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1. INTRODUCTION

a) The variational problem.

In this paper we consider a special class of extremals, the so-called
minimal solutions, of a variational problem on a torus. We view the torus

as the quotient of its universal covering manifold by the
group ~" + 1. Denoting the points in 1 by x = (x 1, x2, _ .. , 1 ) and
setting x = (x 1, x2, ... , xn) we consider n-dimensional hypersurfaces in

which can be represented as the graph of a function u(x) over (~n by

No periodicity is required for u(x).
Such a function will be called an extremal for a variational problem

if it is a solution of the Euler equation

Here it is required that the integrand F = F(x, Xn+ 1, p) has period 1 in
the variables x 1, x2, ..., xn+ 1 so that the differential equation (1.3) is
invariant under the translations k - and can be viewed
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as a differential equation on the torus Tn+ 1 = ~n + I ~~n + 1. Moreover,
we will assume that

i. e. F has derivatives up to order I which are Holder continuous with
Holder exponent E. Moreover, F satisfies the Legendre condition

with some constant 6 E (0, 1), for all (x, p) E (~2n+ 1. The function F should
grow roughly like 1 p 2 for large the precise conditions are given in
Section 3, (3.1). The typical example is given by

where bv, c belong to 1) and is positive definite.

b) Minimal solutions.

As a rule one considers a variational problem like (1.2) over a compact
domain. Since we want to consider noncompact hypersurfaces (1.1) and
the domain of definition of u is ~n the question arises in which sense the
variational principle is to be understood. Here we follow Giaquinta and
Giusti [8 ] in defining « minimal solutions » of the variational problem.
We require u E the space of u for which the first derivatives

belong to 

DEFINITION 1.1. An element u E is called a minimal solution
of the variational problem (1.2) if

for every ~p E 
In other words, fixing u at the boundary of any domain Q e it gives

the minimal value to the integral

Therefore every minimal solution will be an extremal but not every extremal
is a minimal solution. In general, extremals are minimal only with respect
to sufficiently small domains and it is not at all clear whether minimal
solutions exist.

Since the variational problem is invariant under the group of transla-
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231MINIMAL SOLUTIONS OF VARIATIONAL PROBLEMS ON A TORUS

tions ~’~ + ~, say k - x + j, any minimal xn + 1 = u(x) will be transformed
into another minimal solution

xn + 1 = + J ) - .~n + 1 = .

Of course, it gives rise to the same surface on We will require that
this surface on Tn + 1 has no selfintersections which amounts to the following

DEFINITION 1. 2. - The surface xn + 1 = u(x) has no selfintersections
on Tn+1 if for every j~Zn+1

has a fixed, i. e. is for all x either positive or negative or identically zero.
The concept of minimal solutions without selfintersection is natural in

connection with foliations of extremals, as we shall see. Our first goal
will be to study the set ~~ of minimal solutions without selfintersections,
prove a priori estimates for them and establish their existence.

c) Some properties of minimal solutions without selfintersection.

In the case of the Dirichlet integral, i. e. F 2, the Euler equation
becomes the Laplace equation Au = 0 and, in this case, one verifies that
every harmonic function is a minimal solution. However, the only minimal
solutions without selfintersections are the linear functions

The same assertion is true for any integrand F = F(p) which is independent
of x, u (see Section 2).
The first main result can be viewed as a comparison statement, comparing

a minimal solution u without selfintersection for a general variational
problem with those of a translation invariant one, say F = p ~ 2.

THEOREM. - For any minimal solution u without selfintersection there
exists a vector a E (~n such that the surfaces

have a distance in [Rn+ 1 less than a constant c depending on F only, but
not the individual u (see Section 2).
Thus to every u E ~l one can associate a vector a E (Rn, (a, - 1) being

the normal to the hyperplane = a . x + u(0). We show that conversely
to every a E tR" there exists a .u E ~ (see Section 5 and 6). We denote the
set of u E ~~l belonging to a by Moreover u can be chosen so
that the set of periods of u(x) and uo{x) = ex. x + f3 agree, i. e. that
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The relation between u and uo reaches farther. If u has the just mentioned
property then the relation

is monotone, i. e. the ordering of these translates is independent of the
particular integrand (see Section 6).

d) Foliations of minimals.

The hypersurface Xn+ 1 = u(x), when viewed on Tn+ 1 is, in

general, not compact. A necessary condition for compactness is that a is
rational, i. e. all components are rational. If, on the other hand, a is not
rational then the translates of any hyperplane xn+ i = a . x + ~o are dense
on [~"~ and by considering their limits we obtain all parallel hyperplanes
xn + 1 - ~ - x + (3 where a is fixed and /3 varies over ~. These hyperplanes
form a foliation, given by ux~ = ay, whose leaves are extremals for F = p ~ 2.
More generally, one can ask whether for an arbitrary variational problem
the translates u(x + j) - jn+ 1 of u E generate a foliation of minimals.
A foliation of Tn + 1 of codimension 1 is given by a one-parameter family of
surfaces

with u(x, {3)  u(x, {3’) if f3  which is invariant under the translations
x -~ x + j ; in particular we assume u(x, f3 + 1) = u(x, ~3) + 1. If u(x, f3) is
an extremal for each f3 we call it an extremal foliation, if u(x, f3) is minimal
for each f3 we call it a minimal foliation. It is clear that the leaves

xn+ 1 = u(x, 03B2) have no selfintersections and this is one reason for consi-
dering nonselfintersecting solutions. It is also a standard result of the

theory of calculus of variations that any extremal foliation is a minimal
foliation ; this can be proven with the help of Hilbert’s invariant integral,
noting that = u(x, j3) represents a field of extremals.
For a satisfying (1.6) we consider the limit set J~ c= Tn+ 1 of

the translates (x, u(x + j) - jn+ 1) under the fundamental group Zn+ 1 in
an appropriate topology ; J~ is sometimes called the hull of u. Two cases
arise :

A) If xn + 1 = u(x) is dense on the torus, i. e. if j~f = Tn + 1 then the trans-
lates 03C4ju generate a minimal foliation u), Lipschitz continuous
on Tn+ I. Moreover, this foliation can be mapped by a homeomorphism

with U(x, 0) - into the trivial foliation 8 = ex. x + ~3. In other
words, the leaves of the foliation are given by
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B) If x is not rational, but x"+ 1 = u(x) is not dense on Tn+ 1 then the
limit set is a Cantor set, invariant under ~n+ 1, which is foliated by minimal
solutions 

.

where, however, the function U(x, e), which is strictly increasing with
respect to e, is not continuous. Both cases can occur, and B) has to be
considered the « general » situation.

e) Quasiperiodic solutions.

A continuous function g(x), x E !R" which can be written in the form

where G E C(Tn+ ~), is called quasi-periodic with frequencies ai, a2, ..., an.
Thus, by (1. 7), in case A) the functions exp (2niu) are quasi-periodic ; for
simplicity we will in this case call u itself quasi-periodic. Our results can
be viewed as a construction of generalized quasi-periodic solutions of
the Euler equations. While in case A) the solutions (1. 7) are indeed quasi-
periodic they are not in the case B) since U(x, e) fails to be continuous.
In particular, we find such solutions for every a E ~n for the nonlinear
differential equation

with periodic right hand side, e. g.

f ) Alternate variational principle.

