEr(v), then for all
v E f’~.

v E H1 S2) such that v (x, y) _ (x, y, 0) whenever x2 + y2 =1, we have

Remark 3. - This means that the restriction of u to is minimizing
in the bigger space ff ..;r of maps with finite energy that agree with uo only
on the outer boundary of 52~.

Proof of Lemma 1. - For any we set
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It is easily seen, since the map (x, ~) -~ conformal,
x2 + y2

that

therefore 2 Er (u) = Er + Er (u2). Moreover, u E Cr implies that u2 E ~r.
We now prove the lemma. Suppose u is a minimizer for Er over Cr, we

must have for if it were not true either u 1 or u2
would have strictly less energy than u - a contradiction. So ui and u2 are
both minimizers.

If now v belongs to ffr, we have indeed define

we have v1~Er and since ui 1 is a minimizer, But

and so that Therefore

the restriction of u to 03A9r is a minimizer over iF 
Hence proving Theorem 1 reduces to proving the following

THEOREM 1’. - Let 0  p  1, and suppose u is a minimizer for the

problem

then u has radial symmetry.
Indeed by lemma 1, and if u E ~~ is such that

then Theorem 1 would assert that u is radial on the smaller annulus 5~~.
But by a classical result of Morrey, u is analytic in Qp so that u must be
radial everywhere. We now proceed to prove Theorem 1’.

Symmetrization

From now on, p is a fixed inner radius, and u is a minimizer for Ep
over the space ffp, we further assume that u is not radial. We are going
to construct a radial v with strictly less energy than u and the theorem
will be proved. First we define the symmetrized function of u, namely u.
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For r > 0, set yr = { (x, y) E [R21x2 + y2 = r2 ~, and

that is, 6r is the area - counted positively - spanned by u (x, y) when (x, y)
spans Now U is defined as the only map satisfying the following
requirements:
- u is radial,
- u has its image lying in S +,
- for any p _ r _ 1, u (y r) is the perimeter of a surface having area

2 ~ - 6r if ~r  2 ~, and u! Yr = (0, 0, 1 ) otherwise.
Note that the fact that u is radial implies that is in fact a circle

parallel to the equator Sl = { (x, y, 0) E [R31x2 + y2 =1 ~.
Let us now show that for some E > 0, u has strictly less energy than u

on the annulus For this we need to split the energy in the following
way: let (s, 8) be polar coordinates in [R2. For any p _ r _ 1, we get

where Us and uo denote the partial derivatives of u with respect to the
variables s and 8. We define in a similar way Tr and Nr, the tangential
and normal energies of M on the circle yr. Note that Tr, Nr, Tr, N~ are
continuous functions of r. We have

On the other hand, from the definition of 7~ and u, we have

We need two lemmas:

LEMMA 2. - For all p ~ r ~ 1 we have

Moreover, if u~ u~ Yr then the first inequality is strict. More precisely,
equality in the inequality implies that u is radial.
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Proof - We first prove the inequality. We know by (2) that

by Cauchy-Schwarz inequality. For U, equality holds in all inequalities
since by radiality s|03B8 and |03B8| are constant on yr.
To prove the last assertion, let us suppose that and that

equality holds in the above inequalities for u also. It is not difficult to see
that this implies that u and u coincide as well as their first derivatives on
the circle Now for some E > 0, one can find a radial harmonic map
defined on that agrees with u as well as its first derivatives on
yr: it suffices to find a local solution to an ordinary differential equation
of second order with initial conditions. Call this map v and set

Since w is a C~ harmonic map, it is analytic and thus it is identically
equal to u. Hence u is radial..

LEMMA 3. - For any p  r _- 1, we have

Moreover, equality holds f and only f for some rotation or anti rotation R
of we have R ~ uj ,~r -_- u~ ,~r.

Proo, f : - This is a consequence of an isoperimetric inequality. u (yr) is
by definition the boundary of a surface having area 2 ~c - 6r while we
claim that it is a smooth path - is the boundary of two
disjoint surfaces both having area greater than 2 ~ - 6r. Suppose this is

true, then since is a circle it is by isoperimetric inequality a curve of
shorter length then u (~yr). Call 7~ and / these two lengths, we have

The first inequality comes from the radiality of u. But is constant on

yr and so by Cauchy-Schwartz inequality the left hand side is equal to
(Tr x 2 x r)1~2 while the right hand side is less than (Tr x 2 x r)1~2. The last
assertion of the lemma follows by looking at the cases where equality
holds.
Now we prove that u (yr) - when it is a smooth path - is the boundary

of two disjoint surfaces both having area greater than 2 x - 6r. Via stereo-
graphic projection, we can define the winding number of u with respect
to a point in S2, and we call Le (r) [resp. ~o (r)] the set of points in S2 for
which this number is even (resp. odd). We have u = a~e (r) = aEo (r).

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



555SYMMETRY OF HARMONIC MAPS

Because of the boundary data, we know that Ee ( 1 ) ~ _ ~ Eo ( 1 ) ~ = 2 ~, and
if x doesn’t belong to then iff indeed the

path depends continuously on r so that if is deformed into
u without touching x, the winding number of both paths with respect
to x is the same. Now we can conclude that

and our claim is proved when u (y~) is a smooth path. If it isn’t, we get
the result by approximation..
To summarize we have the following: u and u agree on y 1 so Lemma 1

gives us but T 1= T 1 and so N 1 > N 1. By continuity of
Nr, Nr, we know that for some E>O and for any 1- E  r __ 1 we have
Nr>Ñr. On the other hand always holds. Therefore by (1 ) we have

From now on we call 8 the difference between these two energies.
Set

Then we have for some E > 0. We now show that there is a

satisfying conditions (i ) and (ii ) above with s = ro - that is the inf
is achieved. Indeed, from the definition of ro, there is a sequence (ri) of
real numbers decreasing to ro, and a sequence (v;) of radial maps satisfying
(i ) and (ii ) above with s= ri. For each i we set

Then vj is radial, agrees with u on and

It is then easily seen that the sequence (v~) will converge in H~ S2) to
a map v which is as desired.
Now if ro = p, Theorem I’ is proved: v is a radial map in J03C1 with

strictly less energy then u. If not, we proceed to extend v with a conformal
map.

