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ABSTRACT. - We consider variational integrals

with integrands F(x, u, p) growing polynomially and of class C2 in p and
Holder-continuous in (x, u). Under the main assumption that F(x, u, p)
is strictly quasiconvex we prove that each minimizer is of Class in

an open set Qo c Q with meas (Q - Qo) = 0.

RESUME. - On considere des fonctionnelles du Calcul des Variations

et on suppose que F(x, u, p) ait une croissance polynomiale en p et soit
de classe C2 en p et Holderienne en (x, u). Sous 1’hypothese que F(x, u, p)
soit strictement quasiconvexe nous demontrons que les minima ont les
derivees premieres Holderiennes dans un ouvert 03A90 ~ 03A9 de mesure totale
egale a Q.

Mots-cles : Calculus of variations, quasiconvex integrands, Caccioppoli inequality,
Holder regularity.
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186 M. GIAQUINTA AND G. MODICA

1. INTRODUCTION

In this paper we study the regularity of derivatives of the minimizers
of variational integrals ,

with integrands F(x, u, p) uniformily strictly quasiconvex.
Here Q is an open set in > 2, u : S~ ~ N > 1, Du = { 

1  a  n, 1  i  N, stands for the gradient matrix of u and F:
Q x IRN x IRnN ~ R is a function satisfying

where m is a real number larger than or equal to 2.
A minimizer of the functional fF is a function u E such that

for IRN) with supp u c Q

The regularity of minimizers of differentiable functionals and of the
weak solutions of related nonlinear elliptic systems has been intensively
studied in the last twenty years. It would be very difficult to list the various
contributions and we refer to M. Giaquinta [8 ] for that.

Except for the classical two dimensional result by C. B. Morrey, the
regularity of minimizers of non-differentiable functionals has been studied
only recently, see M. Giaquinta and E. Giusti [9 ] [10] [l l ], M. Giaquinta,
P. A. Ivert [13 ], see also [8].

In both cases the main assumption was the strong ellipticity :

This is a natural strengthening of the convexity condition of F(x, u, p)
with respect to p. A typical integrand F which satisfies (1.4) is

As it is well known, the convexity of F(x, u, p) with respect to p is a
sufficient condition for the sequential weak lower semicontinuity of ff
in w1,m(Q, ~N) and therefore, together with the coercivity condition (1.2),
for the existence of a minimizer (subject to given boundary conditions)
for ff’. But in general it is a necessary condition only in the scalar case, N = 1.

In 1952 C. B. Morrey [17] showed that a necessary and sufficient condi-
tion for the weak sequential lower semicontinuity of F is that F be quasi-
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187PARTIAL REGULARITY OF MINIMIZERS

convex. This means that for almost every xo E S2, for all uo E po E (~nN

and for all 03C6 E Co(S2, we have

i. e. the frozen functional

has the (affine) linear functions as minimizers (see also C. B. Morrey [l8 ]
(4 . 4), E. Acerbi, N. Fusco [1 ], J. Ball [2]).

Quasiconvexity is strictly weaker than convexity if N > 1 while it
reduces to convexity if N = 1. Note that it is a global condition; but if F
is of class C2 in p, it implies the pointwise Legendre-Hadamard condition:

It is an open problem whether the converse is true in general.
As in the convex case, in order to study the regularity of minimizers,

it is natural, and in a certain sense necessary, to strengthen condition (1. 6).

DEFINITION 1. 1. - We say that F(x, u, p) is uniformly strictly quasi-
convex ~f for almost every xo E ~, for all uo E ~3N. po E and for all

~ E Co(SZ, we have

W e moreover suppose m > 2.

Recently L. C. Evans [6 ], adapting the so-called indirect approach in [8 ],
showed partial regularity of minimizers of the functional (1.1) in the case
that the integrand F was uniformly strictly quasiconvex with m > 2 and
moreover it did not depend on x and u.

In this paper we extend Evans’ result proving the following theorem.