One can try to construct the function U(x, 8) for a given a by a direct
construction, avoiding the previous steps. In Section 7 we sketch such an
approach which is based on the regularized variational principles

Vol. 3, n° 3-1986.



234 J. MOSER

Minimizing this functional over all U = U - one

obtains for E &#x3E; 0 a smooth function 8) which is monotone in 8.

The desired function can be obtained by taking the limit of a subsequence
-~ 0. However, this section is fragmentary and we restrict ourselves

to proving the strict monotonicity of for E &#x3E; 0.

g) Connection with the theory by Aubry and Mather.

These results as well as their proofs are inspired by the work by Aubry [2 ]
and Mather [16 ] and this paper can be viewed as a generalization of their
ideas. Their work is concerned with area-preserving mappings qJ of an
annulus or cylinder which have the monotone twist property. One of their
basic achievements is the construction of a closed invariant set for a pre-
scribed rotation number a, the so-called Mather set, which is either a
closed invariant Lipschitz curve or an invariant Cantor set lying on such
a curve. Both these authors devised a different construction for these
sets. Aubry based his construction on a variational problem for one-
dimensional sequences ui, feZ and his so-called minimal energy orbits.
The definition of these minimal energy orbits and their construction is

generalized by our minimal solutions. We dropped the term « energy »
since the variational expression may represent the « action » in mechanics
or some other physical quantity. There is a difference, however, which is
basic. In Aubry’s theory every minimal energy orbit has a monotonicity
property which corresponds to the absence of selfintersections in our

picture. This is due to the fact that Aubry’s theory refers to one dimensional
discrete orbits, corresponding to n = 1 in our situation, while for n &#x3E; 1

the nonselfintersection property has to be imposed. We showed in an
earlier note [20 ] that the variational problem underlying Aubry’s theory [2 ]
for discrete orbits can be replaced by a variational problem (1.2) for
n = 1 where the monotone twist property translates into the Legendre
condition.

There is a translation of the other concepts: An invariant curve of qJ
corresponds to a minimal foliation for (1.2). A Mather set which is not
an invariant curve corresponds to a minimal foliation on a Cantor set ~f.
The rotation number a corresponds to the rotation vector a E ~n.

Mather’s construction of his invariant sets is based on a variational

problem which had been studied earlier by Percival for numerical purposes.
It translates into a degenerate variational problem which is described in
a regularized form by ( 1. 9).
Thus this work can be viewed as a generalization of [2 ] [16 ] to higher

dimensions where it is important that the one-dimensional orbits are

replaced by surfaces of codimension l. This is crucial not only for the ordering
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of the orbits, but also for the maximum principle for scalar elliptic partial
differential equations. We did not discuss examples showing that both
cases A) and B) occur and refer to such examples for n = 1 [21 ].

h ) Tools from calculus of variations.

For variational problems (1.2) an extensive theory has been developed
and it is known that all minimals bounded in a ball B belong to 
and satisfy the Euler equations. This is the consequence of the regularity
theory for such problems. This difficult theory is presented in the book [1 S ]
by Ladyzhenskaya and Ural’tseva in a form most appropriate for our
purpose. It is built on the basic work by De Giorgi [4 ] who developed
the first approach to obtaining pointwise estimates for weak solutions of
elliptic partial differential equations. These estimates are used to prove
the Holder continuity of the solutions. This technique has been developed
by many mathematicians, e. g. Morrey [17 ], Gilbarg-Trudinger [12 ],
Giaquinta, Giusti, Di Benedetto-Trudinger who proved a Harnack inequa-
lity in great generality. We will not reprove the qualitative statements
about the regularity of the minimals but use the pointwise estimates, in
particular the Harnack inequality, to get quantitative information. In
order to get bounds for minimals, as stated in Theorem 2.1, we can use
to advantage the beautiful work of Giaquinta and Giusti [7] [9] who
established that quasi-minima - a generalization of the concept of mini-
mals - belong to the so-called De Giorgi class for which Di Benedetto
and Trudinger [5 ] proved their Harnack inequality, using earlier ideas
of Krylov and Safonov. With the help of these deep results the proofs are
quite simple and natural. One may say that this work is a combination
of a study of the action of the fundamental group on the set of minimals
with the pointwise estimates and the strong maximum principle for elliptic
partial differential equations.

i ) Open problems.

It would be desirable to develop a theory of this type for minimal surfaces
on Tn+ 1 with respect to a Riemannian metric. The corresponding inte-
grand F in (1.2) grows like I p I, however, and the theory breaks down.
In that case one would like to consider minimal surfaces which are not
the graph of a function. Such a theory would require genuine extensions ;
it would be interesting because it could lead to a theory of minimal surfaces
of codimension 1 on other higher dimensional manifolds, also with non-
commutative fundamental group. Actually for n = 1 such a theory has
been carried out by G. Hedlund [7~] ] who studied minimal geodesics
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(called geodesics of class A) on a torus. These results were generalized
by H. Buseman to Finsler metrics and G-spaces. For a recent exposition
of these ideas we refer to Bangert [3 ] where further literature is quoted.
Also his theory has very similar aspects as that of Aubry, but his orbits
need not be graphs of functions. In this respect his work is more general
than Aubry’s. For compact surfaces of higher genus such a theory was
developed by M. Morse [18] already in 1924.
We mention that we derived only the first basic steps of such a theory

of minimal solutions on a torus. We did not show, for example, that the
Cantor set J~f is independent of the minimal solution u E generating
it. For n = 1 this is true, however the proof of this fact does not carry
over directly. Recently V. Bangert (1) succeeded in proving such a statement
for n &#x3E;_ 2 ; more precisely he showed that a minimal set J~o of the translates
u(x + j ) - jn + 1, j E ~n + 1 of a recurrent minimal is independent
of the choice of u. Thus the set 20 = which is a Cantor set or the
torus Tn+ 1 is associated with the variational problem and the rotation
vector a, and not any particular solution u.
There is another possible generalization of Aubry’s and Mather’s theory

which asks for invariant Mather sets for Hamiltonian systems of more
than two degrees of freedom. In this direction one has only a perturbation
theory, the so-called KAM theory, but no theory in general. Our paper
does not contribute to this question ; we are concerned with a higher
dimensional generalization where the solutions are hypersurfaces of codi-
mension 1 and not one-dimensional curves. Incidentally, also in our situa-
tion a perturbation theory generalizing the perturbation of invariant
tori can be developed ; it will be formulated in Section 8.

2. MINIMAL SOLUTIONS ON A TORUS

On the torus Tn + 1 = (~n + ll~n + 1 we consider a variational problem

where the integrand F(x, u, p) is required to be continuous in u, p and
measurable in x ; moreover, it is required to satisfy the inequalities

for all x, u, p where 5o E (0,1), co &#x3E; 0 are constants. Finally F is assumed

e) « A uniqueness Theorem for ~"-periodic variational problems », preprint Bern 1986.
Bangert uses a more restrictive concept of recurrence than we do (definition 6.4).
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to be of period 1 in x~, x2, ..., xn and u, so that (2.1) can be viewed as a
variational problem on the torus Tn+ 1.
Our aim is to derive properties for minimal solutions defined above

with the additional property that u = u(x) has no selfintersection on T"+ 1.
We say that u has no selfintersection on Tn + 1 if the translated solution

does not intersect u, i. e. if for every j~Zn+1

In other words, this difference is either positive or negative or identically
zero.