Continuation

Let ro and v be as in the previous section and set, for E > 0,
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Then by (3), Vt has more energy than u on and so

Letting E go to 0 we get Tro + Nro But we know that Tro 
so that Nro and then T~o - Nro.

In fact this is a strict inequality, for suppose Tro = Tro and Nro = Nro
then for some rotation or anti rotation R of [R3 we have = R ° 

(see Lemma 3). Now we can adapt the proof of Lemma 2 to conclude
that R ° u is radial. But then R ° u and u coincide on y 1 so that R is either
the identity or the reflection across the xy plane. In both cases u is radial.
From and we conclude that

(Tro - Finally, and this is what we were getting at

This fact will allow us to extend v.
Let M be the conformal mapping such that

This û is given, for an appropriate ~, e R by

From now on, v will denote the gluing together of v and û that is v is
equal to v on Qro and to û on The reason for using a conformal
mapping is that it spans a given area with less energy than any other
map. More precisely, define for any 

and define similarly 6 (r), the area (counted positively) spanned by y)
when (x, y) spans Then

This comes from the inequality holds for

any two vectors 03B1, 03B2-applied pointwise to the derivatives of ii and û;
equality holds for conformal maps. Note that from the definition of ii,
the area - counted positively - spanned by u (x, y) when (x, y) spans

is equal to  (r), so we also have
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Now we have 6 (ro) = 6 (ro) = 0, and

note that on the righthand side, the absolute value could as well be placed
outside the integral since u is radial. We have a similar formula for

d6 From these two formulas, using the radiality of u and û and the

conformality of û, we get:

Thus we can use (4) to conclude that

Thus for E > 0 small enough and have Let

so be the smallest number in [p, ro] for which the last inequality is true
for all so  s  ro. We see by (5) and (6) that

and so

Then if so = p, the proof is over because then; is a radial map in g- p
with strictly less energy than u.

But this must be true: if so were greater than p, then we would have
(so) = 6 (so). In turn this would mean that u and u agree on Now 

would agree with conditions (i ) and (ii ) of (3), with s = so . But this is

impossible since so  ro. The proof of Theorem 1’ is complete..
Remark. - After we announced our Theorem 1 (see [S]), a simpler proof

has been found by S. Kaniel [K]. It relies on a different symmetrization and
does not require a continuation argument.

2. PROOF OF THEOREM 2, AND AN EXAMPLE

Proof of Theorem 2

We have a given domain Q in [R2 invariant under rotations of the plane,
and a boundary data cp : S+, having radial symmetry. We want to
show that a minimizing harmonic map with boundary data cp must have
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radial symmetry. But a connected component of Q is either conformal

through a dilatation to the unit disk D2 = ~ (x, y) E ~2/x2 + y2  1 ~ or to
some annulus Qp with p > o. Moreover the Dirichlet integral is invariant
under conformal transformations so that it suffices to prove the theorem
in these two cases.

For the case where Q is the disk, the result has been proved in [BC], so
we are left with the case of an annulus Qp.
Now if cp has values in the open hemisphere, the result follows from

[JK], see also [BBCH]. If cp is the restriction to ~03A903C1 of the map uo, our
Theorem 1 gives the result. The only case left is therefore one where the
restriction of cp to one of the connected components of ~03A903C1-we can
assume without loss of generality that it is the outer boundary 03B31-is
equal to uo, while on the other component - say the inner boundary ~yP - ,
cp is given by V (x, y) E y?

for some 0 _ R  1.
In this case, arguments similar to those in [BBCH] tell us that there is

a radial minimizing harmonic map having such boundary data, we call
it v, with image lying in S + . Now v can be extended to a radial harmonic
map; defined on a bigger annulus whose image still lies in S + . Hence
by [BBCH] ; is minimizing. Suppose u is another minizing harmonic map
on Qp with cp as boundary data, then we can set

It is obvious that w is minimizing, hence analytic. Since v also is, 
and u = v. Therefore v is the only minimizing harmonic map with boundary
data cp and the proof of Theorem 2 is completed.

An example

We show in this section that Theorem 2 cannot be improved in an
obvious way. More precisely, set for any positive real a,

Then for any a > o, there is a radius p > 0 and a radial boundary data
cp : Ka such that minimizing harmonic maps having cp as boundary
data cannot be radial.

Indeed, fix a > 0 and set V(x, y) _ (o, 0, 1 ), and b’ (x, 
cp (x, y) _ (~, x, ~, y, - a), where Then if u is a radial map
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on Qp having boundary data cp, u must cover all of Ka and therefore

where P > 0 and 2 x + P is the area of K~. This is true for any p, therefore
we will choose p later on.
On the other hand, for r small enough, we can find a map v (which

will not be radial) such that (i ) v ~ Y 1= (o, 0, 1 ), (ii ) v ~ ,~r --- (0, 0, - 1), and

(See [BG].)
Moreover if p is chosen small enough, then by deforming slightly a

conformal map we may construct a map w such that (i ) w~ ,~r - (0, 0, -1 ),
Yp =(p, |03B303C1’ and

note that 2 x - fl is the area of 
Then we can glue v and w to get a map defined on Qp with strictly less

energy then any radial map agreeing with it on the boundary of Qp.
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