THEOREM 1.1. - Suppose that F(x, u, p) satisfies ( 1. 2). Suppose moreover
that

1 ) F(x, u, p) is uniformly strictly quasiconvex
ii) for every (x, u) E S2 x F(x, u, p) is twice continuously differen-

tiable in p and we have

Vol. 3, n° 3-1986.
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Ui) for every p E the function (1 + |p|2) 2F(x, u, p) is Holder
continuous in S~ x uniformly in p.
Let u E (J~N) be a minimizer of the functional ( 1.1 ). Then there
exists an open set SZo c SZ such that u has Holder continuous first derivatives
in 03A90. Moreover we have meas (SZ - S2o) = 0.
We conclude this introduction with a few comments on the method

of proof, the so-called direct approach in [8 ], which strongly relies on
Caccioppoli’s type inequalities.
From the previous work, see [8 ], and especially from [9 ] [10 ] [11 ] the

crucial role of the so-called Caccioppoli’s inequality clearly appears, in
dealing with the regularity of minimizers and solutions of nonlinear elliptic
systems. This inequality, in the simplest case, amounts to the following :
Let u be a minimizer. Then for all balls BR(xo) c S~ we have

Here denotes the average of u on BR(xo) i. e.

On the basis of a result on reverse Holder inequalities with increasing
supports, see F. W. Gehring [7], M. Giaquinta, G. Modica [14 ] and [8],
chap. V (1. 9) implies that Du lies in some with p > 2, and moreover
we have

This is actually the main point.
In the scalar case, a modified version of (1.9) implies even Holder-

continuity, see [4 ] [8 ] [Il ], and a Harnack inequality [5 ] for the mini-
mizers.
The work of L. C. Evans [6 ], see also [1S ], and this paper shows that a

second Caccioppoli’s inequality is crucial for the regularity: for any po E 
and any uo E (~~ we have

We shall prove in section 4, that it implies the following reverse Holder
inequality: for some p > 2 and for every BR
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The fact that the uniform strict quasiconvexity permits a proof of ine-
quality (1.10) was pointed out by L. C. Evans [6], see section 4 in our
situation.
We would like to remark that inequality (1.10) relies heavily on the

minimizing property of u and on the quasiconvexity assumption. As a
matter of fact, even the first Caccioppoli’s inequality (1.9) may not be true
for solutions of quasilinear systems

with coefficients satisfying the strengthened Legendre-Hadamard condition

see M. Giaquinta, J. Soucek [16 ].

2. TECHNICAL PRELIMINARIES

In this section we collect as lemmata a few simple remarks, mainly
of algebraic nature, that we shall use in the sequel.

LEMMA 2.1. - For 6 > 0, and for all a, b~ [Rk we have

and

Proof - Let us prove inequality (2.1); (2.2) follows at once, as

The inequality on the right follows immediately since for any t E [0, 1]

In order to show the inequality on the left it suffices to notice that we

may assume that |a| [ >_ [ b |, so for t ~(3 4, 1 j we have

Vol. 3, n° 3-1986.
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For 03B4 > 0, and any p E define the vector valued function

LEMMA 2 . 2. - We have

Proof - The inequality on the right follows at once, using lemma 2.1,
since

In order to prove the inequality on the left we suppose without loss in
generality that I p > , and we distinguish the case I p >_ 2 q ~ [ in

which we have

and the case [ q [  [ p [  2 [ q [.
In the first case, since [ V(p) [ is an increasing function of [ p [, we have

hence the inequality follows immediately using (2.5). In the second case
we note that for every i > 1 we have q >- ~ p - q [ hence, setting

we get

The result then follows, because

The next lemma is an easy consequence of lemma 1.1 of [9 ].

LEMMA 2 . 3. - Let f(t) be a nonnegative bounded function defined
for 0 _ To  t _ Tl. Suppose that for To _ t  s  Tl we have

~~here A, B, a, ~, 8 are nonnegative constants, and o  1. Then there exists
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a constant co = co(6, a, 03B2) such that for every p, R, To _ p  R  Tl, we have

f(p) ~~ co CA( R - + B(R - + C].

The next lemma will be used quite often in the sequel. Consider the
vector valued function

defined for p E and m > 2 ; and denote by

the mean value over the ball BR(xo) in of the vector valued function
.

We have

LEMMA 2 . 4. - For any p >_ 1 there exists a constant c such that for any
/~, E ~nN

In particular

Proof - From lemma 2.1 we have

Vol. 3, n° 3-1986.
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the second statement follows at once choosing A in such a way that

Y(~)=V(~. Q. E. D

3 REVERSE HOLDER INEQUALITIES

We shall denote by the cube in !R" centered at ~o with sides of

length 2R parallel to the axes, i.e.

while by BR(xo) we shall denote, as usual, the ball of radius R centered at xo,
i. e.