For orientation we consider the example of the Dirichlet integral

for which every harmonic function u is a minimal solution. It is without
selfintersection if and only if it is a linear function

Indeed, the harmonic function u(x + j ) - u{x) would have to be a constant,
since any in (Rn positive harmonic function is by the Harnack inequality-
a constant ; i. e.

Here the constant c( j) satisfies c( j + h) = c( j) + c(h), and therefore has
the form c( j) = a. j with some 03B1~Rn. In other words, the function

is harmonic in and satisfies M(jc + j) = u(x) and therefore is a constant,
say f3, proving the claim.

Actually, for n = 1 the linear functions are the only harmonic functions
which are automatically nonselfintersecting. This holds generally for
variational problems (2.1) satisfying (2.2) if n = 1. However, for n &#x3E; 2
it is easy to find minimal solutions with selfintersections ; e. g. the harmonic
function u = In other words, the condition that the minimal energy
orbits have no selfintersections has to be imposed only for n &#x3E; 2.
The main result of this section is contained in the following

THEOREM 2 .1. - If u = u(x), x E [R" is a minimal solution of (2 .1 ) without
selfintersections and if (2 . 2) holds then there exists a unique vector a E [Rn
such that

Vol. 3, n° 3-1986.



238 J. MOSER

is bounded for all x E Moreover, there exists a constant cl, depending
on co, bo only so that

for all x, y.
In geometric terms this means that the surface z = u(x) has a distance

 c 1 from the hyperplane z = IX.X + u(0). We will refer to a as the rotation
vector of u.
The proof depends strongly on the basic work by De Giorgi, Lady-

zhenskaya and Ural’tseva, Giaquinta and Giusti, Trudinger and others.
First of all, according to Giaquinta and Giusti every minimal solution
is locally bounded and even Holder continuous, so that it makes sense
to speak of its value at a point. This is proven by Giaquinta and Giusti
by verifying that these minimal solutions u (and more generally quasi-
minima) as well as - u satisfy the inequalities (see [7], Section 4 ; we specia-

oo).

for all 0  p  r and all real k where

and Ay(k, p) [ denotes the Lebesgue measure of this set. The constant y
depends on co, ~o only. Functions u E satisfying such a set of
inequalities (2 . 5) are called of De Giorgi class DG2 because of De Giorgi’s
fundamental work on the regularity of elliptic differential equations [4 ].
As a matter of fact, if u and - u belong to DG2 it follows that u is locally
bounded and even Holder continuous (see [IS], Chap. II, Sect 6 or [10] [ll ]).
Moreover, according to [15] ] Lemma 6 . 2 of Chap. II one has

where 8 E (0,1), c2 &#x3E; 0 depend on y only and not on the function u or on r.
In the above result one can replace the spheres x ~ _ r, I x  2r by

cubes, for example, and we take

Then one has

with some other constants e E (0, 1), c2 &#x3E; o.
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On the other hand we use that u has no selfintersections. For a fixed
x E ~n we consider the denumerable set

and consider the translations Sx  Sx defined by

where ev is the vth unit vector. Then

and  for s  s’, s, s’ E Sx, since u has no selfintersections. If

Tv(S) would be defined for all real s it would define a mapping of the circle R/Z
into itself for which one can define the Poincare rotation number. By the
same standard arguments (see below) one shows that the rotation number

exists and is independent of s. More generally, since Ti, 12, ..., in commute
one has

Moreover, for any such monotone mapping ... of Sx onto
itself one has

and hence

Moreover, a is independent of x since the mappings ~,, for different values
of x E (~n are conjugate.
To complete the proof we have to verify a similar estimate as (2. 9) with

k E Z" replaced by any y E tR". For such a y~ Rn determine k E Z" so that

so that from (2.9)

Since all our assumptions are invariant under translations jc -~ x + a
it suffices to find an estimate for osc u in terms of a L

Q
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From (2 . 9) with x E Q and k = one can deduce

Indeed, if

one can find points.

and such that E Q (see figure).

Hence, by (2.9),

With a similar lower estimate for min u we obtain for osc u = max u - min
the estimate (2.11). 

3Q 3Q 3Q 3Q

Combining (2.11) with (2.7") we find

hence
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Since this estimate holds for any translated cube x + Q we obtain from (2.10)
the desired estimate, proving theorem 2.1.

Repeated application of the inequality (2.7’) gives Holder continuity
of u, more explicitly

where we assumed without loss of generality 6 1 ). Combining this
with theorem 2.1 we can sharpen that theorem to

THEOREM 2.2. - For any non-selfintersecting minimal solution u(x)
there exists a Holder exponent s &#x3E; 0 and a constant c4 &#x3E; 0, depending
on co, ~o only, such that

holds for all x, 
We want to extend the characterization of minimal solutions without

selfintersections to the case where F = F(p) is independent of x, u.

THEOREM 2 . 3. If F = F(p) E 1 ) and

then any minimal without selfintersections is of the form u(x) = x ~ x + ~3.

Proof. Let u be such a minimal without selfintersections. Then for
any (.), .)n + 1 ) E ~n + 1

has the same properties and v(x) - u(x) is &#x3E; 0,  0 or = 0 for all x. We
claim that w(x) = v(x) - u(x) is a constant. Indeed, since both u, v are

weak solutions of the Euler equation

one finds for w the elliptic differential equation
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with

From a generalized Harnack inequality (see [19], remark at the end of
Section 6) it follows that a positive solution w of such an equation must be
a constant. Hence

As before we conclude that c( j) = a.j for some a E Now uo(x) = a - x
is obviously a minimal without selfintersection of our problem and

has period 1 in all variables xi, ..., xn. Since also u - uo satisfies an elliptic
partial differential equation it must be a constant, i. e. u(x) = a. x + f3.

Appendix to Section 2.

For completeness we supply the proof of (2.8’), (2.8") which usually is
given only in the case that the function ’!v(s) is defined for all real s and is
continuous.

Dropping the subscript v we write L(S) = and assume that i(s) is
defined on a denumerable set S,

Then ~(s) - s has the period 1 and

Indeed, otherwise, because of the periodicity, one could find

The right hand side equals + 1) - si &#x3E; T(S2) - si which yields
- s2 &#x3E; - si, a contradiction.
The same inequality holds for r"" and we set

so that 0  bm - am  1 by a), and

Because of

for all natural numbers m, p one has
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Exchanging m, p we have also bm p  mbp hence

With a p &#x3E; bp - 1 this implies

hence

Thus - converges to a number, say a, and because of 0 - bm - a,~  1

also a. On account of b ) also ~ a for all s E S, proving (2 . 8’).
m

Now using c) for m = 1 gives

For p -~ oo, we obtain a 1  a  bi. This means, that both numbers
T(S) - s and a lie in the interval bi ] of length  1, hence

n v i ~ 
- - -- _ ~ .r

proving (2 . 8 ").
We apply these inequalities to i22 ... inn = ik and find

where

3. COMPACTNESS OF THE SET
OF MINIMAL SOLUTIONS

The above estimates were valid under the very general assumption (2. 2)
which does not allow for the formulation of the Euler equations, much
less imply their elliptic character. In the following we strengthen the assump-
tions and require that

with some constants 6 E (0,1), c &#x3E; 0.
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Obviously these assumptions imply (2.2) with some positive constants
5o, co so that our previous estimates hold for arbitrary minimal solutions
u(x). In particular,

are bounded uniformly by Under the assumptions (3.1)
it is possible to show that u have Holder continuous derivatives which
can be uniformly estimated. For this purpose the periodicity condi-
tion (3.1) ii) is irrelevant once pointwise bounds of fi have been found.
The delicate estimate technique for pointwise bounds of ux in terms of
sup were developed by Ladyzhenskaya and Ural’tseva [15 ] and later
extended and modified by Morrey [17], Trudinger, Giaquinta and Giusti
and others. For a generalization involving obstacles and such conditions
see Eisen [6 ], whose arguments are based on Ladyzhenskaya-Ural’tseva’s
approach. Another approach not using the divergence structure was

developed by Amann and Crandall [I ] based on an idea by Tomi.

THEOREM 3.1. - Let u be a nonselfintersecting minimal solution of (2 .1 )
with rotation vector a, where F = F(x, u, ux) satisfies (3 .1) i) and iii) but
not necessarily ii). If u satisfies

then u E for some positive 8 independent of u but depending on 
c, 5, and

where yi 1 is a constant depending on c, 6 and 
In the following we will denote by y, yi etc. such constants depending

only on c, b and where it is understood that they are monotone increas-
ing functions of a I. We note that generally y 1 grows faster than linear ;
even for n = 1 it may grow exponentially with IIX I.
We reduce the proof to the results of Ladyzhenskaya and Ural’tseva.

We note that

is a minimal solution for the variational problem

with
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On account of (3.1) iii) one has

and similarly

with y = c(1 + cc ~ )4.
Now we use the results of Chap. 4 of Ladyzhenskaya and Ural’tseva [7~] J

which apply more generally to weak solutions of quasilinear differential
equations

In our case we have

which on account of (3. 2~)-(3. .2"’) satisfy the required estimates (3.1), (3 . 2)
and (5 . 7) for m = 2 in the book [l S ]. Moreover, by our assumption we
have (  cl 1 + a2 - yo. Hence by theorem 5 . 2 in [15 ], Chap. 4
v E and there exists a constant y 1 depending on c, ~ and « [ only
such that

for all Moreover, by theorem 6.1 of [15] one has u for
some 8 &#x3E; 0, also depending on c, 5 and ( only, an estimate

This proves theorem 3 .1.
In this argument the periodicity condition (3.1) ii) was irrelevant. But

if we reinstate it we can apply theorem 2.1 and obtain the

COROLLARY 3.2. - Let u be a nonselfintersecting minimal solution
of (2.1) with the rotation vector a, where F satisfies (3.1) i.), ii), iii). Then

and

Moreover, all minimal solutions satisfy the weak Euler equations
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for all ~p E These formulae are meaningful since u, ux are conti-
nuous. As a matter of fact, from the general theory it is an easy consequence
that u E and u is a classical solution of the Euler equation

If F E it follows even that u E For us the quantitative estimates
of theorem 3.1 will be more important than these qualitative statements.
We associate with any minimal solution u a rotation vector a and will

now denote by the set of all nonselfintersecting minimal solutions
belonging to the rotation vector a. Moreover, for A &#x3E; 0 we set

In ~~ we use the C~-topology on compact sets.

COROLLARY 3 . 3. - The set is compact with respect to the C1_topo-
logy on compact sets in In other words, any sequence E possesses
a subsequence, say and an integer kv for which - kv converges
with first derivatives uniformly on any compact set to a function u* E 

Proof - This is an immediate consequence of Corollary 3.2: Replacing
by + integer we can assume o _ u~s~(o)  1. Since for the rotation

vector satisfies i  A one can take a subsequence for which 
converges to a vector a*, and by the theorem of Ascoli-Arzela for any
closed ball E ~c ~ there is a sequence s = sy"‘~ ~ oo so

that converges in for v -~ oo. Thus the diagonal sequence u~s~
for s = converges to a function u* E C1(~n) in the given topology.

If u* would not be minimal there would exist a ~p E so that

where B is a closed ball containing supp (fJ. If denotes the above sub-

sequence converging to u* then

since E ~. Since ~ u* in C1(B) one has

by the dominated convergence theorem. Since also IB(u(S») -~ IB(u*) we
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conclude IB(u* + &#x3E; IB(u*), a contradiction. Hence u* is a minimal
solution. It also has no selfintersection. Indeed, for 

is &#x3E; 0,  0 or == 0 and therefore

In the next section, Lemma 4.2 we will show that this implies

To show that u* we show that a* = lim is the rotation vector
for u*. This follows from 

~~ ’

LEMMA 3.4. - The function

assigning to u E ~~ its rotation vector oc = a(u) is continuous in the uniform
topology on all compact sets of tR", hence a fortiori also in the above
topology of C1-convergence on compact sets.

Proo, f. Let u, v E with rotation vectors oc, fl respectively. We set
w = v - u and y = ~ - a so that we have by theorem 3.1

hence

The right hand side can be made smaller than 28 by first choosing R so
large that c*AR -1  ~ and then, for fixed R, making the second term small.
Thus lemma 3.4 and corollary 3.3 are proven.

4. PAIRS OF MINIMAL SOLUTIONS

We consider two minimal solutions u, v and study the possibility of their
intersections in [R", i. e. points x where u(x) = v(x). Clearly, if a(u) ~ a(v)
then by theorem 2.1 u - v changes sign and u, v do intersect.

THEOREM 4.1. If u, then the open set

has no bounded components.
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Proof Let V be such a bounded component. Then we set

so that qJ = u - supp qJ c V. Hence

i. e. Iv(u) = Iv(v) = 
Thus for any open set W containing V we have

i. e. u is also minimal. From u, u E ~~, u ~ u follows either u = u or u  u
in as the next lemma shows. Hence u  u in I~n and V = !R", in contra-
diction to the boundedness of V.

LEMMA 4. 2. If u, v E u  v then either u = v or u  v.

Proof - This follows from the strong maximum principle for elliptic
partial differential equation. We set w(x) = v(x) - u(x) &#x3E; 0 and assume
that for some point x* we have w(x*) = 0. Then w has an absolute minimum.
w is the solution of an elliptic partial differential equation

with continuous coefficients. By the maximum principle (see appendix to
section 4) it follows that w = 0. Thus we have w &#x3E; 0 or w = 0.
There is a stronger result which shows that for two minimals which

do not intersect in f~n the difference u(x) - v(x) is of the same magnitude
for all x if x stays in a bounded region, e. g. 3Q.

THEOREM 4. 3. If u, v E and u  L in 4Q then there exists a positive
constant y depending on c, 5 and A such that

This implies that sup (v(x) - u(x)) = A+  oo, inf(v(x) - u(x)) = A &#x3E; 0
3Q 

~ 

3Q

and A +  
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Proof - This follows from the Harnack inequality in a situation in
which it was first proven by N. Trudinger [26 ]. More recently E. Di Bene-
detto and N. Trudinger [J] ] proved such a Hamack inequality for functions
in the De Giorgi class. Although this deeper result could be circumvented
we find it convenient to use it here.