Let Q be a bounded open set in and let g E We say that g satisfies
a reverse Ho lder inequality with increasing supports in Q if for some r  q
we have :

for all 
We recall the usual notations

Reverse Holder inequalities with increasing supports play an important
role in the theory of the regularity of solutions to nonlinear elliptic diffe-
rential equations, see [8 ], chapters V, VI. In [14 ] we proved (see also [8 ],
chap. V, [7] [8 ]) that whenever (3.1) is satisfied for all then g
has higher integrability and satisfies a reverse Holder inequality with
increasing supports and exponents q + E, q. More precisely we proved
the following theorem which we now state in a slightly more general form,
and which will be used in the sequel.

THEOREM 3.1. - Let Q be a bounded open set in Suppose we hare

for all QR =  r  q  s  + 

~
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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there exists a positive E = E(n, q, r, s, b) such that g ~Lq+~loc(03A9). Moreover for
any 03A9’ c c S2 have

where c is a constant depending on n, q, r, s, b and on S2 [/dist (Q’, and

REMARK 3.1. - On the left-hand side of the inequality (3.2) we may
have any cube  L  1, instead of QR~2. Then the conclusions of
theorem 3.1 remain true of course with the constants c and a in (3.3)
depending on L.

REMARK 3.2. - Obviously in (3.2) we can have balls BR instead of
cubes QR, and the same conclusions holds.

4. CACCIOPPOLI’S INEQUALITIES
AND HIGHER INTEGRABILITY

Let F(x, u, p) : Q x x ~nN ~ (l~ be a Caratheodory function (i. e. measu-
rable in x and continuous in u, p) satisfying condition (1.2), which we
rewrite, for simplicity, as
(H .1) F(x, u, p) satisfies the inequalities

> 0, > 2.
In M. Giaquinta and E. Giusti [10], see also [I l ] for a more general

statement, the following theorem was proved

THEOREM 4.1. - Let minimizer of the functional

where the integrand F satisfies (H .1).
Then there exists an E > 0 such that Du E 

Moreover, for every xo E o and R, with 0  R  dist {xo, we have

c independent of R and u.

Vol. 3, n° 3-1986.
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Theorem 4 .1 is a consequence, see [9 ], of theorem 3 .1 and of the following
inequality proved in [9].

Caccioppoli’’s , first inequality: Under the assumption of theorem 4 . l, , for
every xo E Q, p, R, with 0  p  R  dist (xo, we have

In the next proposition we shall prove, using an idea of L. C. Evans [6 ],
an inequality for the mean oscillation of Du of the same nature of (4.3).
In order to do that, we need some additional hypotheses on F. We collect
here these hypotheses and some simple consequences as (H. 2) ... (H. 6);
as in (H .1 ) m is larger than or equal to 2.

(H. 2) F(x, u, p) is of class C2 with respect to p and

Taking into account lemma 2 .1, (H. 2) implies immediately the following
statement that we number as (H. 3)
(H . 3) The derivatives of F(x, u, p) with respect to p satisfy

In the next section we need a stronger version of (H. 2).
(H.4) F(x, u, p) is twice continuously differentiable in p, uniforml y with
respect to x, u ; more precisely there exists a continuous, non negative,
bounded function co(t, s) increasing in t for fixed s and in s for fixed t, concave
in s, with 0) = 0, and such that for every (x, u) E Q x l~N and p, q E ~nN
we have

m

(H . S) ( 1 + |p|2) 2F(x, u, p) is Hölder-continuous in (x, u) un forml y with
respect to p, i. e.

where

for some ~, 0  ~  1, and L > 0, and is an increasing function.
Notice that ri(t, s) is concave in s for fixed t. Finally
(H . 6) F(x, u, p) is uniformly strictly quasiconvex in the sense of defi-
nition l.l, or equivalently (compare lemma 2.2) there exist a positive
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constant v such that for almost every xo E S~, for all u~ E po E and

for all ~ E Co(SZ, we have

where, for all p E V(p) is the vector valued function defined by

Let u E be a minimizer for the functional fF [u ; ~ ] in {4 .1 ).
For xo , ye Q, uo, vo po E we define

and we simply write

Moreover we set

We have

PROPOSITION 4.1. (Caccioppoli’’s second inequality) . Let (~")
be a minimizer of the functional SZ] in (4 .1). Suppose that the integrand F
satisfies (H .1) (H . 2) (H . 3) (H . 5) and (H . 6). Then for every xo, 
uo, vo E ~N, po E and every p, R with 0  p  R  dist (xo, a~) we have

If moreover the integrand F does not depend explicitly on x and u, then we
may take G = 0 in (4 . 7).

Proof - Let 0  p  s  t  R and choose ~ E satisfying
0 ~ ~  1, ç - 1 on  c/(t - s). Define

so that
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As 03BE = 0 on ~Bt, the quasiconvexity assumption (H. 6) implies for every
y E S2 and vo E (~N

We now rewrite the right-hand side of (4. 8) as

and we notice that (III)  0 because u is a minimizer, and that (II) and (IV)
are zero if the integrand F does not depend explicitly on x and u.
We have, using (H. 3) and lemma 2.1,

Then we observe that has support in Bt - B~ and that

so using the elementary inequality am-2b2  am + bm, we conclude

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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On the other hand, (H. 5) and (H. 1) imply

Therefore, from (4.8) ... (4.11) we conclude

Now we fill the hole, i. e. we add C12 times the left-hand side of (4.12) to
both sides of (4 .12) and we get

with

Hence the result follows at once from lemma 2. 3. Q. E. D.
Now we show how Caccioppoli’s second inequality permits us to prove

a useful reverse Holder inequality for V(Du) - V being the
function defined in (H. 6).

Vol. 3, n° 3-1986.
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We choose in (4.7), p = R/2, uo = and we recall the well-known

Sobolev-Poincare inequality; for any p >_ n 
M 2014 1

then there is a constant c = c(n, p) such that

We estimate the first two terms on the right-hand side of (4.7) first by

and then, noticing that m*  2*m, with a simple use of Holder inequality by

Taking into account lemma 2 . 2 and 2 . 4, Caccioppoli’s second inequality
implies

In case F does not depend explicitly on x and u, and therefore G = 0,
inequality (4.13) together with theorem 3 . 2 (applied to J V(Du) - V(po) J )
implies that

for some p > 2. Therefore, choosing for each BR(xo) po in such a way that
V(po) = we get

THEOREM 4 . 2. Let (~N) be a minimizer of IF [u : S2 ] in (4 .1 )
suppose that the integrand F does not depend explicitly on x and u and satisfies
(H . 2) (H. 3) (H . 6). Then there exists a p > 2 such that for all BR(xo) c Q
we have
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In general we have

THEOREM 4 . 3. - Let be a minimizer of in

(4 .1), suppose that the integrand F satisfies (H .1) (H. 2) (H. 5) and (H. 6).
Then there exists a p > 2, a y > 0 and a constant c such that for all BR(xo) c Q
we have

where h(t) is an increasing function and R) is defined by

Proof - Choosing uo = u xo , 2 3 , R from Caccioppoli’s inequality (4.7);
using as before Sobolev-Poincare inequality, we get

We note, theorem 4.1, that (1 + so that 

2  s  2 201420142014. Set
m

We have

Vol. 3, n° 3-1986.
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We estimate the second integral on the right-hand side using theorem 4.1
and Poincare inequality as follows :

Note that for s close to 2, m(1 - - j is close to 2014.Set now for Ro fixed ~ ~ "

From (4.16) (4.17) (4.18) we deduce

and for all R  Ro, vo E y E SZ, po E we have

Applying theorem 4 .1 we conclude that there is an exponent p > 2 such that

Now for each BRo(xo) we choose uxo,Ro, po in such a way
that V(po) = and we estimate the last integral in (4.19) as in
(4.18). Then the result follows at once. Q. E. D.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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5. PARTIAL REGULARITY

In this section we shall prove theorem 1.1 which was stated in the
introduction. Through the whole section u E (~N) will denote a
minimizer of the functional

with integrand F satisfying the main assumptions (H .1) ... (H . 6) of
section 4. V(Du), simply written V, when no confusion may arise, will
denote the vector valued function in (H. 6) defined as

Let us first consider the case that the integrand F does not depend expli-
citly on x and u. So let u E I1~N) be a minimizer of

with F satisfying

THEOREM 5 .1. - There exists an open set Qo c S2 such that

We have Q - Qo = Ll u E2, where

In particular meas (Q - Qo) = 0.
Moreover, for every fixed o- E (0,1) and M~ there exist positive constants

Eo(Mo), Ro(Mo) such that, if for some xo E Q, R _ Ro we have

then for all p, R, 0  p  R  Ro, we have

REMARK 5.1. - The first part of theorem 5.1 follows actually from

Vol. 3, n° 3-1986.
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the second part. In fact, (5 . 3) clearly holds almost everywhere in Q, and since

are continuous functions of x, the inequalities (5.3) are satisfied in a

neighbourhood of xo whenever they hold for xo. Therefore (5 . 4) holds,
with xo replaced by x for x in a neighbourhood of xo. The first part of the
theorem then follows immediately taking into account Campanato’s
characterization of Holder-continuous functions, see e. g. [8 ], p. 70.