For this purpose we fix u~M and consider v variable and set

w = v - u &#x3E; 0. Clearly w is a minimal solution for

We will replace this variational problem by another one:

for which w is again a minimal solution. For this purpose we set

Then

where R(w) depends only on the boundary values of w, hence does not
affect the property of w being a minimal. Thus if w is minimal for (4.1)
then also for (4.2) and vice versa.

Since u satisfies the Euler equations we find from (4.3)

where
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From the assumption (3.1) iii) and Theorem 3.1 we conclude that

with some positive constant y 1 depending on c, b, A only.
Following again the ideas of Giaquinta and Giusti one shows that any

minimal w of (4 . 2), where G satisfies (4.4), as well as - w fulfill the inequa-
lities

for all real k and for all 0  p  r where again

The constant y~ depends on c, b, A only.
The assumption for the theorem of Di Benedetto and Trudinger is that

the function w E w &#x3E; 0 in Q and + w satisfy

for all real k, 0  p  r and all domains Ay(k, r) for which By(r) belong
to Q. The difference to (4. 5) lies in the replacement of k2 by (k/r)2. Hence
if we restrict ourselves to a bounded domain, say Q = 4Q, then the radius r
of balls By(r) belonging to Q is bounded, e. g. here by 2 and (4. 6) follows
from (4 . 5) with Y3 = 4y 2.
The theorem of Di Benedetto and Trudinger asserts that any function

w E w &#x3E; 0 in 4Q for which (4. 6) holds satisfies in a compact
subdomain, e. g. 3Q the inequality

with a constant y~ depending on y3 only, i. e. depending on c, 5, A only.
This proves theorem 4.3.

COROLLARY 4 . 4. If u E let Ty: Sx  Sx be the mappings

defined in Section 2. Then z,, is Lipschitz continuous, and satisfies

where y is the constant of theorem 4.3.
This is an immediate consequence of theorem 4.3.
Thus the i,, can be extended uniquely to the closure of Sx as Lipschitz

continuous mappings, and these extensions still commute pairwise.
We conclude this section with another estimate which expresses the
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Lipschitz continuity of the foliation which will be constructed in Section 6.
For this purpose we will have to assume that the third derivatives of F
are Holder continuous, i. e. that (3 .1) holds with 1 &#x3E; 3.

THEOREM 4. 5. If u, v E and u  v in a ball B then there exists a
constant y depending on c, 6 and A only such that

Proof By theorem 3 .1 one has in ~"

and by a general result u E since F E and

see, for example, [1 S ], p. 336.
Since u, v &#x3E; u satisfy the Euler equations

we obtain by taking the difference a partial differential equation for
w === ~ 2014 u &#x3E; 0:

where

where the arguments are the same as in the first line.

Because of our assumptions these coefficients c are in C~°£(B) and
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with some constant y~ depending on c, 6 and A. Therefore (4 . 8) can be
written explicitly as

with Holder continuous coefficients, whose ~-Hölder norm can be estimated
by y3. Since the equation is uniformly elliptic and the quadratic form

n

satisfies  av 03BEv03BE  ~ 03B4|03BE|2 one obtains by the Schauder estimate (Gil-

barg-Trudinger [12], p. 85)

Using theorem 4.3 we find

which proves the statement.
In the case of foliations of minimal surfaces this argument was used

by B. Solomon [25 ]. Clearly it is unessential that one has a foliation and
we will need this estimate for arbitrary pairs of minimals. Also one has to
require u, v to be minimal solutions in B only.

Appendix to Section 4.

For completeness we prove a simple consequence of the maximum prin-
ciple in a form as it was needed for Lemma 4. 2:

LEMMA 4.6. - Let Q be an open and connected subset of jR" and let

satisfy an elliptic partial differential equation

where the coefficients are continuous in Q and positive definite.
If u &#x3E; 0 in Q then u &#x3E; 0 or u = 0 in Q.

Proof If c &#x3E; 0 this follows immediately from E. Hopfs strong maxi-
mum principle, since then
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and u &#x3E; 0 in Q. Thus if u assumes the minimum value 0 it is identically zero
(see [24 ], p. 61).
The general case can be reduced to this situation by a standard trick;

We assume 0~03A9, u(0) = 0 and have to show u(x) = 0 for any x It

suffices to establish this for all x in an open domain D c Q, with compact
closure in Q. The function v = e - satisfies the elliptic differential equation

where L is a differential operator of the same form as L with coefficients

a,,~, = a"~ and 
’

For ~~ sufficiently large we have c &#x3E; 0 in D. Therefore, if 0 E D and D is
connected, we conclude v = 0, hence u = 0 in D.

5. EXISTENCE OF MINIMAL SOLUTIONS;
RATIONAL a

In order to construct minimal solutions for a given rotation vector we
begin with rational oc, i. e. a vector with rational components and construct
first minimal subtori. For other a E !R" the minimal solutions are found
by approximation with those with rational a. 

_

For a given minimal solution u we associate the group F of all periods
y = (y, where y = (y 1, ..., yn ), i. e. the set of y E F for which

holds. This is a subgroup of Zn+1 which contains no point on the 
but the origin. Therefore dimZ h _ n. Let us denote by E the smallest
linear subspace of Rn+1 containing I, so that dimR E = dimZ I-’  n.

Clearly r is a subgroup of n E and we will call h « maximal »

if r = ~n + n E. Obviously every r is contained in a maximal lattice,
namely in Z"~ n E.

If a denotes the rotation vector for u then oc = (a, - 1) E IR" + 1 is ortho-

gonal to E since for y e r, m E Z,

1. e.

More generally, if r is any subgroup of 7 n+ ~ 1 containing no point on
the xn+ i-axis but the origin then dim r  n and F possesses a normal of
the form 3 = (a, - 1), i. e. it is contained in a hyperplane xn+ 1 = 
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Denoting the projection rc(x, xn+ 1) = x of Rn+1 onto Rn we consider
the group r = 03C00393. From r and a one obtains

Clearly r is maximal if and only if r is maximal.
In the special case of the Dirichlet integral the minimal solutions without

self intersections are linear functions u = a ~ x + (3. Thus given any a E tR"
there exists a u E Also the corresponding period lattice

is maximal. We will establish both facts for general variational problems
on the torus.

Before proving these facts we remark:
The hyperplane

is dense on the torus Tn + 1 = p,~n + if and only if a is not rational,
or equivalently if and only if

On the other hand the hyperplane (5.1) represents a subtorus of Tn+1
if and only if a is rational, i. e.

In this case = is a torus and for any y E r

since Yn+ 1 
To prove that the hyperplane (5.1) is dense on Tn+ 1 if (5 . 2) holds we

just have to establish that the hyperplanes

are dense on 1, i. e. the set « . j - jn+ 1 is dense on Since a is not
rational there is at least one irrational «v, say « 1 and it is well-known that

already the is dense which implies the statement.
Finally we record that « 1, a2, ... , «n, - 1 are rationally independent

if and only if

a case we will discuss in the next section.
We turn to the construction of minimal subtori for an arbitrary varia-

tional problem (2.1) satisfying the conditions (3.1). We prescribe
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a = (a 1, a2, ..., I~n with rational components and a subgroup r’ of

We are looking for subtori

with the translation group

In other words, we require

Let Q’ be a fundamental domain of and consider

i. e. û satisfies (5 . 5) and

THEOREM 5 .1. - Given a rational vector and a subgroup r’
of r == { a ~ y - ~ ~ satisfying (5.4) there exists an element
u* E such that u* = LI.. x + u* minimizes

in the class of u with provided F satisfies (3 .1).
Moreover, u* E C2(lRn) satisfies the Euler equation.

Proof - This is a standard result proven by the direct methods of
the calculus of variations where the compactness of Q’ plays an important
role. For the existence one needs only F(x, u, p) to satisfy (2.2) and a
convexity condition with respect to p. We refer to Chap. 5 of Ladyzhenskaya
and Ural’tseva where the boundary value problem is treated while we

require the periodicity conditions (5.5) instead. We make the necessary
additional remarks.

Because of (2 . 2) we have _

so that IQ’(u) is bounded from below. The class of admissible function is
not empty since u = belongs to it. Now one picks a minimizing sequence
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with

Because of (5.7) we conclude that

is bounded. We can replace u by u + k, k E Z and achieve that the mean-
value

n

By Poincare’s inequality one has

where b denotes the diameter of Q’. Hence

Thus

is bounded.

By choosing a subsequence which converges weakly in W1~2(~’) and using
the lower semicontinuity one obtains the desired û* E W1°2(S2’) as in [15 J,
Chap. 5.

For the regularity we can apply the results of Chap. 6 in [7j~ ] assuming
(3.1). As a matter of fact, since is a torus one can forget about the
more difficult part of regularity at the boundary and gets away with the
« interior regularity ».

Temporarily let us denote the minimal periodic solutions belonging
to a, r’ by _ h’(x, r’) minimizing Then we have

THEOREM 5.2. - The set ~~(a, r’) of minimal periodic solutions

u(x) = (X. x + û(x) is totally ordered, i. e. if u, v E r’) then one has
for all x either u(x)  v(x) or u(x) &#x3E; or u = v.
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where d denotes the minimum of in this class of functions. We set

where

Hence

and adding

Since by the minimality of d also &#x3E;_ d we conclude

Since w ± belong also to the class of admissible functions we conclude that

Using the argument of lemma 4 . 2 we conclude from u  w + that u  w+
or u = w + . In the second case we have v  u, hence v  u or v = u as

claimed. In the first case we have u  v which proves the statement.

COROLLARY 5.3. - If u E n) then u has no selfintersections.
Indeed ~~u = u(x + j) - jn+ 1 belongs to I~’’) also, hence u

or  u or = u.

THEOREM 5.4. - r’) = where I" n I"’ is maximal.

Consequently the class of minimal periodic orbits is characterized by x
alone ; therefore we will from now on denote it by 

Proof - We observe that for u E ~~l(a, r’) and y E r also

belongs to r’). Indeed Ct. y is an integer and y E Writing

we have = u(x + y) and therefore
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Therefore i) 2014 û = v - u must have zeroes, and by theorem 5.2, v = u or

proving u E M a h . Moreover min I . a r’’ - 

|03A9’| |03A9| 
min I M( a h

simplying redily Theorem 5.4.

COROLLARY 5.5. - ~(OC).
So far the elements u in were characterized by minimality with

respect to the class of u for which u - have a fixed period lattice and
it is not clear that they are minimal solutions as defined in Section 1. That
is the content of the above corollary. We point out, however, that the above
containment is proper, in general, and ~~(a) may contain u for which u - a . x
is not periodic.
To prove the corollary we observe that by corollary 5 . 3 u E 

has no selfintersection and since u - a . x is periodic, a is the rotation vector
for u. It remains to show that

for arbitrary E W~~p, where B is a ball, I x  R, containing the supp ~p.
For this purpose we set

for a large integer N. Then according to theorem 5 . 4 the function u E 
can be viewed as element of r’), i. e.

for all ~r E W 1 ~2((~n/h’) and Q’ denoting a fundamental domain of ~n/h’.
We choose N so large that supp ~p c B c Q’, then (5 . 9) follows from (5.10).

After we have shown that is not empty for a rational, since it contains
is not hard to construct minimal solutions without selfintersec-

tions for arbitrary a.

THEOREM 5.6. Under the conditions (3.1) the variational problem
has minimal solutions without selfintersections for every prescribed
(X E ~n, ,I.e.

Proof. - Given a E ~" we set A = ( a ~ + 1 and pick a sequence of rational
E Rn with ~ a for s ~ ~. Pick E so that E MA

for large s. By corollary 3 . 3 is compact and there exists a subsequence
- m,, converging to an element u E ~A in the C 1-topology on compact

sets. According to lemma 3 . 4 one has u E 
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6. THE ACTION OF THE FUNDAMENTAL GROUP

We consider a minimal energy solution u E first in the case that

a 1, oc2, - ..., - 1 are rationally independent so that u does not admit
any period. In this case the translated solutions

are distinct since u has no selfintersections on Tn+ 1. Thus they give rise
to an ordering of the fundamental group, defined by  It is
remarkable that this ordering is independent of the solution and even
independent of the variational problem. For example, for F = 
saw that u(O) = a . x belongs to ~~(a), and our claim amounts to the state-
ment that

In other words, we assert

LEMMA 6.1. If u E and a i, a2, ..., - 1 rationally independent
then

Proof It suffices to prove the statement for x = 0 and for j = 0, or

With the previous notation the mapping

has the rotation number k.a which is not an integer. Moreover, by corollary
4.4 this mapping zk is Lipschitz continuous on the set 
and can be extended, by continuity, to S and by defining it linear in the
intervals of to a mapping on This extension is monotone, continuous

and satisfies + 1) = ik(s) + 1 and also has the rotation number k - a.
It is well-known that for an integer g

which is equivalent to the statement (6 .1 ).
The family of linear functions

is mapped to the translates
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of u E by the mapping

where U(x, 0) is defined by

for the dense values This definition is unambi-

guous since ai, ..., an, - 1 are rationally independent. By lemma 6.1
this function U(x, 0) is monotone in 0 and therefore can be extended to
monotone functions

where 0" are decreasing resp. increasing sequences taken from the dense
set on which U is defined. Clearly, for fixed x one has

except for a denumerable set and the discontinuities lie on hyperplanes
0 = a . x + (3. In general, U + (x, 0) &#x3E; U - (x, 0), and U+, U - are continuous
if and only if they are equal.

LEMMA 6 . 2. - The above defined functions U +, U - are strictly monotone
in 0 and satisfy

Therefore the mappings

can be viewed as mappings of Tn + 1 into Tn + 1.

Proof - The above periodicity conditions are immediately verified
for U from the definition 6 . 3 and therefore follow for the extensions U ± .
Also U ± are obviously monotone ; they are strictly monotone since U(x, 8)
is strictly monotone on the dense ~.
We want to free ourselves from the condition that the al, a2, ..., - 1

are rationally independent. If these quantities are rationally dependent
then the mapping (6 . 3) is generally not well defined. To avoid this difficulty
we construct a minimal solution u with the additional property that

If this condition is satisfied then the definition (6.3) is again unambiguous
for all 8 = a - x + j - a - jn + 1. These are dense if not all a 1, a2, are

rational which we will assume.
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To construct a u E ~(x) satisfying (6 . 5) we introduce the maximal lattice

and

Let r = dim71 r  n and y{ 1 ~, p2~, ..., a basis of r and y 1 ~, y 2~, ..., y r~
the corresponding basis in r. We may assume that 0.
Now we approximate a by rational which satisfy

In other words, the corresponding lattices should contain r. For
this purpose we choose a,~.S+ 1, . - - , as rational numbers, tending to

... , an as s -~ 00. Then the equations

determine a 1~~, a2s~, ..., uniquely as rational numbers since 

v, p = 1, 2, ..., r is non singular. These clearly satisfy (6 . 6) ; more-
over, -~ a for s -~ oo.