REMARK 5.2. - Theorem 5.1 implies that u E (F~N) for every
cr e (0, 1).

In the general case we have, compare also remark 5. 3.

THEOREM 5 . 2. - Let u E be a minimizer of the functional
in (5.1) and (H. .1) ... (H. 6) hold. Then there exists an open set S2° c Q
and a J E (0.1) such that V(Du) E (RN). We have Q - Qo = ~2,
hence meas (Q - = 0. Moreover there exist positive constants GO, Mo,
Ro such that, if for some x° E Q, R  Ro (5 . 3) hold, then (5 . 4) holds.

Both theorems follow in a standard way, see e. g. [8 ], p. 197-199, from
the following proposition.

PROPOSITION 5.1. - Set 
_

Then for every xo E Q, E > 0, and for every p, R, 0  p  R  dist (xo, aS2)
we have

where y > 0, and

y(t, s) being an increasing function in t going to zero as s goes to zero uni-
forml y for t in a bounded set, and h(t) an increasing function of t.

Proof Fix a point xo E SZ and a radius R  dist (xo, Set

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and denote by F°(p) the frozen integrand

Define the integrand G : (RnN -~ R by

and notice that (H . 4) implies

Since (H . 3) (H . 6) imply (see [29], theor. 4 . 4 .1 ) that

the elementary Hilbert space theory together with Garding inequality
ensure the existence and uniqueness of a solution v E of

~ , 
_

Note that v is the solution of the Dirichlet boundary value problem

for an elliptic system with constant coefficients. Therefore we have, see

e. g. 8 ], chap. III, for any A E RnN and for any P -
2

Moreover, from the LP-theory for elliptic systems we deduce that if
u E ~N)- p ? 2, then v E and

Vol. 3, n° 3-1986.
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Notice that the constant c appearing in (5.7)... (5.11) does not depend
on po.
From lemma 2.2, (5.9) (5.11) we deduce

On the other hand from (5.8) we get

Hence we have

Taking into account lemmata 2.2 and 2.4, we then conclude

and therefore

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Now we estimate the last term in (5.13). Using lemma 2 . 2, it is not diffi-
cult to see that Vs > 0

where w = u - v.
From the quasiconvexity assumption (H. 6) we have

On the other hand we have

Therefore from (5.14) (5.15) (5.16) we conclude

Notice that (IV)  0, since u is a minimizer, while (III) and (V) are zero if F
does not depend on x and u.

In order to estimate the terms on the right-hand side of (5 .17), it is conve-
nient to distinguish two situations.

a) F = F( p) ; in this case (III). (V) are zero. So we need to estimate (I)

Vol. 3, n° 3-1986.
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(II) (VI). Using (5.6), the boundedness of lemmata 2.2 and 2.4, the
reverse Holder inequality (4.14) we obtain 

-

and by Jensen’s inequality, since s) is concave in s

Exactly in the same way, taking also into account (5.7) (5.10) we obtain

R
This, together with (5.13) (5.17) (5.18), gives (5 . 5) with H = 0 and p  -.
Since (5.5) is trivial for -  03C1 ~ R, the proof of proposition 5.1 is concluded
in this case. 2 

-p ~ p p p 
.

b) The general case F(x, u, Du) - (I) (II) (III) can be estimated as

before, using (4.15) instead of (4.14). In this way on the right-hand side
of (5.18) the following extra terms appears

which gives a term of type R) in (5.5).

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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So, in order to conclude the proof, it suffices to estimate (III) and 
Assumption (H. 5) implies, using also theorem 4 .1

Since

we then conclude

for y > 0, when H is of the same type as H described in the statement of
the theorem.

This concludes the proof of the proposition, since, taking into account
(5.10), (V) can be estimated in the same way. Q. E. D.

REMARK 5 . 3. - Actually if F(x, u, p) is Holder-continuous in x with
exponent 6 and in u with exponent y then V(Du) E with

compare with [12 ].
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