For these we construct minimal solutions E whose
period lattice contains r by theorem 5.4 i. e. we have

We can assume 0   1 and conclude that a subsequence of u~s~
converges to an element satisfying (6.5) since these relations
hold for all approximations. 

-

With this remark we can define U(x, 8) via (6. 3) for a whose components
are not all rational. In this case U ± (x, 8) are similarly defined and satisfy
the properties of lemma 6.2.

If a is a rational vector then we define U ± (x, 8) in the analogue way.
We just have to note that the is not dense. Thus if 
then (6 . 3) allows the definition of U(x, 0) for 8 = a . x + oc ~ j - jn + 1. Now
we define U + (x, 8) as the largest monotone function in 0 which extends

U(x, 0). Similarly, U-(x, 8) denotes the smallest monotone function extend-
ing U(x, 8). Thus U+ (x, 8) is defined for all a E 

THEOREM 6. 3. For every a E f~n there exists a function U(x, 8), strictly
monotone in 8, and satisfying
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such that for every

belongs to 
This is an obvious consequence of (6 . 3) with U = U+ or U - . Indeed,

if a is not rational a.j - jn+ 1 then

and if /3’ is an increasing sequence tending to 03B2 then the corresponding
sequence increases to Incidentally, by
theorem 4. 3, the convergence is uniform on compact sets. By compactness
of MA/Z it follows that also U + (x, « . x + P) belongs to MA and by lemma 3 . 4
it belongs to The same argument applies to + ~8).

In case a is rational U + (x, 8) is a step function and + ~i)
agrees with _ _ . _, _

for Therefore in this case the statement is trivial.
The solutions + ~3) of theorem 6 . 3 need not contain the

function u E generating them, if a is not rational. They have an addi-
tional property. We take over the terminology of dynamical systems
(n = I):

DEFINITION 6.4. 2014 A minimal u E is called recurrent, if u is the
limit of a sequence of translates

THEOREM 6 . 5. - The solutions + ~3) are recurrent.

Proof - This is an obvious consequence of the fact that U + (x, a . x + ~3),
for example, is the limit of

for an increasing sequence ~’ - a . j - jn + 1 with !7! + ( -~ oo . More-

over, the limit set of any limit set, such as S, agrees with itself.
We have to distinguish two different cases:
A) The minimal solution xn+ i = u(x) is dense on 

B) Xn+l = u(x) is not dense on 
Both cases occur and even for n = 1 one can give examples illustrating

both situations. The first case occurs, for example, for an integrand F = F(p)
independent of x and u and for an a not rational (*).
The case A) is characterized by the following
THEOREM 6 . 6. - For a given the following assertions are

equivalent :

(*) Also, if F is independent of u or independent of some x~. ~ 0 and 0 then only
case A occurs.
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which, via the homeomorphism

is taken into the foliation 8 = (X. x + ~.

Proof - The assertion i) amounts to the density of u(x + j) - jn+ 1
for fixed x and varying j, jn+ 1 which by theorem 4 . 3 is equivalent to ii).

If &#x3E; then the interval does not
contain any cluster point of u(x + j) - j" + 1- Indeed, runs

through an increasing sequence tending to 0 - (X. x then u(x + j) - jn + 1
tends to and for a decreasing sequence one obtains U+(x, o).
This is in conflict to i), that is i) implies iii). The converse is obvious.

Finally, iv) is just a rephrasing of theorem 6. 3. One just has to notice that

is a homeomorphism. This follows from the strict monotonicity of U+(x, 0),
which follows from the strict monotonicity of U(x, 0) on a dense set. We
remark that the situation described in theorem 6.6 occurs only if a is

not rational.
In case a is not rational and u E ~~(a) is dense in Tn + 1 then U ~ == U - - U

and

defines a foliation of Tn+ 1: Since U(x, 8) is continuous and strictly monotone
in 8 one can find for a given x = (x, Xn+ 1) a unique /3 such that (6. 7) holds.
We define u(x, /3) = U(x, a.x + i by theorem 6.3 this represents a

minimal solution of for each ~. We define = 1 ) by the
relation

Then the differential equation

defines the foliation, whose leaves are u = u(x, P), P E (~. From the definition
it follows that has period 1 in and ~~ e C(Tn + ~ ). Thus
(6. 8) defines a foliation on 1. By theorem 4. 5 the functions are

Lipschitz continuous in u. Since u(x, [3) is for each fixed P twice continuously
differentiable in x we conclude :

THEOREM 6. 7. If is dense in and a not rational then
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the functions u) defining the foliation (6. 7) are Lipschitz continuous
on Tn+ 1.

Proof - If x = (x, xn + 1 ), x’ - we determine ~, ~’ so
that

where With the intermediate point y = (x’, u(x’, ~3))
we have by theorem 4. 5

~ 
1

Because of periodicity we can restrict ourselves to _ 2, v =1, 2, ..., n + 1.
Using the estimates (4 . 7) the right hand side can be estimated by [
which proves the theorem.
We remark that in this case the solutions u(x, f~) are quasi-periodic in

the sense that there exists a function 1(x, 0) = U - 8 E C(Tn + 1 ) such that

It would be more appropriate to say that exp (2niu(x, is quasi-periodic
since u is not even bounded for x =~ 0, but we will consider this interpreta-
tion as understood.
We turn to the more interesting case B) in which the translates ~~u of

a u E satisfying (6 . 5) are not dense, while a is not rational. By theo-
rem 6.6 this amounts to the assumption that the set

is not dense in This set can be viewed as the orbit through u(0) under
the commuting translations z 1, z2, ... , in and in + 1 : x~ + 1 -~ xn + 1 - 1.
We consider the limit set L(S) of points which are cluster points of points
in S Moreover, we define L+(S), L-(S) as the sets of s E f~
for which there exist decreasing resp. increasing sequences E S which

converge to s as m - oo .

Obviously, one has

It is well-known that L(S) is a Cantor set, that is a perfect nowhere dense
subset of !? if, as we assume now, L(S) 7~ (~. By our definition (6.4) of
U ± (x, 0) one has
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Indeed, if s~’~~ = 1 is an increasing sequence tending to s so
is x - j ~m~ = increasing and if 8~m~ ~ e one has

Conversely, any U-(o, 8) belongs to L-(S). The same arguments apply
to L+(S).
More generally, we define the limit set J~f c as the set of (x, xn + 1 )

for which xn + 1 is the limit of u(x + j(m)) - j(m)n+1, I j(m)| ( ~ ~. With 2+,
~ - we denote the limit sets where these sequences are decreasing, increasing,
respectively. If E,,+ 1 = {x~Rn+1, x = 0} denotes the xn+1-axis one has
J~f = J~ u J~’ and

Moreover, one has

and these sets are invariant under the translations x -~ x + ev,
v = 1, 2, ..., n + 1 and can be viewed as sets on the torus Tn+ 1 ; ~ is a
Cantor set on Tn + 1 if it is not equal to Tn+ 1.
The « gaps » of this Cantor set ~f are given by the discontinuities of

U ± (x, 6). These discontinuities occur along hyperplanes 8 = a - x + ~.
Let 0 = a . x + jS* be such a discontinuity and

Then the gap width 6(x) = u + (x) - u - (x) &#x3E; 0 satisfies by theorem 4 . 5

with a constant y depending on c, 6 and [ only. This means that the
ratio of the gap width is uniformly bounded over Q, independently of u
and the particular gap.
We mention that in case a 1, a2, ..., an, - 1 are rationally independent

Indeed this integral agrees with

and the sets u - (x) - jn + 1  xn+ 1  u + (x + j) - jn + 1 are disjoint. By an
appropriate choice one can bring these sets into Q x [o, 1 ] so that
the above integral is at most 1.
On the set ~f we can define the foliation as before so that

(*) Together with Theorem 4.3 this implies t~(jc) 2014 u-(x) ~ 0 for x’ [ -&#x3E; x.

Vol. 3, n° 3-1986. .



266 J. MOSER

is satisfied by u(x, 03B2) = U ± (x, a x + 03B2) for all 03B2 E R. As before is
invariant under the translation jc -~ x + e,, (v = 1,2, ..., n + 1) and
therefore is defined on By the same argument as before we see
that is Lipschitz continuous:

We summarize : In case B) we have a foliation (6 . 9) defined on a Cantor
set J~f c T" + 1 which is given by Lipschitz continuous functions.
We point out that for n = 1 this statement corresponds to the fact that

Mather sets of monotone twist mappings are subsets of Lipschitz conti-
nuous curves (see [14 ]).

7. AN ALTERNATE VARIATIONAL PRINCIPLE

We describe another approach to construct the function U(x, 0) of the
previous section. The difficulty is that this function is, in general, not
even continuous. We will construct U as the limit of a smooth minimal U~E~
of a different variational principle, which is obtained by regularization.
We will not prove here that the limit function agrees with the function U ±
of the previous section (at the points of continuity) but only discuss this
variational principle in its own right. The main point is that the minimals

of this variational problem are monotone in 8, the crucial property
of the function U+.
We consider the class of functions U for which

i. e. U - 8 has period 1 in ..., xn, 8 and consider on W 1 ~ 2(’I’n + ~ ~ the
functional

where

Note that the functional J depends on 8 and a vector a E IRn, which is not
indicated in our notation.

In contrast to our previous variational principle this integral is taken
over a compact domain, namely the torus T~ + 1 = ~n + 1 ~~n + 1 _
For E &#x3E; 0 this is a regular variational principle and under the previous

assumptions on F (see (3.1)) the standard theory guarantees the existence
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of a minimal U = U(x, 0, 8) minimizing J(U). Moreover, by the regularity
theory, one has U - 8 E 1).

THEOREM 7.1. If U = U(x, 8, 8) is a minimal of the functional (7.1)
with G &#x3E; 0 then

Before proving this theorem we remark:

LEMMA 7 . 2. If U, V are minimals of (7 .1 ) then also

are minimals.

Proof - The argument is identical with that of theorem 5.2. We show
again that

and since J(U) = J(V) is the minimum of the functional J we conclude

i. e. U*, U* are minimals, since they also belong to the class of admissible
functions.

LEMMA 7.3. If U, V are minimals of (7.1) and U  V then we have
either U  V or U - V.

Proof - This is a consequence of the maximum principle for elliptic
partial differential equations. We show that

and therefore W = V - U &#x3E; 0 satisfies an elliptic partial differential

equation

The assertion now follows from Lemma 4.6.

Proof of Theorem 7 . l. We first show that U(x, 8) is strictly monotone
in 8. Note that with U(x, 8) also V(x, 8) = U(x, 8 + c) is a minimal for
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every constant c, since the variational principle does not explicitly depend
on e. Moreover,

have period 1 in all variables. Hence

Thus if c &#x3E; 0 we conclude that

We claim that V - U &#x3E; 0 everywhere. If not V - U would take on
the value 0, hence also U* - U would have a zero if U* is defined by

By Lemmas 7.2 and 7.3 we conclude U* = U, a contradiction. Thus
U(0 + c) - U(0) &#x3E; 0 for c &#x3E; 0, and therefore

Since U8 = a8 
is also the solution of an elliptic partial differential equation

one concludes again that Ue --_ 0 or U8 &#x3E; 0. The first case can not occur
since U(x, 0 + 1) = U(x, 0) + 1. This completes the proof of the theorem.
Now one could study the limit of the minimals = 8) for

E -~ 0, E &#x3E; 0, and show that the limit function U~°~ minimizes the variatio-
nal principle

over all functions U with U - 8 E W 1 ~2(Tn + 1 ) for which U(x, 8’) &#x3E; U(x, 9)
for 8’ &#x3E; 8. This is the generalization of a variational principle suggested
by Percival [22] [23 ] and which was the basis of Mather’s paper. This
approach has the advantage that it is applicable for all a E !R", whether the
a 1, (X2, ..., an are rationally independent or not. We will not pursue this
approach in this paper.

8. A STABILITY THEOREM
FOR MINIMAL FOLIATIONS

In this section we present without proof a perturbation theorem about
minimal foliations. We begin with an unperturbed Lagrange function
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F° = FO(x, u, p) for which u = oc ..v + f3 for a fixed 03B1~ !R" and all 03B2~R
is an extremal, i. e.

For example, if F° = FO(p) is independent of u, p this is true for all a E f~n.
We ask whether for small perturbations

and fixed a there is still a smooth foliation belonging to the same a. This
is a « small divisor » problem and the result below can be viewed as a
generalization of the existence theorem of invariant tori for near integrable
Hamiltonian systems of two degrees of freedom. In particular, (x = ((Xi, ..., a,~
has to be restricted by Diophantine inequalities. We will assume that
there exist positive constants co, r such that

for 
Let B = be an open ball in with the center a and assume that

THEOREM 8 .1 (2). If F° = FO(x, u, p), G = G(x, u, p) satisfy (8 .1), (8 . 3)
and x E f~n satisfies (8 . 2) then there exists an Eo &#x3E; 0 such that for each

80) there exists a smooth function U = U(x, 0, s) with U - 
and

such that for each 03B2 e R

(2) This theorem was presented in September 1984 at the conference « Contemporary
Problems in Algebra and Analysis held at the Steklov Institute in Moscow.
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is a solution of the Euler equation

In other words u = u(x, ~) defines a smooth minimal foliation for the
perturbed problem ; note that

hence ~u ~03B2 &#x3E; 0 for small B. r+ 1 in this case, if I B is suffi-

ciently small.
One can view this result as a stability theorem for the foliation under

perturbation of the Lagrangian. Indeed, under the coordinate transfor-
mation

the unperturbed foliation goes over into the perturbed
foliation = u(x, f3). Thus we can say, that under the assumptions
of the above theorem the foliation survives under small perturbations and,
moreover, remains in the same conjugacy class.
The proof of the above theorem which will be published elsewhere-

uses the rapid iteration technique in conjunction with careful L2-estimates
of the approximations to the solution U = U(x, 0) of the degenerate partial
differential equation
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